
 

  

 

Aalborg Universitet

Scaling Factor Estimation Using an Optimized Mass Change Strategy, Part 1: Theory

Aenlle, Manuel López; Fernández, Pelayo Fernández; Brincker, Rune; Canteli, Alfonso
Fernández
Published in:
Proceedings of the 2nd International Operational Modal Analysis Conference

Publication date:
2007

Document Version
Publisher final version (usually the publisher pdf)

Link to publication from Aalborg University

Citation for published version (APA):
Aenlle, M. L., Fernández, P. F., Brincker, R., & Canteli, A. F. (2007). Scaling Factor Estimation Using an
Optimized Mass Change Strategy, Part 1: Theory. In R. Brincker, & N. M. (Eds.), Proceedings of the 2nd
International Operational Modal Analysis Conference. (Vol. Vol. 2, pp. 421-428). Aalborg Universitet.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            ? You may not further distribute the material or use it for any profit-making activity or commercial gain
            ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: juli 08, 2015

http://vbn.aau.dk/en/publications/scaling-factor-estimation-using-an-optimized-mass-change-strategy-part-1-theory(3d57f3f0-1e30-11dc-a5a4-000ea68e967b).html


SCALING FACTOR ESTIMATION USING AN OPTIMIZED 

MASS CHANGE STRATEGY.  

PART 1: THEORY  

Manuel López Aenlle 
Department of Construction and Manufacturing 

Engineering. University of Oviedo 
Spain 

Pelayo Fernández Fernández 
Department of Construction and Manufacturing 

Engineering. University of Oviedo 
Spain 

Rune Brincker  
Department of Building Technology and 

Structural Engineering. Aalborg University 
Denmark 

Alfonso Fernández Canteli 
Department of Construction and Manufacturing 

Engineering. University of Oviedo 
Spain 

aenlle@uniovi.es 

Abstract 

In natural input modal analysis, only un-scaled mode shapes can be obtained. The mass change 

method is, in many cases, the simplest way to estimate the scaling factors, which involves repeated 

modal testing after changing the mass in different points of the structure where the mode shapes are 

known. The scaling factors are determined using the natural frequencies and mode shapes of both 

the modified and the unmodified structure. However, the uncertainty on the scaling factor 

estimation depends on the modal analysis and the mass change strategy (number, magnitude and 

location of the masses) used to modify the dynamic behavior of the structure. In this paper, a 

procedure to optimize the mass change strategy is proposed, which uses the modal parameters 

(natural frequencies and mode shapes) of the original structure as the basic information. 

1 Introduction 

When natural input modal analysis is performed, only the un-scaled mode shapes { }ψ  can be 

obtained for each mode. The scaled and un-scaled mode shapes are related by the equation: 

{ } { }ψ⋅α=φ  
(1) 

 

where α is the scaling factor.  

The scaling factors are needed when a modal model, identified by modal analysis, is going to be 

used for structural response simulation, structural modification or health monitoring. 

A way to estimate the scaling factors is to modify the dynamic behavior of the structure changing 

the stiffness or the mass and perform a new natural modal testing and analysis. The methods based 

on dynamic modification use both the modal parameters of the unmodified and modified structure. 

Therefore, a more extensive experimental testing procedure has to be carried out to estimate the 



scaling factors. The mass change method consists of attaching several masses in the points where 

the mode shapes are known. 

The accuracy obtained in the scaling factor estimation depends on both the accuracy obtained in the 

modal parameter identification and the mass change strategy used to modify the dynamic behavior 

of the structure. Mass change strategy means to define the magnitude, the location and the number 

of masses to be attached to the structure. 

In this paper, several simple rules are proposed that can be used to define, advantageously, the mass 

change strategy to be followed in the mass change method. 

