
Simulation-Based Optimization for Software Dynamic Testing Processes

Mercedes Ruiz

Department of Computer Science and Engineering

University of Cádiz

Cádiz, SPAIN

e-mail: mercedes.ruiz@uca.es

Javier Tuya

Department of Computing

University of Oviedo

Gijón, SPAIN

e-mail: tuya@uniovi.es

Daniel Crespo

Department of Computer Science and Engineering

University of Cádiz

Cádiz, SPAIN

e-mail: dani.crespobernal@alum.uca.es

Abstract - Managing software development projects requires

the coordination of different processes that may be performed

by different teams, e.g., a development team and a separate

testing team. This coordination aims at optimizing the trade-

off between cost, schedule and delivered quality. Simulation

models are a powerful tool to explore what-if scenarios that

help managers to achieve this trade-off and to fine-tune

different project parameters. This paper presents a simulation

model based on a multi-paradigm approach that connects

development and testing processes. The testing process model

is based on the process model described in the ISO/IEC/IEEE

29119-2:2013 standard. The simulation model is built using

two different methods: the discrete-event approach, to simulate

the execution of the dynamic testing processes, and the agent-

based approach, to in-depth simulate defects life cycle. Results

show how the simulation model is used to explore the evolution

of a number of process metrics. Then, the simulation model is

used to determine the resource distributions in order to

optimize two relevant process metrics: the efficiency of the

testing process and the average defect life.

Keywords - software testing; multiparadigm simulation; test

management; test process optimization.

I. INTRODUCTION

This is a revised and augmented version of our previous
work, which appeared in the Proceedings of the Seventh
International Conference on Software Engineering Advances
(ICSEA 2012) [1]. Software testing is concerned with
planning, preparation and evaluation of software products
and related work products to: a) determine that they satisfy
specified requirements, b) demonstrate that they are fit for
purpose and c) detect defects [2]. In general, testing can be
viewed as a means of improving the quality of a given
product and mitigating risks due to poor quality.

Testing can be carried on using different approaches
(e.g., scripted or exploratory), at different levels (e.g., unit,
system, integration or acceptance), using different techniques
and tools and with different degrees of independency
(ranging from testing performed by the producer to third
party testing). When testing entails the execution of the
system under test, it is often referred to as dynamic testing.

Testing exists in an organizational context and is carried on a
given project or service. Therefore, the testing activities are
tightly interrelated with the development ones, and both shall
be planned, monitored and controlled. Problems of quality of
the system under test or delays in the development hamper
the testing process. Conversely, an inadequate or delayed
testing endangers the development process. If not managed
properly, both development and testing processes may
jeopardize the goals of cost, schedule and quality of a
project.

Both development and testing can be described as
processes and take advantage of the use of simulation models
for helping project and/or test managers in daily tasks of
planning, monitoring and control.

Informally, a simulation model can be considered as an
abstract view of a complex system comprised of a set of
rules that tell how to obtain the next state of the system from
the current state. Those rules can be of many different forms:
differential equations, state charts, process flowcharts,
schedules, etc. The outputs of the model are produced and
observed as the model is running.

There is much research on simulation models of the
software development process [3]. However, there is lesser
research on simulation models for the testing process,
usually at the unit level. Furthermore, when testing is
considered as part of a simulation model of the development
process, it is often over simplified. The goal of this paper is
to devise a multi-paradigm simulation model for the testing
process to gain insights in how the testing process influences
the goals of a given project. The simulation model can be
used to simulate the testing process at the system level and to
help in decision-making in the test managing processes.

Contributions of this paper extend previous work [1] and
include:

1. A multi-paradigm simulation model of the dynamic
testing processes, which combines a discrete-event
model and agent-based model.

2. The optimization of two key variables of the testing
process: process efficiency and average defect life

The main contribution of this work is a multi-paradigm
simulation model of the dynamic testing processes that

381

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

combines a discrete-event model and agent-based model.
The model can be used to simulate the testing process at the
system level and to help in decision-making in the test
managing processes.

The structure of the paper is as follows: Section II shows
the works related to our proposal; Section III introduces the
multi-layer process model proposed by the International
Standards group upon which our simulation model is based;
Section IV describes the simulation model; Section V shows
two simulation optimization scenarios. Finally, our
conclusions and further work are given in Section VI.

II. RELATED WORK

During the recent years a lot of research has been done in
the field of software testing. These studies are mainly
oriented to enhance and optimize the software testing process
improving the results obtained after the development of
software projects. Several techniques and methods have been
used to reach this goal. Knowledge Management has been a
recurrent tool due to its usefulness for revising software
testing processes [4], learning from the errors committed in
the past [5], collecting, analyzing and managing lessons
learned [6] and improving the quality of software testing [7].

