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ABSTRACT

The reconstruction/restoration/modelling of nortiaallts (both listric and
planar) emanating from a detachment at depth agiddksociated rollover folds, using
the vertical or inclined shear method is widelyizid because its simplicity and the
information it can provide. However, it has a ratberious issue derived from the
uncertainty about the shear angle, the type ofrsr@hthe amount of extension that
should be employed in each situation. Here we desernew methodology that, using
easily acquired input data, allows estimation otthler the shear was vertical, antithetic
or synthetic and the values for both the sheaadgpthe amount of extension. These
calculations rely on the use of graphs of throwsusrheave for different horizons
affected by the normal fault and the associatddvet, and are checked using an area-
based method which permits the determination oftdreéhese values are correct.
These graphs may be used as a predictive tool@gagie to show how the
assumptions deviate, such as distinguishing quiekigther other mechanisms apart
from vertical/inclined shear took place. The eféeat syn-extension sedimentation and
reverse fault reactivation on the proposed methedkso examined. The analysis of
experimental and natural examples shows that ttiatian of some rollovers with a
component of fault-propagation and/or drag foldiguggl/or development of a crestal
collapse graben cause the estimated shear digsdmaller than the actual values and
the amounts of extension to be greater. In additioese analyses show that the shear

dip may increase with increasing extension.
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1. Introduction

Normal faults emanating from detachments at defladype of structure
widely represented in nature and, consequentlystlgect of multiple studies. Many of
these analyses are focused on developing techniquesonstruct the faults and/or
their associated rollover folds from the availatidg¢a. Diverse methods to calculate the
depth of the detachment from which the fault woerdhinate have been developed: a)
those based on the lost area rule (adaptatiorea€tamberlin (1910) method for
normal faults); b) those that rely on the rotatwdmigid blocks along circular faults
(Moretti et al., 1988); c) lost-area diagrams (Gansy, 1994, 1996); and d) graphs of
best linear fit of detachment depths (Bulnes anald?p1999) adapted to normal faults.
There are also techniques allowing the determinaifdhe complete shape of the fault
at depth, such as: a) those based on vertical ste@awn as the chevron construction or
constant heave (Verrall, 1981), or on inclined sledh synthetic and antithetic (White
et al., 1986; Dula, 1991), including subsidiarylfaSong and Cawood, 2001), with
layer-parallel strain (Groshong, 1990) or with fapdrallel shear (Williams and Vann,
1987); b) those considering constant displacemengahe fault (Williams and Vann,
1987); and c) constructions founded on flexurgd @davison, 1986) or constant
thickness beds (Morris and Ferrill, 1999) (FiguyeMost of these methods permit also
to model the rollover resulting from the fault &gfy. This construction is also feasible
from other techniques such as: a) the one for keirdaults and rigid blocks (Moretti et
al., 1988), b) models based on fault-bend foldo$Bong, 1989; Xiao and Suppe,
1992), c) finite difference assuming uncompresdibl (Waltham, 1989), and d)
hangingwall collapse following the Coulomb critecamparable to simple shear
(Tearpock and Bischke, 1991). The experimental nsogienerated in the laboratory

have also substantially helped the understandimgpohal faults because they allow
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assessment of parameters such as amount of extefaiti shape, etc. (McClay and
Ellis, 1987a, 1987b; Ellis and McClay, 1988; McCla989, 1990a, 1990b, 1995, 1996;
Schlische et al., 2002 and Henza et al., 2010 astantigers). One of the main issues
derived from the plethora of available procedusethat the resulting reconstructions
obtained may vary enormously depending on the tqakremployed (Figure 1). Thus,

the selection of one or another method is of grepbrtance.

The methods based on vertical/inclined shear &entbst utilized. Despite the
simplification they imply about the particle motigdhey make predictions on the fault
shape and detachment depth (e.g., Verrall, 198ité/hal., 1986), the rollover
morphology (e.g., Matos, 1993), the algorithmsaiaviard model and/or restore the
structures and the deformation undergone (e.g.0844993; Poblet and Bulnes, 2007)
easily. Furthermore, they have been proved to hatde methods for modelling both
natural (Groshong, 1990; White and Yielding, 1991Atos, 1993; Poblet and Bulnes,
2005a) and experimental examples (Groshong, 1988lePand Bulnes, 2005a, 2005b).
Consequently, the vertical/inclined shear methodscansidered to be a good
approximation of the behaviour of the hangingwéihormal faults during extension
(McClay et al., 1995). However, the uncertainty @ttbe type of shear and the shear
angle that should be chosen in each case constautricial disadvantage for their
application, as different angles result in dissamrkesults (Figures 1c, 1d and 1e). There
are diverse approaches to estimate the shear andliégs character (synthetic, vertical
or antithetic): a) shear parallel to the rolloveiaatraces (Xiao and Suppe, 1992), b)
shear parallel to the subsidiary faults associai#itithe main one (White et al., 1986;
Xiao and Suppe, 1992), c) the trial and error me:itWhite and Yielding, 1991), and d)
quantitative methods that require knowing the amofitayer-parallel strain and the

rollover general dip (Groshong, 1990).



90 The horizontal extension is another parameterdbiatrols greatly the results.

91  Some of the methods to estimate it from the avkaldhta were proposed originally for
92  contraction, but were adapted to extensional ggttia) comparison between unfolded
93  bed length and structure width (Gwinn, 1970), bxmmam displacement along the

94 fault (Chapman and Williams, 1984), c) fault he@&Xegler, 1982; Jackson and

95 Galloway, 1984; Barr, 1985), d) mean between thereston estimated using bed length
96 and the maximum fault displacement (Williams ancival987), e) rollover axial

97 traces separation (Xiao and Suppe, 1992), anopesdf the lost-area best-fit function
98 (Groshong, 1994, 1996). Dissimilar extension valresobtained depending on the

99 technique employed (Poblet and Bulnes, 2005a, 2008bch has important

100 consequences for the predictions that can be made.

101 We present a new method that provides estimatidheo$hear properties (dip
102  and character) and of the amount of extension tdetmormal faults. The main

103  difference with previous procedures is that ithtedo estimate both parameters using
104  simply a portion of the main fault offsetting a mmrum of, at least theoretically, two
105  horizons, although to use more horizons is recona@&nThe method only requires

106  simple measurements on a geological section aertmdt, projecting them on a graph
107  and finding a best-fit function for the plotted aatheoretically, this method could be
108  used as a predictive tool. However, its applicatmexperimental and natural examples
109  suggests that it supplies minimum shear dips andmuan amounts of extension that
110  get closer to actual values for faults with highoammts of extension. Checking the

111  results using a new area-based method, which iegatemparison between the area in
112  the present-day, deformed section, and that imaeformed section, supports this

113 conclusion. In addition, the method presented @p im determining how much
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studied structures deviate from the expected behavfi they were solely the result of

vertical/inclined shear with a uniform dip.

