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Abstract—MapReduce is a paradigm that allows parallel 

processing of large amounts of data. MapReduce programs 

combined with their underlying run-time framework have 

distinctive features that are prone to include unexpected 

behaviors not present in other types of programs. This paper 

describes an approach to functional testing of MapReduce 

programs based on a hierarchical classification of a number of 

potential faults that may occur in MapReduce programs over 

Hadoop. This classification, called MRTree, is then used to derive 

test cases able to detect the faults represented in MRTree and 

illustrated with some examples. 
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I. INTRODUCTION 

The MapReduce programming paradigm [1] describes a 
parallel programming model based on "divide and conquer". 
One of its scopes is Big Data, where massive amounts of 
structured and unstructured information are handled. 

A MapReduce program is usually implemented on a 
framework that deals with the management of parallelization 
and network fault management, among others tasks. These 
frameworks have a particular way of executing programs: for 
example, they split the program input into several parts, 
sending them to different computers, schedule which 
computers performed the first analysis, etc. Due to the new 
paradigm, the constraints imposed by the framework and the 
possible failures that can occur in any program, we have new 
specific potential failures when combining MapReduce with 
the framework. 

The main contributions of this paper are (1) the 
identification a number of specific faults that may be 
introduced into a MapReduce program, and (2) the approach 
for functional testing of these programs in order to reveal the 
failures produced by these faults. This is illustrated using two 
different examples. 

The principles of the MapReduce paradigm and the 
execution flow that the program follows are summarized in 
Section II. Subsequently, Section III contains an overview of 
issues that influence the MapReduce level and a state of the art. 
Section IV identifies functional faults that may occur in a 
MapReduce program. For some of the faults, in Section V, the 
tests are derived by introducing a program and test criteria. 

II. PRINCIPLES OF MAPREDUCE 

The MapReduce programs start with a problem which is 
divided into several parallel sub-problems to solve. The 
programming model consists mainly of a Map function and a 
Reduce function whose inputs and outputs are pairs <key, 
value>. The keys and values can be composed of several 
elements, which in this article we will be called attributes  

The Map function emits zero or more pairs <key, value>, 
where each unique key represents a sub-problem to be solved, 
and the value represents the information needed to solve it. The 
Reduce function receives pairs <key, list[values]> obtained 
from processing different Map functions, where key represents 
the sub-problem identifier and the list represents the 
information needed to solve it. 

First, several Map functions are executed in parallel, each 
of which analyzes a different part of the program input. Then 
several Reduce functions are executed, also in parallel. The 
tasks of management of network problems, efficient use of 
resources and others, are performed by a framework, usually 
Hadoop [2]. 

In addition to the Map and Reduce functions, there may 
exist other functions, such as the Combine function, whose 
goal is to decrease the amount of information that the Reduce 
function receives. The Combine function is located between the 
Map output and the Reduce input. This function receives pairs 
of <key, list[subset values]> as input, i.e., a key that identifies a 
sub-problem and some information which that sub-problem 
needs. The Combine function pre-processes information and 
emits <key, value> pairs that the Reduce function uses to 
continue the execution cycle. Hadoop does not guarantee 
whether Combine will be executed, and if so, it is not known 
with certainty how many pairs <key, value> it receives as  
input [3]. 

For example, a program that obtains the maximum 
temperature based on historical information from weather 
stations, may implement the three functions described above: 

 Map function: Receives <year, temperature> pairs, 
performs validations and emits them as pairs <year, 
temperature>. 

 Combine and Reduce functions: Receive <year, 
list[temperatures]> pairs, obtain the maximum 



temperature and emit pairs <year, maximum 
temperature>. 

An example of program execution in Hadoop is shown in 
Fig. 1 for year 1990 with 1º, 3º and 10º; 1991 with 15º, and 
1992 with 1º. The execution is performed on three computers, 
two of them initially run the Map-Combine functions in 
parallel. The total key space is divided into several disjoint 
sets, which will be assigned to computers that will execute the 
Reduce functions. Each pair <key, value> emitted by the Map-
Combine functions is sent to the computer to which that key is 
assigned. Among others, the computer 3 has assigned keys 
1990 and 1991, whereas the Computer 2 has assigned the key 
1992. Finally, it runs each of the Reduce functions and the 
program result is obtained. 

