
This paper is a post-print paper accepted in “International Conference on Future Internet

of Things and Cloud (FiCloud), 2014“

The final version of this paper is available through IEEE Xplore in the next link:

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6984223

Moran, J.; De La Riva, C.; Tuya, J., "MRTree: Functional Testing Based on

MapReduce's Execution Behaviour," in Future Internet of Things and Cloud (FiCloud),

2014 International Conference on , vol., no., pp.379-384, 27-29 Aug. 2014

doi: 10.1109/FiCloud.2014.67

IEEE copyright notice. © 2014 IEEE. Personal use of this material is permitted.

Permission from IEEE must be obtained for all other uses, in any current or future

media, including reprinting/republishing this material for advertising or promotional

purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6984223

MRTree: Functional Testing based on

MapReduce´s execution behaviour

Jesús Morán, Claudio de la Riva, Javier Tuya

Department of Computing

University of Oviedo

Gijón, Spain

moranjesus@lsi.uniovi.es, claudio@uniovi.es, tuya@uniovi.es

Abstract—MapReduce is a paradigm that allows parallel

processing of large amounts of data. MapReduce programs

combined with their underlying run-time framework have

distinctive features that are prone to include unexpected

behaviors not present in other types of programs. This paper

describes an approach to functional testing of MapReduce

programs based on a hierarchical classification of a number of

potential faults that may occur in MapReduce programs over

Hadoop. This classification, called MRTree, is then used to derive

test cases able to detect the faults represented in MRTree and

illustrated with some examples.

Keywords— Testing, MapReduce, Big Data, Hadoop

I. INTRODUCTION

The MapReduce programming paradigm [1] describes a
parallel programming model based on "divide and conquer".
One of its scopes is Big Data, where massive amounts of
structured and unstructured information are handled.

A MapReduce program is usually implemented on a
framework that deals with the management of parallelization
and network fault management, among others tasks. These
frameworks have a particular way of executing programs: for
example, they split the program input into several parts,
sending them to different computers, schedule which
computers performed the first analysis, etc. Due to the new
paradigm, the constraints imposed by the framework and the
possible failures that can occur in any program, we have new
specific potential failures when combining MapReduce with
the framework.

The main contributions of this paper are (1) the
identification a number of specific faults that may be
introduced into a MapReduce program, and (2) the approach
for functional testing of these programs in order to reveal the
failures produced by these faults. This is illustrated using two
different examples.

The principles of the MapReduce paradigm and the
execution flow that the program follows are summarized in
Section II. Subsequently, Section III contains an overview of
issues that influence the MapReduce level and a state of the art.
Section IV identifies functional faults that may occur in a
MapReduce program. For some of the faults, in Section V, the
tests are derived by introducing a program and test criteria.

II. PRINCIPLES OF MAPREDUCE

The MapReduce programs start with a problem which is
divided into several parallel sub-problems to solve. The
programming model consists mainly of a Map function and a
Reduce function whose inputs and outputs are pairs <key,
value>. The keys and values can be composed of several
elements, which in this article we will be called attributes

The Map function emits zero or more pairs <key, value>,
where each unique key represents a sub-problem to be solved,
and the value represents the information needed to solve it. The
Reduce function receives pairs <key, list[values]> obtained
from processing different Map functions, where key represents
the sub-problem identifier and the list represents the
information needed to solve it.

First, several Map functions are executed in parallel, each
of which analyzes a different part of the program input. Then
several Reduce functions are executed, also in parallel. The
tasks of management of network problems, efficient use of
resources and others, are performed by a framework, usually
Hadoop [2].

In addition to the Map and Reduce functions, there may
exist other functions, such as the Combine function, whose
goal is to decrease the amount of information that the Reduce
function receives. The Combine function is located between the
Map output and the Reduce input. This function receives pairs
of <key, list[subset values]> as input, i.e., a key that identifies a
sub-problem and some information which that sub-problem
needs. The Combine function pre-processes information and
emits <key, value> pairs that the Reduce function uses to
continue the execution cycle. Hadoop does not guarantee
whether Combine will be executed, and if so, it is not known
with certainty how many pairs <key, value> it receives as
input [3].

