GARCIA-FANJUL, TUvA, DE LA Riva

Generating Test Cases Specifications for BPEL
Compositions of Web Services Using SPIN

José Garcia-Fanjul, Javier Tuya, Claudio de la Riva

Computer Science Department
University of Oviedo
Gijon, Spain

Abstract

Generating test cases for compositions of web servicesiplex, due to their distributed
nature and asynchronous behaviour. In this paper, a forerdioation tool — the SPIN

model checker — is used to generate test suite specificatiwmnsompositions specified

in BPEL. A transition coverage criterion is employed to defansystematic procedure to
select the test cases. The approach is applied to the “Iqanoag)” sample composition.

Key words: web service compositions, model-based testing, structura
testing, model checking.

I This work is supported by the Ministry of Science and EdwratiSpain) under the National

Program for Research, Development and Innovation, pej&2TEST (TIN2004-06689-C03-02)
and REPRIS (TIN2005-24792-E)

2 Emails: {jgfanjul, tuya, claudio}@uniovi.es

International Workshop on Web Services Modeling and Testing (WS-MaTe 2006)

GARCIA-FANJUL, TUvYA, DE LA Riva

1 Introduction

From the inception of the Web, a growing number of compané®hried to use it
as a new commercial channel. To start with, the most visiybe@ach to leveraging
this technology was the deployment of publicly availabléovirased shops, com-
mitted to collecting orders made by consumers. At an eadgestbusinesses also
saw the opportunity to establish commercial electroniatrehs among each other.
To do so, they needed to agree on a certain protocol to exehiafaymation. This
was one of the reasons for the W3C to develop the Extensibi&ld_anguage
(XML) [26]. Using this technology, businesses would agree to exahdatpa on a
certain xml-based format or even follow public standaragifta interchange such
as ebXML R2]. The high acceptance of XML led to the development of soféwva
components that exclusively take this language as input,aéso produce XML
output: XML-based web services. These services are, fumbee, distributed in
nature, asynchronous, low-coupled and platform-independTheir composition
enabled the implementation of interoperable businessegg®s. To standardize the
specification of these compositions, IBM and other compapiieposed a language
called BPEL [L4] that later became an OASIS standa2d][All these technolog-
ical changes have been encouraged by an increasing invasimeeb services
software worldwide, which doubled from 2003 to 2004, reagt$2.3 billion. That
figure is expected to continue to grow and become $15 billp&®9, according
to IDC research studied).

However, this increasing interest in web services has &ddd concerns re-
garding their trustworthiness. For example, Leavi#|[highlights the differences
between competing standards and Zh&i{ fhe lack of appropriate development
and testing processes. In relation to the latter, the maanacieristics of web ser-
vices influencing testing activities are their asynchranbahaviour, distribution,
availability and the lack of user interface.

Bearing in mind these features, the goal of this paper is szrilee a model-
based testing method to obtain test case specificationsopasitions of web ser-
vices. The BPEL language is introduced in Sec2osong with the composition
that will be used as a sample throughout the paper: the “lpano&al” composi-
tion. An overall description of the test generation meth®then given in Section
3. A procedure is described in Sectidno transform the composition specified in
BPEL into a PROMELA model, which is the input language of tidNs model
checker 12]. After that, in Sectiorb, the approach employed to generate test cases
specifications is explained and applied to the sample coitiposTo end the paper,
Section6 expounds related work and Secti@rletails the conclusions and future
work.

2 Specification of web services compositions with BPEL

BPEL specifications represent the behaviour of businessepees based on com-
positions of web services. They are XML documents compo$éd@main sec-

84

GARCIA-FANJUL, TUvA, DE LA Riva

<process nane="| oanapproval " [...]>
<vari abl es>
<vari abl e nane="ri skAssessnent "
nessageType="asns: ri skAssessnent Message"/ >
[...]

