
International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctobeOctobeOctobeOctoberrrr 2020202010101010

37

Test case generation for transition-pair coverage using Scatter
Search

Raquel Blanco, José García-Fanjul, Javier Tuya
Computer Science Department, University of Oviedo
Campus Universitario de Gijón s/n, Gijón, SPAIN

rblanco@uniovi.es, jgfanjul@uniovi.es, tuya@uniovi.es

Abstract

A challenging part of Software Testing entails the generation of test cases, whose costs can

be reduced by means of the use of techniques for automating this task. On the other hand, the

nature of Software Engineering problems is ideal for the application of metaheuristic

techniques. In this paper we present an approach based on the metaheuristic technique

Scatter Search for the automatic test case generation of BPEL business processes using a

transition-pair coverage criterion. The test case generator is called TCSS-LS-for-BPEL and it

combines a diversity property with a local search. The diversity property is used to extend the

search of test cases in order to reach different transitions of the business process. The local

search is used to intensify the search when the diversification has problems to find test cases

that cover transitions that have not been covered yet. We present the results obtained by our

test case generator using two sample compositions and carry out a comparison with a

random generator. The results indicate that TCSS-LS-for-BPEL can be used in the generation

of test cases for BPEL business processes.

Keywords: software testing, automatic test case generation, BPEL web service

compositions, Scatter Search, transition-pair coverage.

1. Introduction

Testing is a very important, though expensive, phase in software development and

maintenance and a challenging part of this phase entails the generation of test cases. This

generation is crucial to the success of the test because a suitable design of test cases will be

able to detect a great number of faults. Furthermore, the generation of test cases is perhaps the

most expensive task in software testing, since this process is mainly manual, and it can

involve approximately 40% of the total cost of software testing [32]. This cost can be reduced

by means of the use of techniques for automating the generation of test cases. In service

oriented architectures the deployment of software as a service has the objective that, in the

short or medium term, these services will be invoked from other software or services. To

describe the interaction among the services, the BPEL language is commonly used. Thus,

using well-established and automated testing techniques is essential to assure the quality of

the deployed services and also to facilitate regression testing.

The search for an optimal solution in the test case generation problem has a great

computational cost and for this reason the techniques for automating the generation of test

cases try to obtain near optimal solutions. As a consequence, they have attracted growing

interest from many researchers in recent years. On the other hand, the nature of Software

Engineering problems is ideal for the application of metaheuristic techniques, as is shown in

the work of Harman and Jones [17]. One such problem is software testing, which is treated as

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctoberOctoberOctoberOctober 2020202010101010

38

a search or optimization problem, as is shown in several reviews [21][22]. Moreover, the

metaheuristic techniques have obtained good results in test case generation [21].

This work proposes the use of the metaheuristic technique Scatter Search [16][18] to

generate test cases for BPEL business processes using a transition-pair coverage criterion.

The approach presented is called TCSS-LS-for-BPEL and it is an evolution of the algorithm

TCSS-LS described in [6], which generates test cases for the branch coverage criterion for

programs written in C, and the algorithm presented in [4], which generates test cases for

BPEL business processes using a transition coverage adequacy criterion.

The rest of the paper is organized as follows. The following section presents a brief

description of BPEL business processes, related work and the Scatter Search technique.

Section 3 presents the problem representation for transition-pair coverage for BPEL business

processes. Section 4 details our Scatter Search approach for the automatic generation of test

cases. In Section 5 we present the results and conclusions are presented in Section 6.

2. Background

In this section we briefly describe the specification of web service compositions using

BPEL, present related work and explain the Scatter Search technique.

2.1. BPEL business processes

BPEL specifications represent the behavior of business processes based on web service

compositions. They are XML documents composed of two main sections: declarations and

the specification of the business process itself. In the declarations part, partnerlinks and

portTypes are identified: each partnerlink stands for a service that interacts with the business

process and portTypes define the details of the interfaces between services and the business

process. Other elements included in this first part are the variables, which enable the

intermediate storage of values.

The specification of the business process consists of a set of activities that can be executed.

These activities may be either basic or structured. Among the former, the business process

can invoke web services or receive invocations by means of the invoke and receive activities.

It can also update the values of the variables using assign. Structured activities prescribe the

order in which a collection of activities takes place. For example: a sequence activity

establishes a sequential order and a while forces the repetition of the execution of a set of

activities until a given condition becomes false. Another kind of activity is the flow, which

groups concurrent activities.

An extract of the sample BPEL business process called “loan approval” is outlined in

Figure 1. This example was published within the specification of the standard [26]. The goal

of this business process is to conclude whether a certain request for a loan will be approved or

not. To do so, it receives a request from a partner called “customer” and invokes two other

partners. The “assessor” partner measures the risk associated with low amount requests.

Another partner, called “approver”, approves requests that are either made for a large amount

of money or which are evaluated by the assessor as not having a low risk.

In order to generate test cases for a BPEL business process, adequacy criteria such as

transition coverage and transition-pair coverage can be used. A transition Ti from an activity

Am to an activity An indicates that An is executed just after Am. A transition-pair Pij is defined

by means of two transitions Ti, Tj that are executed consecutively. To fulfill the transition

coverage criterion all transitions Ti of the business process must be covered and to fulfill the

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctobeOctobeOctobeOctoberrrr 2020202010101010

39

transition-pair coverage criterion all transition-pairs Pij must be reached for the test cases

generated.

<process name="loanapproval" [...]>

 <-- declarations -->

 <variables>

 <variable name="riskAssessment"

 messageType=

 "asns:riskAssessmentMessage"/>

 [...]

