
A laboratory exercise in testing database applications
Javier Tuya, Claudio de la Riva, José García-Fanjul

University of Oviedo

Dpto de Informática – Gijón / SPAIN

tuya@uniovi.es, claudio@uniovi.es, jgfanjul@uniovi.es

Abstract
We describe a laboratory exercise, developed in small teams, that integrates the design of
unit test cases, functional test cases and the use of support tools (JUnit, CVS, and a
helpdesk system).

1. Introduction
For years we have been involved in teaching several Software Engineering courses,
including a module of software testing. However, due to the time assignments, software
testing includes only the main concepts along with black-box and white-box techniques.
Exercises carried out by the students include the design of tests form a short specification
or a piece of source code. This prevents the students from getting a bigger picture of
testing, as they do not experience the issues of testing in the context of an application and
working in teams.

On the other hand, most of the applications that our students will work with after
graduating have a significant database component, and so, they must deal with the
particularities of testing in this context. The program inputs and outputs are the database
itself, and few database loads (test cases) must be carefully designed to exercise all SQL
queries.

Two years ago, we designed an integrated laboratory practice for students to practice all of
the above issues, which are described below.

2. Description
This laboratory exercise simulates the life cycle of testing and maintenance of a software
application in a software engineering course for graduate students. It spans along a
semester: 12 open laboratory hours grouped into 6 sessions, plus some additional
homework. Before beginning the exercise they receive four additional hours of training on
testing SQL and the tools that they will use in the exercise, plus two laboratory hours for
practicing the use of the tools.

2.1. Tested artifacts
The students work in a small application for payments by direct debit, which is structured
into two tiers: user interface written in Java/Swing and business objects written in Java).
The architecture is depicted in Figure 1.

7th Workshop on Teaching Software Testing, Melbourne, Florida, 2008 1

Unpaid
Claims

Bill
Generation

Batch
Reception

Bills
(part 1)

Received
Batches

Support components (already tested)

Database

Business
Objects Tier

User Interface
Tier

Bills
(part 2)

Figure 1: Architecture of the application under test

Each of the tiers is divided into modules (3 modules at each tier) which are the basic unit
of assignment to the students. The database comprises five tables.

Each module has some faults that have been injected by the instructor, but unknown to the
students. The injected faults combine some easy to detect bugs with more complex ones,
but in all cases, they can be corrected by performing small changes in either the java code
or the SQL statements.

Figures 2, 3 and 4 present the user interface for each of the three modules.

Figure 2: User Interface for Unpaid Claims

7th Workshop on Teaching Software Testing, Melbourne, Florida, 2008 2

Figure 3: User Interface for Bill Generation

Figure 4: User Interface for Batch Reception

Each student receives two assignments for testing:

• A business component to perform unit tests

• A user interface component to perform functional tests

In this way, the entire class is organized in teams composed by three students. Each team
has an independent copy of the application, which is visible and shared by all members of
the team.

All source code is available to the students plus some documentation composed by:

• Work procedures (3 pages): Describes the whole testing and maintenance process.

• Work instructions (6 pages): Provides details about how to configure the
environment and basic instructions for testing and using the tools.

• Use cases (2 pages): Textual description of the functionality of each module.

• Data model (3 pages): Database schema and data dictionary.

7th Workshop on Teaching Software Testing, Melbourne, Florida, 2008 3

2.2. Testing tools
One goal of the exercise (although secondary) is to train the students in the use of a
development environment that integrates the following tools:

• Eclipse with JUnit: to automate the tests (both for business and user interface
components).

• CVS: for sharing the code and test cases among the members of each team.

• Helpdesk: A software bug reporting database to notify the faults detected and
control the process.

• Clover: to measure code coverage.

• Data load support methods: Part of the support components are a set of simple
methods to load data in the database, which facilitates this task and avoids the need
to use additional tools like DBUnit.

2.3. Test and Maintenance Process
The process is depicted in Figure 5. Each assignment is sent to each student by way of a
ticket recorded in the Helpdesk system, which controls the workflow of the process.
During the process the student will change the state of each of the assigned tickets, place
annotations and send them to another student. The final goal will be to achieve that all
assigned tickets be closed by following the process that is depicted in Figure 2 and
described below.

Figure 5: Testing and maintenance process

Students play alternatively the roles of tester and developer for different components as
described below:

7th Workshop on Teaching Software Testing, Melbourne, Florida, 2008 4

• The tester receives a ticket including the assignment for testing a module (state
Assigned). He must check-out the project components, develop the tests and
automate them using JUnit.