For example, a program that obtains the maximum
temperature based on historical information from weather
stations, may implement the three functions described above:

 Map function: Receives <year, temperature> pairs,
performs validations and emits them as pairs <year,
temperature>.

 Combine and Reduce functions: Receive <year,
list[temperatures]> pairs, obtain the maximum

temperature and emit pairs <year, maximum
temperature>.

An example of program execution in Hadoop is shown in
Fig. 1 for year 1990 with 1º, 3º and 10º; 1991 with 15º, and
1992 with 1º. The execution is performed on three computers,
two of them initially run the Map-Combine functions in
parallel. The total key space is divided into several disjoint
sets, which will be assigned to computers that will execute the
Reduce functions. Each pair <key, value> emitted by the Map-
Combine functions is sent to the computer to which that key is
assigned. Among others, the computer 3 has assigned keys
1990 and 1991, whereas the Computer 2 has assigned the key
1992. Finally, it runs each of the Reduce functions and the
program result is obtained.

 Other functions that interact with the program may exist
(Partitioner, Sort, etc.). In addition, a Hadoop program may be
composed of a concatenation of multiple Map-Reduce-
Combine functions. This paper consider programs that include
Map, Reduce and Combine without concatenations.

III. MAPREDUCE TESTING

Big Data programs testing is classified by Gudipati et al.
[4] into "Validation of Pre-Hadoop processing", "Validation of
Map Reduce Process", "Validation of Data Extract, and Load
into EDW (Enterprise Data Warehouse)", "Validation of
Reports", "Performance Testing", "Failover tests" and "Big
Data Test infrastructure design". Some of these types of testing
have been addressed previously in the literature and covered by
some tools. For example, unit testing can be performed with
MRUnit library [5] by setting the input and output that should
take in MapReduce functions.

The performance of a Hadoop program depends in part on
the configuration of both the program and the cluster [6]. To
test the performance of Hadoop, cluster benchmarks such as
MRBench [7] HiBench [8] or GridMix [9] may be used or also
monitoring tools to detect bottlenecks, slow computers, etc.
Testing of the environment setup is studied in Bigtop [10],
which is a project to test interoperability with other Hadoop
projects.

 In the "Validation of Map Reduce Process" category, Dorre
et al. [11] perform static checking of the data types of the pairs
<key, value> sent and received by the MapReduce functions.
Other approaches are based in symbolic execution. This
requires a framework that must be adapted to analyze different

code paths and some program requirements established by the
tester [12]. The approach of this paper is similar, but it
addresses the tests from the standpoint of identification of
potential functional faults, in order to derive repeatable tests
that may be designed at an early stage, before program
implementation.

IV. MRTREE: A CLASSIFICATION OF FAULTS IN

MAPREDUCE PROGRAMS

A potential failure is a possible discrepancy between the
program's desired output and the output produced. The fault
(defect) that causes the failure may be detected or masked if the
program has different behavior depending on run-time
conditions. In order to identify these potential failures, we
elaborate a hierarchical classification called MRTree
(MapReduce Tree).

MRTree represents a fault classification that allows us to
identify specific functional failures of programs developed
using the MapReduce paradigm and the underlying Hadoop
framework. The goal is to derive tests to detect each potential
fault represented by MRTree, as we will see in Section V.

MRTree is represented as a tree whose nodes represent
potential faults that are hierarchically organized. When a parent
node has several child nodes, it means that the failures of the
child nodes can occur simultaneously, unless it is represented
by an XOR connector. The leaf nodes, henceforth Fault-Nodes,
have an identifying name, and a label (in the edge) with
information about the function or functions associated with the
fault. Characters M, C and R are used for the Map, Combine
and Reduce functions, respectively. Thus labels add a third
dimension to the tree, as each Fault-Node can be applicable for
one or more of these functions. Fig. 2 depicts the MRTree that
will be described in this paper. Next, we describe the Fault-
Nodes of MRTree, organized by the top-level nodes of the tree.

A. Specific MapReduce problems

MapReduce's specific failures are those that can occur due
to the distinctive features of execution in Hadoop. The faults
may be caused by a wrong program design and/or wrong
implementation. Fault-Nodes in this category are described
below. In section V we illustrate how the tests are derived for
each of the Fault-Nodes.