 </variables>

 <partners>

 <partner name="customer" [...]/>

 <partner name="assessor" [...]/>

 <partner name="approver" [...]/>

 </partners>

 <-- behaviour of the business process -->

 <flow>

 <links>

 <link name="receive-to-assess"/>

 <link name="assess-to-setMessage"/>

 [...]

 </links>

 <receive name="receive1"

 partner="customer" [...]>

 [...]

 </receive>

 <invoke name="invokeAssessor"

 partner="assessor"

 portType="asns:riskAssessmentPT"

 operation="check"

 inputVariable="request"

 outputVariable="riskAssessment">

 <target linkName="receive-to-assess"/>

 <source linkName="assess-to-setMessage"

 transitionCondition=

 "bpws:getVariableData

 ('riskAssessment','risk') ='low'"/>

 <source linkName="assess-to-approval"

 transitionCondition="

 bpws:getVariableData

 ('riskAssessment','risk') !='low'"/>

 </invoke> [...]

 </flow>

</process>

Figure 1. Extract from the “loan approval” BPEL specification

2.2. Metaheuristic techniques for test case generation

The most widely used metaheuristic technique in test case generation is Genetic

Algorithms. This technique is used in many papers to achieve several coverage criteria

[1][2][15][25][31][32]. Other papers apply Genetic Algorithms to generate test cases to cover

string predicates [3], to detect overflows [9], for regression test case prioritization [19], to

train a series of decision trees in order to create rules for classifying test cases [30] and to

generate test data that cause service level agreement violations in service-oriented systems

[10].

Other metaheuristic techniques are also applied in the generation of test cases, such as

simulated annealing, genetic programming or tabu search. Simulated annealing has been used

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctoberOctoberOctoberOctober 2020202010101010

40

to generate test cases to achieve several coverage criteria [20][32] and it has been used in the

investigation of measures of landscape to apply this technique to test generation [29]. Genetic

Programming has been used in the classification task in the context of data mining of

relational databases and the selection of test cases using the mutation testing adequacy

criterion in the context of software testing [28]. Tabu Search has been used to obtain branch

coverage [12] and path and loop coverage [11]. Simulated Repulsion has been used to

generate diverse test data and evaluate the effect of diversity on data flow coverage and

mutation testing [7]. Evolutionary algorithms have been used in the automation of functional

testing [8], and their principles have been combined with an extended chaining approach to

find test cases that cover a target [23]. Hill Climbing has been used in the regression test case

prioritization [19]. Evolutionary Strategies have been used to achieve condition coverage [2].

Estimation of Distribution Algorithms has been used to obtain branch coverage [27]. Scatter

Search has been used to reach branch coverage [5][6][27].

Regarding the generation of test cases for BPEL business processes, approaches rely on

techniques that derive test cases from a specification of the expected behavior of the software

under test. A method to test BPEL business processes using model checking is shown in [14],

which guides the selection of test cases to reach transition coverage. High level Petri Nets

have been also used to model BPEL business processes, applying existing tools to analyze

these models and generate test cases [13]. Other approaches use different formalisms to

obtain the test cases from the BPEL specification. A data-flow technique is combined with

term-rewriting tools to obtain test cases for BPEL processes [24]. Another work prescribes a

control-flow method and expounds how to generate tests from a model of the flow of BPEL

activities and using a constraint solver [33]. The use of metaheuristic techniques in this

problem is very recent and the only work that applies one of these techniques to test BPEL

business processes is our previous work [4], which generates test cases to fulfill a transition

coverage criterion using the Scatter Search technique.

2.3. Scatter Search technique

Scatter Search [16][18] is an evolutionary method that works on a population of solutions

of the problem to be solved, which are stored in a set of solutions called the Reference Set.

The solutions in this set are combined in order to obtain new ones, trying to continually

generate better solutions, according to quality and diversity criteria.

The basic scheme of the Scatter Search algorithm can be seen in Figure 2 [18]. The Scatter

Search algorithm begins by using a diversity generation method to generate P diverse

solutions, to which an improvement method is applied. Then the Reference Set is created with

the best solutions from P and the most diverse in relation to the solutions already in the

Reference Set. As new solutions are generated, the algorithm produces subsets of the

Reference Set using a subset generation method, and applies a solution combination method

in order to obtain new solutions, to which an improvement method is applied. Then a

Reference Set update method evaluates the new solutions to verify whether they can update

the Reference Set, as they are better than some solutions stored in the set. If so, the best

solutions are included in the Reference Set and the worst solutions are dropped. So, the final

solution of the problem to solve is stored in the Reference Set.

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctobeOctobeOctobeOctoberrrr 2020202010101010

41

Diversification

Generation Method

Improvement

Method

Reference Set

Update Method

Solution Combination

Method

Subset Generation

Method

Repeat until

|P| = PSize

P

Improvement

Method

Stop if no more

new solutions

RefSet

Figure 2. Basic scheme of Scatter Search

3. Problem representation

This section describes our representation of the transition-pair coverage criterion, which is

based on several transformations of the state graph that represents the business process for

handling path forks, loops and faultHandlers activities.

3.1. Coverage criteria for transitions

The BPEL business process can be represented as a state graph, as shown in [4], where the

nodes represent the states of the business process and the arcs represent the transitions in the

business process, i.e., the change of state from node i to node j when the associated arc

decision is true.

As our goal is to generate test cases that allow all transition-pairs of the business process to

be covered, our approach transforms the state graph that represents it in order to obtain a

graph in which each arc corresponds to a transition-pair. This state graph is called transition-

pair graph. By means of this new state graph, it is possible to determine the transition-pairs

covered by the test cases generated, since the business process has been instrumented to know

the followed path.