2 The mass change method 

The mass change method consists on performing natural input modal analysis on both the original 

and the modified structure [1, 2, 3, 4, and 5]. The modification is carried out attaching masses to 

the points of the structure where the mode shapes of the unmodified structure are known. The user 

selects the number, the magnitude and the location of the masses. The process is, schematically, 

shown in Figure 1.In order to facilitate the mass modification and the calculation of the scaling 

factors, lumped masses are often used, so that the mass change matrix [ ]m∆  becomes, in general, 

diagonal. 

Simple formulas to determine the scaling factors can be derived from the eigenvalue equations of 

the original and the modified structure. The classical eigenvalue equation in case of no-damping or 

proportional damping is: 

[ ] { } [ ] { }02
00 km φ⋅=ω⋅φ⋅ , 

(2) 

 

where { }0φ  is the mode shape, 0ω  the natural frequency, [ ]m  the mass matrix and [ ]k  the stiffness 

matrix. If we make a mass change so that the new mass matrix is [ ] [ ]mm ∆+ , then the eigenvalue 

equation becomes: 

[ ] [ ]( ) { } [ ] { }12
11 kmm φ⋅=ω⋅φ⋅∆+ , 

(3) 

 

where { }1φ and 1ω  are the new modal parameters of the modified problem. 

Assuming that the mass change is so small that the mode shapes does not change significantly, i.e., 

{ } { } { }φ≅φ≅φ 01  and combining equations (1), (2) and (3), the unknown scaling factor can be 

derived by means of the equation (see [3, 4, 5]): 

( )
{ } [ ] { }ψ⋅∆⋅ψ⋅ω

ω−ω
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2
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2
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(4) 

 

In Equation (4), both the modified or unmodified mode shapes may be used. However, according to 

[4], the best results are obtained using the equation: 
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(5) 

 

or, alternatively (see [3]): 
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3 Uncertainty 

An idea of the sensitivity on the scaling factors to errors in the experimental frequency shifts can be 

obtained by differentiating equation (4) with respect to the frequency ratio 







ω
ω=ηω

1

0 ,i.e.: 










ω
δω

−
ω
δω

⋅
−η

η
=

η
δη
⋅

−η

η
=

α
δα

ω

ω

ω

ω

ω

ω

1

1

0

0
22

2

11
. 

(7) 

 

From this equation it is clear that a relative error 
ωηε  on the frequency ratio will induce a relative 

error in the scaling factor given by: 

( )
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ω

ω
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ω

ω
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η
=ε⋅

−η

η
=ε

ω
 

(8) 

 

This equation, shown in Figure 2, emphasizes the importance of:  

• Maximizing the frequency ratio, ωη , which implies to perform large enough mass changes 

to allow for a reasonably frequency ratio.  

• Performing good modal parameter identification, in order to keep the relative uncertainty of 
the frequency ratio down to a reasonable value. 

From equation (7) can be also inferred that the effect of the same absolute error δω  becomes 
higher for low frequencies. 

 On the other hand, the sensitivity to errors in the kth component of the experimental mode shape 

{ }0ψ is (see [2]): 

UNMODIFIED STRUCTURE 

Figure 1. The mass change method, schematically. 
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Figure 2. Influence of the frequency ratio in the 

scaling factor uncertainty 
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This proves that a relative error ψε  on the 

k-th component of the mode shape will 

induce a relative error in the scaling factor 

of the same order. Consequently, it is 

recommended: 

• To keep the relative uncertainty of 

the mode shape values 
k0

k0

ψ
ψ∆

 down 

to a reasonable value, i.e., to perform 

a good modal parameter 

identification. 

• To use as many points as possible for 
the mass change in order to maximize 

{ } [ ] { }0T
0 m ψ⋅∆⋅ψ . 

• To perform small enough mass changes in order the approximations given by equation (5) and 
(6) to be valid without modifying the mode shapes significantly. 

From equation (4) can be derived how the frequency shift can be maximized. The relation between 

the natural frequencies of the original and the modified structure is: 

{ } [ ] { }ψ⋅∆⋅ψ⋅α+=ηω m1
T2

0
2  

(10) 

 

which means that the frequency ratio is maximized when { } [ ] { }ψ⋅∆⋅ψ m
T

is maximum. 