URIO (Unexpected Results Input Order): In the production
environment it is difficult to guarantee the execution order of
each function Map (inputs are executed in parallel, some of
these have to be reprocessed because computers can fail, etc.).
The Combine or Reduce functions may produce unwanted
results if the input values are in an unexpected order. On other
hand, the development environment can consist of a single
computer that should not be fail during the test and does not
always execute inputs in parallel. This implies that in
development it is more likely to produce repeatable outputs
than production, which may affect the program's result.

For example, the Reduce function has a fault if it assumes
that input values will be ordered increasingly, but this order is
not preserved by the previous functions.

Fig. 1. Example of running MapReduce

<1990,10>
<1991,15>

<1992,1>

... ...

...

<1990,10>
<1991,15>
<1990,1>

<1990,[10,1]>
<1991,[15]>

<1990,10>
<1991,15>

<1990,3>
<1992,1>

<1990,[3]>
<1992,[1]>

<1990,3>
<1992,1>

<1992,[1]>

<1990,[10,3]>
<1991,[15]>

Computer 1

Computer 2

Computer 3

Computer 2

Map Combine Reduce

Map Combine Reduce

UC (Unneeded Combine): The Combine function takes a
pre-processed subset of the <key, value> pairs emitted by the
Map function. Whether Combine is executed or not, depends
on many factors: size of program entry, time to process inputs,
time to create <key, value> pairs in the Map function, etc. The
Combine function is sometimes executed with one subset of
information and at other times with a different one based on:
the size of a buffer that stores the pairs <key, value> emitted by
the Map function, the buffer threshold from which these pairs
<key, value> are extracted to continue the cycle of execution,
time spent emptying the buffer, etc. The different inputs of the
Combine function are a potential cause for failures.

Not all programs support the Combine function, but when
the Reduce function is commutative and associative [1] the
program allows a Combine function with the same
implementation as the Reduce function, and vice versa. Under
other conditions the program can accept a Combine function
having different implementation than the Reduce function,
which allows us to identify two different situations: UCSR
(Unneeded Combine Same Reduce) when the Combine
function has the same implementation as the Reduce function,
and UCDR (Unneeded Combine Different Reduce) when they
have different implementations.

CFNR (Combine Functionality Not in Reduce): The
Reduce function must be designed under the assumption that
the information that it receives may or may not have been pre-
processed by the Combine function If a <key, value> pair is not
processed by the Combine function, Reduce must properly
process that input. In other words, the pre-processing that the
Combine function performs must also be done by the Reduce
function. Although the Combine function may perform
correctly its pre-processing, this functionality may not be
properly implemented by the Reduce function, thus leading to
potential failures.

B. The <key,value> pairs may be inconsistent

During MapReduce execution, unexpected situations may
generate inconsistent <key, value> pairs. Inconsistency refers
to when each key and each value taken in isolation is computed
correctly on any Map, Combine or Reduce functions, but in the
program as a whole their values are not compatible. We

consider two types of inconsistencies. Later, Section V
describes how to derive tests for each Fault-Node.

VIT (Values Inconsistent Themselves): It happens when a
Combine or Reduce function receives more than one
inconsistent value for the same key, although independent pairs
<key, value> emitted by Map function are correct. For
example, if the input of Reduce function is a pair <year,
list[temperature information]> such that <1900, ["minimum
20", "maximum: 10"]>, there is an inconsistency because the
maximum temperature cannot be lower than the minimum. The
Map functions could have successfully emitted pairs <1900,"
minimum: 20"> and <1900, "maximum: 10">, but in the
Reduce function the pairs with key 1900 are inconsistent.

KIT (Key Value Inconsistent Themselves): It happens in
Map, Combine or Reduce functions when a key and its value
are correctly computed, but the whole <key, value> is
incoherent. For example, if the Map function reads from
multiple databases, and emits pairs <id_father, id_son> such as
<123, 123> there is an inconsistency. The Map function could
have obtained properly from databases that the key is 123 and
the value is 123, but really the pair <id_father, id_son> is
incoherent.