The main idea of the transformations consists of joining two consecutive transitions to

obtain a new one. The decision of this new arc is formed by the conjunction of the decisions

of the transitions joined. Furthermore, a new state is also created to represent the states of the

original graph that are reached when the transitions to be joined are executed. Figure 3 shows

the basic idea of the transformations. State A has two input transitions T1 and T2 and two

output transitions T3 and T4. In order to generate the transition-pairs that appear in the right

part of the figure we need to combine the input transitions with the output transitions. So four

pairs are formed: P13 which represents the transition-pair that joins transitions T1 and T3 (the

decision of the arc P13 is T1 && T2), P23 (joins transitions T2 and T3), P14 (joins transitions T1

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctoberOctoberOctoberOctober 2020202010101010

42

and T4) and P24 (joins transitions T2 and T4). Regarding the states, state B’ signifies that the

business process is in state B and its previous state was state A and state C’ indicates that the

business process reaches state C just before reaching state A. Now state B’ has two input arcs

P13 and P23 because these pairs include the transition T3 that is the input transition of state B.

In the same way, state C’ also has two input arcs P14 and P24.

State A

T3

T1

State B

T2

State C

T4

P23

State B’

P13 P24

State C’

P14

P13 = T1 && T3

P23 = T2 && T3

P14 = T1 && T4

P24 = T2 && T4

Figure 3. Basic transformation

The transition-pair coverage criterion generates more test cases than the transition

coverage criterion, as can be seen in the previous example. When a transition-pair coverage

criterion is used to generate test cases for this example, we need to find four test cases (a test

case that covers each pair), whereas to fulfill the transition coverage criterion only two test

cases are needed (for instance, one test case can reach transitions T1 and T3 and another test

case can cover transitions T2 and T4).

3.2. Transformation for path forks

We illustrate the transformation for path forks by means of the graphs of Figure 4. In the

left part of the figure we can see a state graph with two different types of forks: a nested fork

(fork below state F) and a fork after the union of a previous fork (fork below state D).

P24 = T2 && T4

P45 = T4 && T5

P46 = T4 && T6

P13 = T1 && T3

P23 = T2 && T3

P14 = T1 && T4

P13

A

E’ E’’

E

F’ F’’

F

H’ I’

P24

P23 P14

P45 P46

B

T2T1

A

C

D

E F

H I

T4T3

T6T5

Nested fork

Fork after the

union of

previous fork

Figure 4. Transformation for path forks

A nested fork has a transition Tk that ends in a state Ah and n transitions Ti (i=1..n) that

start in this state Ah. The transition-pair graph has n arcs Pki and each one is formed by the

union of Tk and a specific Ti. For instance, state F in the left part of Figure 4 has the input

transition T4 and the output transitions T5 and T6. The transition-pair graph that is shown is

the right part of Figure 4 has a state F with two output arcs, P45 and P46, which correspond to

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctobeOctobeOctobeOctoberrrr 2020202010101010

43

the union of T4-T5 and T4-T6 respectively. The state H’ indicates that the business process has

reached the state H after executing the transitions T4 and T5 consecutively. In the same way,

state I’ indicates the business process is in state I after executing the transitions T4 and T5

consecutively.

A fork after the union of a previous fork has n transitions Ti (i=1..n) that end in a same

state Ah and m transitions Tj (j=1..m) that start in the state Ah. The transition-pair graph has

n·m arcs Pij and each one is formed by the union of a specific Ti and a specific Tj. A special

situation occurs when a transition Ti does not have an associated decision. In that case Ti is

substituted by the q transitions To (o=1..q) that end in its starting state, which have an

associated decision. In that case the transition-pair graph has q·m arcs Poj for the combination

of that Ti and the transitions Tj, where each arc if formed by the union of a specific To and a

specific Tj.

For instance, the left part of Figure 4 has a state D that joins a previous fork and has two

output transitions (T3 and T4). As the input transitions of state D do not have an associated

decision, those transitions are substituted by T1 and T2 to form the transition-pairs. The

transition-pair graph that is shown in the right part of Figure 4 has four arcs that are generated

by means of the combination of the input transition T1, T2 and the output transitions T3, T4:

P13 = T1 and T3, P23 = T2 and T3, P14 = T1 and T4, P24 = T2 and T4. State E’ indicates that the

business process has reached the state E after achieving state B, that is, the transitions T1 and

T3 have been executed consecutively. State E’’ also indicates the business process is in state

E, but they differ from the previous state. In this case, the previous state was state C, that is,

the transitions T2 and T3 have been executed consecutively. As both states E’ and E’’

represent that the business process has reached the state E they are joined in this state. In the

same way, states F’ and F’’ indicate that the business process has achieved the state F,

although they differ from the previous state reached, and therefore they are joined in this

state.

3.3. Transformation for loops

When a loop appears in the business process, we need to check the following transition-

pairs, as can be seen in Figure 5: a pair that joins the transition before the loop and the output

transition of the loop, a pair that joins the transition before the loop and the first transition

inside the loop, and two pairs that join the transition that represents the loop feedback with

the first transition of the loop and the output transition of the loop respectively. With these

pairs, it is possible to test if a loop is not executed, a loop is executed once and a loop is

executed several times. These situations are also checked in a loop coverage criterion. In

order to verify the aforementioned pairs two states that represent switch activities are

included in the transition-pair graph.

