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Abstract

Evaluating in Massive Open Online Courses (MOOCs) is a difficult task because of the
huge number of students involved in the courses. Peer grading is an effective method to
cope with this problem, but something must be done to lessen the effect of the subjective
evaluation. In this paper we present a matrix factorization approach able to learn from the
order of the subset of exams evaluated by each grader. We tested this method on a data set
provided by a real peer review process. By using a tailored graphical representation, the
induced model could also allow the detection of peculiarities in the peer review process.

1 Introduction

In the last few years, Massive Open Online Courses (MOOCs) have increased their popularity. These courses
make University lectures available to tens of thousands of students at a time. MOOCs can be suitable
even for highly experimental subjects, where students can make real experiments with simulated materials
(microscopes, etc) or can take real data from remote controlled devices [9].

However, despite the technical challenges inherent to the deployment of a MOOC, there is an important
difficulty that has to be addressed: it is necessary to evaluate a very large number of exams that cannot
be automatically evaluated, like open-ended exercises or essays. A practical approach to cope with this
problem is known as peer grading or peer assessment [8], in which students grade a small amount of exams
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submitted by other students. These graders are provided with a rubric which specifies the evaluation criteria
to be followed to assess the questions raised in the exam. The final score given to an exam is usually
determined as the average (or median) of the corresponding peer-grades [6] given by the evaluators.

This naive approach has some drawbacks. Firstly, we have to expect that assessments will be affected by
some graders’ bias that would deviate them with respect to the ideal ground truth. To compensate such
deviation, it is essential for each exam to be evaluated by many graders so that the correct marks will
be approximated by their average assessments. Moreover, assuming that each exam was graded by a big
amount of students, it has been reported [7] that averages are more consistently accurate with respect to the
rubric than the staff grades. But unfortunately, we only can handle a reduced number of assessments for
each exam.

Secondly, there is a kind of batch effect in evaluation tasks prone to subjectivity. It has been observed [1, 3, 5]
that an item tends to receive a higher score when it is evaluated in a batch of worse items than when it is
evaluated in a group of better items. Fortunately, it has also been observed that, despite the graders’ biases,
the ranking entailed by their assessments is coherent with the ground truth; i.e., the scores can be unreliable
but the order is, in general, correctly assessed [1, 3, 8].

In this paper we present a new factorization method [10, 11] that learns from preference judgments [4,
5]. The method takes advantage of the coherence in the ranking given by the graders, while avoiding the
drawbacks mentioned above. Our approach predicts a ranking of exams that can be easily translated to
scores. In addition to that, exams and graders (students) are mapped to an Euclidean space where it will be
easy to apply post-processing techniques like clustering. In the case that the mapping space has 3 or less
dimensions, visual analysis can even be achieved using the graphical representation that will be presented in
the results section.

In the rest of the paper we make a formal presentation of our approach and we present some experimental
results on real-world data.

2 Formal Framework

Let us consider the following dataset

D ⊂ Graders × Exams × Scores, (1)

where each element is of the form (g, e, f(g, e)), being f(g, e) ∈ R the score given by g ∈ Graders to
e ∈ Exams . Starting from D, we can build a dataset of preference judgments

Dpj = {(g, e, e′) : (g, e, f(g, e)), (g, e′, f(g, e′)) ∈ D, f(g, e) > f(g, e′)} (2)

thus discarding the numerical scores but preserving the information of the ranking, since the triplet (g, e, e′)
indicates that g rates e higher than e′.

The aim is to find an utility function ut that depends not only on the input data (grader and exam) but also
on some additional parameters θ, such that the variations of f can be predicted by the variations of ut in the
sense that

f(g, e) > f(g, e′)⇐⇒ ut(g, e, θ) > ut(g, e′, θ). (3)

We want to determine the optimal values, θ∗, those that minimize a given loss function, L, plus a Gaussian
regularization:

θ∗ = argmin
θ

∑
(i,j)∈Dpj

L+ νR(θ). (4)

This equation will be solved using an Stochastic Gradient Descent (SGD) algorithm.
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Following a maximum margin approach, we will use the following loss function

L = LAUC (Dpj ) =
∑

(gi,ei,e
′
i)∈Dpj

max
(
0, 1− ut(gi, ei, θ) + ut(gi, e

′
i, θ)

)
. (5)

The idea is to ensure that the difference of the utilities in a preference judgment is at least 1.