C. The emmited key and/or value may be incorrect

This fault happens when a Map, Combine or Reduce
function must emit a <key, value> pair, and it emits a different
and incorrect pair due to faulty implementation. Because these
faults are similar to those occurring in other paradigms they are
briefly described and illustrated by a simple example.

KSA (Key-value Single Attribute): A key and/or value that
should have the content of one input attribute is incorrectly
emitted. Consider a program that obtains the maximum
temperature by year. The Map function receives pairs <year,
temperature> and should emit them to the Reduce function to
compute the maximum temperature. If Map function does not
emit negative temperatures, it has a fault.

KST (Key-value Single Transforming): A key and/or value
that should be obtained after processing a single input attribute
is incorrectly emitted. Consider a program that receives as
input a year and the temperature in degrees Celsius and

Fig. 2. MRTree, a classification of faults in MapReduce

The emmited key and/or
value may be incorrect

The <key,value> pairs may
be inconsistent

Specific Mapreduce problems

It should depend on
single input attribute

It should be
obtained

transforming
the attribute

It should be
the own
atrribute

It should depend on
multiple input attributes

It should be
the union of

the
attributes

It should be
obtained on having

transformed the
attributes

The key and
value may be
inconsistent

among
themselves

The values of the
Reduce/Combine

may be inconsistent
among themselves

The Reduce/Combine
may be produce

unexpected results
depending on the order

of the input values

Unneeded
Combine

The Combine has
different code that

Reduce

The Combine has
the same code

that Reduce

/

M C R M C R M C R M C R

M C RC RC R

C C

R

The Combine
functionality isn´t

in the Reduce
function

URIO

UCDRUCSR

CFNR KITVIT

KSA KST KMU KMT

XOR

XORXOR
XOR

UC
KS KM

calculates the average temperature in degrees Fahrenheit. The
Map function receives pairs <year, temperature in Centigrade
degrees> and emits pairs <year, temperature in Fahrenheit
degrees>, then the Reduce function computes the average. In a
Map function a faulty transformation is made if negative
temperatures are computed incorrectly.

KMU (Key-value Multiple Union): A key and/or value that
should be the union of several input attributes is incorrectly
emitted. Consider a program that obtains the times that a
temperature is repeated in a year. The Map function receives
<year, temperature> and emits pairs <"yeartemperature", n>,
where n is the number of times that a temperature appears in a
year. Then the Reduce function aggregates all n values for each
“yeartemperature” key. One fault appears when the Map
function handles temperature and year as numbers, because if
we have the year 1992 with 1º and the year 0199 with 21º, the
Map function emits <19921, 1> and <19921, 1> respectively,
which will produce a failure.

KMT (Key-value Multiple Transforming): A key and/or
value that should be obtained after processing several input
attributes is incorrectly emitted. Consider a program that
calculates the average temperature of each year. The Reduce
function receives pairs <year, list[temperatures]> and emits
<year, average temperature>. Reduce function transforms list
[temperatures] in "average temperature", and a failure occurs if
it always returns the average in absolute value.

V. FUNCTIONAL TESTING WITH MRTREE

This section shows how to derive test cases in order to
detect the faults represented by MRTree in sub-section IV.

For each Fault-Node an example program is described. We
provide guidelines on how to derive test cases related to the
Fault-Node. Then we detail a possible fault that the program
could have and the failure obtained after executing the test
case. Finally we show how to execute the tests in order that
different executions be repeatable.

URIO: Consider a program under test that obtains for each
year the closest to zero negative temperature. The Map
function receives years and temperatures in decreasing order
and emits pairs <year, temperature>. The Reduce function
receives pairs <year, list[temperatures]> and must repeat all
temperatures returning for each year the closest to zero
negative temperature.

The goal is to test the behavior in different situations
determined by the order of the values at the input of Reduce
function. A test case with year 2000 and temperatures 20º, 13º,
0º, -2º and -9º, should produce -2º for the year 2000.

A possible fault could be present if the Reduce function
assumes that the values of temperatures arrive in descending
order. The code with this fault is the following:

public void reduce (int key, Iterator

 <int> values){

while (values.hasNext()){

temp = values.next();

if (temp < 0){

 emit(key, temp); break;
}

}

}

With this Reduce function, the negative temperature closest
to zero for the year 2000 is sometimes -2º (correct) and others -
9º (incorrect). If the development environment is running the
program without parallelism, the output will always be -2º.