Sometimes, it is interesting to study the behavior of
processes in order to detect weaknesses so that improvement
can be effectively performed. Process modeling techniques
have been widely used to address these issues. Models can
be used to estimate process outcomes such us the number of
defects remaining and the time required to detect defects
either for a subsequent optimization [8], to estimate effort,
cost and schedule [9] or to perform cost control management
[10]. Modeling also plays an important role in decision-
making support. Reference [11] presents a goal-driven
measurement model for software testing process so that
software organizations can deduce the appropriate
measurement process according to the process goals they
determine. On the other hand, reference [12] provides a
quantitative defect management model that can be improved
to be practically useful for determining which activities need
to be addressed to improve the degree of early and cost-
effective software fault detection with assured confidence.
Finally, reference [13] proposes a competence model that
could be applied to train staff in software testing activities
and to recruit the appropriate profiles improving their
performance.

Some authors have developed their own frameworks to
study software test processes. Reference [14] describes a
conceptual framework to specify and explicitly evaluate test
process quality aspects and [15] proposes a software testing
improvement framework based on the Plan–Do–Check–Act
(PDCA) method.

Some other techniques employed for software testing
process improvement include Bayesian networks for process
evaluation [16], Markov decision models to optimize
software testing by minimizing the expected cost with given
software parameters of concern [17], multi-objective feature
prioritization for testing planning and controlling [18],
system dynamics to formulate and quantify the software

testing processes [19] and even the usage of software
engineering standards to improve the testing process [20].

Although the above mentioned techniques are extremely
useful to improve the software testing processes, sometimes
it is necessary to look into the processes with more detail. In
order to effectively optimize a process the current behavior
must be examined. Furthermore, all the possible variations
suffered by the process due to the different scenarios that
may occur, should be taken into account in order to analyze
the results derived from one situation or another. Software
process simulation provides the means to accomplish this
goal in a cost effective way.

The search string “simulation” AND “software testing
process” AND “management” and others alike used in
several digital libraries and citation databases of peer-
reviewed literature retrieves only a few number of papers. In
many of the papers retrieved, the term “simulation” is
frequently used to describe experiences in which simulation
is used as a tool for the testing process. In other works, the
term “simulation” makes reference to a set of formulas that
are solved by analytical means.

As an example of the first usage, in their collection of
works, Lazić, Mastorakis and Velasěvić [21] to [25] aim at
raising awareness about the usefulness and importance of
computer-based simulation in support of software testing. In
their works, simulation is used to ease the design and
execution of the testing processes of real military and
defense systems.

Some analytical models of the software testing process
can also be found. Zhang, Zhou, and Luo [26] propose a
reward-Markov-chain-based quantitative model for
sequential iterative processes and show how to use it to
estimate the time for the software testing process. Similarly
to this, Lizhi, Weiqin, Zhou and Zhang [27] propose an
approach to model the testing process based on hierarchical
time colored Petri Nets (HTCPN). However, while Petri-nets
are good at modeling resources and parallel processing,
simulation modeling models system components and their
interactions, making it possible to conduct arbitrary time-
related performance analysis, something which is not easy
using Petri-nets.

Consequently, to overcome the problems of analytical
methods, simulation modeling can be applied in the context
of testing processes mainly because: a) it enables to find
solutions when analytical methods fail; b) it is a more
straightforward process than analytical modeling since the
structure of the simulation model naturally mimics the
structure of the real system, and c) it is scalable, flexible, and
easy to communicate since the modeling tools use visual
languages.

However, despite these advantages there is a small
number of contributions of simulation modeling in the field
of software testing processes. Saurabh [28] presents a
System Dynamics (SD) model of software development with
a special focus on the unit test phase. This work is partially
based on Collofello’s et al. work about modeling the
software testing process under the SD approach [29].

The motivation of these works is closely related to ours,
but the models are built under a different simulation

382

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

approach. System Dynamics approach operates at high
abstraction level and is mostly used for strategic modeling.
Hence, since a simulation model can only be used at the
abstraction level in which it has been created, such a highly
abstract model is not adequate for the operational and tactical
levels in which decision-making regarding the testing
processes takes place. In our case, since our main interest is
to simulate the testing processes the discrete event (DE)
modeling, with the underlying process-centric approach, has
been selected. Furthermore, we have also selected the agent-
based (AB) approach to be used together with the discrete-
event one resulting in a multi-paradigm simulation model.

Generally, each simulation approach (SD, DE, AB)
provides a set of different abstractions. If the system being
modeled is complex enough, and software development is,
then it is preferable to integrate different simulation methods
than using one single approach, since the final model will
represent the real system more realistically.

When we used the search string (“multi-paradigm” OR
“multi-method”) AND “simulation” AND “software testing
process” and others alike in the digital libraries and citation
databases, no single work was retrieved. Therefore, given the
results of the systematic literature review performed, not
fully documented here for space reasons, to the best of our
knowledge our proposal is the first one that aims at using
multi-paradigm simulation modeling to improve decision
making in software testing management.