Input data can be given just by unique identifiers for graders and exams. However, we could have additional
descriptors including additional information. For example, each exam may have attached the scores of
the same student in previous exams. Nevertheless, in [7] the authors do not recommend these additional
information, since it prevents students to be evaluated from a clean state.

In any case, the identifiers of exams and students (our graders) can be binarized, and without loss of gener-
ality, we can assume that graders are described by vectors in an Euclidean space of dimension G, and exams
are given by vectors with E components. We shall use two linear maps, given respectively by matrices W
and V , to represent them in the same k-dimensional space:

RG −→ Rk, g  Wg and RE −→ Rk, e V e. (6)

Therefore, function ut can be defined as the interaction between the grader and the exam in terms of Eu-
clidean distance in Rk:

ut(g, e, θ) = ut(g, e,W ,V ) = −‖Wg − V e‖2 (7)

We need to add a constant term (usually it takes value 1) to each input description to guarantee that the utility
function includes all monomials up to degree 2 formed with variables taken from the description of graders
(g) and exams (e). On the other hand, to implement regularization we use the square of the Frobenius norm.

Once we have learned the utility function ut , the final score of an exam e is defined as the average of the
predicted scores given by all the graders,

score(e) =

∑
g∈Graders ut(g, e,W ,V )

|Graders|
= −

∑
g∈Graders ‖Wg − V e‖2

|Graders|
, (8)

This score will be used to make the final ranking. The ranking can be calibrated to transform percentiles
into valid grades. This can be done using a table of equivalences or using marks provided by the staff for
some exams to make an interpolation.

3 Experimental validation

There is a work in progress to peer review the exams in a course of Intelligent Systems with about 300
students belonging to three different universities in Spain (University of A Coruña, University Pablo de
Olavide at Sevilla, and University of Oviedo at Gijón). We plan to apply the method detailed above to these
peer assessments. Unfortunately, these data will not be available until mid-2014. Therefore, we carried out
our experiments with a data set provided by the review process of the CAEPIA ’13 conference, a biennial
congress promoted by the Artificial Intelligence Spanish Association.

In this context, reviewers can be considered as students grading exams (papers) of other students. Any paper
review process is characterized by the lack of a true solution because there are no fixed questions for all
the papers to be answered. Moreover, each paper can address a different topic. However, there is a general
rubric that all reviewers keep in mind (originality, writing quality, scientific soundness, etc. . . ) to assess the
papers regardless of the topic. Thus, they can be considered equivalent to students’ exams for the purpose
of evaluating a grading method.
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There were 98 papers submitted to the different tracks of the conference; each one was reviewed by no less
than 3 reviewers, who had to rate the papers in the range 1 (strong reject) to 5 (strong accept). They were
also asked to indicate their confidence in the evaluation from 1 (none) to 5 (expert). Then, a weighted score
for each pair {reviewer, paper} was computed as rate × confidence . Finally, the weighted scores were
averaged to obtain the final score for each paper, and, therefore, the ranking that allows to make the decision
of acceptance or rejection. Both the identifiers of papers and reviewers were changed to preserve anonymity.

Note that each track of the conference had its own set of reviewers and papers. Figure 1 depicts the graphs
of two different tracks, where reviewers are connected to the papers they reviewed. Each track can be
represented as a graph, which is isolated from any other track’s graph, since neither reviewers nor papers are
shared among tracks. On the other hand, it is important to have a connected graph for each track in order to
obtain a reliable ranking.

We built a data set of 271 preference judgments from the scores given by the reviewers as described in (2).
Following the advice given in [7], reviewers and papers were described only by a unique identifier, avoiding
the use of other available features that could bias the grades.

3.1 Model evaluation

The first experiment that we carried out was devised to estimate the quality of the models learned by our
factorization approach. We cannot use a cross-validation for this purpose, since there could be examples
in the test fold where either the reviewer or the paper were missing in the training set, that is, there could
be unknown identifiers in the test set. The mapping of these unknown items would be dependent on their
arbitrary representation. Recall that our data set is made of triplets (g, e, e′), so we need a test set with triplets
not included in the training set, but formed with three items that appeared somewhere (but not together) in
the training set, so that the learned mapping makes sense for them.

