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Abstract— We consider the fuzzy open shop scheduling
problem, where task durations are assumed to be ill-known
and modelled as triangular fuzzy numbers. We propose a
neighbourhood structure for local search procedures, based on
reversing critical arcs in the associated disjunctive graph. We
provide a thorough theoretical study of the structure and, in
particular, prove that feasibility and asymptotic convergence
hold. We further illustrate its good behaviour with experimental
results obtained by incorporating the local search procedure to
an existing genetic algorithm from the literature and provide a
new benchmark of problem instances.

I. INTRODUCTION

Scheduling problems form an important body of research
since the late fifties, with multiple applications in industry, fi-
nance and science [1]. In particular, the open shop scheduling
problem has clear applications; consider for instance testing
facilities, where units go through a series of diagnostic tests
that need not be performed in a specified order and where
different testing equipment is usually required for each test
(so it is not possible to conduct any two tests concurrently).
This situation is frequent in testing components of electronic
systems and in general repair facilities when repairs can be
performed in an arbitrary order, as well as certain medical
diagnosis procedures. The open shop is actually obtained
from the much better-known job shop by removing certain
constraints, making it tempting to regard it as a simpler
problem. However, the open shop scheduling problem is NP-
complete for a number of machines m > 3 and, additionally,
its solution space is significantly larger. Specific and efficient
methods to solve the open shop are still scarce, despite their
increasing presence in the recent literature [2],[3],[4].

To enhance the range of applications of scheduling, part of
the research is devoted to model the uncertainty and vague-
ness pervading real-world situations, with great diversity of
approaches [5]. In particular, fuzzy sets have been used in
different manners, ranging from representing incomplete or
vague states of information to using fuzzy priority rules
with linguistic qualifiers or preference modelling [6],[7].
They are also emerging as an interesting tool for improving
solution robustness, a much-desired property in real-life
applications [8],[9].

In deterministic scheduling the complexity of problems
such as shop problems means that practical approaches to
solving them usually involve heuristic strategies: simulated
annealing, genetic algorithms, local search, etc [10]. Some
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attempts have been made to extend these heuristic methods
to the case where uncertain durations are modelled via
fuzzy intervals, most commonly and successfully for the
flow shop problem: among others, a genetic algorithm is
used in [11] and a genetic algorithm is hybridised with a
local search procedure in [12]. For the job shop, we find
a neural approach [13], genetic algorithms [14],[15],[16],
simulated annealing [17], genetic algorithms hybridised with
local search [18] or particle swarm optimisation [19],[20].
To the best of our knowledge, the open shop problem has
not yet been tackled in the fuzzy scheduling framework, with
the exception of [21], where fuzzy sets are used to represent
flexible job start and due dates, and [22], where a genetic
algorithm is proposed to solve the open shop with fuzzy
durations.

In this paper, we intend to advance in the study of meta-
heuristic methods to solve the fuzzy open shop problem with
expected makespan minimisation, denoted FuzO||E[Cpqz].
We shall propose a neighbourhood structure for local search,
studying its good behaviour from a theoretical point of
view. Finally, we shall see how it can be combined to the
genetic algorithm from [22] to improve the quality of the
best solutions found so far.

II. THE Fuzzy OPEN SHOP PROBLEM

The open shop scheduling problem, or OSP in short,
consists in scheduling a set of n jobs Ji,...,J, to be
processed on a set of m physical resources or machines
M, ..., M,,. Each job consists of m tasks or operations,
each requiring the exclusive use of a different machine for its
whole processing time without preemption, i.e. all operations
must be processed without interruption. In total, there are mn
operations, {O,1 < k < mn}. A solution to this problem is
a schedule—an allocation of starting times for all operations—
which is feasible, in the sense that all constraints hold, and
is also optimal according to some criterion. Here, we shall
consider the objective of minimising the makespan C, 4z,
that is, the time lag from the start of the first operation until
the end of the last one, a problem often denoted O||C, 4. in
the literature.