</vari abl es>
<partners>
<partner nane="custoner" [...]/>
<partner nane="assessor" [...]/>
<partner nane="approver" [...]/>
</ part ners>
<fl ow>
<li nks>
<link nanme="receive-to-assess"/>
<l i nk name="assess-to-set Message"/> [...]
</links>
<recei ve nane="receivel" partner="custoner" [...]>
[...]
</receive>
<i nvoke nane="i nvokeAssessor" partner="assessor"
port Type="asns: ri skAssessnent PT"
oper ati on="check"
i nput Vari abl e="request"
out put Vari abl e="ri skAssessnent " >
<target |inkName="receive-to-assess"/>
<source |inkNane="assess-to-set Message"
transiti onCondition=
"bpws: get Vari abl eDat a(’ ri skAssessnent’
"risk’)="low "/>
<source |inkNane="assess-to-approval"
transiti onCondition="
bpws: get Vari abl eDat a(’ ri skAssessnent’,
"risk’)!="low "/>
</invoke> [...]
</fl ow>
</ process>

Fig. 1. Extract from the “loan approval” BPEL specification

tions: declarations and the specification of the businessass itself. In the dec-
larations part, th@ar t ner s are identified: each partner stands for a web service
that participates in the business process. Other elemeeitgled in this first part
are thevar i abl es, which enable the intermediate storage of values.

The specification of the business process consists of a setigities that can
be executed. These activities may be either basic or stettutAmong the first,
the business process can invoke web services or providetomes by means of
thei nvoke andr ecei ve activities. It can also update the values of the vari-
ables using the assign construct. Structured activitiesquibe the order in which
a collection of activities take place. For example.exjuence activity establishes
a sequential order andwhi | e forces the repetition of the execution of a set of
activities until a given statement becomes false.

85

GARCIA-FANJUL, TUYA, DE LA RIVA

®

Receives request from customer /-

Request.amount < 4 / Invoke assessor

(2)

Request.amount >= 4/ Invoke approver

©)

riskAssessment 1= low / Invoke approver

riskAssessment == low / approvallnfo.accept = yes

Receives approvalinfo / Sends approvalinfo to customer

- / Sends approvalinfo to customer

Fig. 2. Representation of the BPEL process described inlttaa 'approval” sample

A structured activity that is not so common in other langwsagethef | ow.
Activities grouped in such a construct are concurrent, amé $low completes
when all of its activities have completed. BPEL activitieayralso be assigned
a construct that expresses synchronization dependersiesdn theml i nk. If
activity Aisonesour ce of alink and activity B is one of itar get s, that means
B must be executed after A. Links may also be givémansi ti onCondi ti on
attribute that specifies a necessary condition for the linkeicome active.

A simplified version of the sample BPEL composition calleddth approval”
is outlined in Figure 1. It was published within the spectiica of the standard
[14] and is frequently applied to validate research on web ses/development.
The goal of this business process is to conclude whether taicerequest for
a loan will be approved or not. To do so, it receives a requesh fa partner
called ‘cust omer ” and invokes two other partners. Thassessor ” partner
measures the risk associated with low amount requests. hangiartner, called
“approver”, approves requests that are either made for a large amdumbioey
or which are evaluated by the assessor as not having a lowHiglre 2 represents
the behaviour of this business process.

86

GARCIA-FANJUL, TUvA, DE LA Riva

3 Overview of the generation of test cases specifications

Model checking4] is a formal verification technique that enables the autarbs-
tection of whether certain properties hold in a model. Itloésof well documented
applications, ranging from the verification of protoco®5[to fault detecting in
software systemslfl]. SPIN is one of the most commonly used model-checking
tools. Using SPIN, properties can be specified by asserimime model or shaped
as Linear Temporal Logic (LTL) formulae. The tool searchiéthe possible states
within the model and checks whether the properties holdoif ih gives a trace of
the steps illustrating the violation of the property, whislcalled a counterexample.
Model checking is commonly used for systems verification jitocan be applied to
generate test case?4] 10]. In order to obtain a test case for a certain condition C,
the model checker is fed with a model for the software and a fofimula stating
that C never holds. The output obtained from the tool is henceunterexample
in which the software fulfils C. That counterexample can hasformed into a test
case, as it describes an execution of the software in whzdékired test condition
holds.