2. Analysis of the heave, throw and displacement in normal faults with associated

rollovers

One of the aims of this work is to find a procedilnat allows the determination
of: 1) the shear dip, 2) the shear character (aitd, vertical or synthetic) and 3) the
amount of extension taking as input parameterfidaee, throw and displacement of
several horizons along a fault. This makes of ehpiiportance a thorough analysis of
how the fault slip components vary along successaffset by normal faults emanating
from a detachment. In any normal fault the horilomated at the detachment level has a
null throw, which implies that the heave and thepthcement are the same and,
assuming no strain within the hangingwall, equahextension. To visualize how
these parameters vary for the rest of the horiztvesretical rollover were created using
the models of vertical shear (Verrall, 1981), inelil shear (White et al, 1986), flexural
slip (Davison, 1986) and constant thickness bedsi(iland Ferrill, 1999). They were
built using different values of extension and faliapes (ramp-flat, segmented, cubic
or arctangent functions, splines) (Figure 2). Tumlels created are based on a series of
assumptions: a) the hangingwall is deformed adlavey (fault-bend folding)
according to the inclined or vertical shear mectiasi and combinations of mechanisms
are not considered, b) the shear dip is constasttone and all along the whole
hangingwall, c) the geometry of the fault and thetdvall beds does not vary along the
process, and d) compaction is not considdrethis paper we present only the most

significant cases analyzed. For each geologicdicsewe measured the heave, throw,
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displacement, and stratigraphic height with respeein arbitrary reference level of the
horizons offset by the fault (Figure 3a). Subsetjyewe plotted the fault slips of each

horizon versus its stratigraphic height on one r@pgure 3b), and its throw versus its
heave on another graph (Figure 3c). The later grapdthe foundation of the proposed

methodology as it is more extensively explained gection below.

The simplest case is a planar fault formed byteaft@ a constant dip ramp. The
values of heave, throw and displacement for thieriht horizons, plotted against their
stratigraphic height, are constant for the horiawhsse hangingwall cut-off points lay
on the ramp (upper graphs in figure 4). The situmthanges for those horizons whose
cut-off points lay directly on the detachment. $pective of the type of shear and shear
dip, displacement and throw always decrease stagiigcally downwards, whereas the
behaviour of the heave depends on the shear apglieéto generate the rollover. With
vertical shear (Figure 4a) the heave is constamgaihe whole stratigraphic succession;
antithetic shear (Figure 4b) implies an increaskeafve when moving towards deeper
stratigraphic horizons; and synthetic shear (Figueshows a decrease of heave values
stratigraphically downwards. In the throw versuaveegraphs the points of horizons
whose cut-offs are located on the ramp are supedyeince they all share the same
values for heave and throw (lower graphs in figtireOn the contrary, the points
representing the horizons whose cut-off pointsoiayhe detachment follow a straight
line that may be vertical (vertical shear) or inelil (antithetic and synthetic shear). The
throw decreases as heave increases with antigteter (Figure 4b), whereas

increments of throw imply increases of heave wthtlsetic shear (Figure 4c).

Similar graphs were generated for faults with nemplex geometries. For
example, we used listric faults built with the arggent function (Figure 5). Throw and

displacement diminish towards deeper stratigralgviels in rollover constructed by
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vertical shear (upper graph in figure 5a). Thewshaontinuous, smooth variation,
which seems to depend on the fault geometry. Thaihghgeneral tendency (i.e.
stratigraphically downwards decrease) is the sasme the ramp-flat fault. The heave
has the same value for each and every horizonglegjual to the extension. It is smaller
than displacement until reaching the detachmenzbiomwhere they are equal and
throw is zero. The points representing the heagdomated along the following

function:

X=e (1),

wheree is the extension. In addition, the curve depictimg displacement along the
fault tends to be asymptotic to the straight limat ffits the heave data in the horizons
close to the detachment. Irrespective of the fsldipe and amount of extension, the
graphs of throw versus heave (lower graphs in égudia and 5a) are virtually identical
(all the horizons have the same heave). This migabsll the points are situated along

a vertical straight line that responds to Eq. (1).

For rollover folds constructed using inclined shaad the same fault shape as
above, the functions of throw and displacementugetieir stratigraphic height (upper
graphs in figures 5b and 5c) are analogous to thbsertical shear. Both the
displacement and the throw decrease towards tlaelteent. Nevertheless, contrary to
what happened with vertical shear, the heave vateg) the stratigraphic succession
and its variation allows us to recognise whethershear is antithetic or synthetic and
its dip. Antithetic shears imply a heave incren&raitigraphically downwards (upper
graph in figure 5b), whereas synthetic shears mdaave decreasing down section
(upper graph in figure 5c). The inclination of thest-fit line for the heave data depends

on the shear dip. Shear dips close to 90° wilkflected in almost vertical straight



187 lines, whereas gentler shear dip values will resuiinctions of greater curvatures and
188 lesser slopes. As with the vertical shear, thelaegment and heave curves tend to be
189  asymptotic when approaching the detachment. Igthphs of throw versus heave

190 (lower graphs in figures 5b and 5c) the pointseepnting the different horizons may

191  be fitted by the following linear function:

192 y = m-X+n, (2)

193  wherem:

194 m = tang) ),

195 «a being the shear angle measured respect to theohtail (i.e., the shear dip), ank
196 O for antithetic shears (lower graph in figure 8byim > O for synthetic ones (lower

197  graph in figure 5c). The intersection with the absae axis:

198 X = -n/m (4),

199 is the value of the extension, equal to the disgtaent of the horizon along the
200 detachment. The explanation of this relation isssho figure 6. In the case of

201  antithetic shear, the larger the throw the smdftlerheave (Figure 6a), because

202 h = e — ttang) (5),

203 whereh is the heaveg is the extensiony is the shear dip artds the throw. In synthetic

204  shear (Figure 6b) greater throws lead to largevésga

205 h=e + t-tanf) (6).

206  The parameter that relates both values is the shgaFrom the expressions above we
207  can deduce that the heave equals the extensiontiveehrow is zero, i.e. at the

208 detachment.
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The method presented in the next section is naighioto be applied to rollovers
built by flexural slip, in which bed thickness aledgths are maintained. Nevertheless,
the analysis of the resulting graphs for thesegygdolds is interesting due to the
information they may supply. We elaborated modéi®lovers developed over listric
normal faults formed by segments of constant dijfiong the method of Morris and
Ferrill (1999) and others using the method of Dani§l986). In the graphs derived
from the analysis of Morris and Ferrill (1999) stiures, both the displacement along
the fault and the throw tend to diminish when dadagy in the stratigraphic succession
(upper graph in figure 7a). This variation is nohttnuous but shows steps as result of
the segmented fault geometry. The heave behavVesdifly; it does not show a
consistent trajectory, because, at least in thenpies built, it increases downwards in
the upper part of the stratigraphic successiondaedeases downwards, broadly, in the
lower one (upper graph in figure 7a). The behavauhe throw versus heave function
in the folds constructed using the Morris and HgitP99) method would be equivalent
to a variation in the shear character along tregigtaphic succession (lower graph in
figure 7a), being comparable to antithetic (uppaet pf the graph) and synthetic (lower
part). In the graphs obtained for the structurestiacted following the method of
Davison (1986), both the throw and displacemerd terdecrease when moving down
through the stratigraphic succession (upper gragigure 7b). The heave takes values
approximately constant in the upper part of thatgfraphic succession, but downwards
it diminishes initially to grow at deeper levelhd&throw versus heave function (lower
graph in figure 7b) shows three different regiarsupper one in which heave is more
or less invariable (as if vertical shear actedpiddle one where it decreases
downwards (comparable to synthetic shear) and arlowe in which it increases

downwards (as when antithetic shear acts).
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3. Shear and extension deter mination via graphs and checking through area

balancing

In the graphs of slip versus stratigraphic heigatoould not find a universal
best-fit function which allowed, from the availalolata, to extrapolate the function and
obtain parameters as, for instance, the detachdegth. However, the evolution of the
heave permits to recognize if vertical or incliredgbar has acted, giving, in addition,
qualitative information on the shear dip (the seralhe slope of the heave function the
gentler the shear dip) and its synthetic or arnitheharacter (heave decreases down
section with synthetic shear and increases withheatic shear). These graphs may also
help to find out whether the main mechanism respta$or the structure formation is
different from vertical or inclined shear. In listnormal faults, if vertical or inclined
shear acted the throw should decrease down settigether with the displacement
(except for the horizons close to the detachmemnthich they may be constant or even
increase slightly). Heave may increase, be constatcrease (only one of the three
options along the whole stratigraphic sequencejufiei 5). Conversely, in ramp-flat
normal faults the three parameters should remaistaat except for the horizons lying
directly on the detachment (Figure 4). If thesepses are not met it is probable that a
different mechanism has acted, alone or in conjanatith vertical/inclined shear.
Despite that a graph derived from field, subsurfacexperimental data exhibits similar
characteristics to those described above, it doesmsure that vertical or inclined shear
has really acted, as other mechanisms may proungasresults, at least along certain

portions of the stratigraphic succession (uppeplyia figure 7a).