A. Uncertain Durations as Triangular Fuzzy Numbers

In real-life applications, it is often the case that the exact
time it takes to process a task is not known in advance.
However, based on previous experience, an expert may have
some knowledge (albeit uncertain) about the duration. The
crudest representation for uncertain processing times would
be a human-originated confidence interval. If some values
appear to be more plausible than others, a natural extension
is a fuzzy interval or fuzzy number. The simplest model is



a triangular fuzzy number or TFN, using an interval [a!, a®]
of possible values and a modal value a? in it. For a TEN A,
denoted A = (a', a?, a®), the membership function takes the

following triangular shape:
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Triangular fuzzy numbers and more generally fuzzy inter-
vals have been extensively studied in the literature (cf. [23]).
A fuzzy interval () is a fuzzy quantity (a fuzzy set on
the reals) whose a-cuts Q, = {r € R : pg(r) > a},
a € (0,1], are intervals (bounded or not). The support of
Qis Qo = {r € R: ug(r) > 0}. A fuzzy number M is
a fuzzy quantity whose a-cuts are closed intervals, denoted
M, = [m,,M,], with compact support and unique modal
value.

In the open shop, we essentially need two operations
on fuzzy quantities, the sum and the maximum. These
are obtained by extending the corresponding operations
on real numbers using the Extension Principle. If f is a
bivariate continuous isotonic function and M and N are
two fuzzy numbers, it can be proved that the result of
applying f is a fuzzy number F' = f(M,N) such that
Fo = [f(mg), f(n,)), f(Ma), f(7a))], that is, computing
the function is equivalent to computing it on every a-cut of
the fuzzy numbers. Since both the addition and the maximum
are continuous isotonic functions, we can use this equality to
compute the sum or maximum of two fuzzy numbers. How-
ever, this is cumbersome if not intractable in general, because
it requires evaluating two sums or two maxima for every
value v € [0, 1]. For the sake of simplicity and tractability of
numerical calculations, we follow [17] and approximate the
results of these operations by a linear interpolation evaluating
only the operation on the three defining points of each TFN
(an approach also taken, for instance, in [19],[24]). The
approximated sum coincides with the actual sum, so for any
pair of TFNs M and N:

M+ N = (m' +n',m? +n% m? +n?)

Q)

Regarding the maximum, for any two TFNs M, N, if
F = max(M,N) denotes their maximum and G =
(max{m!, n'}, max{m? n?}, max{m3 n3}) the approxi-
mated value, it holds that:

Vae 0,1, f <g ,foa<Ta
The approximated maximum G is thus a TFN which arti-
ficially increases the value of the actual maximum F, but
maintaining the support and modal value, that is, Fy = Gg
and F} = (. This approximation can be trivially extended
to the case of more than two TFNs.

The membership function pg of a fuzzy quantity @
can be interpreted as a possibility distribution on the real
numbers; this allows to define the expected value of a fuzzy
quantity [25], given for a TFN A by

1
E[A] = Z(al +2a® + a®).

The expected value coincides with the neutral scalar substi-
tute of a fuzzy interval and can also be obtained as the centre
of gravity of its mean value or using the area compensation
method [6]. It induces a total ordering <p in the set of
fuzzy intervals [17], where for any two fuzzy intervals M, N
M <pg N if and only if E[M] < E[N]. Clearly, for any two
TFNs A and B, if Vi,a’ < b%, then A <p B.

B. The Disjunctive Graph Model Representation

An open shop problem instance may be represented by
a directed graph G = (V,E) with E = A U D. Each
node in the set V' represents a task of the problem, with
the exception of the dummy nodes start or 0 and end or
nm + 1, representing tasks with null processing times. Task
0;j, 1 <1 < n, 1 < j < m,is represented by node
x =m(i — 1) + j. Arcs in E represent job-precedence and
resource constraints: A contains two arcs (z,y) and (y,x)
for each pair x,y of tasks in the same job as well as arcs
(0,z) and (x,nm + 1) for each task x, and D includes two
arcs (x,y) and (z,y) for every pair x,y of tasks requiring
..... nA;and D = U1 Dy,
where A; corresponds to job J; and D; corresponds to
machine M. Each arc is weighted with the processing time
of the task at the source node (a TFN in our case). A
feasible processing order of tasks 7 corresponds to an acyclic
subgraph G(m) = (V, E(w)) of G, where A(w) U D(7)) ,
A(’JT) = Ui:l...mAi(ﬂ_) and D(ﬂ') = U]‘:L__ij(’lT), Az(ﬂ')
and D;(m) being a hamiltonian selection of A; and D,
respectively. Using forward propagation in G(w), we can
obtain the starting and completion times for all tasks and,
therefore, the makespan C, . (7).

