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Abstract

Artificial Vision Systems are commonly used in industrial applications.
The low cost of the equipment facilitates the development of new products.
In this paper we describe the use of an artificial vision system in one of
the phases of a quality control process related to automotive industries: the
windshield manufacturing. We intend to localize and classify the defects that
were originated while manufacturing the glass that forms the windshield. We
will show that a fuzzy classifier, after being tuned with a genetic parameter
adjustement procedure, outperforms a neural networks based classfier.

1 Introduction

Windshields are built by moulding with heat a plane sheet of glass. The quality
of this glass is periodically checked, so we can detect defects that may affect the
transparency of the glass or reduce its strength. The analysis of the sheets of glass
is being carried out by specialized personnel, who visually examine every material
sample. This is a hard and expensive process that is being automated. The CVSIM
system, developed at Oviedo University, automates the whole process of search and
classification, so the intervention of human operators is not necessary.

The quality control first detects the defects, and it classifies them later. The lo-
calization of the defects is solved by classical artificial vision techniques. And their
classification uses an imprecise description of the characteristics of the defects,
being based on fuzzy rules. In these rules, the parameters that define linguis-
tic variables were automatically obtained by means of genetic procedures. These
methods tune the fuzzy rule knowledge base so the classifier behaviour is optimal
over a set of examples that were classified by hand. The structure of the rule bank
was also designed by hand, using the aforementioned imprecise description.

The reasons that made us to choose a fuzzy rule based classifier instead of any
other classical statistical method were two:
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1. We were not provided with a number of examples high enough to design a
statistical classifier system. The information conveyed about some of the
classes by the set of examples was incomplete.

2. The expert knowledge of the operators about the characteristics of the defects
cannot be easily incorporated to the design of a statistical classifier. This
knowledge is necessary, since it allows us to decide on cases that cannot be
related to one of examples in the initial set.

These circumstances are justified if we realise that the acquisition of repre-
sentative examples of some of the least frequent kinds of defects is difficult and
expensive, so the number of samples can be too low to characterise the properties
of the defect. A fuzzy classifier can include additional linguistic information as
well; this information will reduce the chance of a misclassification to happen when
the system is confronted with one of these rare defects. In the last section we will
present numerical results that empirically validate this asseveration.
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Figure 1: Categories of defects

2 The system

The quality control laboratory of the factory proposed the following system objec-
tives:

1. The localization and classification of all defects with sizes greater than 50
microns.

2. The measurement of the depth of the defect, when it is embedded in the
sheet.

3. The discrimination between four categories of defects: bubbles, stains of tin,
stones and dust (see Figure 1).

3 Kinds of defects in glass manufacturing

We have just mentioned that four different defects will be separated: bubbles, tin,

stones and dust. In this section, we will describe briefly their characteristics.
Bubbles are the most common defects. They are formed by gas that could not

reach the surface of the glass while it was hardening. When light passes through
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Figure 2: CVSIM system

them, multiple reflections occur and they can be seen as dark rings with some
bright zones inside.

Stones are formed by strange materials that were not separated from the glass.
They can originate in shortcomings during the melting process. They appear as
dark zones with crisp edges.

Tin stains are due to small drops of metal that condense and fall on the surface
of the glass, leaving a small mark.

Dust is not, strictly speaking, a defect. But the surface of the glass is seldom
completely clean. Even it is possible that the glass gets dirty while it is being
inspected. These particles frequently produce a wrong classification, because its
shape can be very irregular and resemble a true defect.

4 The hardware framework

The hardware architecture in which the system has been implemented is shown
in figure 1. It comprises a host computer (an old PC 486DX2), a commercial
monochrome CCD camera (Cemtys CV-252C), an image acquisition card (DT2853-
SQ) and a board, where the glass sample is anchored and the camera is settled
so as to permit its movement. The xyz-axes of the camera stage are driven by
three stepper motors and its position can be computer controlled with a resolution
accuracy of 25um.
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The depth measuring requires a special treatment. In next sections we will
discuss the depth estimation problem. The CVSIM system uses a depth from focus
technique with a set of three images yielded at different distances of sample surface.
In order to achieve that, a z-axis movement is incorporated to the system.