11



257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

Throw versus heave graphs do offer quantitativerméation. The arctangent of
the slope of the best-fit linear function wouldthe shear dip, indicating also its
vertical (infinite slope), antithetic (negative &) or synthetic (positive slope) character
(Figure 8). The amount of extension would be thersection between the function and
the x-axis (Figure 8), i.e. the heave value whentlinow is zero. Once this information
has been obtained, well-known techniques mentiamétke introduction section may be
employed to reconstruct the geometry of the fauttegpth from the rollover, or vice
versa, to calculate the detachment depth, to chibeseest restoration and/or forward

modelling algorithm, and/or to estimate the strain.

The application of this procedure to rollover fofdsmed by mechanisms
different from vertical or inclined shear will rdsin graphs of throw versus heave that
cannot be fitted adequately by a linear functionsdch case the structure should not be
modelled employing vertical or inclined shear spkehd a different mechanism or

combinations of mechanisms must be invoked to @xjgorigin.

For those examples of structures in which thegabmetry of the fault is
available, the results can be checked using antased test that assumes plane strain.
This procedure we propose consists of overlappirgtesent-day, deformed section
(Figure 9a), on top of a theoretical, perfect undaked section (Figure 9b) in such a
way that the horizontal distance between the fattlie deformed section and that in
the undeformed section is the extension value astidh(Figures 9c, 9d, 9e and 9f).
This allows to recognize: 1) an approximately tgalar region in the upper part of the
overlapped sections (in dark grey in figures 9¢,%dand 9f) and 2) another region in
the lower part of the overlapped sections (in ligigy in figures 9c, 9d, 9e and 9f). If
the area of these two regions is identical (Fi®ek the application of the estimated

shear to the undeformed horizons would lead tddimation of the rollover observed

12
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305

in the present-day, deformed section. This meaatstiie values of shear dip and
extension, estimated using the method proposdusmpaper, are correct. That the area
of the upper region is smaller than the area ofdher region (Figure 9f), would imply
that the shear type deduced is correct but thenastd dip is less than the actual one
and the estimated extension exceeds the actualroties case, a forward model of a
rollover fold using the calculated values and thdeformed section as input data would
not correctly simulate the structure in the preskay section. When the area of the
upper, triangular region is greater than the afé¢heolower region, it means that the
estimated parameters are not correct either (Fsgceand 9d). This phenomenon
occurs when the shear type deduced is incorreghen it is correct but the estimated
dip is larger than the actual value and the amotiaktension is less than the actual
one. As before, a forward model created with thedees would not reproduce
correctly the deformed section. The larger theeddhce between the area of the upper,
triangular zone and that of the lower zone, thearroneous the shear dip and
extension values estimated. The implementatiohisfarea-based verification method
may allow to determine whether the values obtaumsedg the slips-based method
proposed in this paper are correct, and to comstoasome extent the range of correct
values of shear dip and extension usually infludrimethe erratic behaviour of the slips

functions obtained.

4. Effects of tectonic inversion

The simplest case is when a normal fault develdgyeekrtical or inclined shear
is reactivated with a reverse sense of movementathdhe same shear angle as that

employed in the extensional event. In this caserékulting graphs should be equal in
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shape to those obtained for normal faults witheuerse reactivation (Figures 4 and 5).
The reason is that the extensional process isafigtor totally, reverted. If the
inversion is partial, the graphs allow to calculdte shear dip and the remnant
extension after the contraction. If, on the contréine contraction exceeds the
extension, so that horizons exhibit reverse faisipldcements (Figure 10), the throw
versus heave graph would be slightly different. $hear dip will still be the arctangent
of the slope of the function, but now there willio® horizon with throw equal to zero
(lower graph in figure 10a). However, the intergacbf the best-fit function with the x-
axis represents the value of the net contractiengdifference between contraction and
previous extension (about 5.60 units in the cagbeExample in figure 10a). These
graphs are equal to those derived from fault-behdsfdeveloped over thrusts or
reverse faults in a purely compressive setting ttoated using vertical/inclined shear.
In the graphs of slips versus stratigraphic heligatheave increases stratigraphically
downwards, whereas the throw and the displacememtigh (upper graph in figure

10a).

Another option is that the reactivation is produbgdertical or inclined shear
but with a shear dip different to that of the esien. The resulting graphs for a total
inversion situation (Figure 10b) show a more ecraghaviour than those discussed
above. For example, the throw does not decreasgstently along the stratigraphic
sequence but it increases its value in some zankdianinishes in others. In the graph
of throw versus heave the points are not alignedvauld be expected if the shear dip
had remained constant during extension and cordracthis prevents the use of the

method proposed here for such situations.

The graphs in figure 10c correspond to an exteasiaiover formed according

to the method of Davison (1986) developed on a abfault subsequently reactivated

14
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using inclined shear until reaching total inversids expected, these graphs do not
permit any estimation about the shear during tirraotion or the amount of

contraction because of the complex functions obtiin

5. Effects of syntectonic sedimentation

To check the possible incidences caused by sedati@misimultaneous to the
fault activity we created two models, a growth nalfault with sedimentation during
extension including pre-extension and syn-extenseis (Figure 11) and a growth
normal fault with partial inversion in which pretersion, syn-extension, post-

extension pre-inversion, and syn-inversion bedewssluded (Figure 12).

In the fault slips versus stratigraphic height ¢wrapnstructed for the growth
normal fault (Figure 11a) two different tectonoasigraphic units can be identified. The
parameters of the lower unit, which correspondsiégpre-extension horizons, show the
typical trajectory described above for rolloverd®lconstructed with antithetic shear.
On the contrary, the fault slips for the syn-exiensorizons decrease stratigraphically
upwards towards the top of the succession. The sact@no-stratigraphic units can be
individualized in the throw versus heave graph (Fégl1b). The points corresponding
to the pre-extension horizons follow a straigheé whose slope indicates the shear dip
used to create the rollover fold. In contrast,dhe-extension horizons do not exhibit a
rectilinear trajectory, but they follow a curve.ede horizons are not useful to
determine the shear or the amount of extensiorgubmmethod presented here. Thus,
we conclude that any estimation should be exclhsperformed using the pre-