Since task processing times are fuzzy intervals, the addi-
tion and maximum operations used to propagate constraints
are taken to be the corresponding operations on fuzzy in-
tervals, approximated for the particular case of TFNs as
explained above. The obtained schedule will be a fuzzy
schedule in the sense that the starting and completion times
of all tasks and the makespan are fuzzy intervals, interpreted
as possibility distributions on the values that the times may
take. However, the task processing ordering 7 that determines
the schedule is crisp; there is no uncertainty regarding the
order in which tasks are to be processed.

To illustrate these ideas, consider a problem of n = 3 jobs
and m = 3 machines with the following matrices for fuzzy
processing times and machine allocation:

(2,3,6) (4,5,6) (7,8,8) 12 3
p=1(6,6,6) (4,56) (567 |v=|[1 2 3
(6,8,8) (6,7,9) (1,3,5) 1 2 3

A feasible task processing order for this problem is given by
m=(1592673438); its corresponding solution graph can
be seen in Figure 1 (for the sake of clarity, the operations
in the same job have been displayed in the order in which
they are to be performed according to m). If S, and C,
denote, respectively, the starting and completion times of a
task x, it is easy to check that, for instance for task 6, S =
max{C5,Cy} = (4,5,6) and Cs = Sg + ps = (9,11, 13).
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Fig. 1. Solution graph G(m) for the processing order 7 =(159267 3
48). Crmaz(m) = (16,19, 23)

In the crisp case, a critical path in a solution graph is
defined as the longest path from node O to node nm + 1
and a critical arc or critical activity is an arc or activity in
a critical path. It is not trivial to extend these concepts and
related algorithms to the problem with uncertain durations
(cf. [26],[6],[27],[28]). For the fuzzy open shop as considered
herein it may even be the case that the makespan (a TFN)
does not coincide with the completion time of one job (unlike
the crisp case).

C. Fuzzy Open Shop Scheduling

In analogy to the original problem, our objective is to
find a fuzzy schedule with optimal makespan. An important
issue with fuzzy times is to decide on the precise meaning
of “optimal makespan”. This is not trivial, since neither the
maximum nor its approximation define a total ordering in
the set of TFNs. Using ideas similar to stochastic scheduling,
we follow the approach taken for the fuzzy job shop in [18]
and use the total ordering provided by the expected value
and consider that the objective is to minimise the expected
makespan E[C),.]. The resulting problem will be denoted
FuzO||E[Cypaz), following the «|8|y notation.

D. Local Search

Part of the interest of critical paths stems from the fact
that they may be used to define neighbourhood structures for
local search. Roughly speaking, a typical local search schema
starts from a given solution, calculates its neighbourhood and
then neighbours are evaluated in the search of an improving
solution. In simple hill-climbing, the first improving neigh-
bour found will replace the original solution, so local search
starts again from that improving neighbour. The procedure
finishes when no neighbour satisfies the acceptation criterion.

Clearly, a central element in any local search procedure
is the definition of neighbourhood. For the crisp job shop,
a well-known neighbourhood, which relies on the concept
of critical path was proposed in [29]. For a given solution
graph, a move is defined as a transformation of this graph,
based on reversing a critical arc, which yields a new solution
graph. The neighbourhood structure is then defined as the set
of solutions obtained from the original one after applying all
possible moves. It presents interesting features: all neigh-
bours represent feasible solutions, additional moves based
on reversing non-critical arcs can never reduce the makespan
and there exists a finite sequence of transitions leading from
any given element to some globally optimal element, usually

referred to as connectivity property. Feasibility means that
feasibility checks or repair procedures are not necessary,
with the consequent computational gain and better coverage
of the solution space. The second property means that the
neighbourhood reduces the search space without any loss
in the potential quality of solutions. Finally, connectivity
ensures asymptotical convergence in probability to a globally
optimal solution, a property which does not always hold for
neighbourhood structures.

Here, we shall extend this neighbourhood in a twofold
manner: from the job shop to the more general open shop
and from the deterministic to the fuzzy framework. We
shall also prove that the proposed extension maintains the
aforementioned desirable properties.