The spatial resolution of a 512x512 pixel image was 5.85 um in horizontal and
vertical directions. Therefore, an image covers a 3x3 mm? area, and defects with
diameters greater than 50 pm (9 pixels) can be measured. This is the minimum
size established for a correct recognition. About 13,000 images are processed to
complete the initial analysis of the whole standard 600x200 mm? glass sample.
When a defect is found two new images are necessary to carry out the depth
measuring.

The optical illumination device can be adapted to the characteristics of the
analysed glass. Light intensity is regulated to illuminate the whole shape of the
defects with contrast enough with regard to the background. Glasses with different
transmission degrees can be studied. Threshold has been used to decide whether
an image is well illuminated and has brightness enough.

5 Functioning

In general, the procedure followed can be divided into six steps:
1. Glass sample placement and control illumination
2. Camera positioning

Image acquisition

Localization (xy) of posible defects

Depth (z) estimation for each defect

S gt W

Classification

Steps II to VI are sequentially repeated until the whole sample analysis is
completed.

6 Extraction of defect characteristics from one im-
age

We will summarize the artificial vision techniques used to extract information from
a digital image in order to locate and classify the described defects.

7 Localization of the defect

The horizontal positioning of the captured image is immediately calculated since
the coordinates (xy) of the camera position are well known by the system. The
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detection of each defect is carried out in a simple way. The image is binarized using
a threshold criterion, based on the mean brightness of the scene. The next step is
the clustering and labelling of dark pixels. Various algorithms have been designed
to accomplish a new group assembling because certain defects are composed by
several items and a defect can be left divided in some images.

However, the problem is not so simple when we try to determine the situation
of the defect inside the sheet of glass. We can apply several procedures to measure
the distance from one object to the camera. The most common are the stereoscopy
and the use of active sensors.

Since Pentland [1] exposed their new concept of depth of field, an alternative for
the calculus of distances inferred from the computed blurring in an image, numerous
works have been developed using this advanced technique. Blurring increases with
the distance of the object from the plane of focus, and also depends of other factors
like the camera parameters and lens [2]. Many authors [3] use motorized lens in
order to determine precise scene depth maps with a wide range of distances. In
those applications where the range of depths is narrow enough, it is possible (and
it presents certain advantages [4]) to automate the movement of the camera leaving
unchanged the rest of parameters. This model accommodates perfectly the profile
of our system. The defect distance is computed from the defocus degree (measured
using Tennengrad function [6]) of a set of three images focused on different planes.

8 Characteristics extraction

Determination of defect characteristics is basically a region analysis problem. Nor-
mally, the basic feature of a region is their form. However, in this case, all kinds
of defects, excepting the bubbles, present very irregular forms. We will base our
recognition procedure in other type of regions descriptors. We have selected a set of
four basic functions: Contrast, a second moment that computes the similarity with
a donut figure, grouping degree and shines areas. The depth is the fifth parameter
that will determinate the class to which the defect belongs (see Table 1.)

9 Design of the classifier

Two facts conditioned the design of this classifier system:
o We could access a complete linguistic description of the defects (see Table 2).

o We were provided with only a few samples of defects, and some of the cate-
gories were very poorly represented.

