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Abstract

Generating test cases for compositions of web services is complex, due to their distributed
nature and asynchronous behaviour. In this paper, a formal verification tool – the SPIN
model checker – is used to generate test suite specificationsfor compositions specified
in BPEL. A transition coverage criterion is employed to define a systematic procedure to
select the test cases. The approach is applied to the “loan approval” sample composition.
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1 Introduction

From the inception of the Web, a growing number of companies have tried to use it
as a new commercial channel. To start with, the most visible approach to leveraging
this technology was the deployment of publicly available web-based shops, com-
mitted to collecting orders made by consumers. At an early stage, businesses also
saw the opportunity to establish commercial electronic relations among each other.
To do so, they needed to agree on a certain protocol to exchange information. This
was one of the reasons for the W3C to develop the Extensible Markup Language
(XML) [ 26]. Using this technology, businesses would agree to exchange data on a
certain xml-based format or even follow public standards for data interchange such
as ebXML [22]. The high acceptance of XML led to the development of software
components that exclusively take this language as input, and also produce XML
output: XML-based web services. These services are, furthermore, distributed in
nature, asynchronous, low-coupled and platform-independent. Their composition
enabled the implementation of interoperable business processes. To standardize the
specification of these compositions, IBM and other companies proposed a language
called BPEL [14] that later became an OASIS standard [23]. All these technolog-
ical changes have been encouraged by an increasing investment in web services
software worldwide, which doubled from 2003 to 2004, reaching $2.3 billion. That
figure is expected to continue to grow and become $15 billion by 2009, according
to IDC research studies [15].

However, this increasing interest in web services has also led to concerns re-
garding their trustworthiness. For example, Leavitt [16] highlights the differences
between competing standards and Zhang [27] the lack of appropriate development
and testing processes. In relation to the latter, the main characteristics of web ser-
vices influencing testing activities are their asynchronous behaviour, distribution,
availability and the lack of user interface.

Bearing in mind these features, the goal of this paper is to describe a model-
based testing method to obtain test case specifications for compositions of web ser-
vices. The BPEL language is introduced in Section2 along with the composition
that will be used as a sample throughout the paper: the “loan approval” composi-
tion. An overall description of the test generation method is then given in Section
3. A procedure is described in Section4 to transform the composition specified in
BPEL into a PROMELA model, which is the input language of the SPIN model
checker [12]. After that, in Section5, the approach employed to generate test cases
specifications is explained and applied to the sample composition. To end the paper,
Section6 expounds related work and Section7 details the conclusions and future
work.

2 Specification of web services compositions with BPEL

BPEL specifications represent the behaviour of business processes based on com-
positions of web services. They are XML documents composed of two main sec-
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<process name="loanapproval" [...]>
<variables>
<variable name="riskAssessment"

messageType="asns:riskAssessmentMessage"/>
[...]
</variables>
<partners>
<partner name="customer" [...]/>
<partner name="assessor" [...]/>
<partner name="approver" [...]/>

</partners>
<flow>
<links>

<link name="receive-to-assess"/>
<link name="assess-to-setMessage"/> [...]

</links>
<receive name="receive1" partner="customer" [...]>
[...]
</receive>
<invoke name="invokeAssessor" partner="assessor"

portType="asns:riskAssessmentPT"
operation="check"
inputVariable="request"
outputVariable="riskAssessment">

<target linkName="receive-to-assess"/>
<source linkName="assess-to-setMessage"

transitionCondition=
"bpws:getVariableData(’riskAssessment’,
’risk’)=’low’"/>

<source linkName="assess-to-approval"
transitionCondition="
bpws:getVariableData(’riskAssessment’,
’risk’)!=’low’"/>

</invoke> [...]
</flow>

</process>

Fig. 1. Extract from the “loan approval” BPEL specification

tions: declarations and the specification of the business process itself. In the dec-
larations part, thepartners are identified: each partner stands for a web service
that participates in the business process. Other elements included in this first part
are thevariables, which enable the intermediate storage of values.