On the other hand, the sensitivity equations can be used to show how to minimize the change in 

mode shapes. The sensitivity of the ith mode shape, corresponding to a local change in the mass at 

the kth degree of freedom, is given by (see [2 ] and [6]): 
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(11) 

 

If the mass change is performed simultaneously in several degrees of freedom, and finite difference 

approximation is used, the equation (11) becomes: 
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(12) 

 

which can also be expressed as:  
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(13) 

 

Equation (13) shows that the mode shape modification { }iψ∆  is expressed as linear a combination 

of the contributions of each mode. It is concluded that: 



• The mode { }iψ  contribute to modify the scale of the mode but not to modify the shape.  

• The mode shape modification increases with the frequency shift.  

• The main contributions to modify the mode shapes come from the near modes.  

• The mode shapes do not change at all if the matrix [ ]m∆  is proportional to the mass matrix 

[ ]m , because in this case the mode shapes are orthogonal with respect to the matrix [ ]m∆ , 

i.e., { } [ ] { } 0m t
T

i =ψ⋅∆ψ  and the other modes do not contribute to modify the mode shapes.  

Therefore, we must try to perform proportional and small mass changes in order to minimize the 

frequency shift.  

4 Mass change strategy 

The discussions in the previous paragraph have shown that several opposite objectives have to be 

fulfilled simultaneously. On the one hand, the mass change must be high in order to maximize the 

frequency shift but on the other hand, the mass change must be low in order to minimize the 

changes in mode shapes.  

We should also take into consideration that the mass modification can be difficult and expensive or 

that there can be degree of freedoms where it is not possible to attach masses, etc.  

Thus, a mass change strategy must be carefully studied before applying the mass change method. 

The mass change strategy involves not only decide about the magnitude, but also about the location 

and the number of the masses to be attached to the structure 

4.1 Mass magnitude  

From the modal parameters {ψ0} and ω0 of the original structure it is not possible to estimate the 

frequency shift and the mode shape modification. To determine the magnitude of the masses to be 

attached it is needed, at least, an estimation of the mass distribution in the original structure in order 

to construct a mass matrix (for example a diagonal matrix).  

A formula that relates the frequency shift and the mass change magnitude can be derived from the 

natural frequencies of both the original structure and the modified structure. Assuming that the 

stiffness of the structure is not modified, the following equation is obtained: 

m

m
1

1

0
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∆
+

=
ω

ω
. (14) 

 

If the frequency shift is expressed as 10 ω−ω=ω∆ , the former equation becomes: 

m

m
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−=

ω
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 (15) 

 

 It can be observed that for small mass changes 
m

m

2

1

0

∆
≈

ω
ω∆

.  

Equation (15) is only valid for a one-degree-of-freedom system. In the general case, the modal 

masses  { } [ ] { }0T
0 mM ψ⋅∆⋅ψ=∆  and { } [ ] { }0T

0 mM ψ⋅⋅ψ=  must be used, i.e.: 
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The procedure to be followed is: 

• Firstly, to choose the  ratio 
1

0

ω
ω

that we want to obtain from figure 2, depending on the 

accuracy obtained in the modal analysis stage and the accuracy wanted in the scaling factor. 

• Secondly, to estimate the magnitude of the mass to be attached from equation (15). 

4.2 Number of masses 

The number of masses to be attached depends on the number of modes going to be estimated 

simultaneously. Theoretically, we should attach as many masses as possible. 

For each mode, the number of masses to be attached should be equal or higher than the number of 

peaks and valleys of the mode shape. 

The simultaneous calculation of scaling factors for several modes means that is not possible to 

optimize the mass location for all modes. In these cases, we should study other possibilities such 

as: 

• To attach more masses to the structure. 

• To perform several modal tests changing the position of some masses. Note that changing 

the location of one mass can be a relatively easy task but it can improve significantly the 

accuracy in the estimation of the scaling factor. 