To control the order of input values in the Reduce function,
a test environment will be used with a single computer
configured so that the input is implemented by the Map
function without parallelism, so that the tests could be rerun
with the same conditions.

UCSR: Consider a program under test that obtains for each
year the average temperature. The Map function receives years
and temperatures and emits pairs <year, temperature>. The
Reduce function receives pairs <year, list[temperatures]> and
returns the mean temperature of each year.

The goal is to test the behavior of the Combine function
when running through different sets of pairs <key, value>. For
the test case input, try to break the associativity between the
Combine and Reduce functions. Given a key K, two values are
emitted from Map to Combine and another two directly to
Combine. The associativity is broken if a different result occurs
when an input value from Combine and another from Reduce
are exchanged. This situation is illustrated in Fig. 3 (note that
values v2 and v3 have been exchanged).

The test case takes the years 1900 and 1901 as input, both
with temperatures 1º, 2º, 3º and 4º; and Combine function
receives as input <1900, [1º, 2º]> and <1901, [1º, 3º]>. The
expected output is that the years 1900 and 1901 should have
2.5º as average temperature.

The program has a fault because the Reduce and Combine
function, average function, is not associative, therefore the
Combine function should not implement the average
functionality. The output obtained is that the year 1900 has
2.83º as average temperature and 1901, 2.66º.

To run the tests we need an environment that allows us to
control what key-value pairs are pre-processed by the Combine
function before being sent to the Reduce function and what
key-value pairs go directly to the Reduce function, as shown in
Fig. 4.

Fig. 3. Breaking the associativity between Combine and Reduce functions

Combine
Map

Reduce
<K, v1> <K, v2>

<K, v3> <K, v4>

Combine
Map

Reduce
<K, v1> <K, v3>

<K, v2> <K, v4>

Different
results

Fig. 4. Breaking the associativity between the Combine and Reduce
functions in UCSR Fault-Node

Combine
Map

Reduce

<1900, 1º> <1900, 2º>
<1901, 1º> <1901, 3º>

<1900, 3º> <1900, 4º> <1901, 2º> <1901, 4º>

UCDR: Consider a program under test that computes
follow's asymmetric relations between Twitter contacts. Two
persons, for example Harry and Lily have an asymmetrical
relationship if Harry follows Lily but Lily doesn't follow Harry,
or vice versa. The Map function receives an identifier of a
person and obtains the follow's contacts, for example, it
receives Harry follows Lily, and emits pairs <Harry, "Follow:
Lily"> and <Lily, "Follower: Harry">. The Reduce function
receives pairs <Person, list[Follows and followers]>, i.e., gets
all the follows and all the followers of one person, so if a
person is both follow and follower there is no asymmetric
relationship; otherwise asymmetrical relationship exists. The
implementation of Reduce is the following:

public void reduce (String key, Iterator

 <String> values) {

List<String> relationship = new

ArrayList<String> (values);

String contact;

while (values.hasNext()){

contact = values.next();

if (isFollow (contact) &&

 !existFollower(contact,values)){

emit(key, extractName(contact));

emit(extractName(contact),key);
}

}

}

As in UCSR, the goal is to test the behavior when a
Combine function runs over different sets of pairs <key, value>
(Fig. 3). In this case Combine has a different implementation
than Reduce.

If the program includes a Combine function to detect a
symmetrical relationship, this kind of relationship is filtered
and will not be sent to the Reduce function. The program has a
fault because the Combine function can filter information that
is apparently irrelevant in the subset of pairs <key, value>
received, but will be necessary in the rest of the program pairs
<key, value>, as will be seen later. The implementation of the
Combine is the following:

public void combine (String key, Iterator

 <String> values){

List<String> relationship = new

ArrayList<String> (values);

String contact;

while (values.hasNext()){

contact = values.next();

if ((isFollow (contact) &&

 !existFollower (contact,values))

 || (isFollower (contact) &&

 !existFollow(contact,values))){

emit (key, contact);
}

}

}

The test includes three users: @1, @2 and @3, where @1
and @3 follow and are followed by @2. The input of test case
includes the user @1 three times, @3 another three times and
then @2, where we also have to run a Combine with <@1,
[“Follow: @2”, “Follow: @2”]> y <@3, [“Follow: @2”,
“Follower: @2”]> as input. The expected output is that there
are no asymmetric relationships between @1, @2 and @3.