The above technique can be applied to generate test caséicspens for
BPEL compositions. Firstly, the Composition Under Test Qs transformed
into PROMELA. Then, in order to produce test cases, testireqents are iden-
tified using a transition coverage criterion. To do so, ti@mss are identified
in the BPEL specification, whether explicit or implicit, aade mapped onto the
model. In addition, each transition is expressed in ternesldflL property express-
ing that ‘t he transition X is never executed”. The counterexam-
ple obtained from a SPIN run is thus a sample execution of fRELBprocess in
which at least the transition included in the LTL is exerdis€o obtain a set of test
cases that provides transition coverage, the tool is regdgaexecuted with each
previously identified transition. This method is depictaedmigure3 and will be
described in further detail in the following sections.

4 Transforming BPEL specifications into PROMELA

As explained in Sectio, BPEL specifications express the behaviour of a business
process. This behaviour is modelled, in PROMELA, intpraocess construct.
The specifications also include partners, which are themifft web services. They
are also transformed into PROMELA processes: one is inddmieeach partner in
the specification.

The business process and the partners communicate througlypes, which
are transformed into PROMELA message channels as in trefimly example:

chan | oanassessor _riskPort _IN = [QLENGTH] of
{byte, byte, byte};

In the above example, a channel callemanassessor _ri skPort | Nis
declared with a maximum length of QLENGTH messages and stipgonessages

87

GARCIA-FANJUL, TUYA, DE LA RIVA

BPEL

-5 L
Transforming e
BPEL to iransitions
PROMELA
7
Model Property
S
Model
checker

=7

Counterexample

Test case
specification

Fig. 3. An overview of the proposed method

consisting of three attributes of tyjpg't €. Each portType will have two channels:
one for input messages and another for output.

Message types are declaredtaggpedef s in PROMELA (a construct similar
to “record” in the C programming language). BPEL data typesdscretized from
the original ones: every simple data type becomes byte éxoepoolean, which
stays the same.

Each activity must be appropriately modelled to repredeatsehaviour of the
business process. For exampleyvoke andr ecei ve activities use thé and?

88

GARCIA-FANJUL, TUvA, DE LA Riva

channel operators that send and receive messages to antheamannels. There-
fore, the stateme®PEL_| oanAppr oval Port OUT! approval | nfo. accept
sends a message containing the variap@r oval | nf 0. accept to channel
BPEL | oanAppr oval Port _QOUT,which is the representation of the output port-
Type of the business process in the “loan approval” sample.

In our approach, the behaviour of the partners is modelletyube BPEL spec-
ification as the only input. This is one of the major differeaavith other lines of
work such as§]. To do so, two sources of information about the partners’ be
haviour exist in BPEL. Firstly, the kinds of operations tha partners provide or
request and the exchanged data are explicit in the spemfic&econdly, in a more
indirect way, BPEL specifications include how the businessgss handles the in-
formation received from or sent to the partners. This infation enables us to build
a simple PROMELA model (a mock) for each partner, which i©mporated into
its PROMELA process. For example, the business processdfdhan approval”
example receivesi skAssessnent . ri sk from partnerassessor , and then
examines whether it lsowor not. Consequentlgssessor is modelled to reply
| owandot her in order to exercise both conditions. As a result, the behavi
incorporated into the PROMELA process for a partner folldhese rules:

() If the BPEL specification has no reference to the data, iit be given an
undef i ned value;

(i) if the data is compared to a numerical constant, it wél ¢given the value of
the constant, a lower value and a higher third value;

(i) if the data is discrete, it will be given each of the diste constants in the
BPEL specification and a value different from them, catiedher .

After the BPEL specification is modelled in PROMELA, trariis are iden-
tified in the specification and mapped within the model. Twadki of transitions
are distinguished: implicit and explicit. The first ones algained from activities
that impose at least two possible execution paths. For ebearapi nvoke activ-
ity may be defined to receive a reply from the invoked web serar not, so two
transitions can be identified. Other activities with implicansitions ard | ow or
whi | e. Explicit transitions are taken, in the composition, frbmnk constructs,
as they explicitly establish transitions between actegthat have them aour ce
ort arget.