extension horizons.
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In figure 12 a model of a growth normal fault, wahbsequent inversion and the
same shear dip and dip sense for both the extealsaad contractional events, has been
analyzed. The reverse slips in the graphs in figiZréave been depicted as negative. In
the slip versus stratigraphic height graph (Fidiiza) four different zones may be
identified and used to separate four tectono-gtiaphic units. The pre-extension
horizons exhibit the behaviour previously obser{fédures 4 and 5) when no
syntectonic sedimentation occurred. In a graplthaiw versus heave for only the pre-
extension horizons (Figure 12c) we can calculagestiear dip, its character and the
remnant extension after the inversion (interseatibtine best-fit function with the x-
axis). The boundary between the pre-extension lamd\n-extension beds would
correspond to the point that displays the greateshal displacement along the fault
(Figure 12a), or that after which the points of tin@w versus heave graph (Figure 12b)
depart from a rectilinear trajectory. Stratigrajgiic below the null point, the situation
Is the same as one can expect in a growth normkil(fagure 11). The points in the
throw versus heave graph representing the syn-@etehorizons cannot be fit by a
linear function since they show a curvilinear tcagey (Figure 12b). These horizons are
useful for calculating neither the shear dip neréimount of extension. These beds are
overlain by layers deposited during a period ofdeic quiescence after the extension
and prior to the inversion event. The absolute @aiuheave decreases stratigraphically
upwards within these horizons, whereas the abswaltees of throw and displacement
increase (Figure 12a). In a throw versus heavehgi@pthese horizons the points fall
onto a straight line whose slope supplies inforaratibout the shear dip and its
character (Figure 12d). The intersection betweenftimction and the x-axis would
indicate the amount of contraction (negative vallrejhe upper part of the stratigraphic

sequence, the syn-inversion beds show a progrdssis@f displacement, becoming
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null for the horizon deposited at present-day (FeguLl2a and 12b). The points
representing these horizons in the graphs seeolltovfa straight line, however, this is
probably because they have been transported aloagstant dip segment of the fault.
These syn-tectonic horizons should not be empléy@aiculate the shear angle, its

character or the amount of contraction using ththooology described here.

According to the results obtained from figure 1®lhe contraction were
produced through vertical or inclined shear whapeagtre different to that of the shear
during the extensional event, only data for the pa@ssive stage (shear dip and
character and amount of contraction) could be abthutilizing the post-extension pre-

inversion horizons.

6. Application to experimental and natural examples

The possible applicability of the method proposethis study has been tested
using experimental and natural examples of listagnal faultsWe have chosen
sequential physical experiments in order to compaeaesults obtained to different

temporal stages of development of the same steictur

The first example corresponds to a clay experirpesdented in Dula (1991).
We used two sections constructed by the authou(egyl3a and 13d) derived from two
photographs of different stages of the experimeigutes 5d and 7a of Dula, 1991). In
the graph of slips versus stratigraphic heightiolkthfor the less extension stage
(Figure 13a) the throw decreases slightly with depthereas the heave and the
displacement tend to grow slowly with depth (Figligb). The fact that the increase in
the displacement is slightly greater in the strafdpically lowest horizon (this horizon

practically rests on the detachment) might be mille of antithetic shear according to
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the theoretical models studied above. Accordinpédinear best-fit of the throw versus
heave data (Figure 13c) the shear obtained ishatittand dips 25°, notably smaller
than that proposed by Dula (1991) estimated usiagarticle paths, whereas the
extension is larger than the actual one (3.9 cezites versus 2 centimetres). The
extension calculated by Poblet and Bulnes (200&ahis stage of the experiment using
the shear angle suggested by Dula (1991) on différerizons ranges from 1.6 to 2.3
centimetres. The application of the area methodgmed above to this stage of the
experiment also indicates that the estimated gtipas substantially less than the
correct one and that the estimated extensionggetdhan the actual one (Figure 14a).
As a consequence, the model generated with theampters fails to reproduce
correctly the original shape of the clay experim@mgure 13a). In the graph of slip
versus stratigraphic height for the experimentstwith greater extension (Figure
13d) the displacement along the fault is prettystamt, whereas the heave grows with
depth and the throw diminishes in a pronounced ma(ifigure 13e). The constant
displacement is apparently consistent with therdtézal models in which the horizons
lying close to the detachment exhibit constantldigments when vertical or steeply
dipping shear operates (Figures 4 and 5). Theflifiteaf the points depicted on the
throw versus heave graph (Figure 13f) indicateardithetic shear dipping slightly
more than 63°. From the analysis of the displacempaths of material points, Dula
(1991) determined an antithetic shear with a dip@% somewhat large than that
calculated employing our method. The intersectibthe linear best-fit function with
the x-axis yields an extension of 6.6 centimetséghtly greater than the actual one (6
centimetres). Poblet and Bulnes (2005a) calculdie@mount of extension for the
same experiment employing the shear angle suggegtdla (1991) on different

horizons and their results varied from 6.2 to &6tonetres, also larger than the actual
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one. The application of the area-based procedwseitted above to this stage of the
experiment reinforces the observation that thereged shear dip is somewhat less than
the correct one and that the estimated extensisligistly larger than the actual one
(Figure 14b). Thus, the rollover modelled with tdaéculated parameters is comparable
to a certain extent to that of the clay experin{€igure 13d). We conclude that the
method proposed supplies better results for thestage of the experiment than for the

early stage, and that the shear dip is greatehélast stage than for the early stage.

The second example is a sequence of cross sedeoned from photographs
showing the evolution of a sand experiment run bygBr (2012) (Figure 15a). The slip
versus stratigraphic height graphs (Figure 15bysthat the displacement is
approximately constant along the stratigraphic sssion in the last stages, whereas the
heave tends to increase and the throw tends teawseistratigraphically downwards.
The linear best-fit functions for the throw verdiesive data offer better extension
values and shear dips for the last five stagesu(Eif5c). As a consequence, the general
geometry of the rollover folds modelled with théimsted parameters is not far from
that of the experimental folds, overlooking the arifaults the inclined shear model is
not able to predict (Figure 15d). One of the masti@pancies would be the tendency
of the theoretical model to generate slightly wilalf-grabens than the experimental
ones in the early stages. The graphs of slip vessasgraphic height (Figure 15b) point
out that our method could not produce good resoitthe initial stages of the
experiment. The slips show erratic behavioursHerfirst stages, growing and
shrinking a number of times along the stratigrajghiccession. In addition, the R-
squared parameter for the best-fit functions intkinew versus heave graphs for the
early stages of the experiment is very low (FigLie). In the more evolved stages, the

deduced shear is antithetic and dips about 508, avidint tendency to increase in the
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last stages (from 48° to 53° dip). We comparedtheunts of extension measured in
the experiment with those estimated using the gréphthe last stages. We took as
reference, assigning it an extension value equzagto, the third stage of the evolution
(the earliest one with a proper linear fit) (Figdfee). The differences between both
datasets are small, with discrepancies oscilldigtgveen 1% and 13% of the total
extension. The application of the area method de=tiabove to the Burger (2012)
experiment suggests that the estimated shear tBpsghan the correct one and that the
estimated extension is larger than the actual these differences being greater for the

early stages than for the last stages, similarthéoDula (1991) experiment.