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctoberOctoberOctoberOctober 2020202010101010

44

output

while

T3T2

while

T1

inside

while

T4

P43 = T4 && T3

P42 = T4 && T2

P12 = T1 && T2

P13 = T1 && T3

P34 = T3 && T4

P13P12

switch A

output

while

P34

inside

while

switch B

P43P42

Figure 5. Transformations for loops

Figure 5 shows the transformation for loops. Both switch states handle the same decision

used by the while state of the left part of the figure. Switch A is used to check the pairs P12 (it

joins T1 and T2 and indicates that the loop is not executed) and P13 (it joins T1 and T3 and

indicates that the loop is executed at least once). Switch B is used to check the pairs P42 (it

joins T4 and T2 and represents that the loop is not executed any more) and P43 (it joins T3 and

T3 and represents that the loop is executed one more time).

3.4. Transformation for faultHandlers

The transformation for faultHandlers follows the same outline of the forks transformation.

In this case, we need to include instrumentation in the business process to remember the last

invoke activity that has been executed. The instrumentation is carried out in each catch block

of the faultHandlers activity, as is shown in Figure 6. Each catch block includes a switch

activity that is used to check the invoke activity that raises the exception handled by this catch

block and therefore to recognize the transition-pair reached.

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctobeOctobeOctobeOctoberrrr 2020202010101010

45

P25 = T2 && T5

P26 = T2 && T6

P27 = T2 && T7

P12 = T1 && T2

P13 = T1 && T3

P14 = T1 && T4

invoke A

invoke B

T1

T2

T5

T3

T4

T6

T7

P12 P13 P14

P25 P26 P27

<faultHandlers>

 <catch ...>

 <switch ….>

 <case invoke A>

 Transition-pair covered: P13

 <case invoke B>

 Transition-pair covered: P26

 ….

Figure 6. Transformation for faultHandlers

4. Test case generation using Scatter Search

This section describes the adaptation of the Scatter Search technique, called TCSS-LS-for-

BPEL, and the use of the transition-pair graph to automatically generate test cases for BPEL

business processes using a transition-pair coverage criterion. To define a test case we need the

input variables of the business process and the transition-pairs that are executed. The input

variables are the variables received from the web services (called partners in BPEL) that

interact with the business process. By means of the sequence of transition-pairs covered we

can determine the order in which the partners have given the values of the input variables to

the business process. This order is important to generate the test cases, because two sequences

of values of the input variables with a different order can cover different transition-pairs.

The general goal that consists of generating test cases that allow all transition-pairs of the

business process to be covered is divided into subgoals, each of which consists in finding test

cases that reach a particular arc (transition-pair) Pij of the transition-pair graph.

In order to reach the subgoals, the arcs of the transition-pair graph store information during

the process of test case generation. This information is used to know the transition-pairs

covered and to make progress in the search process. Each arc stores this information in its

own set of solutions, called Reference Set. Unlike the original Scatter Search algorithm, our

approach has several Reference Sets. Each Reference Set is called Sij, where ij represents a

transition-pair of the transition-pair graph, and is formed by Bij elements Tij
c
= < x ij

c
,pij

c
, bf ij

c
,

fc ij
c
>, c ∈ {1..Bij}, where:

• x ij
c
 is a solution, i.e., a test case that reaches arc Pij. Each solution x ij

c
 consists of a set

of given values for the input variables (x 1, x 2,..., x n) of the business process under

test that satisfy the transition-pairs represented by the arcs which form the path that has

been followed to arc Pij. Each input variable is related to a web service and is

represented as a vector since the web service can be invoked several times and each

invocation provides an independent value.

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctoberOctoberOctoberOctober 2020202010101010

46

• pij
c
 is the path covered by the solution (test case), i.e., the sequence of the arcs of the

transition-pair graph reached by the solution.

• bf ij
c
 is the vector of distances to the sibling arcs. These distances indicate how close

the solution came to cover the sibling arcs, i.e., the sibling transition-pairs.

• fc ij
c
 is the vector of distances to the next arcs that has not been reached by the

solution. These distances indicate how close the solution came to cover these arcs.

The distances are calculated using the decisions of the arcs of the transition-pair graph that

have not been reached during the execution of the business process, i.e., the false decisions.

The function used to calculate the distances can be consulted in [6].

An example of the transition-pair graph with the information stored in the Reference Sets

of the arcs can be seen in Figure 7.

P12 P13

P24

P0

. . .

>=< 1

0

1

0

1

0

1

0

1

0 fc,fb,p,xT

>=< 2

0

2

0

2

0

2

0

2

0 fc,fb,p,xT

>=< 00000 B

0

B

0

B

0

B

0

B

0 fc,fb,p,xT

Set S0

. . .

>=< 1

12

1

12

1

12

1

12

1

12 fc,fb,p,xT

>=< 2

12

2

12

2

12

2

12

2

12 fc,fb,p,xT

>=< 1313131313 B

12

B

12

B

12

B

12

B

12 fc,fb,p,xT

Set S12

Set S24

. . .

>=< 1

24

1

24

1

24

1

24

1

24 fc,fb,p,xT

>=< 2

24

2

24

2

24

2

24

2

24 fc,fb,p,xT

>=< 2424242424 B

24

B

24

B

24

B

24

B

24 fc,fb,p,xT
. . .

>=< 1

13

1

13

1

13

1

13

1

13 fc,fb,p,xT

>=< 2

13

2

13

2

13

2

13

2

13 fc,fb,p,xT

>=< 1313131313 B

13

B

13

B

13

B

13

B

13 fc,fb,p,xT

Set S13

Figure 7. TCSS-LS-for-BPEL transition-pair graph

Each set Sij has a different size Bij that depends on the complexity of the business process

situated below the transition-pair Pij. The procedure followed to calculate the maximum size

Bk can be consulted in [6]

TCSS-LS-for-BPEL will try to make the sets as diverse as possible in order to generate

solutions that can cover different transition-pairs of the business process. The diversity of a

solution of a set Sij is a measure related to the path covered by all solutions of the set.