The program causes a failure because the Combine function
filters the pairs <@3, "Follow: @2"> and <@3, "Followed:
@2"> and later this will be necessary for the correct execution

of the Reduce function. The output obtained is that there are no
asymmetrical relationship between @1 and @2, but there is an
asymmetrical relationship between @3 and @2.

 The environment that allows testing in a controlled way
should execute the test case as represented in Fig. 5.

CFNR: Consider a program under test that computes the
maximum temperature of each year and calculates the average
temperature of each 2-year range. Each range of 2 years is
identified by the first year of the range, so that the Map
function emits pairs <year, "year temperature"> and <year-1,
"year temperature">.

The goal is to test the behavior of the program when the
Combine function is not running and the <key, value> pairs are
emitted directly from the Map function to the Reduce function.
As in UCSR and in UCDR, for a K key emitted by Map
function, we have to find v1, v2, v3 and v4 that satisfy Fig. 3.

Consider that Combine function computes the maximum
temperature of each year, and the Reduce function, the average
temperature. The inputs of test case are the years 2000 and
2004, both with temperatures 0º, 3º, 2º and 1º; where the
Combine function will receive as input <2000 ["2000 3º",
"2000 2º"]> and <2004 ["2004 2º", "2004 1º"]>. The expected
output is that the ranges [1999-2000], [2000-2001], [2003-
2004] and [2004-2005] have 3º as the average temperature of
the maximum temperatures in each year for the range.

The program has a fault because the Reduce function does
not implement the functionality performed in the Combine
function. The Combine function calculates the maximum
temperature of its input, but since it does not receive all
temperatures for a year, the Combine function calculates a local
maximum, while the Reduce function expects for each year the
global maximum temperature. The output obtained is for the
ranges [1999-2000] and [2003-2004], 1.5º; for the range [2000-
2001], 1.33º; and for the range [2004-2005], 1.66º.

The environment that allows testing in a controlled way
should execute the test case as represented in Fig. 6.

Fig. 5. Breaking the associativity between the Combine and Reduce

functions in UCDR Fault-Node

Combine
Map

Reduce

<@1, “Follow: @2">
<@1, Follow: @2”>
<@3, “Follow: @2”>

<@3, “Followed: @2”>

<@1, “Follow: @2"> <@3, “Follow: @2”>
<@3, “Follow: @2”> <@1, “Followed: @2”>

In this figure, the pairs emmited by
Map function whose keys are @2,

are not shown

Fig. 6. Breaking the associativity between the Combine and Reduce

functions in CFNR Fault-Node

Combine
Map

Reduce

<2000, ”2000 3º”>
<2000, “2000 2º”>
<2004, “2004 2º”>
<2004, “2004 1º”>

<2000, “2000 0º”> <2000, “2000 1º”>
<2004, “2004 0º”> <2004, “2004 3º”>

In this figure, the pairs emmited by
Map function whose keys are 1999

or 2003, are not shown

VIT: Consider a program under test that obtains
relationships of friendship and enmity on Twitter. The Map
function receives two identifiers together with their tweets and
emits <id_1, "Friend: id_2"> or <id_1, "Enemy: id_2">.

The goal is to test an inconsistency in the input of
Combine/Reduce function. Inconsistency occurs when the input
Combine/Reduce function has a pair <key, list[values]> where
several values are incompatible with each other, and this
situation makes the program cause a failure. Therefore, in the
input for Combine/Reduce function a pair <K, [v1, v2]> is
found to cause a failure in the program because v1 and v2 are
inconsistent with each other.

For the above program, an inconsistency is that two persons
are both friends and enemies in the input of the Reduce
function. Separately, the Map function from one input
determines that they are friends, but from the other input
determines that they are enemies. The input of test case has a
tweet from Jack and Jessica who declare that are friends, and
another that indicates their enmity. The expected output is that
Jessica is neither friend nor enemy of Jack.