The third example employed consists of a seriesads sections derived from
photographs of different stages of a sand expeticemnied out by Edwards (2013)
(Figure 16a). In the slips versus stratigraphightgraphs constructed for the different
stages of the experiment (Figure 16b), the heawreases stratigraphically downwards,
the displacement is approximately constant, andhioev decreases down section.
Although the path of the heave function is veryiknto that obtained in faults formed
by antithetic shear, the displacement does nobéxdmm asymptotic trajectory and the
heave does not decrease down section as in theadnetodels (Figures 4 and 5). The
value of the R-squared parameter points out tleatittow versus heave data exhibits a
slightly worse linear best-fit for the early stagdshe experiment than for the late ones
(Figure 16c). The extension obtained for each stédlee experiment (Figure 16c)
reaches a maximum value of almost 7 cm. The valtiegtension obtained are between
0.72 and 1.04 cm higher than the actual values.eBhimated shear is antithetic and its
dip, calculated using the graphs, ranges from at@23 to 60°, so that the higher the
amount of extension the higher the shear dip obthifihe estimated shear dips are

between 4° and 9° less than those derived frorartalysis of the particle trajectories
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imaged by Edwards (2013). As result, the rollowdd$ modelled with the calculated
parameters are not very different from those ofetkgeriment, overlooking the minor
faults the inclined shear model is not able to itgéFigure 16d). The area-based test
indicates that the estimated shear dips are lessthie correct ones and that the
estimated values of extension are slightly largantthe actual ones. But, contrary to
the experiments above these differences are slighthller for the early stages than for

the last stages of the experiment.

The field example analyzed consists of a photogtakén by Maher (2013) of a
Triassic normal fault that crops out along a difthe Edgeoya island, Svalbard Islands,
Norway (Figure 17a). In the slips versus stratigrafreight graph the heave increases
stratigraphically downwards, the throw decreasesndeection and the displacement
decreases in the upper stratigraphic horizonsraréases in the deepest horizons
(Figure 17b). The paths of these functions arelaimo those obtained in the theoretical
rollovers generated by antithetic shear. The lifesst-fit function plotted on the throw
versus heave data has a high R-squared paramé&ierindicating a good fit (Figure
17c), and the differences between the areas afgher and lower regions according to
the method proposed here are not very high. Thiigaie that the predicted shear dip is
slightly less than the correct one and that thieneséd extension is a bit greater than the
actual one. Therefore, the theoretically predi¢tedzons do not differ substantially
from the actual horizons (Figure 17a). The sheéaioed for this particular field
example is antithetic and dips around 49°, whetteagstimated extension is around

6100 units.
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6.1. Discussion

The analysis of a natural example and differearjess of sequential laboratory
experiments using the method based on fault shddlze area balancing technique
proposed here, points out that: a) the estimateafdihe antithetic shear increases as
the amount of extension increases (Figure 18afegalculated shear dip is usually
less than that obtained by other methods; c) tearsflips obtained for two experiments
(Dula, 1991 and Burger, 2012) are closer to thdsaioed by other methods as the
amount of extension increases, whereas it is ter etay round for another experiment
(Edwards, 2013); d) the extension value obtainediglly greater than the actual
value; e) the extension values obtained for twaeexrpents (Dula, 1991 and Burger,
2012) and the actual ones get closer as the ansbentension augments, whereas it
happens on the contrary in the case of anotheriexget (Edwards, 2013); and f) the
results, both for the shear dip and the extensabmey are more reliable in stages with
greater extension since R-squared for the be&itsitions in the throw versus heave

graphs is closer to 1 as the extension value etgréFigure 18b).

The fact that: a) the shear dip obtained usingrtbthod based on fault slips
presented in this paper is less than that obtdigemther methods that do not employ
the slips of horizons, and b) that the estimatedresion is greater than the actual values
suggests that the best-fit functions obtained éntkinow versus heave graphs possess a
gentler slope than the one they should supposedig,land therefore, they intersect
with the abscissas axes at higher values. Singebteened negative slope functions
(antithetic shear) for all the analyzed experimethiis could mean that the slips
undergone by the higher stratigraphic horizonslan@adly speaking, less than they
should be. Alternatively, this could also be expai assuming that the slip values of

the stratigraphically deeper horizons are highan tihey should be. These observations
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suggest that additional mechanisms different fremtical/inclined shear may have been

active as well.

Whereas rollover folds generated over normal fdulied to detachments are a
type of fault-bend folds, the phenomena descrilid/@ could be interpreted as a result
of an initial component of fault-propagation foldim the case of the Dula (1991)
experiment; this would cause that slip along that faould not follow the theoretical
pattern expected in a deformation environment dateshby vertical/inclined shear
(Figures 4 and 5). Thus, in stages with little agten when the fault is still
propagating, upper horizons, whose cut-off poinéscéose to the fault tip, could have
suffered a certain slip decrease towards the ujppértermination as a result of the
fault-propagation folding component accommodatetdth fault propagation and
folding. That would explain the low values obtairfedthe shear dip and its difference
from the dip obtained by other methods, the higler®sion values obtained with respect
to the actual extension and the worse resultdhiirtitial stages using the slips-based
method proposed here. This hypothesis is suppbstélde fact that in the initial stages
of some physical experiments of listric normal fausuch as in the experiment
displayed in Cloos (1968), a fault-propagation fiilst develops so that the master fault
offsets only the lower part of the stratigraphidegand propagates stratigraphically
upwards as extension increases (Figures 13 arma Qlbos, 1968). The structure ends
up becoming a classical rollover fold-type whennester fault is developed all along
the stratigraphic sequence (Figures 15 and 1600<s;11968). Comparable observations
have been documented in field examples of listoiorral faults. For instance, Uzkeda
(2013) shows a 3D model and geological sectionssac normal fault in which the
hangingwall beds close to the fault dip againand display a nice rollover geometry in

a region where the fault displacement is relativegh (Figure 4.9 B-B’ in Uzkeda,
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2013). In contrast, in a region where the displamans less the uppermost beds are
almost flat-lying whereas the lower beds dip agatims fault (Figures 4.9 A-A’ in
Uzkeda, 2013). The geometry of the hangingwall lwédkis particular fault, very
similar to that of the two stages of the Dula (19&4periment illustrated in figures13a
and 13d, could be explained assuming a compondattifpropagation folding during
the initial stages of fault development. Drag folgicould also be invoked as an
additional mechanism to explain the anomalies ofesein the fault slips which result
in lower shear dips and higher amounts of extensgtimations using the slips-based

method.

In the case of the Edwards (2013) experiment thevimlues of shear dip and the
high values of extension obtained using the sli@seld method, plus the fact that the
stages with higher extension supply worse resudtg lb@ the result of the activity of the
crestal collapse graben developed over the rollamécline. Thus, in the early stages of
the experiment, the crestal collapse graben isyhdeveloped. However, as extension
progresses the number of faults that belong te@itkstal collapse graben and the
displacement along them increases substantialgyu(Eil6a). The crestal collapse
graben faults offset only the upper part of thatgjraphic succession and die out at
depth. These faults accommodate part of the exterdithe experiment causing a
reduction of the displacement suffered by the uppst stratigraphic horizons along
the master fault. This would lead to a gentler slopthe best—fit function that fits the
throw versus heave data, and therefore, wouldtresidwer values of shear dip with
respect to the dip obtained by other methods agitehivalues of extension with respect
to the actual extension as well as worse resulthfolast stages of the experiment.

