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Abstract - Managing software development projects requires 

the coordination of different processes that may be performed 

by different teams, e.g., a development team and a separate 

testing team. This coordination aims at optimizing the trade-

off between cost, schedule and delivered quality. Simulation 

models are a powerful tool to explore what-if scenarios that 

help managers to achieve this trade-off and to fine-tune 

different project parameters. This paper presents a simulation 

model based on a multi-paradigm approach that connects 

development and testing processes. The testing process model 

is based on the process model described in the ISO/IEC/IEEE 

29119-2:2013 standard. The simulation model is built using 

two different methods: the discrete-event approach, to simulate 

the execution of the dynamic testing processes, and the agent-

based approach, to in-depth simulate defects life cycle. Results 

show how the simulation model is used to explore the evolution 

of a number of process metrics. Then, the simulation model is 

used to determine the resource distributions in order to 

optimize two relevant process metrics: the efficiency of the 

testing process and the average defect life. 

Keywords - software testing; multiparadigm simulation; test 

management; test process optimization. 

I.  INTRODUCTION  

This is a revised and augmented version of our previous 
work, which appeared in the Proceedings of the Seventh 
International Conference on Software Engineering Advances 
(ICSEA 2012) [1]. Software testing is concerned with 
planning, preparation and evaluation of software products 
and related work products to: a) determine that they satisfy 
specified requirements, b) demonstrate that they are fit for 
purpose and c) detect defects [2]. In general, testing can be 
viewed as a means of improving the quality of a given 
product and mitigating risks due to poor quality.  

Testing can be carried on using different approaches 
(e.g., scripted or exploratory), at different levels (e.g., unit, 
system, integration or acceptance), using different techniques 
and tools and with different degrees of independency 
(ranging from testing performed by the producer to third 
party testing). When testing entails the execution of the 
system under test, it is often referred to as dynamic testing. 

Testing exists in an organizational context and is carried on a 
given project or service. Therefore, the testing activities are 
tightly interrelated with the development ones, and both shall 
be planned, monitored and controlled. Problems of quality of 
the system under test or delays in the development hamper 
the testing process. Conversely, an inadequate or delayed 
testing endangers the development process. If not managed 
properly, both development and testing processes may 
jeopardize the goals of cost, schedule and quality of a 
project. 

Both development and testing can be described as 
processes and take advantage of the use of simulation models 
for helping project and/or test managers in daily tasks of 
planning, monitoring and control. 

Informally, a simulation model can be considered as an 
abstract view of a complex system comprised of a set of 
rules that tell how to obtain the next state of the system from 
the current state. Those rules can be of many different forms: 
differential equations, state charts, process flowcharts, 
schedules, etc. The outputs of the model are produced and 
observed as the model is running. 

There is much research on simulation models of the 
software development process [3]. However, there is lesser 
research on simulation models for the testing process, 
usually at the unit level. Furthermore, when testing is 
considered as part of a simulation model of the development 
process, it is often over simplified. The goal of this paper is 
to devise a multi-paradigm simulation model for the testing 
process to gain insights in how the testing process influences 
the goals of a given project. The simulation model can be 
used to simulate the testing process at the system level and to 
help in decision-making in the test managing processes. 

Contributions of this paper extend previous work [1] and 
include: 

1. A multi-paradigm simulation model of the dynamic 
testing processes, which combines a discrete-event 
model and agent-based model. 

2. The optimization of two key variables of the testing 
process: process efficiency and average defect life 

The main contribution of this work is a multi-paradigm 
simulation model of the dynamic testing processes that 

381

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



combines a discrete-event model and agent-based model. 
The model can be used to simulate the testing process at the 
system level and to help in decision-making in the test 
managing processes. 

The structure of the paper is as follows: Section II shows 
the works related to our proposal; Section III introduces the 
multi-layer process model proposed by the International 
Standards group upon which our simulation model is based; 
Section IV describes the simulation model; Section V shows 
two simulation optimization scenarios. Finally, our 
conclusions and further work are given in Section VI. 