4.1. Search process

The goal of TCSS-LS-for-BPEL is to obtain maximum transition-pair coverage, i.e., to

find solutions that cover all arcs of the transition-pair graph. As these solutions are stored in

the sets Sij, the goal is therefore that all the sets have at least one element. If the composition

under test has unfeasible transitions-pairs, the goal cannot be reached, so TCSS-LS-for-BPEL

also stops its execution when a maximum number of test cases has been generated.

As the BPEL specification does not directly include information about the behavior of the

different web services that participate in the business process, a mock model will be

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctobeOctobeOctobeOctoberrrr 2020202010101010

47

constructed for each partner based upon its interface with the business process, in order to

carry out the search process.

Transition-Pair

Selection Method

Solution Subset

Generation

Method

Ancestor Transition-

Pair Selection Method

Solution

Combination

Method

Local Search

Root node?

There exist

solutions to

combine?

Root node?

There exist

solutions to

combine?

All transition-pairs

reached?

Or

Max test cases

generated?

Yes Backtracking Process

No

- Test cases

- % Coverage

- Time

 consumed

S0

Generation of

Random Solutions

Run composition

under test with

each new solution

Regeneration

Method

Improvement

Method

Repeat until |S0| = S0Size

Yes

No

Yes

No

Yes

No

Yes No

Request more

values for an input

variable

RefSet

RefSet

RefSet
RefSet

Sk Update Method

Figure 8. TCSS-LS-for-BPEL scheme

Figure 8 shows the scheme of the search process. The first step consists of generating

random solutions which are stored in the set S0 (set of arc P0 that represents the starting

point). The service composition model is executed with each solution and the sets Sk of the

arcs reached are updated. Then, the iterations of the search process begin and TCSS-LS-for-

BPEL selects in each one an arc to form the subsets of solutions from its set Sij. These subsets

are used by the combination rules to generate the new solutions, which can be improved. The

new solutions are executed in the service composition model in order to update the set Sij of

the arcs achieved and the cycle of execution is closed.

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctoberOctoberOctoberOctober 2020202010101010

48

Every time the composition model is executed, the partners must be configured with the

values of the variables they returned to the business process when they are invoked, i.e., the

partners are configured with the solution to be executed in the model. This solution may not

have enough values for a specific variable, since the invoke activity that returns it to the

business process can be inside a loop and this loop can be executed an unknown number of

times. When a partner does not have enough values for the variable it returns, it must ask

TCSS-LS-for-BPEL for the new values for the variable.

On the other hand, if the set Sij of the arc selected by TCSS-LS-for-BPEL does not have at

least two solutions that can be used by the combination rules to generate new solutions, a

backtracking process is carried out. This backtracking combines the Scatter Search technique

with a Local Search method.

The backtracking process, the combination rules, and the methods carried out by TCSS-

LS-for-BPEL can be consulted in [6].

The search process finishes when all transition-pairs have been covered or the maximum

number of test cases has been generated.

The final solution of TCSS-LS-for-BPEL consists of the test cases that cover the

transition-pairs, which are stored in the sets Sij, the percentage of transition-pair coverage

reached and the time consumed in the search process.

4.2. History of values of a variable

The business process can include a web service invocation inside a loop, and therefore the

variable returned by the partner has a different value in each loop iteration. According to the

different sequences of values of the variable that the partner can return in the loop iterations

different transition-pairs of the business process can be covered. For that reason all values of

the variable and the order in which they are returned by the partner must be considered to

generate the test cases. As the number of iterations of a loop is often unknown, an input

variable can take an unknown number of values in the execution of a composition and the

vector x h that represents it in the solution x k
c
 can have a different size in two specific

solutions. Moreover, the number of iterations of the loop can depend on the values of the

variable returned by the partner inside the loop. For instance, Figure 9 shows a loop whose

decision depends on the values of the variable returned by the partner. In this example, the

partner is invoked inside the loop and returns a value for the variable item in each iteration of

it, which is accumulated in the variable itemSum. The loop is executed until the sum of values

of the variable item is greater than 10 (itemSum > 10). A possible test case can have the

sequence of values 6, 2, 5 for the variable item. Note that the order in which the partner

returns the values of the variable is important, since if it returns the value 5 after the value 6,

the loop finishes its execution and the value 2 is not necessary.

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctobeOctobeOctobeOctoberrrr 2020202010101010

49

output

while

while

invoke Partner

(item)

[itemSum > 10] [itemSum <= 10]

assign (itemSum =

itemSum + item)

assign

(itemSum = 0)

Figure 9. Loop example

For that reason the algorithm described in [6] has been improved to include a new method

to handle the unknown and different number of values of an input variable.

First, TCSS-LS-for-BPEL generates random solutions that are represented by means of a

vector for each input variable. TCSS-LS-for-BPEL constructs the vectors with a specific

number of values (all variables have the same number of values). Then the partners of the

business process are configured with the vectors of the variables they returned and the

business process is executed. When a partner is invoked it returns a value of the vector of the

variable and when it has used all values of the variable it ask TCSS-LS-for-BPEL for the new

values.

TCSS-LS-for-BPEL searches the new values for an input variable among the solutions of

the set Sij of the arc that is used to generate the new solutions. The algorithm tries to find the

most diverse values for the input variable. Thus, the function “diversity of a variable” is

defined. TCSS-LS-for-BPEL applies this function over the subset S’ij={T’ij
1
,…,T’ij

q
} ⊆ Sij,

T’ij
c
=< x ’ij

c
;p’ij; bf ’ij

c
; fc ’ij

c
>, which represents the solutions stored in the set Sij that have not

been used to give new values to the partner. The diversity value of a variable x h is calculated

according to the function defined as:

∑ ∑
= =

−

<

<

=><
qc rz c

ij

m

ij

m

ij

c

ij

c

ij

m

ij

ij

m

ij

zz

z

z

xx

zxx

zxx

Sx_vardiv
..1 ..1

'

otherwise''

 of size if'

' of size if'

)';'(

where index c = 1..q covers the Solutions of the set S’ij and the index z=1..r covers the values

of the vector that represents the input variable x ’.