 Other functions that interact with the program may exist 
(Partitioner, Sort, etc.). In addition, a Hadoop program may be 
composed of a concatenation of multiple Map-Reduce-
Combine functions. This paper consider programs that include 
Map, Reduce and Combine without concatenations. 

III. MAPREDUCE TESTING 

Big Data programs testing is classified by Gudipati et al. 
[4] into "Validation of Pre-Hadoop processing", "Validation of 
Map Reduce Process", "Validation of Data Extract, and Load 
into EDW (Enterprise Data Warehouse)", "Validation of 
Reports", "Performance Testing", "Failover tests" and "Big 
Data Test infrastructure design". Some of these types of testing 
have been addressed previously in the literature and covered by 
some tools. For example, unit testing can be performed with 
MRUnit library [5] by setting the input and output that should 
take in MapReduce functions. 

The performance of a Hadoop program depends in part on 
the configuration of both the program and the cluster [6]. To 
test the performance of Hadoop, cluster benchmarks such as 
MRBench [7] HiBench [8] or GridMix [9] may be used or also 
monitoring tools to detect bottlenecks, slow computers, etc. 
Testing of the environment setup is studied in Bigtop [10], 
which is a project to test interoperability with other Hadoop 
projects. 

 In the "Validation of Map Reduce Process" category, Dorre 
et al. [11] perform static checking of the data types of the pairs 
<key, value> sent and received by the MapReduce functions.  
Other approaches are based in symbolic execution. This 
requires a framework that must be adapted to analyze different 

code paths and some program requirements established by the 
tester [12]. The approach of this paper is similar, but it 
addresses the tests from the standpoint of identification of 
potential functional faults, in order to derive repeatable tests 
that may be designed at an early stage, before program 
implementation. 

IV. MRTREE: A CLASSIFICATION OF FAULTS IN 

MAPREDUCE PROGRAMS 

A potential failure is a possible discrepancy between the 
program's desired output and the output produced. The fault 
(defect) that causes the failure may be detected or masked if the 
program has different behavior depending on run-time 
conditions. In order to identify these potential failures, we 
elaborate a hierarchical classification called MRTree 
(MapReduce Tree).  

MRTree represents a fault classification that allows us to 
identify specific functional failures of programs developed 
using the MapReduce paradigm and the underlying Hadoop 
framework. The goal is to derive tests to detect each potential 
fault represented by MRTree, as we will see in Section V. 

MRTree is represented as a tree whose nodes represent 
potential faults that are hierarchically organized. When a parent 
node has several child nodes, it means that the failures of the 
child nodes can occur simultaneously, unless it is represented 
by an XOR connector. The leaf nodes, henceforth Fault-Nodes, 
have an identifying name, and a label (in the edge) with 
information about the function or functions associated with the 
fault. Characters M, C and R are used for the Map, Combine 
and Reduce functions, respectively. Thus labels add a third 
dimension to the tree, as each Fault-Node can be applicable for 
one or more of these functions. Fig. 2 depicts the MRTree that 
will be described in this paper. Next, we describe the Fault-
Nodes of MRTree, organized by the top-level nodes of the tree. 

A. Specific MapReduce problems 

MapReduce's specific failures are those that can occur due 
to the distinctive features of execution in Hadoop. The faults 
may be caused by a wrong program design and/or wrong 
implementation. Fault-Nodes in this category are described 
below. In section V we illustrate how the tests are derived for 
each of the Fault-Nodes. 

URIO (Unexpected Results Input Order): In the production 
environment it is difficult to guarantee the execution order of 
each function Map (inputs are executed in parallel, some of 
these have to be reprocessed because computers can fail, etc.). 
The Combine or Reduce functions may produce unwanted 
results if the input values are in an unexpected order. On other 
hand, the development environment can consist of a single 
computer that should not be fail during the test and does not 
always execute inputs in parallel. This implies that in 
development it is more likely to produce repeatable outputs 
than production, which may affect the program's result.  