• Once finished the testing he will check-in the project including the test cases and
will notify the problems found. If some failure is detected he records a bug
description in the ticket and forwards it to the developer (state Fail). If there are no
failures detected he forwards it to the instructor (state Pass)

• When the developer receives a ticket in state Fail he will correct the source code in
order to solve all faults. Then the ticket will be returned to the tester (in state
Fixed). Usually, a dialog between tester and developer must be conducted to clarify
the bug reports if needed.

• When the tester receives a ticket in state Fixed he must check whether all issues
that were notified by him have been corrected. If so, he will forward the ticket to
the instructor in state Pass. If not, the ticket will be returned to the developer.

• The instructor receives all tickets for all assignments (state Pass) once all testing
and maintenance have been done. Then he evaluates the work carried out by the
tester (for grading) and then executes a set of automated tests whose goal is to
detect the injected faults. If some of these faults remain in the application, then the
ticket is returned to the tester (state Assigned) including a short clue about the faults
that have not been detected and the testing cycle begins again. If there are no faults
the ticket is closed.

The instructor has visibility over all assignments (helpdesk and source code) and then he
can participate in all discussions and take some decisions (behaviours classified as faults
that are not, clarify the specifications, etc.). Part of the student’s work is performed in the
laboratory with the instructor support and part of the work can be performed by the
students at home (all resources are available on the Internet).

3. Discussion
The first perception of the students is highly motivating, because it is a completely
different task compared with other practices taken in other subjects. However when they
begin the testing of the first components (business objects), they are sometimes frustrated.
Some of the causes are:

• Specifications do not tell everything: The documentation received by the students is
composed by the use cases, the database, and a few comments in each method to be
tested. Considering each of these in isolation, it is not possible to get the whole
picture of the specification. Even when carrying out a unit test of a single method,
all the above information must be read, understood and synthesized in order to be
able to detect failures. This task is difficult, but a very important part of the
learning process.

• Specifications are ambiguous or apparently inconsistent: The database
documentation is precisely defined, but, however, the use cases and method
comments use natural language and sometimes do not refer exactly to the attribute
and table names of the database as in his documentation. An additional effort must
be carried out in the interpretation of the specification and removing ambiguities.

7th Workshop on Teaching Software Testing, Melbourne, Florida, 2008 5

7th Workshop on Teaching Software Testing, Melbourne, Florida, 2008 6

Again, most of the potential ambiguities can be resolved by considering the context
of the whole application.

• No failures are found: After writing some tests in JUnit, it is common to not find
any bug. However, at least the injected faults are present, as everybody is aware,
which is very disappointing. The main reason is a poor understanding of the
specification and/or a poor test case design.

• A reported bug is not understandable: This is a problem of communication.
Students must develop the ability to communicate effectively and failures must be
precisely reported in the helpdesk. If not, the developer can do this work.

At the end of the first testing cycle, less than half of the injected faults have been detected.
For the second cycle, the student receives a clue about the remaining faults, which is
helpful both for detecting the fault and for reasoning about how he must have designed the
test cases to detect this kind of bug.

This laboratory exercise has been conducted during the last two years. We have found that
at the end the experience is useful and pleasant for the students. However, there are some
additional problematic issues that may be subject to a discussion on how to effectively
teach testing in order to avoid them, in particular:

• Irrelevant test cases: The application is designed to avoid the necessity of testing
the validation of user interface and database fields. Then students must focus on the
behaviour of the application and on the database states and changes. Many tests
may be irrelevant as sometimes they check only a small part of the functionality.

• More white-box than black-box (testing of business processes): As the source code
is available, on some occasions the test cases are designed only to cover the code,
forgetting key issues about the specified behaviour, leading to irrelevant test cases.

• Difficulties to automate functional tests (testing of user interface): When the
assignment consists of testing the user interface, the overhead imposed by the
automation of the test cases often hinders the task of designing good test cases.

• Poorly documented and difficult to maintain test cases: On many occasions the
effect of automating test cases leads to many tests that perform very small database
loads using a large amount of source code (cut & paste).

• Communication problems: Problem reports do not always include enough
information to describe in detail the problem detected, so the developer is unable to
correct the fault and more overhead in discussions is needed.

Acknowledgements
This work was partially funded by the Department of Education and Science (Spain) and
ERDF funds under the National Program for Research, Development and Innovation,
projects IN2TEST (TIN2004-06689-C03-02), Test4SOA (TIN2007-67843-C06-01) and
the RePRIS Software Testing Network (TIN2005-24792-E, TIN2007-30391-E).

	1. Introduction
	2. Description
	2.1. Tested artifacts
	2.2. Testing tools
	2.3. Test and Maintenance Process

	3. Discussion
	Acknowledgements