III. MULTI-LAYER TEST PROCESS MODEL

Testing processes include a variety of management and
technical activities that are organized in a process model in
part 2 of the ISO standard for software testing:
ISO/IEC/IEEE 29119-2:2013 [30]. The purpose of this
international standard is to define a generic process model
for software testing that can be used by any organization
when performing any form of software testing. Testing is
structured in a multi-layer process model that defines the
software testing processes at (1) the organizational level, (2)
test management level and (3) dynamic test level. More
specifically, the dynamic test level describes how dynamic
testing is carried out within a particular phase of testing (e.g.,
unit, integration, system and acceptance) or type of testing
(e.g., performance testing, security testing and usability
testing). It is composed of four processes that are depicted in
Figure 1.

 Test Design & Implementation Process: Describes
how test cases and test procedures are derived; these
are normally documented in a test specification, but
may be immediately executed.

 Test Environment Set-Up & Maintenance Process:
Describes how the environment in which tests are
executed is established and maintained.

 Test Execution Process: Describes how the test
procedures generated as a result of the Test Design
& Implementation Process are run on the test
environment established by the Test Environment
Set-Up & Maintenance Process.

 Test Incident Reporting Process describes how the
reporting of test incidents is managed.

Figure 1. Dynamic Test Processes in ISO/IEC/IEEE 29119-2:2013.

The Test Execution Process is run after the tests have
been specified and the environment has been established,
which leads to a strong dependency on the previous
processes. This process may need to be performed a number
of times as all the available test procedures may not be
executed in a single iteration. Additionally, this process must
be reentered as a consequence of detected failures after the
underlying defects have been corrected (retesting).

Besides, the Test Design & Implementation Process, and
the Test Environment Set-Up & Maintenance Process may
be reentered whether additional tests are needed after
execution or some problems are detected in the testing
environment. The Test Incident Reporting Process may be
also reentered as a result of: a) the identification of test
failures, b) something unusual or unexpected occurred
during test execution, or c) retest activities.

IV. MODEL DESCRIPTION

The simulation model developed is described below in
terms of its scope, result variables, process abstraction and
input parameters. The description is organized following
Kellner’s proposal for describing simulation models [31].

A. Model Proposal and Scope

To determine a model proposal, the key questions that
the model needs to address need to be identified. Then,
model scope is set so that it is large enough to fully solve the
key questions posed. In the context of this work, model
proposal is to help in decision-making in software testing
process management. Accordingly, the scope for this model
will be a portion of the life cycle, with a short time span (i.e.,
the months in which the testing activities take place), one
software product and two teams (i.e., development and
testing teams) organizational breadth.

B. Result Variables

The result variables are the information elements needed
to answer the key questions regarding the purpose of the
model. In our model, several process metrics have been
identified to help us understand the simulated process
capability. According to this, process metrics have been
classified into effectiveness and efficiency process metrics.

Effectiveness process metrics measure the extent to
which a process produces a desired result [32].

The following result variables fall into this category:

383

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Defect Closure Period (DCP). The longer a reported
defect takes to go from discovery to resolution, the
higher the project risk associated with the underlying
defect. Unresolved defects may: a) delay testing, b)
make development less efficient or c) prevent the
delivery of the software to the final customers. DCP
measures the difference between the time required to
repair a defect and the time required to confirm the
defect is repaired.

 Defect Open Count. This measure tracks the number
of times a defect report is opened. When the report is
first submitted this count is set to one. This count is
incremented each time the same defect report is
reopened due to a failure in the confirmation test
(retest).

 FixBacklog: Shows the percentage of defects closed
per all the defects opened in a given time.

 Average Defect Life: Shows the average elapsed
time from the moment a defect is found until it is
successfully closed.

 Total Planned Test: The metric shows the evolution
of the number of planned test cases along the testing
project.

 Total Executed Tests: Shows the evolution of actual
test cases that are executed along the project.

 Total Passed Tests: Shows the actual test cases that
are executed and successfully passed (e.g., did not
find any defects).

 Total Failed Tests: Shows the actual test cases that
are executed and failed (e.g., did find defects).

Efficiency process metrics measure the extent to which a
process produces its desired results in a not wasteful way
and, ideally, minimizing the resources used [32].

Result variables in this category follow:

 Actual Test Time: Shows the total length of the
testing process.

 Total Team Size and number of people per activity:
Shows the total size of the testing team and the
number of resources allocated to each activity of the
process, respectively.

 Average Defect Cost: Shows the ratio between the
total number of defects closed and the number of
working hours invested.

 Process Efficiency: Shows the ratio of the number of
defects closed per the number of defects found.

C. Process Abstraction

When developing a simulation model, the key elements
of the process, their inter-relationships, and behavior need to
be identified. The focus should be on those aspects of the
process that are especially relevant to the purpose of the
model, and believed to affect the result variables [31].

One of the decisions that need to be made in this phase is
the simulation paradigm that it is going to be used to build
the model. A simulation paradigm is a general framework for
mapping a real world system to its model. The choice of
paradigm should be based on the system being modeled and
the purpose of the modeling. When modeling complex

systems, it is frequent that different parts of the system are
most naturally modeled using different paradigms. In this
case, a multi-paradigm model is built.