For example, the Reduce function has a fault if it assumes 
that input values will be ordered increasingly, but this order is 
not preserved by the previous functions. 

 

Fig. 1. Example of running MapReduce 
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UC (Unneeded Combine): The Combine function takes a 
pre-processed subset of the <key, value> pairs emitted by the 
Map function. Whether Combine is executed or not, depends 
on many factors: size of program entry, time to process inputs, 
time to create <key, value> pairs in the Map function, etc. The 
Combine function is sometimes executed with one subset of 
information and at other times with a different one based on: 
the size of a buffer that stores the pairs <key, value> emitted by 
the Map function, the buffer threshold from which these pairs 
<key, value> are extracted to continue the cycle of execution, 
time spent emptying the buffer, etc. The different inputs of the 
Combine function are a potential cause for failures. 

Not all programs support the Combine function, but when 
the Reduce function is commutative and associative [1] the 
program allows a Combine function with the same 
implementation as the Reduce function, and vice versa. Under 
other conditions the program can accept a Combine function 
having different implementation than the Reduce function, 
which allows us to identify two different situations: UCSR 
(Unneeded Combine Same Reduce) when the Combine 
function has the same implementation as the Reduce function, 
and UCDR (Unneeded Combine Different Reduce) when they 
have different implementations.  

CFNR (Combine Functionality Not in Reduce): The 
Reduce function must be designed under the assumption that 
the information that it receives may or may not have been pre-
processed by the Combine function If a <key, value> pair is not 
processed by the Combine function, Reduce must properly 
process that input. In other words, the pre-processing that the 
Combine function performs must also be done by the Reduce 
function. Although the Combine function may perform 
correctly its pre-processing, this functionality may not be 
properly implemented by the Reduce function, thus leading to 
potential failures. 

B. The <key,value> pairs may be inconsistent 

During MapReduce execution, unexpected situations may 
generate inconsistent <key, value> pairs. Inconsistency refers 
to when each key and each value taken in isolation is computed 
correctly on any Map, Combine or Reduce functions, but in the 
program as a whole their values are not compatible. We 

consider two types of inconsistencies. Later, Section V 
describes how to derive tests for each Fault-Node.  

VIT (Values Inconsistent Themselves): It happens when a 
Combine or Reduce function receives more than one 
inconsistent value for the same key, although independent pairs 
<key, value> emitted by Map function are correct. For 
example, if the input of Reduce function is a pair <year, 
list[temperature information]> such that <1900, ["minimum 
20", "maximum: 10"]>, there is an inconsistency because the 
maximum temperature cannot be lower than the minimum. The 
Map functions could have successfully emitted pairs <1900," 
minimum: 20"> and <1900, "maximum: 10">, but in the 
Reduce function the pairs with key 1900 are inconsistent. 

KIT (Key Value Inconsistent Themselves): It happens in 
Map, Combine or Reduce functions when a key and its value 
are correctly computed, but the whole <key, value> is 
incoherent. For example, if the Map function reads from 
multiple databases, and emits pairs <id_father, id_son> such as 
<123, 123> there is an inconsistency. The Map function could 
have obtained properly from databases that the key is 123 and 
the value is 123, but really the pair <id_father, id_son> is 
incoherent. 

C. The emmited key and/or value may be incorrect 

This fault happens when a Map, Combine or Reduce 
function must emit a <key, value> pair, and it emits a different 
and incorrect pair due to faulty implementation. Because these 
faults are similar to those occurring in other paradigms they are 
briefly described and illustrated by a simple example. 

KSA (Key-value Single Attribute): A key and/or value that 
should have the content of one input attribute is incorrectly 
emitted. Consider a program that obtains the maximum 
temperature by year. The Map function receives pairs <year, 
temperature> and should emit them to the Reduce function to 
compute the maximum temperature. If Map function does not 
emit negative temperatures, it has a fault. 