II. RELATED WORK 

During the recent years a lot of research has been done in 
the field of software testing. These studies are mainly 
oriented to enhance and optimize the software testing process 
improving the results obtained after the development of 
software projects. Several techniques and methods have been 
used to reach this goal. Knowledge Management has been a 
recurrent tool due to its usefulness for revising software 
testing processes [4], learning from the errors committed in 
the past [5], collecting, analyzing and managing lessons 
learned [6] and improving the quality of software testing [7]. 

Sometimes, it is interesting to study the behavior of 
processes in order to detect weaknesses so that improvement 
can be effectively performed. Process modeling techniques 
have been widely used to address these issues. Models can 
be used to estimate process outcomes such us the number of 
defects remaining and the time required to detect defects 
either for a subsequent optimization [8], to estimate effort, 
cost and schedule [9] or to perform cost control management 
[10]. Modeling also plays an important role in decision-
making support. Reference [11] presents a goal-driven 
measurement model for software testing process so that 
software organizations can deduce the appropriate 
measurement process according to the process goals they 
determine. On the other hand, reference [12] provides a 
quantitative defect management model that can be improved 
to be practically useful for determining which activities need 
to be addressed to improve the degree of early and cost-
effective software fault detection with assured confidence. 
Finally, reference [13] proposes a competence model that 
could be applied to train staff in software testing activities 
and to recruit the appropriate profiles improving their 
performance. 

Some authors have developed their own frameworks to 
study software test processes. Reference [14] describes a 
conceptual framework to specify and explicitly evaluate test 
process quality aspects and [15] proposes a software testing 
improvement framework based on the Plan–Do–Check–Act 
(PDCA) method. 

Some other techniques employed for software testing 
process improvement include Bayesian networks for process 
evaluation [16], Markov decision models to optimize 
software testing by minimizing the expected cost with given 
software parameters of concern [17], multi-objective feature 
prioritization for testing planning and controlling [18], 
system dynamics to formulate and quantify the software 

testing processes [19] and even the usage of software 
engineering standards to improve the testing process [20]. 

Although the above mentioned techniques are extremely 
useful to improve the software testing processes, sometimes 
it is necessary to look into the processes with more detail. In 
order to effectively optimize a process the current behavior 
must be examined. Furthermore, all the possible variations 
suffered by the process due to the different scenarios that 
may occur, should be taken into account in order to analyze 
the results derived from one situation or another. Software 
process simulation provides the means to accomplish this 
goal in a cost effective way. 

The search string “simulation” AND “software testing 
process” AND “management” and others alike used in 
several digital libraries and citation databases of peer-
reviewed literature retrieves only a few number of papers. In 
many of the papers retrieved, the term “simulation” is 
frequently used to describe experiences in which simulation 
is used as a tool for the testing process. In other works, the 
term “simulation” makes reference to a set of formulas that 
are solved by analytical means.   

As an example of the first usage, in their collection of 
works, Lazić, Mastorakis and Velasěvić [21] to [25] aim at 
raising awareness about the usefulness and importance of 
computer-based simulation in support of software testing. In 
their works, simulation is used to ease the design and 
execution of the testing processes of real military and 
defense systems. 

Some analytical models of the software testing process 
can also be found. Zhang, Zhou, and Luo [26] propose a 
reward-Markov-chain-based quantitative model for 
sequential iterative processes and show how to use it to 
estimate the time for the software testing process. Similarly 
to this, Lizhi, Weiqin, Zhou and Zhang [27] propose an 
approach to model the testing process based on hierarchical 
time colored Petri Nets (HTCPN). However, while Petri-nets 
are good at modeling resources and parallel processing, 
simulation modeling models system components and their 
interactions, making it possible to conduct arbitrary time-
related performance analysis, something which is not easy 
using Petri-nets.  

Consequently, to overcome the problems of analytical 
methods, simulation modeling can be applied in the context 
of testing processes mainly because: a) it enables to find 
solutions when analytical methods fail; b) it is a more 
straightforward process than analytical modeling since the 
structure of the simulation model naturally mimics the 
structure of the real system, and c) it is scalable, flexible, and 
easy to communicate since the modeling tools use visual 
languages. 

However, despite these advantages there is a small 
number of contributions of simulation modeling in the field 
of software testing processes. Saurabh [28] presents a 
System Dynamics (SD) model of software development with 
a special focus on the unit test phase. This work is partially 
based on Collofello’s et al. work about modeling the 
software testing process under the SD approach [29]. 