IIT. MAIN RESULTS

The definition of the neighbourhood structure will be
based on reversing critical arcs. We thus start by providing a
definition of criticality for the open shop scheduling problem,
as an extension of the deterministic case.

A. Criticality for the Fuzzy Open Shop

All arithmetic operations used to propagate constraints
in the graph are performed on the three defining points
or components of the TFNs. This makes it possible to
decompose the solution graph with fuzzy durations into three
parallel graphs with crisp durations. Similar ideas for the
fuzzy job shop have been proposed in [30]. Let ¥ denote
the space of feasible solutions for the FuzO||E[Cpaz]-

Definition 1: Let m € % be a feasible task processing

order and let G(r) = (V,E(m)) be the corresponding
solution graph, where the cost of any arc (z,y) € E(w)
is a TEN representing the processing time p, of task =x.
From G(7), we define the parallel solution graphs G*(r),
i = 1,2,3, which are identical to G(m) except for the cost
of arc (x,y) € E(n), which for graph G*(7) will be the i-th
defining point of p,, that is, pt.
Each of the parallel graphs G?(7) is a solution graph identical
to those for crisp OSP. Therefore, in each of them a critical
path is the longest path from node start to node end. Notice
that it is not necessarily unique; for instance, Figure 2, shows
the three parallel graphs generated from the graph in Figure 1
and it is easy to see that, if py = (7,7,7), then (0 5 6 4 10)
would also be critical in G*(7).

Using the parallel graph representation, we may extend the
notion of criticality to the fuzzy open shop as follows:

Definition 2: A path P in G(w) is an i-critical path if

and only if P is critical in some G*(7). Nodes and arcs in
a i-critical path are termed ¢-critical.
According to this definition, the sets of ¢-critical paths, arcs
and tasks are respectively the union of critical paths, arcs and
tasks in the parallel solution graphs. Unlike for the crisp OSP,
we may not state that the makespan of the schedule is the cost
of a ¢-critical path. However, it holds that each component
of the makespan CX () is the cost of a critical path in
the corresponding solution parallel graph G*(r) (coinciding
with the k-th component of the cost of an ¢-critical path).
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For a solution graph G(7) and a task z, let S, and C,
denote respectively the starting and completion times of x,
let Pv, and Sv, denote the predecessor and successor nodes
of x on the machine sequence (predecessor and successor
in D(m)), and let PJ, and SJ, denote respectively the
predecessor and successor nodes of z on the job sequence
(predecessor and successor in A(7)). We now extend some
well-known notions for the crisp case and define the head
r, of task x as the starting time of x i.e. S, in our context,
a TFN r, = (rl,72,73) given by:

ry = max(rpy, +PpJ,,TPv, + PPu,),

and the tail q, of task z as:

¢z = max(qsJ, + PsJ,sdsv. + Psv, )

Clearly, C,, = 7, + p,. For each parallel graph G'(7), r’
is the length of the longest path from node start to node x
and ¢ + pi. is the length of the longest path from node z to
node end. Hence, r’ + p’ + ¢’ is the length of the longest
path from node start to node end through node z in G*();
it is a lower bound of the i-th component of the makespan,
being equal to C! () if node z belongs to a critical path
in G'(r). For two TFNs A and B let A ~ B denote that
Ji,a’ = b’. The next proposition states some properties of
1-critical arcs and tasks which follow trivially from the above
definition:

Proposition 1: If an arc (z,y) is é-critical, then 7, +p, ~
ry. A task x is i-critical if and only if 7 +p, + ¢z ~ Craz.

B. Neighbourhood Structure

For the proposed definition of i-criticality, we may extend
the neighbourhood structure given for the job shop problem
in [29] to the fuzzy open shop as follows:

Definition 3: Given an arc v = (z,y) € FE(m), let
T(v) denote the processing order obtained from 7 after an
exchange in the processing order of tasks in arc v. Then,
the neighbourhood structure obtained from 7 is given by
H(rm) = {nm(y) : v € E(n) is i-critical }.