Crestal collapse grabens with similar geometrical inematical features have been
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documented in many physical experiments such aetbarried out by McClay and

coworkers (see references in the introduction sekti

Regarding the Burger (2012) experiment, it is uscighether the low values of
shear dip and high values of extension obtainedauwsed by the occurrence of a fault-
propagation folding component as in the Dula (19eriment or due to the crestal
collapse graben as in the Edwards (2013) experiméetfacts that: a) the crestal
collapse graben is developed from the very eadgest of the experiment and its degree
of development remains approximately constant éension increases, and b) that the
worse results were obtained for the early stagéiseoéxperiment suggest that the fault-

propagation folding component is a better explamati

In the sequential physical experiments analyzezlddduced shear dip seems to
increase as extension augments. This suggesthéhassumption of one homogeneous
vertical/inclined shear direction throughout théodmation process is not valid, at least
for these experiments, and that could be one ofgagons why the fit using the
proposed method is not as good as it would bealdsirHowever, the lower reliability
of the results obtained in the early stages wisipeet to the better reliability in the most
advanced stages does not allow us to assert timsfpmly. Unfortunately, we are
unable to check whether this observation is a@der feature of the sequential
physical experiments used or it takes place inrahaxamples as well because different

stages of evolution of a structure are unavailableture.

If the points exposed above are correct, then waldmot expect excellent
shear dips and amounts of extension derived franptbposed method because they
are averages of deformation fields resulting fraaraus mechanisms, perhaps shear

orientations different than vertical/inclined shesnd maybe shear dips that have varied
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599  over time. We have to keep in mind that we tryitéuinctions based on assumptions
600 such as fault-bend folding developed by verticalfired, homogeneous shear through
601 time and space to a series of data resulting frmrerthan one process. However, the

602 method can still be used as a guide to decipherthewasic assumptions deviate.

603 Unfortunately we do not know to what extent thelsgspcal experiments

604  emulate correctly natural structures, and therefehether the conclusions derived
605 from them can be extrapolated to field and subsaréxamples of normal faults that
606 emanate from a detachment. For instance, the @lyesiperiment run by Dula (1991)
607 includes a thin, flexible plastic sheet betweentthegingwall and the footwall/basal
608 plate. This film helps with the development of thgeriment because it possesses a
609  high slipping coefficient, and therefore, facilgatslip between fault blocks. According
610 to some authors (e.g., Hauge and Gray, 1996), faiwe analysis of physical

611  experiments developed using this particular expemntal design, which is an artifact

612 that may not occur in nature, may produce mislead@sults.

613

614 7. Conclusions

615 In theoretical models of normal faults emanatirggrfra detachment at depth

616  whose hangingwall consists of a rollover fold defed by vertical or inclined shear, a
617  pattern for the variation of the displacement altrgyfault, heave and throw has been
618 recognized. For the horizon located on the detachthe throw is zero, and the heave
619 and the fault displacement are equal, and equaktborizontal extension. The linear
620 best-fit of the data for several horizons plottedachrow versus heave graph supplies
621  quantitative information about the shear (charaatet dip) and the amount of extension

622  responsible for the rollover formation. The slopewuch function is the tangent of the
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shear dip (positive slope for synthetic, negataeantithetic and infinite for vertical

shear) and its intersection with the x-axis isd@heunt of extension.

By using data from the upper part of a stratigra@eiquence offset by a normal
fault, the proposed method would allow to estintagecharacter and dip of the shear, as
well as the amount of extension to produce theyaedirollover. In addition, for those
cases in which the complete geometry of the fauthown, an area-based method has
been presented that allows us to estimate wheikesitear dip and amount of extension
calculated are higher or lower than the correatesl Both the throw versus heave and
slips versus stratigraphic height graphs would Enedrognizing mechanisms
additional to vertical or inclined shear. If thatthe case, the graphs would not follow
the patterns deduced from the theoretical modéls dbservation is of major
importance when attempting to reconstruct, restoddor forward model structures
since the proposed tool supplies valuable inforomategarding the selection of the

most appropriate algorithms.

The proposed method is still valid when reversetreation of a normal fault
with the same shear dip takes place. If the ingar& partial the graphs permit to
obtain both the shear dip and the remnant exteraipresent-day. In the case of total
inversion, a certain amount of reverse slip woylgesar and the graphs would allow to
calculate the shear dip and the net contractiosediments pre-extension and post-
extension pre-inversion are preserved, it is pésstcalculate the shear dip, the

remnant extension, the contraction and, by addotl, lthe total extension.

The application of the proposed method to a naexample and different stages
of sequential physical experiments of rolloversied to normal listric faults, and

verification of the results using a method basedamparing areas, permits to extract
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the following conclusions: a) the shear dip obtdinsing the slips-based method are
minimum estimates, and b) the extension valuesitzkd are maximum estimates. In
those cases where the greater the amount of eatensdergone by the structures the
more accurate both the shear dip and amount ohgixie estimates, these points have
been explained assuming that the generation avweis include a certain component of
fault-propagation folding (and/or drag folding)the early stages of the experiments
whose effects ameliorate as cut-off points of law&in the hangingwall approach the
detachment. In those cases in which the betteltseme obtained for the early stages of
the experiment, these points have been relatdtetddvelopment of a crestal collapse
graben that becomes more active as extension psEgeln addition, the analysis of the
experiments shows that the shear dip is not unifdunmng the extensional process but
seems to increase as the extension progressdbesd observations led us to state that
we should not expect obtaining excellent shear digsamounts of extension using the
slips-based method proposed because these rasuftseaages of deformation fields
resulting from various processes, but the methatillauseful as a guide on checking
how the basic assumptions of rollover folds forrbgdrertical/inclined shear deviate in

each particular example analyzed.

8. Acknowledgements

The authors would like to acknowledge financialsup by research projects
CGL 2011-23628 (Desarrollo de fracturas and vesasiadas al plegamiento -
FRAVEPLE-) and CSD 2006-0041 (Geociencias en Ibestudios integrados de
topografia y evolucion 4D -TOPO-IBERIA-) funded thyerse Spanish Ministries. H.

Uzkeda thanks the support by the Spanish Ministiyducation via an FPU grant

28



671

672

673

674

partially funded by the European Social Fund. Welddike to thank the editor
Thomas Blenkinsop as well as the reviewers (Choisn@rs and an anonymous one) for

constructive comments which substantially improtreelmanuscript.

29



675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

REFERENCES

Barr, D., 1985. 3-D palinspastic restoration ofmal faults in the inner Moray Firth:
implication for extensional basin development. Eand Planetary Science

Letters 75, 191-203.

Bulnes, M., Poblet, J., 1999. Estimating the detsmtt depth in cross sections

involving detachment folds. Geological Magazine 1385-412.

Burger, R., 2012. Evolution of normal fault systethsing progressive deformation.
Teaching Structural Geology in the’2Tentury [Online]. Science Education
Resource Center at Carleton College. Available:
http://serc.carleton.edu/NAGTWorkshops/structurabdvities/3861.html

[Accessed 4 April 2014]

Chamberlin, R.T., 1910. The Appalachian folds ohttad Pennsylvania. Journal of

Geology 18, 228-251.

Chapman, T.J., Williams, G.D., 1984. Displacemeastathice methods in the analysis of
fold-thrust structures and linked-fault systemsirdal of the Geological Society

141, 121-128.

Cloos, E., 1968. Experimental analysis of Gulf Gdacture patterns. American

Association of Petroleum Geologists Bulletin 5204214,

Davison, 1., 1986. Listric normal fault profilesalculation using bed-length balance and

fault displacement. Journal of Structural Geolog2@-210.

Dula, W.F., 1991. Geometric models of listric norfiaallts and rollover folds.

American Association of Petroleum Geologists Bullés, 1609-1625.

30



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

Edwards, R., 2013. Scaled analogue modelling bydgtems. MSc Dissertation. Royal

Holloway, University of London. 113 p.

Ellis, P.G., McClay, K.R., 1988. Listric extensidfi@ult systems; results of analogue

model experiments. Basin Research 1, 55-70.