KST (Key-value Single Transforming): A key and/or value 
that should be obtained after processing a single input attribute 
is incorrectly emitted. Consider a program that receives as 
input a year and the temperature in degrees Celsius and 

 

Fig. 2. MRTree, a classification of faults in MapReduce 
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calculates the average temperature in degrees Fahrenheit. The 
Map function receives pairs <year, temperature in Centigrade 
degrees> and emits pairs <year, temperature in Fahrenheit 
degrees>, then the Reduce function computes the average. In a 
Map function a faulty transformation is made if negative 
temperatures are computed incorrectly. 

KMU (Key-value Multiple Union): A key and/or value that 
should be the union of several input attributes is incorrectly 
emitted. Consider a program that obtains the times that a 
temperature is repeated in a year. The Map function receives 
<year, temperature> and emits pairs <"yeartemperature", n>, 
where n is the number of times that a temperature appears in a 
year. Then the Reduce function aggregates all n values for each 
“yeartemperature” key. One fault appears when the Map 
function handles temperature and year as numbers, because if 
we have the year 1992 with 1º and the year 0199 with 21º, the 
Map function emits <19921, 1> and <19921, 1> respectively, 
which will produce a failure. 

KMT (Key-value Multiple Transforming): A key and/or 
value that should be obtained after processing several input 
attributes is incorrectly emitted. Consider a program that 
calculates the average temperature of each year. The Reduce 
function receives pairs <year, list[temperatures]> and emits 
<year, average temperature>. Reduce function transforms list 
[temperatures] in "average temperature", and a failure occurs if 
it always returns the average in absolute value. 

V. FUNCTIONAL TESTING WITH MRTREE 

This section shows how to derive test cases in order to 
detect the faults represented by MRTree in sub-section IV. 

For each Fault-Node an example program is described. We 
provide guidelines on how to derive test cases related to the 
Fault-Node. Then we detail a possible fault that the program 
could have and the failure obtained after executing the test 
case. Finally we show how to execute the tests in order that 
different executions be repeatable. 

URIO: Consider a program under test that obtains for each 
year the closest to zero negative temperature. The Map 
function receives years and temperatures in decreasing order 
and emits pairs <year, temperature>. The Reduce function 
receives pairs <year, list[temperatures]> and must repeat all 
temperatures returning for each year the closest to zero 
negative temperature. 

The goal is to test the behavior in different situations 
determined by the order of the values at the input of Reduce 
function. A test case with year 2000 and temperatures 20º, 13º, 
0º, -2º and -9º, should produce -2º for the year 2000. 

A possible fault could be present if the Reduce function 
assumes that the values of temperatures arrive in descending 
order. The code with this fault is the following: 

public void reduce (int key, Iterator  

           <int> values){ 

while (values.hasNext()){ 

temp = values.next(); 

if (temp < 0){ 

  emit(key, temp); break;  
} 

} 

} 

With this Reduce function, the negative temperature closest 
to zero for the year 2000 is sometimes -2º (correct) and others -
9º (incorrect). If the development environment is running the 
program without parallelism, the output will always be -2º. 

To control the order of input values in the Reduce function, 
a test environment will be used with a single computer 
configured so that the input is implemented by the Map 
function without parallelism, so that the tests could be rerun 
with the same conditions. 

UCSR: Consider a program under test that obtains for each 
year the average temperature. The Map function receives years 
and temperatures and emits pairs <year, temperature>. The 
Reduce function receives pairs <year, list[temperatures]> and 
returns the mean temperature of each year. 

The goal is to test the behavior of the Combine function 
when running through different sets of pairs <key, value>. For 
the test case input, try to break the associativity between the 
Combine and Reduce functions. Given a key K, two values are 
emitted from Map to Combine and another two directly to 
Combine. The associativity is broken if a different result occurs 
when an input value from Combine and another from Reduce 
are exchanged. This situation is illustrated in Fig. 3 (note that 
values v2 and v3 have been exchanged). 

The test case takes the years 1900 and 1901 as input, both 
with temperatures 1º, 2º, 3º and 4º; and Combine function 
receives as input <1900, [1º, 2º]> and <1901, [1º, 3º]>. The 
expected output is that the years 1900 and 1901 should have 
2.5º as average temperature. 