The motivation of these works is closely related to ours, 
but the models are built under a different simulation 
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approach. System Dynamics approach operates at high 
abstraction level and is mostly used for strategic modeling. 
Hence, since a simulation model can only be used at the 
abstraction level in which it has been created, such a highly 
abstract model is not adequate for the operational and tactical 
levels in which decision-making regarding the testing 
processes takes place. In our case, since our main interest is 
to simulate the testing processes the discrete event (DE) 
modeling, with the underlying process-centric approach, has 
been selected. Furthermore, we have also selected the agent-
based (AB) approach to be used together with the discrete-
event one resulting in a multi-paradigm simulation model.  

Generally, each simulation approach (SD, DE, AB) 
provides a set of different abstractions. If the system being 
modeled is complex enough, and software development is, 
then it is preferable to integrate different simulation methods 
than using one single approach, since the final model will 
represent the real system more realistically. 

When we used the search string (“multi-paradigm” OR 
“multi-method”) AND “simulation” AND “software testing 
process” and others alike in the digital libraries and citation 
databases, no single work was retrieved. Therefore, given the 
results of the systematic literature review performed, not 
fully documented here for space reasons, to the best of our 
knowledge our proposal is the first one that aims at using 
multi-paradigm simulation modeling to improve decision 
making in software testing management. 

III. MULTI-LAYER TEST PROCESS MODEL 

Testing processes include a variety of management and 
technical activities that are organized in a process model in 
part 2 of the ISO standard for software testing: 
ISO/IEC/IEEE 29119-2:2013 [30]. The purpose of this 
international standard is to define a generic process model 
for software testing that can be used by any organization 
when performing any form of software testing. Testing is 
structured in a multi-layer process model that defines the 
software testing processes at (1) the organizational level, (2) 
test management level and (3) dynamic test level. More 
specifically, the dynamic test level describes how dynamic 
testing is carried out within a particular phase of testing (e.g., 
unit, integration, system and acceptance) or type of testing 
(e.g., performance testing, security testing and usability 
testing). It is composed of four processes that are depicted in 
Figure 1. 

 Test Design & Implementation Process: Describes 
how test cases and test procedures are derived; these 
are normally documented in a test specification, but 
may be immediately executed. 

 Test Environment Set-Up & Maintenance Process: 
Describes how the environment in which tests are 
executed is established and maintained. 

 Test Execution Process: Describes how the test 
procedures generated as a result of the Test Design 
& Implementation Process are run on the test 
environment established by the Test Environment 
Set-Up & Maintenance Process.  

 Test Incident Reporting Process describes how the 
reporting of test incidents is managed.  

 
Figure 1. Dynamic Test Processes in ISO/IEC/IEEE 29119-2:2013. 

The Test Execution Process is run after the tests have 
been specified and the environment has been established, 
which leads to a strong dependency on the previous 
processes. This process may need to be performed a number 
of times as all the available test procedures may not be 
executed in a single iteration. Additionally, this process must 
be reentered as a consequence of detected failures after the 
underlying defects have been corrected (retesting). 

Besides, the Test Design & Implementation Process, and 
the Test Environment Set-Up & Maintenance Process may 
be reentered whether additional tests are needed after 
execution or some problems are detected in the testing 
environment. The Test Incident Reporting Process may be 
also reentered as a result of: a) the identification of test 
failures, b) something unusual or unexpected occurred 
during test execution, or c) retest activities. 

IV. MODEL DESCRIPTION 

The simulation model developed is described below in 
terms of its scope, result variables, process abstraction and 
input parameters. The description is organized following 
Kellner’s proposal for describing simulation models [31]. 

A. Model Proposal and Scope 

To determine a model proposal, the key questions that 
the model needs to address need to be identified. Then, 
model scope is set so that it is large enough to fully solve the 
key questions posed. In the context of this work, model 
proposal is to help in decision-making in software testing 
process management. Accordingly, the scope for this model 
will be a portion of the life cycle, with a short time span (i.e., 
the months in which the testing activities take place), one 
software product and two teams (i.e., development and 
testing teams) organizational breadth.  