Groshong, R.H., 1989. Half-graben structures; lmdmodels of extensional fault-

bend folds. Geological Society of America Bulleti@l, 96-105.

Groshong, R.H., 1990. Unique determination of ndraat shape from hanging-wall
bed geometry in detached half grabens. EclogaeoGeak Helvetiae 83, 455-

471.

Groshong, R.H., 1994. Area balance, depth to detaoh and strain in extension.

Tectonics 13, 1488-1497.

Groshong, R.H., 1996. Construction and validatibextensional cross-sections using
lost area and strain, with application to the Ri@raben. In: Buchanan, P.G.,
Nieuwland, D.A. (Eds.), Modern developments in eal interpretation,

validation and modeling. Geological Society SpePiablications 99, 79-87.

Gwinn, V.E., 1970. Kinematic patterns and estimafdateral shortening. Valley and
Ridge and Great Valley Provinces, Central Appakaei South-Central
Pennsylvania. In: Fisher, G.W.; Pettijohn, F.J.e®Rel.C., Weaver, K.N. (Eds.),
Studies of Appalachian Geology: central and southéfiley, New York, 127-

146.

Hauge, T.A., Gray, G.G. 1996. A critique of techraq for modelling normal-fault and
rollover geometries. In: Buchanan, P.G., Nieuwldbds. (Eds.): Modern

developments in structural interpretation, validatand modelling. Geological

31



720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

Society Special Publication, 99, 89-97.

Henza, A.A., Withjack, M.O., Schlische, R.W., 20Narmal-fault development during
two phases of non-coaxial extension: An experimesttaly. Journal of

Structural Geology 32, 1656-1667.

Jackson, M., Galloway, W., 1984. Structural andodéonal styles of Gulf Coast
Tertiary continental margins: application to hydadaon exploration. American

Association of Petroleum Geologists EducationalrS@8eiNotes 25: 1-150.

Maher, H.D.Jr., 2013. Structures in extensionahtezs. Structural Geology Course
(GEOL 3300). [Online]. Available:
http://maps.unomaha.edu/maher/GEOL3300/week 1 4nit#anchor343867

[Accessed 3 April 2014]

Matos, R.M.D. de, 1993. Geometry of the hangind alabve a system of listric normal
faults — A numerical solution. American AssociatmfPetroleum Geologists

Bulletin 77, 1839-1859.

McClay, K.R., 1989. Physical models of structutgles during extension. In: Tankard,
A.J., Balkwill, H.R. (Eds.): Extensional Tectoni@sd Stratigraphy of the North
Atlantic Margins. American Association of Petrole@gologists Memoir 46,

95-110.

McClay, K.R., 1990a. Deformation mechanics in agaeomodels of extensional fault
systems. In: Knipe, R.J., Rutter, E.H. (Eds.): Defation mechanisms, rheology

and tectonics. Geological Society Special Publcei54, 445-453.

McClay, K.R., 1990b. Extensional fault systemsedimentary basins; a review of

analogue model studies. Marine and Petroleum Ggalpg06-233.

32



743  McClay, K.R., 1995. 2D and 3D analogue modelingxdensional fault structures;

744 templates for seismic interpretation. Petroleum<smmce 1, 163-178.

745  McClay, K.R., 1996. Recent advances in analogueetimgg] uses in section

746 interpretation and validation. In: Buchanan, PNBeuwland, D.A. (Eds.):
747 Modern developments in structural interpretatiadidation and modeling.
748 Geological Society Special Publications 99, 201:225

749  McClay, K.R., Ellis, P.G., 1987a. Analogue moddigxtensional fault geometries. In:
750 Coward, M.P.; Dewey, J.F., Hancock, P.L. (Eds.pht®ental extensional

751 tectonics. Geological Society Special Publicatid8s109-125.

752 McClay, K.R., Ellis, P.G., 1987b. Geometries ofemdion fault systems developed in

753 model experiments. Geology 15, 341-344.

754  McClay, K.R., Waltham, D.A., Dooley, T., Deeks, Mjllacy, C., 1995. Fault

755 reconstruction techniques. Fault Dynamics ProjéctrSCourse, 183-192.

756  Moretti, I., Colletta, B., Vially, R., 1988. Thedieal model of block rotation along

757 circular faults. Tectonophysics 153, 313-320.

758  Morris, A.P., Ferrill, D.A., 1999. Constant-thiclssedeformation above curved normal

759 faults. Journal of Structural Geology 21, 67-83.

760  Poblet, J., Bulnes, M., 2005ba Estimating extenaiwh depth to detachment in simple

761 rollover anticlines over listric normal faults. Dajos de Geologia 25, 85-100.

762  Poblet, J., Bulnes, M., 2005b. Fault-slip, bed-terand area variations in experimental
763 rollover anticlines over listric normal faults: inénce in extension and depth to

764 detachment estimations. Tectonophysics 396, 97-117.

33



765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

Poblet, J., Bulnes, M., 2007. Predicting straimggorward modelling of restored
cross-sections; application to rollover anticlioegr listric normal faults.

Journal of Structural Geology 29, 1960-1970.

Schlische, R.W., Withjack, M.O., Eisenstadt, GQ20An experimental study of the
secondary deformation produced by oblique-slip radffiaulting. American

Association of Petroleum Geologists Bulletin 865-&86.

Song, T., Cawood, P.A., 2001. Effects of subsidfanjts on the geometric
construction of listric normal fault systems. Anoam Association of Petroleum

Geologists Bulletin 85, 221-232.

Tearpock, D.J., Bischke, R.E., 1991. Applied sufas@ geological mapping. Prentice

Hall, New Jersey.

Uzkeda, H., 2013. Reconstruccion 3D y analisisuesitral de las rocas jurasicas de
Colunga-Tazones (Cuenca Asturiana, NO de la Pdaiitsérica). PhD thesis,

Universidad de Oviedo, 244 p.

Verrall, P., 1981. Structural interpretation wighpéication to North Sea problems. Joint

Association of Petroleum Exploration Courses (JAREOurse Notes 3.

Waltham, D., 1989. Finite difference modeling ohbagwall deformation. Journal of

Structural Geology 11, 433-437.

White, N.J., Jackson, J.A., McKenzie, D.P., 1986e Telationship between the
geometry of normal faults and that of the sedimmgnrityers in their hanging

walls. Journal of Structural Geology 8, 897-9009.

White, N.J., Yielding, G., 1991. Calculating nornfealiit geometries at depth: theory

34



787

788

789

790

791

792

793

794

795

796

797

and examples. In: Roberts, A.M., Yielding, G., ffnea, B. (Eds.), The

geometry of normal faults. Geological Society SpkePublications 56, 251-260.

Williams, G., Vann, |., 1987. The geometry of istnormal faults and deformation in

their hangingwalls. Journal of Structural Geology 89-795.

Xiao, H., Suppe, J., 1992. Origin of rollover. Anoan Association of Petroleum

Geologists Bulletin 76, 509-529.

Ziegler, P.A., 1982. Faulting and graben formatiowestern and central Europe. In:
Kent, P., Botts, M.H.P., McKenzie, D.P., Willian,A. (Eds.), Evolution of
sedimentary basins. Philosophical Transactione@Royal Society of London

Series A Mathematical and Physical Sciences 305,14B.

35



798  FIGURE CAPTIONS

799  Figure 1. Examples of listric normal faults recousted at depth through different

800 methods using the same rollover geometry as ingtat @) flexural slip; b)
801 constant displacement; c) antithetic shear of §9°d) vertical shear and e)
802 synthetic shear of 80° dip.