TCSS-LS-for-BPEL gives the partner the values of the variable x ’ of the solution with the

highest value of div_var(), as that solution is the least similar to the rest of the solutions

according to the values for the variable x ’. Thus, the size of the vector of values that

represents the variable x ’ in the solution that is executed in the business process is increased.

When the business process finishes its execution, TCSS-LS-for-BPEL analyzes the

solution in order to drop the values of the variables that have not been used. Thus, the size of

the vectors is decreased. Then the updating process of the sets Sij is carried out and they will

store solutions with different sizes for the vector of values of a specific variable.

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctoberOctoberOctoberOctober 2020202010101010

50

On the other hand, the solution combination method, the local search method and the

update method presented in [6] have also been adapted to handle the different number of

values of the input variables in several solutions, as described in [4].

5. Case studies

The algorithm TCSS-LS-for-BPEL and the transformations presented in this work have

been applied to two BPEL specifications: “loan approval” and “shipping service”. Both

specifications were originally published within the standard BPEL4WS and have been

extensively referenced in the literature on web services testing. The “loan approval” has been

described above in section 2.1. The “shipping service” composition describes a basic shipping

service that handles the shipment of orders. It offers two types of shipments: shipments where

the items are held and shipped together and shipments where the items are shipped piecemeal

until all of the order is accounted for. In order to check the methods designed in our approach

we have modified the “shipping service” composition as shown in Figure 10. We have

included the transitions T6 , T7 and T8 in order to incorporate an equality condition to check

the behavior of the algorithm. The transition-pair graph of the “shipping service” is shown in

Figure 11. The grey switch states are included to instrument the loop. The arcs of the graph

represent the transition-pairs generated through the state graph of Figure 10.

receive (from customer)

[shipRequest.shipComplete == TRUE]

T1

T0

assign (itemsCount)

invoke customer

(shippingNotice)

assign (itemsShipped=0)

[shipRequest.shipComplete != TRUE]

T2

while

assing (opaque to

itemsCount)

invoke customer

(shippingNotice)

[itemsShipped <

shipRequest.itemsTotal]

[itemsShipped >=

shipRequest.itemsTotal]

assign (update

itemsShipped)

switch

switch

T3 T4

[itemsShipped == 0]

T6

T5

invoke customer

(shippingNotice)

[itemsShipped ==

shipRequest.itemsTotal

&& itemsShipped != 0]

T8[itemsShipped !=

shipRequest.itemsTotal

&& itemsShipped != 0]

T7

Figure 10. State graph of “shipping service” composition

The results obtained by TCSS-LS-for-BPEL are compared with those of a random

generator. In all cases for our experiments, the stopping condition used for the generators was

that of reaching 100% transition coverage or reaching 200000 generated test cases, the input

variables of the compositions are integer and the input range uses 16 bits. For each

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctobeOctobeOctobeOctoberrrr 2020202010101010

51

composition we carried out 100 runs with the generators, taking average values. All runs were

carried out on a Pentium 4 processor 2.80GHz with a RAM memory of 512 MB.

receive (from customer)

[shipRequest.shipComplete == TRUE]

P01

P0

assign (itemsCount)

invoke customer

(shippingNotice)

assign (itemsShipped=0)

[shipRequest.shipComplete != TRUE]

P02

assing (opaque to

itemsCount)

invoke customer

(shippingNotice)

assign (update

itemsShipped)

switch

invoke customer

(shippingNotice)

[itemsShipped >=

shipRequest.itemsTotal

&& itemsShipped ==

shipRequest.itemsTotal

&& itemsShipped != 0]

switch

P45

P38

[itemsShipped >=

shipRequest.itemsTotal

&& itemsShipped !=

shipRequest.itemsTotal

&& itemsShipped != 0]

P37

P53

switch

P23

[shipRequest.shipComplete

!= TRUE && itemsShipped

>= shipRequest.itemsTotal]

P24

[shipRequest.shipComplete

!= TRUE && itemsShipped

< shipRequest.itemsTotal]

switch

P54

[itemsShipped <

shipRequest.itemsTotal]

[itemsShipped >=

shipRequest.itemsTotal]

[itemsShipped >=

shipRequest.itemsTotal

&& itemsShipped == 0]

P36

P01 = T0 && T1

P02 = T0 && T2

P23 = T2 && T3

P24 = T2 && T4

P45 = T4 && T5

P54 = T5 && T4

P53 = T5 && T3

P36 = T3 && T6

P37 = T3 && T7

P38 = T3 && T8

Figure 11. Transition-pair graph of “shipping service” composition

The results obtained by the two generators can be seen in Table 1. For both generators, the

percentage of transition-pair coverage reached, the number of solutions that the generator

creates to achieve this coverage and the time consumed (in seconds) are shown. TCSS-LS–

for-BPEL generates few solutions and consumes less time than the random generator for both

compositions. Moreover, the random generator does not achieve 100% coverage, whereas

TCSS-LS-for-BPEL always reaches total coverage. On the other hand, the standard deviation

of the number of solutions generated by TCSS-LS-for-BPEL has a small value for both

compositions (29.3 for the “loan approval” composition and 43.1 for the “shipping service”

composition).