In order to build our model, the multi-paradigm approach
has been selected. First, to model and simulate the dynamic
testing processes, the paradigm selected has been the
discrete-event or process centric approach. Under this
approach, the system being modeled is considered as a
process, i.e., a sequence of operations being performed
across entities, and this makes this paradigm the most natural
and adequate to build process simulation models. The model
is specified graphically as a process flowchart, where blocks
represent the operations to be done along the process.

Although a simulation model following this approach
allows us to analyze the evolution of the testing activities,
the resource consumption and the number of defects
detected, it would be interesting to add an extra functionality
to the simulation model allowing the user to track the life of
every defect since it is found until it is closed. It is important
to notice that to achieve this aim the level of abstraction used
needs to be changed from process-centric to individual-
centric. Agent-based modeling is a simulation approach that
allows the modeler to build a model under a bottom-up
perspective, that is, describing the behavior of individuals
(e.g., agents) and, if needed, their interactions. Frequently,
the behavior of an agent is formalized by means of a state
chart-like diagram. Therefore, this approach seems to be
most natural and adequate to describe the lifecycle of defects
found during the testing phase. As a consequence, a multi-
paradigm simulation model was our choice for our modeling
problem.

In summary, the model consists of two connected
models. A description of each of these models follows:

1) Discrete event model (DE).
The discrete event model represents the Dynamic Test

Processes in ISO/IEC/IEEE 29119-2:2013 [30], previously
described in Section III.

The development process produces two main artifacts
that are the input for the testing processes:

1. The test basis, usually the software specification,
which is modeled as a set of features.

2. The executable code that is to be exercised by the
tests.

 The availability of the test basis enables the execution of
the Test Design & Implementation Process, which leads to a
number of test cases. However, test cases are not ready to be
executed until the test environment has been established
(Test Design & Implementation Process) and the executable
code released. Once the code is installed in the testing
environment, the Test Execution Process can begin. Failed
test cases are the input for the Test Incident Reporting
Process and the results communicated to the development
processes through the Agent-based model. Test execution
reenters when previously detected defects have been fixed by
development.

2) Agent-based model (AB).
During the software development process, each defect

has a lifecycle in which it reaches different states. In order to
simulate the different states that a defect reaches the agent-

384

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

based paradigm has been used. Under this approach, we
formalize the defects found as agents and their behavior as a
state chart that reflects the different states and transitions of
defect lifecycle. A description of each state in which the
agents can be follows:

 New: An agent reaches this state when a defect is
reported by the tester for the first time and is yet to
be approved.

 Analyzed: Once a defect is reported, the manager has
to analyze it in order to approve it as a genuine
defect, reject or defer it. The agent remains in this
state during the time in which this activity takes
place. When the activity is done, the information for
deciding what to do with the defect is available, and
so, the agent moves to the next state, which can be
one of the following: a) Rejected: If a defect is found
to be invalid, b) Deferred: If a defect is decided to be
fixed in upcoming releases, and c) Assigned: If a
defect is found to be valid and assigned to a member
of the development team to fix it.

 Fixed: An agent moves to this state once the
developer communicates the defect is fixed. The
defect goes to the testing team for validation by
injecting a task in the DE model to indicate that the
test case that found this defect has to be executed
again (retest). The result of this execution will
determine the next state of the agent.

 Closed. If the tester finds that the defect is indeed
fixed and is no more a cause of concern, the agent
moves to the state Closed. Otherwise, if the defect is
not fixed or partially fixed, the agent will go again to
the state Assigned in which the work of a developer
working on its fixing will be simulated again.

D. Input Parameters

The input parameters to include in the model largely
depend upon the result variables desired and the process
abstractions identified. Input parameters allow setting up
different scenarios for simulation. The input parameters of
the simulation model are the following:

 Software size: Size of the software product under
development.

 FPA per Feature: Adjusted Functional Points per
feature.

 Number of Test Cases per Feature: Number of test
cases that need to be designed and executed per
feature.

 Initial number of tasks in Environment Setup. Initial
number of tasks that need to be done for the
common and global environment setup.

 Estimated Time for Environment Setup. Time
estimated to develop each environment setup task.

 Environment Setup Resources. Number of people
allocated to the Environment Setup processes.

 Estimated Time for Test Design and
Implementation. Time estimated to develop each
task of the Test Design and Implementation
processes.

 Test Design and Implementation Resources. Number
of people allocated to the Test Design and
Implementation process.

 Estimated Time for Test Execution. Time estimated
to develop each task of the Test Execution processes.

 Test Execution Resources. Number of people
allocated to the Test Execution processes.

 Estimated Time for Test Incident Reporting. Time
estimated to develop each task of the Test Incident
Reporting processes.

 Test Incident Reporting Resources. Number of
people allocated to the Test Incident Reporting
Processes.