The program has a fault because the Reduce and Combine 
function, average function, is not associative, therefore the 
Combine function should not implement the average 
functionality. The output obtained is that the year 1900 has 
2.83º as average temperature and 1901, 2.66º.  

To run the tests we need an environment that allows us to 
control what key-value pairs are pre-processed by the Combine 
function before being sent to the Reduce function and what 
key-value pairs go directly to the Reduce function, as shown in 
Fig. 4. 
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Fig. 4. Breaking the associativity between the Combine and Reduce 
functions in UCSR Fault-Node  
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UCDR: Consider a program under test that computes 
follow's asymmetric relations between Twitter contacts. Two 
persons, for example Harry and Lily have an asymmetrical 
relationship if Harry follows Lily but Lily doesn't follow Harry, 
or vice versa. The Map function receives an identifier of a 
person and obtains the follow's contacts, for example, it 
receives Harry follows Lily, and emits pairs <Harry, "Follow: 
Lily"> and <Lily, "Follower: Harry">. The Reduce function 
receives pairs <Person, list[ Follows and followers]>, i.e., gets 
all the follows and all the followers of one person, so if a 
person is both follow and follower there is no asymmetric 
relationship; otherwise asymmetrical relationship exists. The 
implementation of Reduce is the following: 

public void reduce (String key, Iterator  

                <String> values) { 

List<String> relationship = new 

ArrayList<String> (values); 

String contact; 

while (values.hasNext()){ 

contact = values.next(); 

if (isFollow (contact) &&     

      !existFollower(contact,values)){ 

emit(key, extractName(contact)); 

emit(extractName(contact),key); 
} 

} 

} 

As in UCSR, the goal is to test the behavior when a 
Combine function runs over different sets of pairs <key, value> 
(Fig. 3). In this case Combine has a different implementation 
than Reduce. 

If the program includes a Combine function to detect a 
symmetrical relationship, this kind of relationship is filtered 
and will not be sent to the Reduce function. The program has a 
fault because the Combine function can filter information that 
is apparently irrelevant in the subset of pairs <key, value> 
received, but will be necessary in the rest of the program pairs 
<key, value>, as will be seen later. The implementation of the 
Combine is the following: 

public void combine (String key, Iterator 

                       <String> values){ 

List<String> relationship = new 

ArrayList<String> (values); 

String contact; 

while (values.hasNext()){ 

contact = values.next(); 

if ( (isFollow (contact) &&  

         !existFollower (contact,values)) 

            || (isFollower (contact) &&  

               !existFollow(contact,values)) ){ 

emit (key, contact); 
} 

} 

} 

The test includes three users: @1, @2 and @3, where @1 
and @3 follow and are followed by @2. The input of test case 
includes the user @1 three times,  @3 another three times and 
then @2, where we also have to run a Combine with <@1, 
[“Follow: @2”, “Follow: @2”]> y <@3, [“Follow: @2”, 
“Follower: @2”]> as input. The expected output is that there 
are no asymmetric relationships between @1, @2 and @3. 

The program causes a failure because the Combine function 
filters the pairs <@3, "Follow: @2"> and <@3, "Followed: 
@2"> and later this will be necessary for the correct execution 

of the Reduce function. The output obtained is that there are no 
asymmetrical relationship between @1 and @2, but there is an 
asymmetrical relationship between @3 and @2. 

 The environment that allows testing in a controlled way 
should execute the test case as represented in Fig. 5. 

CFNR: Consider a program under test that computes the 
maximum temperature of each year and calculates the average 
temperature of each 2-year range. Each range of 2 years is 
identified by the first year of the range, so that the Map 
function emits pairs <year, "year temperature"> and <year-1, 
"year temperature">. 

The goal is to test the behavior of the program when the 
Combine function is not running and the <key, value> pairs are 
emitted directly from the Map function to the Reduce function. 
As in UCSR and in UCDR, for a K key emitted by Map 
function, we have to find v1, v2, v3 and v4 that satisfy Fig. 3. 