Given a task processing order 7 and an i-critical arc (z, y)
in G(7), the reversal of that arc produces a new processing
order ¢ = m(, ,y with solution graph G(c). This situation is
illustrated in Figure 3 for the case where (z,y) is a resource
arc (being the other case analogous). The makespan after the

Pu, G(m) Py,

G(Tay)

PJ, ST

s,

Sy,

Fig. 3. Situation before (7) and after (¢ = T(x,y)) the reversal of an
i-critical arc (z,y) € D(m).

move may be calculated as for any solution, using forward
propagation in the graph G(o) from 0. Alternatively, the
evaluation of the makespan of neighbouring solutions may
be done very quickly (in time O(NN)) using heads and tails.
Without loss of generality, let us suppose the reversed arc
was a resource arc, (x,y) € D(w), let r and ¢ denote the
heads and tails in G(7) (before the move) and let r’ and
¢’ denote the heads and tails in G(o) (after the move). For
every task a previous to x in 7, r, = r/, and for every task
b posterior to y in 7, g, = ¢;. The heads and tails for 2 and
y after the move (see Figure 3) are given by the following:

r, = max{rp;, +ppJ,,"Pv, + PP, },
r, =max{rpy, +pps,, Ty + Py}
q; = max{q_gjw + PsJ,s4sv, + pSVy}
qy = max{qsy, +PSJyaq/m +Po}

The formulae for the case where (z,y) € A(w) are anal-
ogous. To calculate the makespan C,,4.(0), we need only
re-calculate the heads of tasks from x onwards in the graph
G (o). This way of evaluating neighbours in H, albeit simple,
may prove a considerable reduction in computational load for
the local search procedure.

C. Comparison to Previous Approaches

In [17], we find a first proposal to extend the neighbour-
hood structure in [29] to the fuzzy job shop. An arc (z,y)
in the solution graph for the job shop problem with fuzzy
durations is taken to be a critical arc if and only if Cy; ~ Sy,
that is, if there is no slack time in one of its components. This
definition, being quite natural, yields some counterintuitive



results. For instance, in the graph from Figure 1, arc (7,4)
would be considered to be critical (in fact, all arcs except
(9,6), (2,3) and (4, 10) would be critical).

In [18], this definition was slightly modified by incorpo-
rating backpropagation: a critical path is taken to be a path
in the solution graph from node 0 to node nm + 1 where
C, =~ Cias and such that for all arcs (z,y) in the path it
holds C, ~ S,. A critical arc (respectively a critical task)
is an arc (respectively task) belonging to a critical path.

Let us denote as critical’ an arc which is critical according
to this last definition. All arcs considered to be critical
according to [17] will still be critical’, but the reverse does
not hold, avoiding some of the counterintuitive examples.
For instance, in Figure 1 the critical’ arcs are (5,6), (6,3),
(5,2), (2,8), (1,2), (1,7), (7,8) and (9,7). Clearly, it is pos-
sible to use this definition to extend the neighbourhood
structure proposed in [29] to the fuzzy open shop: for a
given feasible task processing order =, let H'(m) = {m(, :
v € E(m) is critical’} denote the resulting neighbourhood.
A first remark about H’ is that, even for a small problem
such as the one used as example throughout this paper,
the neighbourhood would be of considerable size. The next
proposition relating H and H' follows trivially from the
above definitions:

Proposition 2: The set of i-critical paths is a subset of the

critical’ ones. Consequently, neighbourhood H is contained
in H: Vr € ¥, H(m) C H'(n).
Notice that the set of ¢-critical paths may be a proper subset
of the set of critical’ paths. For instance, in our example,
only (5,6), (6,3), (1,7) and (7,8) are also i¢-critical arcs (half
of the critical’ ones). Moreover, the second condition in
Proposition 1 may not hold for a critical’ task. For instance,
in the example, arc (5, 2) is critical’ but is not ¢-critical and
task 2 is critical’ but Vi, rt + pt + ¢i # C!, .-

According to Proposition 2, the number of neighbours is
reduced when using H instead of H’. The following result
ensures that this neighbourhood reduction does not affect the
potential quality of solutions found by the local search:

Proposition 3: Let m € X be a feasible processing order
and let 0 € ¥ be a feasible processing order obtained by
the reversal an arc which is not ¢-critical in G(o). Then
Vi, C&..(7) < Ci . (o) and therefore

max

Cmam(ﬂ) <E CmaT(U)

Proof: Let o be obtained from 7 by the reversal of
an arc v = (x,y) where v is not an i-critical arc, that is, it
is not critical in any of the parallel graphs G*(7). Clearly,
for all i = 1,2,3 the arcs inside critical paths of G*()
remain unchanged after the move in G?(o), and therefore
Cl .(m) < Ct . (o) for all i. [ ]

