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ABSTRACT: In the fatigue design and life prediction of structures, the stresses at each point
are one of the main sources of uncertainty. This is due to the difficulty of estimating the stiff-
ness, mass and damping properties with accuracy, as well as the use of simplified load models.
In this work, a methodology to improve the fatigue design reliability using operational modal
analysis to estimate the stress time-histories is presented. The modal parameters of the structure,
estimated by operational modal analysis and the responses, usually acceleration, corresponding
to several degrees of freedom, are needed. The methodology was applied to a steel S275 canti-
lever beam. The stresses estimated with the proposed method are compared with those obtained
from the experimental strains recorded using strain gages attached to some points of the beam.

1 INTRODUCTION

In fatigue design of structures and mechanical components, the main sources of uncertainty are
the fatigue material characterization and the real stress time histories present in the most
stressed points.

The fatigue material characterization can be reasonable improved using an optimized test
strategy and analysing the results with appropriated statistical fatigue models (Schijve 2001).

As regards the stress histories, the uncertainty is considerable high. On one hand, the dy-
namic properties (stiffness, mass and damping) of the structure can only be estimated in an ap-
proximate way. On the other hand, simplified load models are commonly used in fatigue design,
which not represent, with the needed accuracy, the load characteristics (variable amplitude,
random nature, frequency bandwidth, sequence effect, etc.)

In recent years, operational modal analysis (OMA) has become a powerful tool that can be
utilized in many civil (Cantieni 2005, Cunha et al. 2005) and mechanical applications (Meller et
al. 2001). OMA makes use of the natural or operating loads to excite the structure, which can
be considered an important advantage in large structures (Cantieni 2005, Cunha et al. 2005),
where the use of artificial excitation devices may be expensive or impractical. Another advan-
tage is that the modal tests can be performed with the structure in operation subject to natural or
operational loads. Thus, the operational responses of the structure are measured and used to
perform an OMA identification (Brincker et al. 2003).

In this work, a methodology to estimate stresses in any arbitrary point of the structure, which
combines a numerical model and operational modal analysis, is presented. Initially, a finite
element model (FEM) of the structure is assembled. Then, the numerical model is updated using
the modal parameters estimated by operational modal analysis. Finally, the stresses are esti-
mated using the updated numerical model and the experimental displacements measured at sev-
eral discrete points of the structure.
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2 STRESS ESTIMATION METHOD

The methodology proposed in this paper is applicable to beam structures. The estimation proc-
ess is detailed below.

2.1 Theory

For an Euler-Bernoulli beam, see Fig. 1, the bending moment and the curvature are related by
the equation:

d2
E.% Y - v (1)
d’x

where E is the Young’s modulus, I, is the second moment of the cross section about z axis, y is
the vertical displacement and M, is the bending moment.
The stresses can be calculated by means of the Navier’s Law equation:

o(x)= Allz h
. (2)
where h is the beam thickness.

If Egs. (1) and (2) are combined, a relation between the stress and the curvature is obtained
by:

d2
o(x)=—Eh dzy 3)
X

If a finite element model is used, the displacement in any arbitrary point of the element (see
Fig. 2) is obtained as (Clough and Penzien 1993):

»(x)=N,(X)u, (4)

where N.(x) and u. are vectors containing the element displacement functions and the nodal
displacements, respectively.

A

Figure 1: Example Of Euler-Bernoulli beam. Figure 2. Beam element, two nodes.

If Eq. (4) is combined with Eq. (3), the following expression is inferred:

o(x,t)=—E N/(x)u, (t)h ®)

If mode-superposition is used (Clough and Penzien 1993), the vector u.(t), corresponding to
each element, can be expressed in terms of mode shapes, @, and the modal coordinates, ¢(¢), as
follows:

ue(t) =q)e q(t) (6)

Finally, if Eq. 6 is substituted in Eq. 5, the stresses in any point of the beam element can be
calculated by means of the expression:

o(x,t)=—EN!(x)®,q(t)h )
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2.2 Finite Element Model

The first stage of the proposed method is to assemble a numerical model. In this work, a canti-
lever beam is used in the tests, which is modelled by finite linear elements with two DOF’s per
node.

2.3 Modal Parameters

A modal identification is performed to obtain the natural frequencies, f.y,, and mode shapes,
Dy, of the structure. The identification may be performed by e.g. Stochastic Subspace Identifi-
cation (SSI) (Van Overschee 1996) or Frequency Domain Decomposition (FDD) (Brincker et
al. 2001). The FDD is used in this paper as implemented in the ARTeMIS Extractor software.
The FDD is based on calculation of Spectral Density Matrices of the measured data series by
discrete Fourier transformation. For each frequency line the Spectral Density Matrix is decom-
posed into auto spectral functions corresponding to a single degree of freedom system (SDOF).