The specification of the business process consists of a set ofactivities that can
be executed. These activities may be either basic or structured. Among the first,
the business process can invoke web services or provide operations by means of
theinvoke andreceive activities. It can also update the values of the vari-
ables using the assign construct. Structured activities prescribe the order in which
a collection of activities take place. For example: asequence activity establishes
a sequential order and awhile forces the repetition of the execution of a set of
activities until a given statement becomes false.
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Fig. 2. Representation of the BPEL process described in the "loan approval" sample

A structured activity that is not so common in other languages is theflow.
Activities grouped in such a construct are concurrent, and so a flow completes
when all of its activities have completed. BPEL activities may also be assigned
a construct that expresses synchronization dependencies between them:link. If
activity A is onesource of a link and activity B is one of itstargets, that means
B must be executed after A. Links may also be given atransitionCondition
attribute that specifies a necessary condition for the link to become active.

A simplified version of the sample BPEL composition called “loan approval”
is outlined in Figure 1. It was published within the specification of the standard
[14] and is frequently applied to validate research on web services development.
The goal of this business process is to conclude whether a certain request for
a loan will be approved or not. To do so, it receives a request from a partner
called “customer” and invokes two other partners. The “assessor” partner
measures the risk associated with low amount requests. Another partner, called
“approver”, approves requests that are either made for a large amount of money
or which are evaluated by the assessor as not having a low risk. Figure 2 represents
the behaviour of this business process.
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3 Overview of the generation of test cases specifications

Model checking [4] is a formal verification technique that enables the automatic de-
tection of whether certain properties hold in a model. It haslots of well documented
applications, ranging from the verification of protocols [25] to fault detecting in
software systems [11]. SPIN is one of the most commonly used model-checking
tools. Using SPIN, properties can be specified by assertionsin the model or shaped
as Linear Temporal Logic (LTL) formulae. The tool searches all the possible states
within the model and checks whether the properties hold. If not, it gives a trace of
the steps illustrating the violation of the property, whichis called a counterexample.
Model checking is commonly used for systems verification, but it can be applied to
generate test cases [24, 10]. In order to obtain a test case for a certain condition C,
the model checker is fed with a model for the software and a LTLformula stating
that C never holds. The output obtained from the tool is hencea counterexample
in which the software fulfils C. That counterexample can be transformed into a test
case, as it describes an execution of the software in which the desired test condition
holds.

The above technique can be applied to generate test case specifications for
BPEL compositions. Firstly, the Composition Under Test (CUT) is transformed
into PROMELA. Then, in order to produce test cases, test requirements are iden-
tified using a transition coverage criterion. To do so, transitions are identified
in the BPEL specification, whether explicit or implicit, andare mapped onto the
model. In addition, each transition is expressed in terms ofa LTL property express-
ing that “the transition X is never executed”. The counterexam-
ple obtained from a SPIN run is thus a sample execution of the BPEL process in
which at least the transition included in the LTL is exercised. To obtain a set of test
cases that provides transition coverage, the tool is repeatedly executed with each
previously identified transition. This method is depicted in Figure3 and will be
described in further detail in the following sections.

4 Transforming BPEL specifications into PROMELA

As explained in Section2, BPEL specifications express the behaviour of a business
process. This behaviour is modelled, in PROMELA, into aprocess construct.
The specifications also include partners, which are the different web services. They
are also transformed into PROMELA processes: one is included for each partner in
the specification.

The business process and the partners communicate through portTypes, which
are transformed into PROMELA message channels as in the following example:

chan loanassessor_riskPort_IN = [QLENGTH] of
{byte, byte, byte};

In the above example, a channel calledloanassessor_riskPort_IN is
declared with a maximum length of QLENGTH messages and supporting messages
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Fig. 3. An overview of the proposed method

consisting of three attributes of typebyte. Each portType will have two channels:
one for input messages and another for output.

Message types are declared astypedefs in PROMELA (a construct similar
to “record” in the C programming language). BPEL data types are discretized from
the original ones: every simple data type becomes byte except for boolean, which
stays the same.

Each activity must be appropriately modelled to represent the behaviour of the
business process. For example,invoke andreceive activities use the! and?
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channel operators that send and receive messages to and fromthe channels. There-
fore, the statementBPEL_loanApprovalPort_OUT! approvalInfo.accept
sends a message containing the variableapprovalInfo.accept to channel
BPEL_loanApprovalPort_OUT,which is the representation of the output port-
Type of the business process in the “loan approval” sample.