B. Result Variables 

The result variables are the information elements needed 
to answer the key questions regarding the purpose of the 
model. In our model, several process metrics have been 
identified to help us understand the simulated process 
capability. According to this, process metrics have been 
classified into effectiveness and efficiency process metrics. 

Effectiveness process metrics measure the extent to 
which a process produces a desired result [32]. 

The following result variables fall into this category: 
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 Defect Closure Period (DCP). The longer a reported 
defect takes to go from discovery to resolution, the 
higher the project risk associated with the underlying 
defect. Unresolved defects may: a) delay testing, b) 
make development less efficient or c) prevent the 
delivery of the software to the final customers. DCP 
measures the difference between the time required to 
repair a defect and the time required to confirm the 
defect is repaired. 

 Defect Open Count. This measure tracks the number 
of times a defect report is opened. When the report is 
first submitted this count is set to one. This count is 
incremented each time the same defect report is 
reopened due to a failure in the confirmation test 
(retest). 

 FixBacklog: Shows the percentage of defects closed 
per all the defects opened in a given time. 

 Average Defect Life:  Shows the average elapsed 
time from the moment a defect is found until it is 
successfully closed. 

 Total Planned Test: The metric shows the evolution 
of the number of planned test cases along the testing 
project. 

 Total Executed Tests: Shows the evolution of actual 
test cases that are executed along the project. 

 Total Passed Tests: Shows the actual test cases that 
are executed and successfully passed (e.g., did not 
find any defects). 

 Total Failed Tests: Shows the actual test cases that 
are executed and failed (e.g., did find defects). 

Efficiency process metrics measure the extent to which a 
process produces its desired results in a not wasteful way 
and, ideally, minimizing the resources used [32]. 

Result variables in this category follow: 

 Actual Test Time: Shows the total length of the 
testing process.  

 Total Team Size and number of people per activity: 
Shows the total size of the testing team and the 
number of resources allocated to each activity of the 
process, respectively. 

 Average Defect Cost: Shows the ratio between the 
total number of defects closed and the number of 
working hours invested. 

 Process Efficiency: Shows the ratio of the number of 
defects closed per the number of defects found. 

C. Process Abstraction 

When developing a simulation model, the key elements 
of the process, their inter-relationships, and behavior need to 
be identified. The focus should be on those aspects of the 
process that are especially relevant to the purpose of the 
model, and believed to affect the result variables [31].  

One of the decisions that need to be made in this phase is 
the simulation paradigm that it is going to be used to build 
the model. A simulation paradigm is a general framework for 
mapping a real world system to its model. The choice of 
paradigm should be based on the system being modeled and 
the purpose of the modeling. When modeling complex 

systems, it is frequent that different parts of the system are 
most naturally modeled using different paradigms. In this 
case, a multi-paradigm model is built. 

In order to build our model, the multi-paradigm approach 
has been selected. First, to model and simulate the dynamic 
testing processes, the paradigm selected has been the 
discrete-event or process centric approach. Under this 
approach, the system being modeled is considered as a 
process, i.e., a sequence of operations being performed 
across entities, and this makes this paradigm the most natural 
and adequate to build process simulation models. The model 
is specified graphically as a process flowchart, where blocks 
represent the operations to be done along the process.  

Although a simulation model following this approach 
allows us to analyze the evolution of the testing activities, 
the resource consumption and the number of defects 
detected, it would be interesting to add an extra functionality 
to the simulation model allowing the user to track the life of 
every defect since it is found until it is closed. It is important 
to notice that to achieve this aim the level of abstraction used 
needs to be changed from process-centric to individual-
centric. Agent-based modeling is a simulation approach that 
allows the modeler to build a model under a bottom-up 
perspective, that is, describing the behavior of individuals 
(e.g., agents) and, if needed, their interactions. Frequently, 
the behavior of an agent is formalized by means of a state 
chart-like diagram. Therefore, this approach seems to be 
most natural and adequate to describe the lifecycle of defects 
found during the testing phase. As a consequence, a multi-
paradigm simulation model was our choice for our modeling 
problem. 