2.4 Scaling Factors

An important disadvantage of OMA is that not all modal parameters can be estimated (Brincker
and Andersen 2003, Aenlle et al. 2007)]. Since the forces are unknown, the mode shapes can
not be mass normalized and only the un-scaled mode shapes can be obtained for each mode. A
new approach (Brincker and Andersen 2003, Aenlle et al. 2007) has been published based on
modifying the dynamic behaviour of the structure adding masses in the points of the structure
where the mode shapes are known and performing repeated modal tests on both the original and
the perturbed structure. From the modal parameters of both structures, the scaling factors can be
estimated by:

2 2
@Oy — 0,
T

a=|—5 "5
o Y AM W

®)

where ) y ®; are the natural frequencies of the unmodified and modified structure, respec-
tively, ¥ are the un-scaled modes shapes and AM is the mass change matrix.

2.5 Model Up-dating and Modal Expansion of the Mode Shapes

In this stage, a finite element model is assembled and updated using the experimental modal pa-
rameters estimated with OMA (Friswell and Mottershead 1995).
After updating, a transformation matrix T is obtained by:
q)exp = q)FE T (9)
where subscripts .., and g indicates experimental and numerical mode shapes, respec-
tively, and superscript ™ indicates measured DOF’s. In expression (9), the experimental mode
shapes are assumed to be a linear combination of the numerical mode shapes (Friswell and
Mottershead 1995).
Applying the pseudo inverse (") to Eq. (9), matrix T is obtained as:

T =05 © (10)

Then, the experimental mode shapes are expanded (Friswell and Mottershead 1995) to the
unmeasured degrees of freedom by the expression:

um gy um
(Dexp _(DFE T

(11)

where superscript ™" indicates unmeasured DOF’s.
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It must be emphasized that only the mode shapes need to be updated in this stage. The infor-
mation corresponding to the natural frequencies and damping is included in the modal coordi-
nates.

2.6 Modal Coordinates

The experimental displacements modal coordinates, ¢, (¢), are calculated from the measured
acceleration, ii,_(¢). The acceleration modal coordinates, g, (1), can be obtained by means of
the expression:

. _ cD,l . /
qexp (t) exp uexp( ) (12)
where {ic(t) is the measured acceleration and @, is the experimental mode shape matrix.

Them, the displacement coordinates, ¢(¢), are estimated by a double integration ofj(¢). In this
work a double integration in the frequency domain is used as follows:

oy (@) =4, (@) @ (13)

The corresponding modal coordinates in the time domain are obtained by inverse Fourier
Transform.

2.7 Avoiding the use of Scaling Factors

The proposed method to estimate stresses requires that the mode shapes be mass normalised so
that the scaling factors have to be estimated. However, the method can also be applied using un-
scaled mode shapes. The scaled and the un-scaled mode shape are related by the equation:
where O is the scaled or mass normalised mode shape, v is the un-scaled mode shape and a is
the scaling factor. If Eq. (14) is substituted in Eq. (6), results:

u()=a ¥, q() (15)
or, alternatively:

u (t) =¥, ¢*(1)) (16)
where

q* () =aq() (17)

is denoted here as scaled modal coordinate, which is estimated by means of the expression:
.. _ 1 e
q >kexp (t) - \Pexp uexp (t) (18)
Finally, combining Egs. (7) and (16), the stresses can be determined, using un-scaled mode
shapes, by the equation:

o(x,t)=—EN!(x)¥,q*(t)h (19)

3 EXPERIMENTAL RESULTS

A steed cantilever beam is used to perform the tests (see Fig. 3). The beam is 1.875 m long,
showing a 100x40x4 mm tube rectangular section. A numerical model of the beam was assem-
bled using 16 linear elements with two nodes, eight of each correspond with the position of the
accelerometers.
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3.1 Operational modal analysis

The beam is excited moving a small saw blade forward and backward along the beam trying to
apply a stationary broad banded load. The responses are measured using 8 accelerometers
4508B Briiel & Kjer, located as shown in Fig. 3 and recorded with a data acquisition card (Na-
tional Instruments PCI4472) controlled by LabView. The tests are carried out at a sampling fre-
quency of 1500 Hz during a period of approximately 4 minutes.

The modal parameters were identified by Enhanced Frequency Domain Decomposition
(EFDD). The normalized singular values are represented in Fig. 4. The first five natural fre-
quencies together with the scaling factors estimated by the mass change method [9, 10] are
shown in Table 1. The scaling factors correspond to mode shapes normalised making the larg-
est element in each vector equal to unity.