 Estimated time to fix a defect. Time estimated to a
fix a defect by a developer.

 Code released for Test Execution. Indicates when
the code is released for testing. This value is
provided as a percentage of delay measured
regarding the initial estimated time for the testing
project.

 Probability of finding a defect per Test Case
Execution. Probability that a Test Case finds a defect
when the test case is executed the first time.

 Probability of finding a defect per Test Case in
Retest Execution. Probability that a Test Case finds a
defect when the defect has been reported as fixed.

In order to achieve more realistic results, the model
accepts a triangular distribution for most of the above input
parameters.

V. SIMULATION OPTIMIZATION

Even though simulation runs are useful to visualize the
effect of different values of the input parameters in the
process performance, that is, to execute what-if scenarios in
managerial decision-making, a key benefit can be obtained
when we use together simulation and metaheuristic
optimization algorithms in a process called simulation
optimization. In this case, it is possible to obtain which
values need to take the input parameters in order to
maximize or minimize an output variable.

This section presents two optimization scenarios
regarding the following exploratory questions:

 RQ1: Is it possible to maximize the efficiency of the
test process by controlling the moment in which the
executable code is available for testing? The
optimization will determine the distribution of the
human resources that maximizes the Process
Efficiency.

 RQ2: Is it possible to minimize the time life span of
a defect? (time from detection to closing). The
optimization will determine the distribution of the
human resources that minimizes the Average Defect
Life.

The model implementation and the simulation runs have
been performed using Anylogic

TM
 software [33] with the

Enterprise Library. The model logic is written in Java.
Optimizations have been carried on using the optimizer
OptQuest

®
 [34] built-in Anylogic

TM
.

385

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The first step will be to configure a base scenario. Then
optimizations will be determined starting from this scenario.

A. Base Scenario Setup

In this scenario, the base simulation is run to determine
the values of the result variables and analyze the results of
the process. In order to obtain a set of reasonable parameters,
we have estimated the costs of the different activities using a
set of ratios observed in average risk profiles [35]. We
consider functional testing for a system test phase in a
project with waterfall development, experienced builders and
a structured test approach driven by risk:

 Development process ratios: Ratios of functional
design, realization and functional test are 1:2:1.

 Test process ratios: the ratios of test design &
implementation, execution, reporting and
environment set-up are 50:40:5:5, respectively.

The values of the input parameters in this scenario are
displayed in Table I.

B. Base Scenario Run

 Once the input parameters of the model have been set to
the values shown in Table I, the model is ready to simulate
the base scenario. The number of test cases in each state is
depicted in Figure 2, which shows that initially 160 test cases
were planned for the initial features. At the end of the
simulation the total of fulfilled tests is 511 with 416 passed
tests (81.41%) and 95 failed tests (18.59%).

Figure 3 depicts the number of defects in each state. At
the end of the simulation, 4 of them were rejected and 3 of
them deferred; 75 defects were closed and 9 reopened. The
Process Efficiency reached with this setting is 91.0%, which
is reasonable in practice, showing the consistency of the
model when using the above parameters.

Figure 4 and Figure 6 display the time evolution of the
number of test cases in each state and the number of defects
in each state until the end of simulation, respectively. These
figures are included later in the article to facilitate the

comparison against the optimization runs. The increasing of
the number of test cases in each states (Figure 4) is fairly
linear from the moment in which testing begins. The number
of defects in each state (Figure 6) follows a different trend,
as there is a significant delay from detection of failures to
their closing. This is related to the Average Defect Life,
which will be optimized later.

Figure 12 displays the time evolution of the Process
Efficiency, which has been defined before as the ratio
between the number of closed defects and the number of
defects found. At the beginning of the simulation the number
of defects found is zero (because test cases are still in
preparation), so that the simulator returns 100%. Just after
the first test case is available, the efficiency goes to zero as
there are not closed defects. After the first defect has been
closed, efficiency increases up and grows towards its final
value (91.0%).

C. Optimization of the Process Efficiency

To answer RQ1, we ran an optimization experiment to
determine whether it is possible to improve the efficiency of
the test process by controlling the moment in which the
executable code is available for testing. The optimization
will determine the distribution of the human resources that
maximizes test efficiency when the code is released for
testing in a range that varies from 5% to 50% from the
moment the testing process begin [1]. Table II displays the
input values for the control parameters of the experiment, the
constraints imposed and the results obtained in the optimized
process compared with the base case.

The results of the optimization experiment show that,
under the constraints imposed, it is possible to achieve 97%
of efficiency in the process allocating 7 people to the process
and having a maximum delay of the code released for testing
of 27% of the initial estimated time. This will result into a
process that is 97% efficient in closing defects but finishes
one month later than the base scenario.