In summary, the model consists of two connected 
models. A description of each of these models follows: 

1) Discrete event model (DE).  
The discrete event model represents the Dynamic Test 

Processes in ISO/IEC/IEEE 29119-2:2013 [30], previously 
described in Section III. 

The development process produces two main artifacts 
that are the input for the testing processes:  

1. The test basis, usually the software specification, 
which is modeled as a set of features. 

2. The executable code that is to be exercised by the 
tests. 

 The availability of the test basis enables the execution of 
the Test Design & Implementation Process, which leads to a 
number of test cases. However, test cases are not ready to be 
executed until the test environment has been established 
(Test Design & Implementation Process) and the executable 
code released. Once the code is installed in the testing 
environment, the Test Execution Process can begin. Failed 
test cases are the input for the Test Incident Reporting 
Process and the results communicated to the development 
processes through the Agent-based model. Test execution 
reenters when previously detected defects have been fixed by 
development. 

2) Agent-based model (AB).  
During the software development process, each defect 

has a lifecycle in which it reaches different states. In order to 
simulate the different states that a defect reaches the agent-
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based paradigm has been used. Under this approach, we 
formalize the defects found as agents and their behavior as a 
state chart that reflects the different states and transitions of 
defect lifecycle. A description of each state in which the 
agents can be follows: 

 New: An agent reaches this state when a defect is 
reported by the tester for the first time and is yet to 
be approved. 

 Analyzed: Once a defect is reported, the manager has 
to analyze it in order to approve it as a genuine 
defect, reject or defer it. The agent remains in this 
state during the time in which this activity takes 
place. When the activity is done, the information for 
deciding what to do with the defect is available, and 
so, the agent moves to the next state, which can be 
one of the following: a) Rejected: If a defect is found 
to be invalid, b) Deferred: If a defect is decided to be 
fixed in upcoming releases, and c) Assigned: If a 
defect is found to be valid and assigned to a member 
of the development team to fix it. 

 Fixed:  An agent moves to this state once the 
developer communicates the defect is fixed. The 
defect goes to the testing team for validation by 
injecting a task in the DE model to indicate that the 
test case that found this defect has to be executed 
again (retest). The result of this execution will 
determine the next state of the agent. 

 Closed. If the tester finds that the defect is indeed 
fixed and is no more a cause of concern, the agent 
moves to the state Closed. Otherwise, if the defect is 
not fixed or partially fixed, the agent will go again to 
the state Assigned in which the work of a developer 
working on its fixing will be simulated again. 

D. Input Parameters 

The input parameters to include in the model largely 
depend upon the result variables desired and the process 
abstractions identified. Input parameters allow setting up 
different scenarios for simulation. The input parameters of 
the simulation model are the following: 

 Software size: Size of the software product under 
development. 

 FPA per Feature: Adjusted Functional Points per 
feature. 

 Number of Test Cases per Feature: Number of test 
cases that need to be designed and executed per 
feature.  

 Initial number of tasks in Environment Setup. Initial 
number of tasks that need to be done for the 
common and global environment setup. 

 Estimated Time for Environment Setup. Time 
estimated to develop each environment setup task. 

 Environment Setup Resources. Number of people 
allocated to the Environment Setup processes. 

 Estimated Time for Test Design and 
Implementation. Time estimated to develop each 
task of the Test Design and Implementation 
processes. 

 Test Design and Implementation Resources. Number 
of people allocated to the Test Design and 
Implementation process. 

 Estimated Time for Test Execution. Time estimated 
to develop each task of the Test Execution processes. 

 Test Execution Resources. Number of people 
allocated to the Test Execution processes. 

 Estimated Time for Test Incident Reporting. Time 
estimated to develop each task of the Test Incident 
Reporting processes.  

 Test Incident Reporting Resources. Number of 
people allocated to the Test Incident Reporting 
Processes. 

 Estimated time to fix a defect. Time estimated to a 
fix a defect by a developer. 

 Code released for Test Execution.  Indicates when 
the code is released for testing. This value is 
provided as a percentage of delay measured 
regarding the initial estimated time for the testing 
project. 

 Probability of finding a defect per Test Case 
Execution. Probability that a Test Case finds a defect 
when the test case is executed the first time. 