5 Using SPIN to generate test case specifications

The test cases generated with SPIN will be systematicalgcte to satisfy a
transition coverage criterion for the BPEL specificatiope8fically, the criterion
(taken from Q) states that the resulting test suite must include tegictmt cause
every transition in the BPEL specification to be taken. Toegate test cases spec-
ifications for the CUT that satisfy such a criterion, two difént steps are required.
First of all, LTL properties must be specified for SPIN to firsuaterexamples in
which the PROMELA transitions are covered. Secondly, cexaxamples must be

89

GARCIA-FANJUL, TUvYA, DE LA Riva

transformed into test cases specifications for the CUT.

All the identified transitions are uniquely differentiateg means of a number
and, in PROMELA, a boolean variable calledanX (where X is the number of
the transition) is defined for each of them. The variable tale a positive value
in the case of the transition being exercised by the modalkgve Those variables
are employed to specify a LTL property and find a counterexarfgy one given
transition. Namely, for transition X, the LTL is[] !t ranX’, expressing that
the variable associated with that transition is alwayssfafdter the model checker
has been executed, a certain counterexample is given inhwthé transition is
exercised.

In order to complete the test case specification, a difficuises when trying to
interpret the expected output of the test case. The obtaioedterexamples give
only the sufficient indications so as to reach a state in wthiehproperty is false,
but do not continue the execution of the model to its end. d&foee, to get the
expected output for the test case, a boolean variable isded within the model,
indicating that the business process ends. Thus, the saiifiis of the properties
change to LTL formulae such as:

“IT1('tranX || !bpel _ends)”

Lastly, to obtain the test case specification, it sufficesatee tthe operations
with channels. These operations give a complete desamipfithe test case inputs
and the output, as they represent the information exchabgedeen the business
process and the partners.

To build a test suite that meets the above defined transibearage criterion,
the model checker is executed as many times as transitienslantified in the
BPEL. To reduce the number of test cases, all the transitomsred with each
counterexample are taken into account. In the describedemtus is accom-
plished by inspecting the values of all the variables asgediwith transitions.

Applying the method to the “loan approval” composition, thenbered transi-
tions in Figure2 are identified and mapped into PROMELA. Using SPIN with the
model obtained from the BPEL and completing the identifiadgitions, we need
three executions to obtain transition coverage. On therfirstthe model checker
is fed with the LTL‘{] ('tranl || !bpel _ends)” and so it produces the
counterexample represented in Figdrén this figure, the partner that executes the
step is shown on the left — customer, bpel or assessor. Theerexample covers
transitions «1, 3 and 5» and is transformed into a test casafg@tion with two
inputs:

() the customer makes a request for an amount of 3 (less thai f
(ii) the risk assessment from the assessor is low

and one expected output: the reply to the customer is affivenat

After this first result, SPIN is run twice again, finding coergxamples that
cover transitions «2 and 6» and «1, 4 and 6», respectivelys@ bounterexamples
are transformed into test cases as in the example presebtee.aln this case

90

GARCIA-FANJUL, TUvA, DE LA Riva

customer: request.anmount = 3

customer: BPEL_I| oanApproval Port | NI request

bpel : request. anpbunt <4

bpel: tranl = true

bpel : | oanassessor_ri skAssessnent Port | Nl request
assessor: riskAssessnent.risk = | ow

assessor: | oanassessor_riskAssessnment Port OUT! ri skAssessnent
bpel: tran3 = true

bpel : approval | nfo. accept = yes

bpel: tran5 = true

bpel : BPEL_I oanApproval Port _QOUT! approval I nf o
bpel : bpel _ends = true

Fig. 4. Extract from a counterexample obtained by SPIN

study, the number of test cases obtained is the minimumnesd)to give transition
coverage for the specification.

As regards the performance of the tool, the execution of éndigation ends in
less than one second on a Pentium4 (3.0 GHz) system with 2 ®B&Fmemory,
using 32 internal states with a state-vector of 96 bytespoesent the model.

6 Related work

Research in verification and validation applied to compms# of web services
may be basically classified in two categories: papers dasgriormal verification
approaches and others that use testing techniques.