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctoberOctoberOctoberOctober 2020202010101010

52

Table 1. Results obtained for the compositions “loan approval” and

“shipping service”

 Loan Approval Shipping Service

 % Coverage Solutions Time (s) % Coverage Solutions Time (s)

TCSS-LS-for-BPEL 100 292 0,19 100 175 0,20

Random 99 54950 1,32 78 52990 1,01

During the search process, the test case generators create a large set of candidate solutions

in order to cover all transition-pairs because some of these solutions reach transition-pairs that

had already been covered by other ones. TCSS-LS-for-BPEL does not include all candidate

solutions in the set Sij, as according to the principle of the algorithm only the most diverse

solutions are incorporated. To form the set of test cases that cover all transition-pairs we

select some solutions from the sets Sij. The selection process uses the set Sij of the transition-

pairs Pij that reach the final state of the graph, as all transition-pairs are included in a path that

finishes with some of these pairs. TCSS-LS-for-BPEL selects a solution from each of these

sets that covers the greatest number of pairs. Table 2 shows an example of a set of test cases

obtained from the sets Sij for the “shipping service” composition. The first test case has been

selected from set S01, the second from set S36, the third from set S37 and the fourth from set

S38.

Table 2. Example of test cases for the “shipping service” composition

Id Input Variables Transition-pairs

Covered shipRequest.itemsTotal Opaque values shipRequest.shipComplete

1 7033 - TRUE P0, P01

2 0 - FALSE P0, P02, P23, P36

3 28108 7381

5048

17839

FALSE P0, P02, P24, P45,

P54, P53, P37

4 15387 9245

6142

FALSE P0, P02, P24, P45,

P54, P53, P38

The left part of Figure 12 shows the coverage plots according to the number of solutions

generated for the “shipping service” composition and the right part shows the coverage plots

according to the time consumed. The horizontal axis represents the number of solutions

generated (left part of the figure) or the time consumed (right part of the figure) to reach the

accumulative percentage of transition-pair coverage represented by the vertical axis. As

shown in these graphs, TCSS-LS-for-BPEL creates fewer solutions and consumes less time

than the random generator to achieve each percentage of transition-pair coverage.

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctobeOctobeOctobeOctoberrrr 2020202010101010

53

0
10
20
30
40
50
60
70
80
90
100

1E+00 1E+03 1E+06

%
 c
o
v
e
ra
g
e

Number of solutions (log. scale)

TCSS-LS-for-BPEL Random

0
10
20
30
40
50
60
70
80
90
100

0,0001 0,001 0,01 0,1 1 10 100

%
 c
o
v
e
ra
g
e

Time in seconds (log. scale)

TCSS-LS-for-BPEL Random

Figure 12. Coverage plots according to the number of solutions generated

and the time consumed for the “shipping service” composition

6. Conclusions

This paper presents an approach based on the metaheuristic technique Scatter Search to

automatically generate test cases for BPEL business processes and a group of transformations

to represent the transition-pairs of the business processes. Both algorithm and transformations

work together to generate test cases to fulfill a transition-pair coverage criterion, which allows

us to test more different paths of execution of the business process than a transition coverage

criterion, as each element of these paths is formed by two consecutive transitions. This

approach, called TCSS-LS-for-BPEL, is an evolution of previous works.

The business process and its transition-pairs are represented as a transition-pair graph,

where each arc corresponds to a transition-pair. TCSS-LS-for-BPEL handles a set Sij in each

arc of the graph, thus the general goal can be divided into several subgoals and each of them

consists of generating solutions for a set Sij. TCSS-LS-for-BPEL also provide procedures to

work with solutions that have input variables with different and, in principle, an unknown

number of values.

The results obtained show that TCSS-LS-for-BPEL can be applied to the test case

generation of BPEL business processes and it outperforms the random generator. TCSS-LS-

for-BPEL achieves 100% coverage in a short time and the evolution of the solutions

generated quickly converges to the total coverage.

An immediate line of future work is the improvement of the algorithm to handle BPEL

activities that enable the concurrent execution of other activities, such as flow. Further

research is also needed to fully determine the scalability of our approach and, with this in

mind, experimentation with real-world specifications is planned.

Acknowledgements

This work is supported by the Ministry of Science and Innovation (Spain) under the

National Program for Research, Development and Innovation, projects Test4SOA (TIN2007-

67843-C06-01) and Test4DBS (TIN2010-20057-C03-01).

References

[1] M.A. Ahmed, I. Hermadi, “GA-based multiple paths test data generator”, Computers and Operations
Research, 35(10), 2008, pp. 3107-3124.

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctoberOctoberOctoberOctober 2020202010101010

54

[2] E. Alba, F. Chicano, “Observations in using parallel and sequential evolutionary algorithms for automatic
software testing”, Computers and Operations Research, 35(10), 2008, pp. 3161-3183.

[3] M. Alshraideh, L. Bottaci, “Search-based software test data generation for string data using program-specific
search operators”, Software Testing Verification and Reliability, 16(3), 2006, pp. 175-203.

[4] R. Blanco, J. García-Fanjul, J. Tuya, “A first approach to test case generation for BPEL compositions of web
services using Scatter Search”. In: Proceedings of the IEEE International Conference on Software Testing,
Verification, and Validation Workshops (2009) 131-140.

[5] R. Blanco, J. Tuya, E. Díaz, B. Adenso-Díaz, “A scatter search approach for automated branch coverage in
software testing”, Engineering Intelligent Systems, 15 (3), 2007, pp. 135-142.

[6] R. Blanco, J. Tuya, B. Adenso-Díaz, “Automated test data generation using a scatter search approach”,
Information and Software Technology, doi:10.1016/j.infsof.2008.11.001, 2008.