 Probability of finding a defect per Test Case in 
Retest Execution. Probability that a Test Case finds a 
defect when the defect has been reported as fixed. 

In order to achieve more realistic results, the model 
accepts a triangular distribution for most of the above input 
parameters. 

V. SIMULATION OPTIMIZATION 

Even though simulation runs are useful to visualize the 
effect of different values of the input parameters in the 
process performance, that is, to execute what-if scenarios in 
managerial decision-making, a key benefit can be obtained 
when we use together simulation and metaheuristic 
optimization algorithms in a process called simulation 
optimization. In this case, it is possible to obtain which 
values need to take the input parameters in order to 
maximize or   minimize an output variable. 

This section presents two optimization scenarios 
regarding the following exploratory questions: 

 RQ1: Is it possible to maximize the efficiency of the 
test process by controlling the moment in which the 
executable code is available for testing? The 
optimization will determine the distribution of the 
human resources that maximizes the Process 
Efficiency. 

 RQ2: Is it possible to minimize the time life span of 
a defect? (time from detection to closing). The 
optimization will determine the distribution of the 
human resources that minimizes the Average Defect 
Life. 

The model implementation and the simulation runs have 
been performed using Anylogic

TM
 software [33] with the 

Enterprise Library. The model logic is written in Java. 
Optimizations have been carried on using the optimizer 
OptQuest

®
 [34] built-in Anylogic

TM
. 
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The first step will be to configure a base scenario. Then 
optimizations will be determined starting from this scenario. 

A. Base Scenario Setup 

In this scenario, the base simulation is run to determine 
the values of the result variables and analyze the results of 
the process. In order to obtain a set of reasonable parameters, 
we have estimated the costs of the different activities using a 
set of ratios observed in average risk profiles [35]. We 
consider functional testing for a system test phase in a 
project with waterfall development, experienced builders and 
a structured test approach driven by risk: 

 Development process ratios: Ratios of functional 
design, realization and functional test are 1:2:1.  

 Test process ratios: the ratios of test design & 
implementation, execution, reporting and 
environment set-up are 50:40:5:5, respectively.  

The values of the input parameters in this scenario are 
displayed in Table I.  

B. Base Scenario Run 

 Once the input parameters of the model have been set to 
the values shown in Table I, the model is ready to simulate 
the base scenario. The number of test cases in each state is 
depicted in Figure 2, which shows that initially 160 test cases 
were planned for the initial features. At the end of the 
simulation the total of fulfilled tests is 511 with 416 passed 
tests (81.41%) and 95 failed tests (18.59%). 

Figure 3 depicts the number of defects in each state. At 
the end of the simulation, 4 of them were rejected and 3 of 
them deferred; 75 defects were closed and 9 reopened. The 
Process Efficiency reached with this setting is 91.0%, which 
is reasonable in practice, showing the consistency of the 
model when using the above parameters. 

Figure 4 and Figure 6 display the time evolution of the 
number of test cases in each state and the number of defects 
in each state until the end of simulation, respectively. These 
figures are included later in the article to facilitate the 

comparison against the optimization runs. The increasing of 
the number of test cases in each states (Figure 4) is fairly 
linear from the moment in which testing begins. The number 
of defects in each state (Figure 6) follows a different trend, 
as there is a significant delay from detection of failures to 
their closing. This is related to the Average Defect Life, 
which will be optimized later. 

Figure 12 displays the time evolution of the Process 
Efficiency, which has been defined before as the ratio 
between the number of closed defects and the number of 
defects found. At the beginning of the simulation the number 
of defects found is zero (because test cases are still in 
preparation), so that the simulator returns 100%. Just after 
the first test case is available, the efficiency goes to zero as 
there are not closed defects. After the first defect has been 
closed, efficiency increases up and grows towards its final 
value (91.0%). 

C. Optimization of the Process Efficiency 

To answer RQ1, we ran an optimization experiment to 
determine whether it is possible to improve the efficiency of 
the test process by controlling the moment in which the 
executable code is available for testing. The optimization 
will determine the distribution of the human resources that 
maximizes test efficiency when the code is released for 
testing in a range that varies from 5% to 50% from the 
moment the testing process begin [1]. Table II displays the 
input values for the control parameters of the experiment, the 
constraints imposed and the results obtained in the optimized 
process compared with the base case.  