Related work describing verification approaches is quitaroon. The goal is
to decide whether it may be said that certain properties imallde composition un-
der study. These approaches thus share with ours the useifafateon tools and
the need to build a model for the composition. Fu eBabefine such a model and
also use SPIN to formally verify compositions of web sersispecified in BPEL.
They subsequently enhanced their research to define fomitedia for the feasi-
bility of automated verification applied to compositionsvwetb servicesg, 3]. In
the same line of work, Foster et &][use Finite State Processes (FSP) to model
compositions of web services and describe the use of the LIBSA[7] to for-
mally verify BPEL specifications. They propose specifyihg tlesired properties
in terms of Message Sequence Charts, a technique includide idnified Mod-
elling Language (UML). Lerner]8] also uses the LTSA tool to analyze business
processes specified in Little-JIL. Using a different modl gerification paradigm,
Narayanan and Mcllraithl9] propose annotating web services with semantic de-
scriptions (DAML-S) regarding their capabilities to sugsently encode these in a
Petri Net. Another, not so closely related paper by Ariastdtis et al]] describes
an intermediate formalism (Common Formal Model or CFM) ttet be used to
specify business processes or to translate existing spegains into it. Subse-
quently, CFM models are automatically transformed into itiput languages of
existing verification tools.

There are not many research works on the definition of testiethods for web

91

GARCIA-FANJUL, TUvYA, DE LA Riva

services. Chun and Offutl]] and Offutt and Xu 1] describe the application of
mutation analysis and data perturbation in the testing df gexvices. Their pro-
cesses are defined at the unit level, so the targets are tik@luna web services and
not their composition. Bertolino and Polir2][propose a framework for dynamic
testing of web services interoperability. They introdudest phase (an audition)
before the services are published on a UDDI registry. In doation with verifica-
tion techniques, Huang et @3] describe a method whose goal is similar to ours:
the testing of composite web services. They also apply a hadabeker, but the
main differences lie in the input and the testing criterfg\t explicitly specify the
web services behaviour (using OWL-S) and define the desnguakpties by hand.

7 Conclusions and future work

In this paper, a model-based method is expounded for obtateist cases speci-
fications from BPEL compositions of web services to fulfil artsition coverage
criterion. The method relies on a model checking tool (SPiNautomatically
obtain test cases specifications from a model of the BPELeggand partners.
LTL properties are properly constructed for the resultiegttcases specifications
to cover transitions identified in the input. After repeatedcution of the tool,
a test suite is obtained that achieves transition coverbagéhe case of the spec-
ification having unreachable transitions, the model cheek#omatically detects
these by not providing a counterexample and performing lavérification. One
of the advantages of the proposed method is its independsroehe particular
implementation, as the only required input is the BPEL dpetion.

An immediate line of future work on the described method &s d@ipplication
of different test criteria, such as those described by ©ffttal in [20] and its
automation. Further research is likewise needed to fultgmeine the scalability
of the method and, as there are no publicly available réaldpecificationsq],
synthetic ones may need to be constructed and tested. Tmatitally build test
cases that are directly executable, the model could be eeHdaso as to include
information about the partners’ particular implementatio

References

[1] JesUs Arias-Fisteus, Luis Sanchez Fernandez, and <Bedgado Kloos. Formal
verification of bpeldws business collaborations. PFiroceedings of 5th International
Conference on E-Commerce and Web Technolpgadsme LNCS 3182, pages 76—85,
Zaragoza, Spain, August 31-September 3 2004. Springead/erl

[2] Antonia Bertolino and Andrea Polini. The audition frawmk for testing web
services interoperability. IRroceedings of 31st EUROMICR@ages 134-142, Porto,
Portugal, 30 August - 3 September 2005.

[3] Tevfik Bultan, Xiang Fu, and Jianwen Su. Analyzing coe&tions of web services.
IEEE Internet Computingl0(1):18-25, 2006.

92

GARCIA-FANJUL, TUvA, DE LA Riva

[4] Edmund M. Clarke, Orna Grumberg, and Doron A. Pelkthdel Checking The MIT
Press, 2000.

[5] Jianchun Fan and Subbarao Kambhampati. A snapshot dfcpwieb services.
SIGMOD Record34(1):24-32, 2005.