In our approach, the behaviour of the partners is modelled using the BPEL spec-
ification as the only input. This is one of the major differences with other lines of
work such as [8]. To do so, two sources of information about the partners’ be-
haviour exist in BPEL. Firstly, the kinds of operations thatthe partners provide or
request and the exchanged data are explicit in the specification. Secondly, in a more
indirect way, BPEL specifications include how the business process handles the in-
formation received from or sent to the partners. This information enables us to build
a simple PROMELA model (a mock) for each partner, which is incorporated into
its PROMELA process. For example, the business process of the “loan approval”
example receivesriskAssessment.risk from partnerassessor, and then
examines whether it islow or not. Consequently,assessor is modelled to reply
low andother in order to exercise both conditions. As a result, the behaviour
incorporated into the PROMELA process for a partner followsthese rules:

(i) If the BPEL specification has no reference to the data, it will be given an
undefined value;

(ii) if the data is compared to a numerical constant, it will be given the value of
the constant, a lower value and a higher third value;

(iii) if the data is discrete, it will be given each of the discrete constants in the
BPEL specification and a value different from them, calledother.

After the BPEL specification is modelled in PROMELA, transitions are iden-
tified in the specification and mapped within the model. Two kinds of transitions
are distinguished: implicit and explicit. The first ones areobtained from activities
that impose at least two possible execution paths. For example, aninvoke activ-
ity may be defined to receive a reply from the invoked web service or not, so two
transitions can be identified. Other activities with implicit transitions areflow or
while. Explicit transitions are taken, in the composition, fromlink constructs,
as they explicitly establish transitions between activities that have them assource
or target.

5 Using SPIN to generate test case specifications

The test cases generated with SPIN will be systematically selected to satisfy a
transition coverage criterion for the BPEL specification. Specifically, the criterion
(taken from [20]) states that the resulting test suite must include test cases that cause
every transition in the BPEL specification to be taken. To generate test cases spec-
ifications for the CUT that satisfy such a criterion, two different steps are required.
First of all, LTL properties must be specified for SPIN to find counterexamples in
which the PROMELA transitions are covered. Secondly, counterexamples must be
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transformed into test cases specifications for the CUT.
All the identified transitions are uniquely differentiatedby means of a number

and, in PROMELA, a boolean variable calledtranX (where X is the number of
the transition) is defined for each of them. The variable willtake a positive value
in the case of the transition being exercised by the model checker. Those variables
are employed to specify a LTL property and find a counterexample for one given
transition. Namely, for transition X, the LTL is “[] !tranX”, expressing that
the variable associated with that transition is always false. After the model checker
has been executed, a certain counterexample is given in which the transition is
exercised.

In order to complete the test case specification, a difficultyarises when trying to
interpret the expected output of the test case. The obtainedcounterexamples give
only the sufficient indications so as to reach a state in whichthe property is false,
but do not continue the execution of the model to its end. Therefore, to get the
expected output for the test case, a boolean variable is included within the model,
indicating that the business process ends. Thus, the specifications of the properties
change to LTL formulae such as:

“[](!tranX || !bpel_ends)”

Lastly, to obtain the test case specification, it suffices to take the operations
with channels. These operations give a complete description of the test case inputs
and the output, as they represent the information exchangedbetween the business
process and the partners.

To build a test suite that meets the above defined transition coverage criterion,
the model checker is executed as many times as transitions are identified in the
BPEL. To reduce the number of test cases, all the transitionscovered with each
counterexample are taken into account. In the described model, this is accom-
plished by inspecting the values of all the variables associated with transitions.

Applying the method to the “loan approval” composition, thenumbered transi-
tions in Figure2 are identified and mapped into PROMELA. Using SPIN with the
model obtained from the BPEL and completing the identified transitions, we need
three executions to obtain transition coverage. On the firstrun, the model checker
is fed with the LTL “[](!tran1 || !bpel_ends)” and so it produces the
counterexample represented in Figure4. In this figure, the partner that executes the
step is shown on the left – customer, bpel or assessor. The counterexample covers
transitions «1, 3 and 5» and is transformed into a test case specification with two
inputs:

(i) the customer makes a request for an amount of 3 (less than four)