TABLE I. BASE SCENARIO CONFIGURATION

Input parameter Value

Software size 800 FPA

FPA per Feature 5

Number of Test Case per Feature (0.5, 2, 4)

Initial number of tasks in Environment Setup 5 tasks

Estimated Time for Environment Setup (10, 14.4, 20) hours

Environment Setup Resources 1 person

Estimated Time for Test Design and

Implementation

(3, 4.5, 6) hours

Test Design and Implementation Resources 4 people

Estimated Time for Test Execution (1.5, 3.2, 4.5) hours

Test Execution Resources 4 people

Estimated Time for Test Incident Reporting (1.5, 3, 4.5) hours

Test Incident Reporting Resources 1 person

Estimated time to Fix a defect (3, 4.5, 6) hours

Code released for Test Execution 15%

Probability of finding a defect per Test Case

Execution

(5%, 15%, 25%)

Probability of finding a defect per Test Case in
ReTest Execution

(10%, 20%, 30%)

Figure 2. Number of test cases in each state at the end of the simulation.

Figure 3. Number of defects in each state at the end of the simulation.

386

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The conclusion drawn from this particular experiment
with regard to the base scenario is that if the project is
adequately scheduled, it is possible to reduce the total
number of test resources as well as increase the process
efficiency.

D. Optimization of the Average Defect Life

To answer RQ2 we run an optimization experiment to
determine whether it is possible to improve the time span
between fault detection and closing by controlling the
moment in which the executable code is available for testing
(in an range that varies from 5% to 50% as in previous
subsection). In this case, the optimization will minimize the
Average Defect Life. Table III displays the input values for
the control parameters of the experiment, the constraints
imposed and the results obtained in the optimized process
compared with the base case.

The results of the optimization experiment show that
under the constraints imposed, it is possible to reduce by
more than a half (down to 13.91%) the Average Defect Life
by allocating the same amount of people in a different way to
the process and having a maximum delay of the code
released for testing of 20% of the initial estimated time.

As in the previous optimization, this case also requires a
team size of 10 people allocated to the testing tasks.
However, the optimization brings new light regarding the
allocation of people to the tasks resulting in a considerable
advantage regarding the average defect life.

Now, a comparison on trends of the main variables of the
process will be provided. Figure 4 and Figure 5 display the
time evolution of the number of test cases in each state for
the base and optimized scenarios, respectively. Figure 6 and
Figure 7 display the time evolution of the number of defects

in each state until the end of simulation for the base and
optimized scenarios, respectively. In Figure 7, it can be seen
that there is a shorter delay between the moment in which
failures are detected and their closing, at the expenses of a
larger test time.

Figure 8 and Figure 9 display the values of the Average
Defect Life (base and optimized scenario, respectively). In
the optimized scenario, the variable starts growing earlier
than in the base scenario, but with a lower maximum value.
Just after reaching the maximum begins a continuous
decrease until its optimum value (13.9 working hours) is
achieved, a much lower valued than the corresponding value
for the base scenario (127.4 working hours). The Average
Defect Cost (ratio between number of defects closed and
total time spent) is displayed in Figure 10 and Figure 11,
showing similar trends and final values of 6.2 working hours
(base scenario) and 5.6 hours (optimized scenario).

To finish, a comparison of the Process Efficiency is
provided in Figure 12 and Figure 13. Process Efficiency at
the end (89.0%) is marginally lower than in the base scenario
(90.0%), since this optimization is intended to minimize the
average defect life, but it begins growing at earlier stages of
the testing project.

Other simulations can help find the best input values for
project schedule, resource allocation and quality objective
from among all that lead to the optimization of the key
process outputs. Moreover, the results of optimizations
presented in this paper have been performed separately, but
this makes room for future explorations in multi-objective
optimizations. For example, in order to balance the
maximization of variables like Process Efficiency as well as
the minimization of variables like Average Defect Life.

TABLE II. OPTIMIZATION OF THE PROCESS EFFICIENCY

COMPARED WITH BASE SCENARIO

Input parameter Control

Input

Result

(Base

scenario)

Result

(Optim.

scenario)

Initial number of tasks in

Environment Setup

3-5 tasks 5 5

Environment Setup Resources 1-4 people 1 1

Test Design and
Implementation Resources

1-4 people 4 2

Test Execution Resources 1-4 people 4 3

Test Incident Reporting

Resources

1-4 people 1 1

Code released for Test

Execution

5% - 50% 15% 27%

Constraints Value

Testing Team Size <= 7 people

Maximum Testing Time

Overrun

<= 1 month

Process Efficiency obtained (percent) 90% 97%

TABLE III. OPTIMIZATION OF THE AVERAGE DEFECT LIFE

COMPARED WITH BASE SCENARIO

Input parameter Control

Input

Result

(Base

scenario)

Result

(Optim.

scenario)

Initial number of tasks in
Environment Setup

3-5 tasks 5 5

Environment Setup Resources 1-4 people 1 1

Test Design and

Implementation Resources

1-4 people 4 2

Test Execution Resources 1-4 people 4 4

Test Incident Reporting

Resources

1-4 people 1 3

Code released for Test

Execution

5% - 50% 15% 20%

Constraints Value

Testing Team Size <= 10 people

Maximum Testing Time
Overrun

<= 1 month

Average Defect Life (working hours) 28.31 13.91

387

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Time evolution of the number of test cases in each state (base scenario).