The results of the optimization experiment show that, 
under the constraints imposed, it is possible to achieve 97% 
of efficiency in the process allocating 7 people to the process 
and having a maximum delay of the code released for testing 
of 27% of the initial estimated time. This will result into a 
process that is 97% efficient in closing defects but finishes 
one month later than the base scenario.  

TABLE I.  BASE SCENARIO CONFIGURATION 

Input parameter Value 

Software size 800 FPA 

FPA per Feature 5 

Number of Test Case per Feature (0.5, 2, 4) 

Initial number of tasks in Environment Setup 5 tasks 

Estimated Time for Environment Setup (10, 14.4, 20) hours 

Environment Setup Resources 1 person 

Estimated Time for Test Design and 

Implementation 

(3, 4.5, 6) hours 

Test Design and Implementation Resources 4 people 

Estimated Time for Test Execution (1.5, 3.2, 4.5) hours 

Test Execution Resources 4 people 

Estimated Time for Test Incident Reporting (1.5, 3, 4.5) hours 

Test Incident Reporting Resources 1 person 

Estimated time to Fix a defect (3, 4.5, 6) hours 

Code released for Test Execution 15% 

Probability of finding a defect per Test Case 

Execution 

(5%, 15%, 25%) 

Probability of finding a defect per Test Case in 
ReTest Execution  

(10%, 20%, 30%) 

 
Figure 2.  Number of  test cases in each state at the end of the simulation. 

 

Figure 3.  Number of defects in each state at the end of the simulation. 
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The conclusion drawn from this particular experiment 
with regard to the base scenario is that if the project is 
adequately scheduled, it is possible to reduce the total 
number of test resources as well as increase the process 
efficiency.  

D. Optimization of the Average Defect Life 

To answer RQ2 we run an optimization experiment to 
determine whether it is possible to improve the time span 
between fault detection and closing by controlling the 
moment in which the executable code is available for testing 
(in an range that varies from 5% to 50% as in previous 
subsection). In this case, the optimization will minimize the 
Average Defect Life. Table III displays the input values for 
the control parameters of the experiment, the constraints 
imposed and the results obtained in the optimized process 
compared with the base case. 

The results of the optimization experiment show that 
under the constraints imposed, it is possible to reduce by 
more than a half (down to 13.91%) the Average Defect Life 
by allocating the same amount of people in a different way to 
the process and having a maximum delay of the code 
released for testing of 20% of the initial estimated time.  

As in the previous optimization, this case also requires a 
team size of 10 people allocated to the testing tasks. 
However, the optimization brings new light regarding the 
allocation of people to the tasks resulting in a considerable 
advantage regarding the average defect life.  

Now, a comparison on trends of the main variables of the 
process will be provided. Figure 4 and Figure 5 display the 
time evolution of the number of test cases in each state for 
the base and optimized scenarios, respectively. Figure 6 and 
Figure 7 display the time evolution of the number of defects 

in each state until the end of simulation for the base and 
optimized scenarios, respectively. In Figure 7, it can be seen 
that there is a shorter delay between the moment in which 
failures are detected and their closing, at the expenses of a 
larger test time. 

Figure 8 and Figure 9 display the values of the Average 
Defect Life (base and optimized scenario, respectively). In 
the optimized scenario, the variable starts growing earlier 
than in the base scenario, but with a lower maximum value. 
Just after reaching the maximum begins a continuous 
decrease until its optimum value (13.9 working hours) is 
achieved, a much lower valued than the corresponding value 
for the base scenario (127.4 working hours). The Average 
Defect Cost (ratio between number of defects closed and 
total time spent) is displayed in Figure 10 and Figure 11, 
showing similar trends and final values of 6.2 working hours 
(base scenario) and 5.6 hours (optimized scenario). 

To finish, a comparison of the Process Efficiency is 
provided in Figure 12 and Figure 13. Process Efficiency at 
the end (89.0%) is marginally lower than in the base scenario 
(90.0%), since this optimization is intended to minimize the 
average defect life, but it begins growing at earlier stages of 
the testing project. 