Therefore, we made the following train-test experiment: for each reviewer with more than one preference
judgement (triplet), which implies more than two papers reviewed, we randomly chose one of the triplets for
the test set, and the rest were added to the training set. Reviewers who evaluated just two papers provided a
single preference judgement that was used only in the training set. The result of this procedure yielded 216
and 55 preference judgments for the training and testing sets, respectively.

Since we are interested in the graphical capabilities of the method, we fixed the dimension of the mapping
space to k = 2 and we searched for the best combination of values for the rest of parameters. The values that
produced the best results yielded an AUC in the test set of 83.64%, that is, less than 1 out of 5 preference
judgments (i.e. pairs of papers) were ranked in the wrong order. This result confirmed the reliability of the
induced model.

3.2 Estimating the papers’ scores

Once we have found a good combination of parameters to induce a reliable model, we used all the preference
judgments to learn a new model. The utility function so learned can be used to infer the rates of all the
reviewers for all the papers in each track. Recall that a higher number of grades used to compute the final
score of a paper is expected to yield scores more consistently accurate with respect to the rubric [7]. Thus,
the final score of a paper p will be computed using (8).

We tested our approach in the two tracks with a higher number of submissions in the conference, Machine
Learning and Artificial Intelligence Applications. The AUC of the rankings obtained using (8) with respect
to the final decision in the conference was 86.54% and 85.71%, respectively. That is, our model produced a
consensus ranking of all reviewers that would change some final decisions in the conference or at least the
order of some papers (see Table 1).
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Figure 1: Papers and reviewers for tracks AI Applications (left) and Machine Learning (right). Numbers are
fictitious to preserve the identity of the reviewers/authors. Subfigures in the upper part show graphs with
arcs connecting reviewers (circles) to the papers (rectangles) reviewed by them, labeled with the rate and the
reviewer’s confidence. Graphs below show the mapping of reviewers (stars), accepted (filled squares) and
rejected papers (hollow squares) induced by our factorization method.

3.3 Graphical representation

We can take advantage of the graphical representation of the Euclidean space where the items (reviewers
and papers) are mapped, in order to gain some insight into the problem. We used a 2-dimensional space to
represent the reviewers (stars) and papers (squares), as can be seen in Figure 1. Papers that were rejected in
the conference were drawn as hollow squares. In general, the algorithm has mapped rejected papers further
away from reviewers than accepted papers, as expected. However, a visual inspection reveals that there are
some papers that could deserve a deeper analysis because they were rejected despite our model maps them
closer to the reviewers than other accepted papers. That was the case for paper 144 in the AI Applications
track (graph on the left) and for paper 101 in Machine Learning (graph on the right).

Table 1 shows the ranking of papers given by the reviewers as well as the ranking produced by our method.
The papers rejected in the conference are shown in gray cells. As in the graphical representation, papers 144
and 101 clearly show up as the biggest discrepancies between both rankings.

4 Conclusions

We have devised a factorization method to implement peer assessment. Our approach learns from preference
judgments to avoid the subjectivity of the numeric grades. In fact, our method satisfies the desiderata of an
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← Higher score Lower score→
A

I Conference 12 79 45 60 136 105 38 33 93 48 144 31 94 69
Model 79 60 45 144 12 136 38 33 105 94 48 31 69 93

M
L Conference 89 85 15 64 140 145 81 77 18 51 66 75 76 54 111 101 95

Model 15 89 64 77 85 51 76 75 81 101 140 18 145 66 54 111 95

Table 1: Ranking of the papers for the tracks AI Aplications (AI) and Machine Learning (ML) given by the
reviewers and by our model. Numbers are fictitious to preserve the identity of the reviewers/authors. Cells
in gray indicate papers rejected by the program committee.

ideal peer grading system for a MOOC [7]: i) it provides highly reliable/accurate assessment, ii) it allocates
balanced and limited workload across students and course staff, iii) it is very fast (SGD-based) so it is easily
scalable to a large number of students and iv) it can be applied to a diverse collection of problem settings.

We have tested it on a data set obtained from a reviewing process from the Spanish Conference on Artificial
Intelligence (CAEPIA). The ranking obtained by our method shows a high coherence with the reviewers’
ranking, although some differences showed up. Since our ranking is obtained with an accurate model and
a higher number of grades, it is expected to be very reliable, so the differences with the reviewers’ ranking
could be pointing out a deficiency in the reviewers’ assessment.
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