(ii) the risk assessment from the assessor is low

and one expected output: the reply to the customer is affirmative.
After this first result, SPIN is run twice again, finding counterexamples that

cover transitions «2 and 6» and «1, 4 and 6», respectively. These counterexamples
are transformed into test cases as in the example presented above. In this case
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customer: request.amount = 3
customer: BPEL_loanApprovalPort_IN!request
bpel: request.amount<4
bpel: tran1 = true
bpel: loanassessor_riskAssessmentPort_IN!request
assessor: riskAssessment.risk = low
assessor: loanassessor_riskAssessmentPort_OUT! riskAssessment
bpel: tran3 = true
bpel: approvalInfo.accept = yes
bpel: tran5 = true
bpel: BPEL_loanApprovalPort_OUT!approvalInfo
bpel: bpel_ends = true

Fig. 4. Extract from a counterexample obtained by SPIN

study, the number of test cases obtained is the minimum required to give transition
coverage for the specification.

As regards the performance of the tool, the execution of the verification ends in
less than one second on a Pentium4 (3.0 GHz) system with 2 GB ofRAM memory,
using 32 internal states with a state-vector of 96 bytes to represent the model.

6 Related work

Research in verification and validation applied to compositions of web services
may be basically classified in two categories: papers describing formal verification
approaches and others that use testing techniques.

Related work describing verification approaches is quite common. The goal is
to decide whether it may be said that certain properties holdin the composition un-
der study. These approaches thus share with ours the use of verification tools and
the need to build a model for the composition. Fu et al [8] define such a model and
also use SPIN to formally verify compositions of web services specified in BPEL.
They subsequently enhanced their research to define formal criteria for the feasi-
bility of automated verification applied to compositions ofweb services [9, 3]. In
the same line of work, Foster et al [6] use Finite State Processes (FSP) to model
compositions of web services and describe the use of the LTSAtool [7] to for-
mally verify BPEL specifications. They propose specifying the desired properties
in terms of Message Sequence Charts, a technique included inthe Unified Mod-
elling Language (UML). Lerner [18] also uses the LTSA tool to analyze business
processes specified in Little-JIL. Using a different model and verification paradigm,
Narayanan and McIlraith [19] propose annotating web services with semantic de-
scriptions (DAML-S) regarding their capabilities to subsequently encode these in a
Petri Net. Another, not so closely related paper by Arias-Fisteus et al [1] describes
an intermediate formalism (Common Formal Model or CFM) thatcan be used to
specify business processes or to translate existing specifications into it. Subse-
quently, CFM models are automatically transformed into theinput languages of
existing verification tools.

There are not many research works on the definition of testingmethods for web
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services. Chun and Offutt [17] and Offutt and Xu [21] describe the application of
mutation analysis and data perturbation in the testing of web services. Their pro-
cesses are defined at the unit level, so the targets are the individual web services and
not their composition. Bertolino and Polini [2] propose a framework for dynamic
testing of web services interoperability. They introduce atest phase (an audition)
before the services are published on a UDDI registry. In combination with verifica-
tion techniques, Huang et al [13] describe a method whose goal is similar to ours:
the testing of composite web services. They also apply a model checker, but the
main differences lie in the input and the testing criteria: they explicitly specify the
web services behaviour (using OWL-S) and define the desired properties by hand.

7 Conclusions and future work

In this paper, a model-based method is expounded for obtaining test cases speci-
fications from BPEL compositions of web services to fulfil a transition coverage
criterion. The method relies on a model checking tool (SPIN)to automatically
obtain test cases specifications from a model of the BPEL process and partners.
LTL properties are properly constructed for the resulting test cases specifications
to cover transitions identified in the input. After repeatedexecution of the tool,
a test suite is obtained that achieves transition coverage.In the case of the spec-
ification having unreachable transitions, the model checker automatically detects
these by not providing a counterexample and performing a full verification. One
of the advantages of the proposed method is its independencefrom the particular
implementation, as the only required input is the BPEL specification.

An immediate line of future work on the described method is the application
of different test criteria, such as those described by Offutt et al in [20] and its
automation. Further research is likewise needed to fully determine the scalability
of the method and, as there are no publicly available real-life specifications [5],
synthetic ones may need to be constructed and tested. To automatically build test
cases that are directly executable, the model could be enhanced so as to include
information about the partners’ particular implementation.
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