In particular, neighbours in H’ which do not belong to H
can never improve the makespan:

Corollary 1: Ym € X,Vo €
Cmaw(ﬂ-) <Ee Omaw(a)

We may conclude that using H instead of H' in the
local search procedure leads to a reduction in the number
of evaluated neighbours without missing any improving

(H'(m) — H(m)) %,

neighbours, i.e. with no loss in the quality of the solution
obtained by the local search. Notice that if H' were to denote
the neighbourhood proposed in [17], the above results would
still hold.

D. Neighbourhood Properties

Now we further study the new neighbourhood H, in order
to prove that it has two highly desirable properties: feasibility
and connectivity.

Theorem 1: Letm € X be a feasible task processing order;
the reversal of an i-critical arc v = (x,y) € E(n) produces
a feasible processing order, i.e., ) € X. In consequence,
H(m) C %.

Proof: 1f v = (x,y) is i-critical, by definition, 3i, 7], =
1y, + p,. Suppose by contradiction that G(7(,)) has a cycle.
Since G(7) has no cycles and the only change in 7(,) W.r.t.
7 has been the processing order between x and y, having a
cycle in G(7(,)) means that there must exist an alternative
path from z to y in G(r), as shown in Figure 4.

Case a) Reversing a job arc

G(T(ay)

Fig. 4. Reversing an arc in a critical block with an alternative path

From the expression defining the head r,, Vi we have that
P2 by Py T2 Ty, Dy,

Given the existence of an alternative path from x to y, there
are two possibilities:

o If (z,y) € A(r) is a job arc,
Ty > sy, + Py, + Ppu, = T+ D4 + Py, + Ppy,

But being critical, there is at least one component k
where 7% = % + pk. and for this k we have:
ko ok ko .k k k
Ty +p.l, Z Ty +p1 _|_pSym +pPVy
which is contradiction with all task durations being
strictly positive.
o If (z,y) € R(m) is a resource arc,

ry 275y, ¥ P55, T Ppy, 275 05 Py, +Ppy,



and similarly, we obtain that for some component k,
PSs. +p’1€JJy = 0, which again is a contradiction.
Therefore, there can be no cycles in G(7(,)), that is, 7(,) is
a feasible task processing order. |

Notice that feasibility means that local search is automat-
ically limited to the subspace of feasible task orders. It has
the additional advantage of avoiding feasibility checks for
the neighbours, hence increasing the efficiency of the local
search procedure (reducing computational load) and avoiding
the loss of feasible solutions that is usually encountered for
feasibility checking procedures (cf. [31]).

A second property of the proposed neighbourhood is
connectivity. In order to prove it, we first state the following
partial result:

Proposition 4: Let m € ¥ be a feasible task processing
order, G(m) = (V,E(r)) its disjunctive graph and 7, an
optimal processing order. Let

Va(mo) = {v = (z,y) € E(n) v is i-critical ,

(y,2) € A(mo) U D(mo)}

where A(w) (D(m)) denotes the transitive closure of A(m)
(D(m)); i.e., Vr(mo) is the set of 4-critical arcs (x,y) in E()
such that there exists a path from y to x in E(mg). If 7 is
not optimal, then V. (mo) # () or, equivalently, if V(7o) = 0
then 7 is optimal.

Proof: First notice that if 7 is not optimal, there is at
least an i-critical arc in A(7) and another in D(7). Indeed,
w.l.o.g. assume that there are no i-critical arcs in D(w).
That means that all i-critical arcs in G(7) belong to A(w).
Therefore, for all 4, all critical paths in G*(r) belong to A(7).
Hence, in each G*(7) there exists a critical path where all
arcs belong to A(7) and such path is optimal in G*(7) (for
every 7, a path where all arcs belong to the same job is a
lower bound of C? ). Therefore, 7 is optimal.