803  Figure 2. Examples of rollover folds generated waitiithetic shear of 80° dip in the
804 hangingwall of different shape faults: a) ramp;flgtsegments of constant dip,

805 c) arctangent function, d) spline, and e) cubicfiom.

806  Figure 3. a) Example of a rollover fold constructégth antithetic shear of 80° dip

807 illustrating the measurements (stratigraphic heigbave, throw and

808 displacement) that must be taken for each horitsetoby the fault. These

809 values are plotted on two graphs: b) fault slipafee throw and displacement)
810 versus stratigraphic height and c) throw versuséeghe position of the

811 reference level is arbitrary and it is used to meashe stratigraphic height of
812 each horizon. The different stratigraphic horizarsslabelled as a, b, ¢, d, e, f, g
813 and hin a), b) and c).

814  Figure 4. Graphs for rollover folds formed abovanalr ramp-flat normal faults created

815 with: a) vertical shear, b) antithetic shear of 8ifand c) synthetic shear of 80°
816 dip. The fault and rollover fold shape are showsida the grey rectangle. The
817 arbitrary reference level chosen is the higheatigtaphic horizon. The

818 measurements have been taken according to thedonec#iustrated in figure 3.

819  Figure 5. Graphs for rollover folds related torishormal faults created using the
820 arctangent function constructed with: a) vertidedar, b) antithetic shear of 80°

821 dip and c) synthetic shear of 80° dip. The fautt esllover fold shapes are
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shown inside the grey rectangle. The arbitraryregfee level chosen is the
highest stratigraphic horizon. The measurements baen taken according to

the procedure illustrated in figure 3.

Figure 6. Relation between the throw, heave anensxbn in rollovers related to listric

normal faults generated by: a) antithetic shear@grsynthetic shear. e: amount

of extension, h: heave, t: throw, atxdshear dip.

Figure 7. Graphs for rollover folds developed ablisteic normal faults constituted by

segments of constant dip constructed maintainimgtemt both bed lengths and
thicknesses, following the methods of: a) Morrig &errill (1999) and b)
Davison (1986). The fault and rollover fold shape shown inside the grey
rectangle. The arbitrary reference level choseéhdsighest stratigraphic
horizon. The measurements have been taken accdalihg procedure

illustrated in figure 3.

Figure 8. Calculation of the amount of extensiod tre shear angle using the throw

versus heave graphs. The fault and rollover folpshused are shown inside the
grey rectangle. The measurements have been takerdax to the procedure

illustrated in figure 3.

Figure 9. Area-based procedure to check whetherghes of shear dip and extension

estimated using the slips-based method propostusipaper are correct for
those cases in which the full geometry of the fauknown. a) Present-day,
deformed section and b) undeformed section. Pratmgntdeformed section
overlapped onto the undeformed section construgtddsynthetic shear of 80°
dip (c), vertical shear (d), and antithetic shea8@% dip (e) and 45° dip (f), and

comparison of the areas of the upper, triangulaezmd lower zone.
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Figure 10. Graphs for folds developed over lisiecmal faults that underwent reverse

reactivation greater than the initial extensionation: a) inversion by shear
with equal dip to that of extension (antithetic ahef 80° dip); b) inversion by
shear with a dip different to that of extensiontéesion with antithetic shear of
80° dip and contraction with antithetic shear df 6i); c) extension following
the flexural slip method of Davison (1986) and irs#en with inclined shear
(antithetic shear of 80° dip). The fault and roo¥old shape are shown inside
the grey rectangle. The arbitrary reference leliesen is the highest
stratigraphic horizon. The measurements have l@@mtaccording to the

procedure illustrated in figure 3.

Figure 11. Graphs for a fold developed over aiistormal fault including pre-

extension and syn-extension beds: a) slips vetsatsgsaphic height graph and
b) throw versus heave graph. The fault and rolldoter shape are shown in the
inside figure below the slips versus stratigragteght graph. The arbitrary
reference level chosen is the highest stratigrapbizon. The measurements

have been taken according to the procedure illgstra figure 3.

Figure 12. Graphs for a fold developed over aitistormal fault that underwent a

positive tectonic inversion including pre-extensisyn-extension, post-
extension pre-inversion, and syn-inversion bedslip$ versus stratigraphic
height graph, b) throw versus heave graph, c) thwensus heave graph for the
pre-extension horizons and d) throw versus heaaghgior the post-extension
pre-inversion horizons. The fault and rollover fglthpe are shown in the inset
figure below the slip versus stratigraphic heigtapdy. The arbitrary reference
level chosen is the highest stratigraphic horiddre measurements have been

taken according to the procedure illustrated inrgg3.
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Figure 13. Results obtained for photographs otthg experiment of figures 5d and 7a

in Dula (1991) consisting of a rollover developé&dee a listric normal fault. a)
and d) Line drawings of two different stages of éxperiment derived from
photographs, including the beds employed to coatsthe graphs and the
modelled upper horizon; b) and e) slip versusigtia@bhic height graphs for the
experiment depicted in a) and d) respectively; @rahd f) throw versus heave
graphs for the experiment depicted in a) and )aetsvely. The arbitrary
reference level chosen is the highest stratigraipbiizon. The measurements

have been taken according to the procedure illiestriaa figure 3.

Figure 14. Application of the area-based procetiutbe a) less evolved and to the b)

more evolved stages of the Dula (1991) experimEmt. areas of the lower
regions are greater than those of the upper regspesially for the less evolved
stage of the experiment, suggesting that the esgahehear dip is gentler than
the correct value and that the estimated extensitamger than the actual one.
The measurements have been taken according todbedure illustrated in

figure 3.

Figure 15. Results obtained for a series of phaiplgs from a sand experiment by

Burger (2012) consisting of a rollover developed\aba listric normal fault. a)
Line drawing of the experiment derived from the folgpaphs, b) slip versus
stratigraphic height graphs, c) throw versus hepgaphs, d) comparison
between the experimental upper horizons and theelgaldones, and e)
comparison between the extension increments aétperiment and the
modelled ones for the last five stages (takinglimel stage as reference). The
arbitrary reference level chosen is the higheatigtaphic horizon. The

measurements have been taken according to thedurec#ustrated in figure 3.
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Figure 16. Results obtained for a series of phaioigs from a sand experiment by

Edwards (2013) consisting of a rollover developedve a listric normal fault.
a) Line drawings of the experiment derived fromtplgoaphs, b) slip versus
stratigraphic height graphs, c) throw versus hegaphs, and d) comparison
between the experimental upper horizons and theshealdones. The arbitrary
reference level chosen is the highest stratigraipbiizon. The measurements

have been taken according to the procedure illiestriaa figure 3.

Figure 17. Results obtained for a photograph tdkelaher (2013) of a field example

of a rollover developed above a listric normal faa) Geological interpretation
of the photograph, including the beds employedtwstruct the graphs and the
modelled horizons; b) slip versus stratigraphighegraph, and c) throw versus
heave graph. The arbitrary reference level chos#émei highest stratigraphic
horizon. Since no scale is available in the ph@plmwe assigned arbitrary
units. The measurements have been taken accounldthg procedure illustrated

in figure 3.

Figure 18. Plots of a) the shear dip and b) thejiRxsed parameter obtained for the

different stages of the physical experiments aralym this study versus

extension.
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HIGHLIGHTS

-A method to estimate shear character and dip and amount of extension is
proposed.

-1t helps when reconstructing listric normal faults and associated structures.

-The effects of tectonic inversion and syntectonic sedimentation are considered.