It is clear that we need a classifier able to use the whole available linguistic
information; we will show that a fuzzy rule based classifier is more suitable than a
classical statistical method or a neural network based one. To improve the design,
we tuned the parameters that define every rule by means of a genetic optimization
procedure.
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Figure 3: Memberships of linguistic labels
Table 1: Characteristics of the defects
| Defect | Position | Form | Characteristics
Bubble Inside Ring Shine
Grouped
Stones Inside Low High contrast inside
Irregular Without bright
Grouped
Stones Surface | Irregular Shine
in surface Opaque, with lighter areas surronding
Grouped
Tin Surface | Irregular Strewed
Without shine
Low Contrast
Dust Surface | Irregular Sometimes shine
Grouped




Localization and Fuzzy Classification of Manufacturing Defects... 219

Table 2: Defects classification percentage

Multilayer

Fuzzy Classifier | Perceptron
Training 90.20% 88.23%
Test 94.37% 77.46%

Let us suppose that there are N descriptors, whose supports are crisp sets
Ai,i=1,... N, and that we define m; linguistic variables associated to fuzzy sets
fig,j =1,...m;, where flf € 75(AZ) For instance, A; could be the set of values
of the descriptor depth, fﬂ be the fuzzy set related to the label high, fl% related to
the label medium and A:{’ related to low. The sets Ag,j =1,...m; form a fuzzy
partition of A;. We will use the definition of § — e-partition of S. Montes [5],

(ANAYg =0, Vik=1,2...m; Va>é
(U;-n:ilfig)a:Ai, Va<l—ce (1)

because is the most flexible definition we have found.
Let us also suppose that membership functions of fig depend on p parameters
each - . . '
Al(z) = f((a))' (a})?,.... (a])P,2), z €A, (2)
We will characterize the g type of defect by a tuple (¢1,¢92,...,4k,.-.,qn), whose
components are the indexes of the mentioned linguistic variables, g, € {1,...,mg};
they are derived from the information given by the human expert. Since every
defect z can be regarded as a point in A; X ... X Ay, © = (z1,...,ZN), T; € As, We
can assess a degree of compatibility of z with the type of defect ¢, and this value
will be B
pa(w) = A8 (21) A A (2) A .. AT (ay). (3)

Our rule of classification consists in assigning the type T'(z) € {1,...,N.} to
the defect represented by x, where
Hr@) (@) = max  pg(x). (4)
The classifier is completely defined by the 2+ Zfil pm,; parameters that define
the fuzzy sets flg and the values d and €. To estimate these parameters we use a set
of examples X = {z!,z2,...zN¢}, which we have classified by hand. If we know
that every example * belongs to the class Tk, k = 1... N,, the efectiveness of the
classifier system will be better when the number of correctly classified examples
(those for which T'(z¥) = T}) is high. It will also be desirable that the confidence
we have in the classification that the system has made is high. This confidence is
measured by the value fir(,,)(zx), so the expression

E(X) = > () — > fo () (5)

{zeX:T(x)=Tx} {zeX:T(x)#Tk}
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assess the behaviour of the classifier. We have used a genetic algorithm to maximize
E(X) with respect to a set of parameters.

10 Experimental results

We have chosen trapezoidal memberships, N = 5 descriptors (contrast, moment
of inertia, grouping degree, brighness and depth) and N,, = 5 classes of defects
(bubbles, stones in surface, stones inside, tin, dust) and we had access to N, = 51
examples. Giving random initial values to the parameters, we could check that the
chosen rules were coherent, because in a few hundred of generations we found a set
of parameters that classified almost all the samples. This classifier was implemented
in the prototype, and the results obtained after a week of functioning in the plant
are summarized in Table 2, row “Test”. The row labelled “Training” shows the
percentages of correctly classified examples obtained in the laboratory, with the
initial 51 examples.

In the same table we show the results obtained when we perform the classfication
with a multilayer perceptron. We can observe that, besides the percentage obtained
with the training data are similar, results obtained with test data are quite inferior.
The explanation is simple if we realize that the linguistical description of the fuzzy
rules was not obtained from the examples, so the neural network did not access
this information and, consequently, generalizes poorly.

11 Conclusions

When we have a good linguistic definition of the rules that govern a classifier and
we only have a reduced set of examples, the fuzzy classifier is a simple alternative
that competes favourably with neural network based classifier systems. In this
practical application we have used genetic algorithms to tune the parameters that
define the fuzzy sets that partition the domain of the input variables.
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