Let us now asume that all s-critical arcs v = (z,y) € E(r)
verify that (z,y) € A(mo)UD(mp). This means that for every
component 4, the critical arcs in A’(7) U Di(n) are in the
transitive closure A(mo)UD (). Hence, for every i, a critical
path P? in G%(r) is also a path in Gi(mg) = (V, Ai(mg) U
Di(mg)). Let R® denote an arbitrary critical path in G(mg)
and let | R?|| denote its length. Notice that the length of a
longest path in G*(7) is also the length of a longest path in
G (mo) = (V, Ai(mo) U D (o)), that is, | R¥[| = Ciy (o).
Since P is critical in G*(r) and a path in G*(my), it holds
that

Vi, Cpge (1) = [|P*| < [|R']| = Ce(70)
and therefore
E[Craz(T)] < E[Craz(m0)]-

But 7y is optimal, which means E[Cyu.(7)] =
E[Crpax(m0)], that is, 7 is optimal. [ ]

Theorem 2: H verifies the connectivity property: given a
globally optimal processing order g, it is possible to build
a finite sequence of transitions of H starting from any non-
optimal task processing order 7 and leading to 7.

Proof: Let my be any optimal processing order and let
the sequence {\}r>0 of processing orders be given by the
following recursive definition:

)\0 =T
Ak+1 is obtained from Ay by reversal of an arc v € Vj, (7o)

Notice that the reversal of an arc in Vy, (m) is a move
from H so, by Theorem 1, Vk Ay € X (i.e., all task
processing orders in the sequence are feasible solutions). Let
us prove that the above sequence is finite. For any processing
order m € 3, we define the following sets:

My (mo) = {v = (z,y) € E(7) : (y,2) € E(70)}

MTF(WO) = {U = (a:,y) € Wﬁ (y,x) € E(WO)}

Clearly, V(mg) C Mz(m) and M (mg) C Mgz (mo). Let
| M (7o) || and || M, (7o) denote their cardinals. By defini-

tion of Ay, if ||My, (7o)|| > O then
[Mx i1 (mo) || = [|Mx,, (7o) || — 1.

Therefore, for k* = || M (mo)||, we have that || M), (mo)|| =
0. Given that V,(m) C M, (mp) C M (mg), this implies that
Vi,» (m0) = 0 so, by Proposition 4, A« is optimal. [

As mentioned above, connectivity is an important property
for any neighbourhood used in local search. It ensures the
non-existence of starting points from which local search
cannot reach a global optimum as well as asymptotic conver-
gence in probability to a globally optimal order. Additionally,
connectivity would allow for using the neighbourhood struc-
ture in the design an exact solving method for fuzzy open
shop, of the style of Branch and Bound.

IV. EXPERIMENTAL RESULTS

Having analysed the neighbourhood from a theoretical
point of view, the purpose of this section is to provide an
experimental evaluation of its behaviour on a varied set of
fuzzy open shop problem instances.

Plain hill-climbing algorithms cannot be expected to per-
form very well on complex problems such as open shop.
However, hybrid methods combining a genetic algorithm
(GA) with local search (LS) generally improve the quality of
results obtained when these methods are used independently
(see for instance [12], [18], [32]). The usual approach is
to apply local search to every chromosome right after this
chromosome has been generated. The resulting algorithm
is called a memetic algorithm (MA). In [22] we find a
genetic algorithm to solve the fuzzy open shop (to our
knowledge, the first and only heuristic algorithm of this kind
in the literature). Thus, to obtain experimental results for
the proposed neighbourhood H, we shall use a memetic
algorithm that results from combining this genetic algorithm
with simple hill-climbing using H and compare the obtained
results with those of the genetic algorithm alone.

In [22], the authors follow [17] and generate a set of
fuzzy problem instances from well-known benchmark prob-
lems from [33]. Given a crisp problem instance, each crisp
processing time t is transformed into a symmetric fuzzy



processing time p(t) such that its modal value is p? = t and
p!, p? are random values, symmetric w.r.t. p> and generated
so the TFN’s maximum range of fuzziness is 30% of pZ.
By doing this, the optimal solution to the crisp problem
provides a lower bound for the expected makespan of the
fuzzified version [17]. Now, the original open shop problem
instances are considered to be ‘easy’ and the results reported
in [22] indicate that this is also the case for the fuzzy
versions. In [34], a new benchmark set of harder open shop
instances was proposed; for our experimental study, we have
generated fuzzy versions of these benchmarks, following the
same methodology as in [17] and [22]. The original problem
instances consist of 6 families, denoted J3, J4,. .., J8, of sizes
3 x 3,4 x4,..8x 8, containing 8 or 9 instances each.
From each crisp problem instance 10 fuzzy versions were
generated, so in total there are 520 problem instances. The
obtained benchmarks for the fuzzy open shop are available at

http://www.aic.uniovi.es/tc/spanish/repository.htm.