[7] P.M.S. Bueno, W.E. Wong, M. Jino, “Improving random test sets using the diversity oriented test data
generation”, in: Proceedings of the Second International Workshop on Random Testing, 2007, pp. 10-17.

[8] O. Bühler, J. Wegener, “Evolutionary functional testing”, Computers and Operational Research, 35(10), 2008,
pp. 3144-3160.

[9] C. Del Grosso, G. Antoniol, E. Merlo, P. Galinier, “Detecting buffer overflow via automatic test input data
generation”, Computers and Operational Research, 35(10), 2008, pp. 3125-3143.

[10] M. Di Penta, G. Canfora, G. Esposito, V. Mazza, M. Bruno, “Search-based testing of service level
agreements”, in: Proceedings of the 9th conference on Genetic and Evolutionary Computation, 2007, pp.
1090-1097.

[11] E. Díaz, “Generación automática de pruebas estructurales de software mediante Búsqueda Tabú”, PhD Thesis
Department of Computer Science, University of Oviedo, 2004.

[12] E. Díaz, J. Tuya, R. Blanco, J.J. Dolado, “A tabu search algorithm for Software Testing”, Computers and
Operational Research, 35(10), 2008, pp. 3052-3072.

[13] W.L. Dong, H. Yu, Y.B. Zhang, “Testing BPEL-based Web Service Composition Using High-level Petri
Nets”. In: Proceedings of the 10th IEEE Int. EDOC Conf. Hong Kong (2006), pp. 441-444.

[14] J. García-Fanjul, J. Tuya, C. de la Riva, “Generating test cases specifications for BPEL compositions of web
services using SPIN”. In Proceedings of the Int. Workshop on Web Services – Modeling and Testing.
Palermo (2006), pp. 83-94.

[15] M.R. Girgis, “Automatic test data generation for data flow testing using a genetic algorithm”, Journal of
Universal Computer Science, 11(6), 2005, pp. 898-915.

[16] F. Glover, M. Laguna, R. Martí, “Fundamentals of Scatter Search and Path Relinking”, Control and
Cybernetics 39(3), 2000, pp. 653-684.

[17] M. Harman, B.F. Jones, “Search-based software engineering”, Information and Software Technology, 43(14),
2001, pp. 833-839.

[18] M. Laguna, R. Martí, Scatter Search: Methodology and Implementations in C, Kluwer Academic Publishers,
Boston, MA, USA, 2002.

[19] Z. Li, M. Harman, R.M. Hierons, “Search algorithms for regression test case prioritization”, IEEE
Transactions on Software Engineering, 33(4), 2007, pp. 225-237.

[20] N. Mansour, M. Salame, “Data generation for path testing”, Software Quality Journal, 12, 2004, pp. 121-136.
[21] T. Mantere, J.T. Alander, “Evolutionary software engineering, a review”, Applied Soft Computing, 5(3),

2005, p. 315-331.
[22] P. McMinn, “Search-based software test data generation: a survey”, Software Testing Verification and

Reliability, 14(2), 2004, pp. 105-156.
[23] P. McMinn, M. Holcombe, “Evolutionary testing using an extended chaining approach”, Evolutionary

Computation, 14(1), 2006, pp. 41.64.
[24] L. Mei, W.K. Chan, T.H. Tse, “Data flow testing of service-oriented workflow applications”, in: Proceedings

of the 30th International Conference on Software Engineering (ICSE), Leipzig (Germany) 2008, pp 371-380.
[25] J. Miller, M. Reformat, H. Zhang, “Automatic test data generation using genetic algorithm and program

dependence graphs”, Information and Software Technology, 48, 2006, pp. 586-605.
[26] Organization for the Advancement of Structured Information Standards (OASIS), Web Services Business

Process Execution Language (WSBPEL), URL: http://www.oasis-open.org.
[27] R. Sagarna, J.A. Lozano, “Scatter Search in software testing, comparison and collaboration with Estimation of

Distribution Algorithms”, European Journal of Operational Research, 169(2), 2006, pp. 392-412.
[28] S.R. Vergilio, A. Pozo, “A grammar-guided genetic programming framework configured for data mining and

software testing”, International Journal of Software Engineering and Knowledge Engineering, 16(2), 2006,
pp. 245-267.

[29] H. Waeselynck, P. Thévenod-Fosse, O. Abdellatif-Kaddour, “Simulated annealing applied to test generation:
landscape characterization and stopping criteria”, Empirical Software Engineering, 12(1), 2007, pp. 35-63.

[30] A. Watkins, E.M. Hufnagel, D. Berndt, L. Johnson, “Using genetic algorithms and decision tree induction to
classify software failures”, International Journal of Software Engineering and Knowledge Engineering, 16(2),
2006, pp. 269-291.

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctobeOctobeOctobeOctoberrrr 2020202010101010

55

[31] J. Wegener, A. Baresel, H. Sthamer, “Evolutionary test environment for automatic structural testing”,
Information and Software Technology, 43(14), 2001, pp. 841-854.

[32] M. Xiao, M. El-Attar, M. Reformat, J. Miller, “Empirical evaluation of optimization algorithms when used in
goal-oriented automated test data generation techniques”, Empirical Software Engineering, 12(2), 2007, pp.
183-239.

[33] J. Yan, Z. Li, Y. Yuan, W. Sun, J. Zhang, “BPEL4WS unit testing: test case generation using a concurrent
path analysis approach”, in: Proceedings of the 17th International Symposium on Software Reliability
Engineering (ISSRE), Raleigh (USA) 2006, pp 75-84.

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications

Vol. Vol. Vol. Vol. 4444, No., No., No., No. 4444, , , , OctoberOctoberOctoberOctober 2020202010101010

56