4.3 Location of masses 

As can be derived from the equation (10), the masses located in peaks and valleys of mode shapes 

contribute most to the frequency shift whereas those masses located at nodal positions do not 

contribute to modify the frequency. Thus, the best location for the masses, in order to modify the 

natural frequencies, is that for which the components of the mode shape are maximum. 

To select the location of the masses we can 

construct a table for each mode, such as table 1 

including the values 2

jk0
ψ . Each term of the table 

1 indicates the contribution of a unit mass, 

located in the j degree of freedom, to the 

modification of the natural frequency 

corresponding to the k mode.  

The row TOTAL MODES provides an idea of the 

contribution of a unit mass located at the j degree 

of freedom to all modes considered in the 

analysis, which can be useful when the location 

Table 1. Contribution of a unity mass to the 

frequency shift.  

DOF 
Mode 

1 … j … 

1 
2

011
ψ  … 

2

1j0
ψ  … 

… … … … … 

k 
2

k01
ψ  … 

2

jk0
ψ  … 

… … … … … 

     

TOTAL 

MODES 

2
n

1k
k01

ψ∑
=

 … 
2

n

1k
jk0

ψ∑
=

 … 



of the masses has to be optimized for several modes simultaneously. 

4.4 Comparison of strategies 

Once the location, the magnitude and the number of masses has been selected, the matrix [ ]m∆  is 

already defined and equation (17) can be used to estimate the frequency shift for each mode (in 

case we have an estimation of the mass matrix). 

In order to have an idea of the effectiveness of the mass change for each mode, table 2 is supplied. 

It provides information of the relative frequency shift that we are going to obtain, compared with 

the frequency shift that we would obtain locating masses at positions allowing for a maximum 

frequency shift (maximum values of the mode shapes).  

On the other hand, if two mass changes, defined by the mass change matrices [ ]am∆  and [ ]bm∆ , 

respectively, are performed, the expression: 
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(17) 

 

is obtained from equation (4). 

Taking the approximation 
( )

0
2
0

2

0
2
0

2
0

2
0

2
1 2

1
2

1
ω

ω∆
−≅

ω

ω∆
+

ω

ω∆
−=

ω

ω∆−ω
=

ω

ω
, equation (17) becomes: 

( )
( )

{ } [ ] { }
{ } [ ] { }0a

T
0

0b
T

0

b

a

m

m

ψ⋅∆⋅ψ

ψ⋅∆⋅ψ
≅

ω∆

ω∆
 

(18) 

 

from which it can be concluded that the frequency shift is, approximately, proportional to 

{ } [ ] { }0T
0 m ψ⋅∆⋅ψ . Therefore, a comparison between the frequency shifts calculated for two 

different mass changes can also be obtained from table 2. 

Finally, to minimize the changes in mode shapes, it follows from equation (12) that the 

term
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, which provides information of the orthogonality of the 

modes with respect to the matrix [ ]m∆ , should be minimized for each mode. However, only the 

near modes contribute significantly to modify the mode shape. 

Using the equation (15) for 

estimating the relative 

frequency shift, table 3 can 

be prepared including the 

contribution of each mode 

to change the mode shape.  

We can also compare the 

values in table 3 for two 

different mass changes, in 

order to know which one is 

the best.  

Table 2.  Comparison of frequency shifts corresponding to two different 

mass changes 

Mode 
OPTIMAL

1OPTION  
OPTIMAL

2OPTION  
2OPTION

1OPTION  

… … … … 

k 
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Table 3.  Contribution of each mode to the mode shape modification 
Mode Mode 

1 … I … 
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… … … … … 

5 Conclusions 

• The uncertainty in the scaling factor estimation by the mass change method depends mainly on 

both the uncertainty in the modal analysis and the mass change strategy used to modify the 

dynamic behaviour of the structure. 

• Simple rules have been proposed to optimize the mass change strategy, i.e., the number, the 

magnitude and the location of the masses. 
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