Other simulations can help find the best input values for 
project schedule, resource allocation and quality objective 
from among all that lead to the optimization of the key 
process outputs. Moreover, the results of optimizations 
presented in this paper have been performed separately, but 
this makes room for future explorations in multi-objective 
optimizations. For example, in order to balance the 
maximization of variables like Process Efficiency as well as 
the minimization of variables like Average Defect Life. 

TABLE II.  OPTIMIZATION  OF THE PROCESS EFFICIENCY 

COMPARED WITH BASE SCENARIO 

Input parameter Control 

Input 

 

Result  

(Base 

scenario) 

Result  

(Optim. 

scenario) 

Initial number of tasks in 

Environment Setup 

3-5 tasks 5 5 

Environment Setup Resources 1-4 people 1 1 

Test Design and 
Implementation Resources 

1-4 people 4 2 

Test Execution Resources 1-4 people 4 3 

Test Incident Reporting 

Resources 

1-4 people 1 1 

Code released  for Test 

Execution 

5% - 50% 15% 27% 

Constraints Value 

Testing Team Size <= 7 people 

Maximum Testing Time 

Overrun 

<= 1 month 

Process Efficiency obtained (percent) 90% 97% 

TABLE III.  OPTIMIZATION  OF THE AVERAGE DEFECT LIFE 

COMPARED WITH BASE SCENARIO 

Input parameter Control 

Input 

 

Result  

(Base 

scenario) 

Result  

(Optim. 

scenario) 

Initial number of tasks in 
Environment Setup 

3-5 tasks 5 5 

Environment Setup Resources 1-4 people 1 1 

Test Design and 

Implementation Resources 

1-4 people 4 2 

Test Execution Resources 1-4 people 4 4 

Test Incident Reporting 

Resources 

1-4 people 1 3 

Code released  for Test 

Execution 

5% - 50% 15% 20% 

Constraints Value 

Testing Team Size <= 10 people 

Maximum Testing Time 
Overrun 

<= 1 month 

Average Defect Life (working hours) 28.31 13.91 
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Figure 4.  Time evolution of the number of test cases in each state (base scenario). 

 

 
Figure 5.  Time evolution of the number of test cases in each state (optimized scenario). 

 

 

 
Figure 6.  Time evolution of the number of defects in each state (base scenario). 

 

 

 
Figure 7.  Time evolution of the number of defects in each state (optimized scenario). 
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VI. CONCLUSION AND FURTHER WORK 

This paper presented a simulation model for the dynamic 
testing processes that allows a seamless integration between 
the testing and development processes. The model is devised 
as a multi-paradigm model composed by a discrete event 
simulation model, to simulate the execution of the dynamic 
test processes, and an agent-based simulation model, to in-
depth simulate the defects life cycle. The model has been 
first used to simulate a base scenario. The results of the 
simulation runs were then used to design two simulation 

optimization scenarios. By merging simulation and 
optimization it is possible to use the model to find the best 
testing team configuration so that key process metrics are 
optimized.   Results show that the simulation model can be 
effectively used to optimize different process metrics (Test 
Process Efficiency and Average Defect Life) and then help 
managers to achieve a trade-off between cost, schedule and 
quality. 

This work is a first step in the use of multi-paradigm 
simulation models for testing management. Further work 
will include, although not limited to, the consideration of 
agent-based models to simulate parts of the dynamic test 
processes, the integration into a more complex project 
development simulation model [36], multi-objective 
optimization and experimentation in different projects using 
different lifecycle models and including different test levels 
of testing. After calibrating and validating the model with 
historical data from the industry, it will be also possible to 
exploit it as an operating tool for decision-making in the 
industrial domain. 
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Figure 8.  Time evolution of average defect life (base scenario). 

 

 
Figure 9.  Time evolution of the average defect life (optimized scenario). 

 

 
Figure 10.  Time evolution of the average defect cost (base scenario). 

 

 
Figure 11. Time evolution of the average defect cost (optimized scenario). 

 
Figure 12.  Time evolution of the process efficiency (base scenario). 

 

 
Figure 13.  Time evolution of the average process efficiency (optimized 

scenario). 
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