Figure 5. Time evolution of the number of test cases in each state (optimized scenario).

Figure 6. Time evolution of the number of defects in each state (base scenario).

Figure 7. Time evolution of the number of defects in each state (optimized scenario).

388

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VI. CONCLUSION AND FURTHER WORK

This paper presented a simulation model for the dynamic
testing processes that allows a seamless integration between
the testing and development processes. The model is devised
as a multi-paradigm model composed by a discrete event
simulation model, to simulate the execution of the dynamic
test processes, and an agent-based simulation model, to in-
depth simulate the defects life cycle. The model has been
first used to simulate a base scenario. The results of the
simulation runs were then used to design two simulation

optimization scenarios. By merging simulation and
optimization it is possible to use the model to find the best
testing team configuration so that key process metrics are
optimized. Results show that the simulation model can be
effectively used to optimize different process metrics (Test
Process Efficiency and Average Defect Life) and then help
managers to achieve a trade-off between cost, schedule and
quality.

This work is a first step in the use of multi-paradigm
simulation models for testing management. Further work
will include, although not limited to, the consideration of
agent-based models to simulate parts of the dynamic test
processes, the integration into a more complex project
development simulation model [36], multi-objective
optimization and experimentation in different projects using
different lifecycle models and including different test levels
of testing. After calibrating and validating the model with
historical data from the industry, it will be also possible to
exploit it as an operating tool for decision-making in the
industrial domain.

ACKNOWLEDGMENTS

This work has been partially supported by the Spanish
Ministry of Science and Technology with ERDF funds under
grants TIN2010-20057-C03-03, TIN2010-20057-C03-01,
TIN2013-46928-C3-2-R and TIN2013-46928-C3-1-R.

Figure 8. Time evolution of average defect life (base scenario).

Figure 9. Time evolution of the average defect life (optimized scenario).

Figure 10. Time evolution of the average defect cost (base scenario).

Figure 11. Time evolution of the average defect cost (optimized scenario).

Figure 12. Time evolution of the process efficiency (base scenario).

Figure 13. Time evolution of the average process efficiency (optimized

scenario).

389

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] M. Ruiz, J. Tuya, and D. Crespo, “Simulation-based management for
software dynamic testing processes,” Proceedings of the 7th
International Conference on Software Engineering Advances (ICSEA
2012), IARIA 2012, Lisbon, pp. 630-635.

[2] E. van Veenendaal (ed), Standard glossary of terms used in software
testing, Version 2.1, International Software Testing Qualifications
Board, Oct. 2010.

[3] RJ. Madachy, Software process dynamics. John Wiley & Sons, Inc.,
2008.

[4] K. Nogeste and DHT. Walker, “Using knowledge management to
revise software-testing processes,” Journal of Workplace
Learning, 2006, 18(1), pp. 6-27.

[5] R. Abdullah, ZD. Eri, and AM. Talib, “A model of knowledge
management system in managing knowledge of software testing
environment,” 5th. Malaysian Conference in Software Engineering,
(MySEC 2011), 2011, pp. 229-233.

[6] J. Andrade, J. Ares, M. Martínez, J. Pazos, S. Rodríguez, J. Romera,
and S. Suárez, “An architectural model for software testing lesson
learned systems,” Information and Software Technology, 2013, vol.
55, no. 1, pp, 18-34.

[7] X. Liu, G. Gu, Y. Liu, and J. Wu, “Research and implementation of
knowledge management methods in software testing process,” WRI
World Congress on Computer Science and Information Engineering,
(CSIE 2009), 2009, pp. 739-743.

[8] Z. Bluvband, S. Porotsky, and M. Talmor. “Advanced models for
software reliability prediction,” Proceedings - Annual Reliability and
Maintainability Symposium, 2011, pp. 1-5.

[9] L. Lazić and N. Mastorakis, “The COTECOMO: COnstractive test
effort COst Model,” N. Mastorakis and V. Mladenov (Eds)
Proceedings of the European Computing Conference, vol. 2, Series:
Lecture Notes in Electrical Engineering, 2009, vol. 27, pp. 89-110.

[10] SD. Kanawat, A. Pandey, A. Singh, and A. Maloo, “Software testing
model for quality,” Advanced Materials Research, 2001, vol. 4507,
pp. 403-408.

[11] L. Xin-Ke and Y. Xiao-Hui, “A goal-driven measurement model for
software testing process,” WRI World Congress on Software
Engineering, (WCSE 2009), 2009, vol. 4, pp. 8-12.

[12] L. Lazić, “Software testing optimization by advanced quantitative
defect management,” Computer Science and Information
Systems, 2010, 7(3), pp. 459-487.

[13] J. Saldaña-Ramos, A. Sanz-Esteban, J. García-Guzmán, and A.
Amescua, “Design of a competence model for testing teams,” IET
Software, 2012, 6(5), pp. 405-415.