[6] Howard Foster, Sebastian Uchitel, Jeff Magee, and Jefinker. Model-based
verification of web service compositions. Rroceedings of 18th IEEE International
Conference on Automated Software Engineering (ASE 200&yes 152-163,
Montreal, Canada, 6-10 October 2003.

[7] Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeffimer. Tool support for
model-based engineering of web service compositions. Prisceedings of IEEE
International Conference on Web Services (ICWS 20@&9es 95-102, Orlando, FL,
USA, 11-15 July 2005.

[8] Xiang Fu, Tevfik Bultan, and Jianwen Su. Analysis of iaieing bpel web services.
In Proceedings of the 13th international conference on WoildieWveb (WWW 2004)
pages 621-630, New York, NY, USA, May 17-20 2004.

[9] Xiang Fu, Tevfik Bultan, and Jianwen Su. Synchroniz&pitif conversations among
web serviceslEEE Transactions on Software Engineerii3d.(12):1042—-1055, 2005.

[10] Elsa L. Gunter and Doron Peled. Model checking, testing verification working
together.Formal Aspects of Computing7(2):201-221, 2005.

[11] Klaus Havelund, Michael R. Lowry, and John Penix. Fdraralysis of a space-craft
controller using spinlEEE Trans. Software EngR7(8):749-765, 2001.

[12] Gerald J. Holzmann. The SPIN Model Checker: Primer and Reference Manual
Addison-Wesley Professional, 2003.

[13] Hai Huang, Wei-Tek Tsai, Raymond Paul, and Yinong Chelutomated model
checking and testing for composite web services. Phoceedings of 8th IEEE
International Symposium on Object-Oriented Real-Time risted Computing
(ISORC 2005)pages 300-307, Seattle, WA, USA, 18-20 May 2005.

[14] IBM. Business process execution language for web sesviversion 1.1. On-line.
http://www-128.ibm.com/developerworks/library/spiegation/ws-bpel/

[15] IDC. IDC research reports. On-line. http://www.idara/

[16] Neal Leavitt. Are web services finally ready to delivdE2EE Computer37(11):14—
18, 2004.

[17] Suet Chun Lee and Jeff Offutt. Generating test casesrfitbased web component
interactions using mutation analysis. Rnoceedings of 12th International Symposium
on Software Reliability Engineering (ISSRE 2Q0fpages 200-209, Hong Kong,
China, 27-30 November 2001.

[18] Barbara Staudt Lerner. Verifying process models builling parameterized
state machines. IfProceedings of the ACM/SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA 200ppges 274-284, Boston,
Massachusetts,USA, July 11-14 2004.

93

GARCIA-FANJUL, TUvYA, DE LA Riva

[19] Srini Narayanan and Sheila A. Mcllraith. Analysis arndhglation of web services.
Computer Networks12(5):675-693, 2003.

[20] Jeff Offutt, Shaoying Liu, Aynur Abdurazik, and Paul Anann. Generating test data
from state-based specificationsThe Journal of Software Testing, Verification and
Reliability, 13(1):25-53, 2003.

[21] Jeff Offutt and Wuzhi Xu. Generating test cases for welvises using data
perturbation.ACM SIGSOFT Software Engineering Not28(5):1-10, 2004.

[22] Organization for the Advancement of Structured Infatran Standards (OASIS).
ebXML

[23] Organization for the Advancement of Structured Infation Standards (OASISYVeb
Services Business Process Execution Language (WSBPEL)

[24] P.Ammann, P.E.Black, and W.Majurski. Using model d¢{weg to generate tests from
specifications. InProcceedings of 2nd IEEE International Conference on Férma
Engineering Methodgages 46-56, Brisbane, Australia, 1998.

[25] A.W. Roscoe and Philippa J. Broadfoot. Proving segugtotocols with model
checkers by data independence techniguestrnal of Computer Security(1):147—
190, 1999.

[26] W3C. Extensible Markup Language (XML) 1.0 (Third Edition)

[27] Jia Zhang. Trustworthy web services: Actions for nolZEE IT Prg pages 32-36,
January/February 2005.

94