Consider that Combine function computes the maximum 
temperature of each year, and the Reduce function, the average 
temperature. The inputs of test case are the years 2000 and 
2004, both with temperatures 0º, 3º, 2º and 1º; where the 
Combine function will receive as input <2000 ["2000 3º", 
"2000 2º"]> and <2004 ["2004 2º", "2004 1º"]>. The expected 
output is that the ranges [1999-2000], [2000-2001], [2003-
2004] and [2004-2005] have 3º as the average temperature of 
the maximum temperatures in each year for the range. 

The program has a fault because the Reduce function does 
not implement the functionality performed in the Combine 
function. The Combine function calculates the maximum 
temperature of its input, but since it does not receive all 
temperatures for a year, the Combine function calculates a local 
maximum, while the Reduce function expects for each year the 
global maximum temperature. The output obtained is for the 
ranges [1999-2000] and [2003-2004], 1.5º; for the range [2000-
2001], 1.33º; and for the range [2004-2005], 1.66º. 

The environment that allows testing in a controlled way 
should execute the test case as represented in Fig. 6. 

 

Fig. 5. Breaking the associativity between the Combine and Reduce 
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Fig. 6. Breaking the associativity between the Combine and Reduce 
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VIT: Consider a program under test that obtains 
relationships of friendship and enmity on Twitter. The Map 
function receives two identifiers together with their tweets and 
emits <id_1, "Friend: id_2"> or <id_1, "Enemy: id_2">. 

The goal is to test an inconsistency in the input of 
Combine/Reduce function. Inconsistency occurs when the input 
Combine/Reduce function has a pair <key, list[values]> where 
several values are incompatible with each other, and this 
situation makes the program cause a failure. Therefore, in the 
input for Combine/Reduce function a pair <K, [v1, v2]> is 
found to cause a failure in the program because v1 and v2 are 
inconsistent with each other.  

For the above program, an inconsistency is that two persons 
are both friends and enemies in the input of the Reduce 
function. Separately, the Map function from one input 
determines that they are friends, but from the other input 
determines that they are enemies. The input of test case has a 
tweet from Jack and Jessica who declare that are friends, and 
another that indicates their enmity. The expected output is that 
Jessica is neither friend nor enemy of Jack. 

If the Reduce function only stores the friends and enemies 
that it receives as input, then the program has a fault. With 
tweets for several years, two persons could be friends in the 
past and today enemies, so the Reduce function should consider 
this situation. In the faulty program, the actual output is that 
Jessica is friend and enemy of Jack.  

KIT: Consider a program under test that obtains 
relationships of enmity on the basis of a series of tweets. The 
Map function receives tweets with several persons named, and 
for each person it emits a pair <person, tweet>. The Reduce 
function receives per each person all tweets where he/she is 
mentioned, these tweets are analyzed and the function obtains 
using all tweets which persons are enemies.  

The goal is to test an inconsistency between a key and its 
value, i.e., independently, the contents of the key and the value 
are correctly calculated, but they cannot be together because 
they generate incompatibilities with each other. Thus an 
inconsistency between a key and its value is sought, i.e., both 
have been calculated correctly, but together they produce a 
special situation that the program does not expect and fails. 

For the above program, an inconsistency is that the Reduce 
function emits a person that is the enemy of him/herself. The 
input of the test case is a tweet from William indicating self-
loathing. The expected output is that William has no enemies. 

If the Reduce function emits enemies regardless who people 
are, it has a fault. Reduce should not emit an enmity of a person 
with herself. In the faulty program the actual output is that 
William is enemy of himself. 

VI. CONCLUSIONS 

The MRTree classification allows us to identify potential 
faults that can occur in MapReduce programs under Hadoop. 
For the identified faults we provided a criterion for testing and 
illustrated it with some example programs. A number of 
examples have shown how tests could take into account this 
sort of faults specific to MapReduce. 

As future work we plan to apply MRTree in industrial 
applications and formalize testing techniques applicable in 
Fault-Nodes. 
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