[14] A. Farooq, K. Georgieva, and RR. Dumke, “A meta-measurement
approach for software test processes,” Proceedings of the 12th. IEEE
International Multitopic Conference (IEEE INMIC 2008), 2008, pp.
333-338.

[15] X. Li and W. Zhang, “The PDCA-based software testing
improvement framework,” Proceedings of the 2010 International
Conference on Apperceiving Computing and Intelligence Analysis,
(ICACIA 2010), 2010, pp. 490-494.

[16] L. Han, “Evaluation of software testing process based on bayesian
networks,” Proceedings of the 2010 International Conference on
Computer Engineering and Technology, (ICCET 2010), 2010, 7, pp.
V7361-V7365.

[17] D. Zhang, C. Nie, and B. Xu, “Cross-entropy method based on
Markov decision process for optimal software testing,” Ruan Jian
Xue Bao/Journal of Software, 2008, vol. 19, no. 10, pp. 2770-2779.

[18] Q. Li, Y. Yang, M. Li, Q. Wang, BW. Boehm, and C. Hu,
“Improving software testing process: Feature prioritization to make
winners of success-critical stakeholders,” Journal of Software:
Evolution and Process, 2012, vol. 24, no. 7, pp. 783-801.

[19] K. Cai, Z. Dong, and K. Liu, “Software testing processes as a linear
dynamic system,” Information Sciences, 2008, vol. 178, no. 6, pp.
1558-1597.

[20] HKN. Leung, “Improving the testing process based upon
standards,” Software Testing Verification and Reliability, 1997, vol.
7, no. 1, pp. 3-18

[21] L. Lazić and N. Mastorakis, “RBOSTP: Risk-based optimization of
software testing process. Part 1,” WSEAS Transactions on
Information Science and Applications, 2005, vol. 2, no. 6, pp. 695-
708.

[22] L. Lazić and N. Mastorakis, “RBOSTP: Risk-based optimization of
software testing process. Part 2,” WSEAS Transactions on
Information Science and Applications, 2005, vol. 2, no. 7, pp. 902-
916.

[23] L. Lazić and N. Mastorakis, “Integrated intelligent modeling,
simulation and design of experiments for Software Testing Process,”
Proceedings of the International Conference on Computers, 2010, vol.
1, pp. 555-567.

[24] L. Lazić and N. Mastorakis, “The use of modeling & simulation-
based analysis & optimization of software testing,” WSEAS
Transactions on Information Science and Applications, 2005, vol. 2
no. 11, pp. 1918-1933.

[25] L. Lazić and D. Velasěvić, “Applying simulation and design of
experiments to the embedded software testing process,” Software
Testing Verification and Reliability, 2004, vol. 14, no. 4, pp. 257-282.

[26] WM. Zhang, BS. Zhou, and WJ. Luo, “Modeling and simulating of
sequential iterative development processes,” Jisuanji Jicheng Zhizao
Xitong/Computer Integrated Manufacturing Systems, (CIMS 2008),
2008, vol. 14, no. 9, pp. 1696-1703.

[27] C. Lizhi, T. Weiqin, B. Zhou, and J. Zhang J, “Modeling software
testing process using HTCPN,” Fourth International Conference on
Frontier of Computer Science and Technology, (FCST 2009), 2009,
pp. 429-434.

[28] K. Saurabh, “Modeling unit testing processes: a system dynamics
approach,” Proceedings of the 10th International Conference on
Enterprise Information Systems (ICEIS 2008), 2008, vol. ISAS 1, pp.
183-186.

[29] JS. Collofello, Y. Zhen, JD. Tvedt, D. Merrill, and I. Rus, “Modeling
software testing processes,” Proceedings of the International Phoenix
Conference on Computers and Communications, 1996, pp. 289-293.

[30] ISO/IEC/IEEE 29119-2:2013 Software and Systems Engineering -
Software Testing – Part 2: Test processes. August 2013.

[31] MI. Kellner, RJ. Madachy, and DM. Raffo, “Software Process
Modeling and Simulation: Why, What, How?,” Journal of Systems
and Software, April, 1999, Vol. 46, no. 2/3.

[32] R. Black, “Managing the testing process: practical tools and
techniques for managing hardware and software testing,” Wiley
Publishing, 2002.

[33] XJ Technologies. AnylogicTM. http://www.anylogic.com/ [retrieved:
May, 2014] .

[34] OpTek Systems, Inc. OptQuest®. http:// www.opttek.com/ [retrieved:
May, 2014].

[35] T. Koomen, L. van der Aalst, B. Broekman, and M. Vroon, “TMap
Next for result-driven testing,” UTN Publishers, 2007.

[36] D. Crespo and M. Ruiz, “Decision making support in CMMI process
areas using multiparadigm simulation modeling,” 2012 Winter
Simulation Conference (WSC 2012), 2012, pp. 1-12.

390

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