To decide on the parameter values for the GA (and the
MA) on this new set of problem instances, a parametric
analysis was performed (although it is not reported due
to space restrictions), following that of [22]. The chosen
configuration for both the GA and MA was: population
size, 100; fitness, active scheduling; crossover, pmx with
probability 0.70; mutation, insertion with probability 0.05;
selection, random pairs; replacement, tournament without
repetition (for further detail on these operators, we refer
the interested reader to [22] and the references therein). To
ensure convergence of the MA, the number of generations
was 40, 40, 150, 500, 600 and 700 for sizes 3 x 3, 4 x 4,...,
8 x 8 respectively; the number of iterations of the GA was
increased so as to obtain equivalent running times to the MA.

With the above configuration, both algorithms were run
30 times on each problem instance, recording the best,
average and worst expected makespan values across the 30
runs. Table I shows a summary of the results, with average
values across 30 executions on each the 80-90 instances
of the same size (detailed results for each problem would
require 520 rows per algorithm). It contains a column for
each of the following values: BoB, Best of the Best values,
AoB, Average of the Best values, AoA, Average of the
Average values, AoW, Average of the Worst values, and
WoW, Worst of the Worst values. A lower bound for the
expected makespan of all problem instances is 1000, meaning
that both the GA and the MA perform equally well on the
small (3 x 3, 4 x 4) problems, probably without any space
for improvement. As the problem size increases, also does
increase the difference in solution quality between the MA
and the GA, with the former obtaining better results thanks
to the local search procedure. This is also illustrated in
Figure 5, where the difference in average values of the best,
average and worst expected makespan across all executions
and problems of the same size are depicted, showing the
increasing trend in the difference. It is noticeable both from
Table I and Figure 5 that the difference between the MA and
the GA also increases from the average of best values to the

TABLE I
COMPARISON BETWEEN MA AND GA

Problem- E[Cmaxz] Time (s)
Method BoB AoB AoA AoW Wow AoA
J3-AG 1061.4  1063.1 1063.1 1063.1  1066.1 0.154
J3-AM 1061.4  1063.1 1063.1 1063.1  1066.1 0.132
J4-AG 1043.9 1048.8 1050.6 1062.7 1082.5 0.251
J4-AM 10439 1048.8 10504 1062.1 1075.0 0.234
J5-AG 1024.3 1031.8 1048.1 10704 10823 1.313
J5-AM 1023.9 1030.8 10449 1062.3 1073.7 1.290
J6-AG 1029.4 1038.3 1059.8 1085.2 1095.8 7.691
J6-AM 1026.8  1033.9 1052.1 1074.1 1084.5 7.572
J7-AG 1040.8  1050.7 1077.7 11063 1119.0 14.552
J7-AM 10349 1044.1 1067.5 1092.2 1105.2 14.458
J8-AG 1040.8 10529 1080.9 11104 1120.8 26.248
J8-AM 1036.4 1045.5 1068.2 10929 1103.1 26.147

average of worst values. This suggests that not only does
the MA obtain better solutions, but it is also more “reliable”
in the sense that there is less variability in quality solution
across different executions.

18
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Fig. 5. Difference in average expected makespan between MA and GA.

V. CONCLUSIONS

The open shop scheduling problem is a very interesting but
also challenging problem, for which few solving methods ex-
ist but which is recently gaining the attention of researchers.
In order to increase its applicability, it seems necessary to
contemplate the existence of ill-known task durations. We as-
sume that this uncertainty is modelled using triangular fuzzy
numbers and propose a neighbourhood structure for local
search algorithms. This neighbourhood structure is shown to
have some interesting properties from the theoretical point
of view. Additionally, experimental results illustrate how
it provides competitive solutions when combined with a
genetic algorithm. The results are obtained on a new set of
benchmark instances for the fuzzy open shop, more difficult
than the previously existing ones. This should provide a



starting point for further work on heuristic methods for
open shop and, more generally, scheduling problems with
uncertainty, thus narrowing the gap between theoretical work
and practical applications.
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