Table 1: Scaling factors and Natural frequencies

MODE 1 2 3 4 5
Scaling Factor 0.49 0.51 0.48 0.48 0.47
fo (Hz) 11.4 72.62 201.5 386.7 611.9

dB|1.0/Hz Frequency Domain Decomposition - Peak Picking
Average of the Normalized Singular Values of
Spectral Density Matrices of all Data Sets.
20

T ]
0.250m 0.125m oll B
Accelerometers
Point1 | * N Lo -wj -
1/
//‘ - = =] 207 ﬁ *
7 7 b -
4 N 3 Point2 30 A i
Gages 4 _.,...»-w-"ﬂf
40 NIl i
1.875m
50 1

1
200 400 600 800
Frequency [Hz]

Figure 3. Accelgrom_eters gnd gage configura-  Figure 4. Modes identified for the beam structure by the
tion in testing. EFDD technique.

3.2 Free Vibration Tests.

The method proposed in this paper was validated subjecting the cantilever beam to free vibra-
tion. The stress in points 1 & 2 (see Fig. 3) were measured using two 350 Q strain gages, dis-
posed in quarter bridge configuration and acquired with a gage conditioner and amplifier
VISHAY 2100, and LabView.

The stress history corresponding to point 1, measured with a strain gage, is shown in Fig. Sa.
As it can be seen, the stress is a damped sine, where the contribution of the first mode is pre-
dominant. Thus, only the first mode contributes significantly to the stress at this point. Fig. 5b
presents a detail of Fig. 5a. The acceleration recorded on the top of the cantilever beam is pre-
sented in Fig. 6. The first two acceleration modal coordinates in the frequency domain, esti-
mated using Eq. (12), are shown in Fig. 7.

To avoid the problems related to integration at low frequencies (only the frequencies in the
range 0.02f < f <0.1f; , where f, is the sampling frequency, are treated accurately), a high
pass band FIR filter at 8 Hz is applied to the acceleration modal coordinates.
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Figure 6. Acceleration of the top cantilever beam
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Figure 7. Acceleration modal coordinates.
(Frequency Domain)

In a first stage, the numerical model was not updated. The estimated stresses in point 1 are
shown in Fig. 8, where it can be observed that the proposed method overestimates considerably
the stress at this point. The MAC between the experimental and numerical model is presented in
Table 3a.

Then, the model was updated locating a rotational spring at the clamped of the beam. The
MAC between the experimental and the updated numerical model is presented in Table 3b,
from which is inferred that a good correlation was achieved

The stress estimated using the updated model is shown in Fig. 9. It can be concluded that the
methodology used in this paper predicts quite well the stress in the beam.

Table 3: Modal Assurance Criterion (MAC)

MEF (a) Updated MEF (b)

EXP 0,9986 0,1202 0,093 0,094 0,0794  0,9991 0,0826 0,0943 0,0849 0,0742
0,0952 0,9921 0,14 0,0698 0,0967  0,1223 0,9976 0,0794 0,0842 0,0867
0,1165 0,0687 0,9702 0,1731 0,0593 0,1055 0,1172 0,9971 0,0858 0,0788
0,1053 0,1203 0,052 0,9527 0,211 0,1089 0,0956 0,1107 0,998 0,1019
0,1063 0,0887 0,1273 0,0331 0,9207 0,1042 0,1016 0,0925 0,0888 0,9951

Figure 8. Comparison between estimated and
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Strain Gage -
— — - Estimated

0 01
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Time [s]

measured stresses point 1.

1

Stress [Pa]

Strain Gage |
Estimated

0 01 02 03 04 05 06 07
Time [s]

08 09 1

Figure 9. Comparison between estimated and meas-
ured stresses after model up-dating, point 1.
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3.3 Impact tests

In this case, several hits were applied to the beam in random positions, using an impact ham-
mer. The strain measured at point 1, using a strain gage, is presented in Fig. 10a, whereas the
spectral density is shown in Fig. 10b.

The experimental and predicted stress at point 1 is presented in Fig. 11. Again, the proposed
method predicts quite well the stress in this point of the beam.

x10

w

2 g
g 2
@ 0o
j 5
! 5
a) 1 ) b) |
Y0 ™ w0 = @ 7w @ O e o 10 20 20 0 30 400 450 500
Time [s] Frequency [Hz]

Figure 10. Stresses at point 1
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Figure 11: Stresses at point 1 for impact load

4 CONCLUSIONS

e A method to estimate stresses at any arbitrary point of a structure, which combines opera-
tional modal analysis and a finite element model, is proposed.

e The method is validated by several vibration tests carried out on a steel beam cantilever.
Good results are obtained but the method requires performing a good updating of the nu-
merical model.

e The method has many potential applications in fatigue design and remain life estimation of
in-service structures.
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