If the Reduce function only stores the friends and enemies
that it receives as input, then the program has a fault. With
tweets for several years, two persons could be friends in the
past and today enemies, so the Reduce function should consider
this situation. In the faulty program, the actual output is that
Jessica is friend and enemy of Jack.

KIT: Consider a program under test that obtains
relationships of enmity on the basis of a series of tweets. The
Map function receives tweets with several persons named, and
for each person it emits a pair <person, tweet>. The Reduce
function receives per each person all tweets where he/she is
mentioned, these tweets are analyzed and the function obtains
using all tweets which persons are enemies.

The goal is to test an inconsistency between a key and its
value, i.e., independently, the contents of the key and the value
are correctly calculated, but they cannot be together because
they generate incompatibilities with each other. Thus an
inconsistency between a key and its value is sought, i.e., both
have been calculated correctly, but together they produce a
special situation that the program does not expect and fails.

For the above program, an inconsistency is that the Reduce
function emits a person that is the enemy of him/herself. The
input of the test case is a tweet from William indicating self-
loathing. The expected output is that William has no enemies.

If the Reduce function emits enemies regardless who people
are, it has a fault. Reduce should not emit an enmity of a person
with herself. In the faulty program the actual output is that
William is enemy of himself.

VI. CONCLUSIONS

The MRTree classification allows us to identify potential
faults that can occur in MapReduce programs under Hadoop.
For the identified faults we provided a criterion for testing and
illustrated it with some example programs. A number of
examples have shown how tests could take into account this
sort of faults specific to MapReduce.

As future work we plan to apply MRTree in industrial
applications and formalize testing techniques applicable in
Fault-Nodes.

ACKNOWLEDGMENT

This work has been performed under the research project
TIN2013-46928-C3-1-R, funded by the Spanish Ministry of
Economy and Competitiveness and ERDF Funds.

REFERENCES

[1] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. In proc. 6th USENIX Sympnosium on Operating Systems
Design and Implementation (OSDI), pages 137-149. USENIS, Dec.
2004.

[2] Open-source software for reliable, scalable, distributed computing
http://hadoop.apache.org/

[3] T. White. Hadoop: The definitive guide. O'Reilly, 2012.

[4] Mahesh Gudipati, Shanthi Rao, Naju D. Mohan and Naveen Kumar
Gajja. Big Data: Approach to Overcome Quality Challenges. In Big
data: Challenges and opportunities. Infosys Labs Briefings. Vol 11 NO 1
2013.

[5] Java library that helps developers unit test Apache Hadoop map reduce
jobs. http://mrunit.apache.org/.

[6] Shrinivas B. Joshi, Apache hadoop performance-tuning methodologies
and best practices, Proceedings of the 3rd ACM/SPEC International
Conference on Performance Engineering, April 22-25, 2012, Boston,
Massachusetts, USA.

[7] Kiyoung Kim, Kyungho Jeon, Hyuck Han, Shin G. Kim, Hyungsoo
Jung, and Heon Y. Yeom. Mrbench: A benchmark for mapreduce
framework. In ICPADS '08: Proceedings of the 2008 14th IEEE
International Conference on Parallel and Distributed Systems, pages 11-
18, Washington, DC, USA, 2008. IEEE Computer Society.

[8] Shengsheng Huang, Jie Huang, Yan Liu, Lan Yi and Jinquan Da et al.
HiBench: A Representative and Comprehensive Hadoop Benchmark
Suite.

[9] Benchmark for Hadoop clusters.
http://hadoop.apache.org/docs/stable1/gridmix.html

[10] Development of packaging and tests of the Apache Hadoop ecosystem.
http://bigtop.apache.org/

[11] J. Dorre, S. Apel, and C. Lengauer, “Static type checking of Hadoop
MapReduce programs,” in Proceedings of the second international
workshop on MapReduce and its applications. ACM New York,USA,
2011, pp. 17–24.

[12] Christoph Csallner, Leonidas Fegaras y Chengkai Li. New Ideas Track:
Testing MapReduce-Style Programs. Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on
Foundations of software engineering. Pages 504-507.

