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ABSTRACT 18 

The reconstruction/restoration/modelling of normal faults (both listric and 19 

planar) emanating from a detachment at depth and their associated rollover folds, using 20 

the vertical or inclined shear method is widely utilized because its simplicity and the 21 

information it can provide. However, it has a rather serious issue derived from the 22 

uncertainty about the shear angle, the type of shear and the amount of extension that 23 

should be employed in each situation. Here we describe a new methodology that, using 24 

easily acquired input data, allows estimation of whether the shear was vertical, antithetic 25 

or synthetic and the values for both the shear dip and the amount of extension. These 26 

calculations rely on the use of graphs of throw versus heave for different horizons 27 

affected by the normal fault and the associated rollover, and are checked using an area-28 

based method which permits the determination of whether these values are correct. 29 

These graphs may be used as a predictive tool or as a guide to show how the 30 

assumptions deviate, such as distinguishing quickly whether other mechanisms apart 31 

from vertical/inclined shear took place. The effects of syn-extension sedimentation and 32 

reverse fault reactivation on the proposed method are also examined. The analysis of 33 

experimental and natural examples shows that the initiation of some rollovers with a 34 

component of fault-propagation and/or drag folding, and/or development of a crestal 35 

collapse graben cause the estimated shear dips to be smaller than the actual values and 36 

the amounts of extension to be greater. In addition, these analyses show that the shear 37 

dip may increase with increasing extension.  38 

 39 
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1. Introduction 40 

Normal faults emanating from detachments at depth are a type of structure 41 

widely represented in nature and, consequently, the subject of multiple studies. Many of 42 

these analyses are focused on developing techniques to reconstruct the faults and/or 43 

their associated rollover folds from the available data. Diverse methods to calculate the 44 

depth of the detachment from which the fault would emanate have been developed: a) 45 

those based on the lost area rule (adaptation of the Chamberlin (1910) method for 46 

normal faults); b) those that rely on the rotation of rigid blocks along circular faults 47 

(Moretti et al., 1988); c) lost-area diagrams (Groshong, 1994, 1996); and d) graphs of 48 

best linear fit of detachment depths (Bulnes and Poblet, 1999) adapted to normal faults. 49 

There are also techniques allowing the determination of the complete shape of the fault 50 

at depth, such as: a) those based on vertical shear, known as the chevron construction or 51 

constant heave (Verrall, 1981), or on inclined shear both synthetic and antithetic (White 52 

et al., 1986; Dula, 1991), including subsidiary faults (Song and Cawood, 2001), with 53 

layer-parallel strain (Groshong, 1990) or with fault parallel shear (Williams and Vann, 54 

1987); b) those considering constant displacement along the fault (Williams and Vann, 55 

1987); and c) constructions founded on flexural slip (Davison, 1986) or constant 56 

thickness beds (Morris and Ferrill, 1999) (Figure 1). Most of these methods permit also 57 

to model the rollover resulting from the fault activity. This construction is also feasible 58 

from other techniques such as: a) the one for circular faults and rigid blocks (Moretti et 59 

al., 1988), b) models based on fault-bend folds (Groshong, 1989; Xiao and Suppe, 60 

1992), c) finite difference assuming uncompressible flow (Waltham, 1989), and d) 61 

hangingwall collapse following the Coulomb criteria comparable to simple shear 62 

(Tearpock and Bischke, 1991). The experimental models generated in the laboratory 63 

have also substantially helped the understanding of normal faults because they allow 64 
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assessment of parameters such as amount of extension, fault shape, etc. (McClay and 65 

Ellis, 1987a, 1987b; Ellis and McClay, 1988; McClay, 1989, 1990a, 1990b, 1995, 1996; 66 

Schlische et al., 2002 and Henza et al., 2010 amongst others). One of the main issues 67 

derived from the plethora of available procedures is that the resulting reconstructions 68 

obtained may vary enormously depending on the technique employed (Figure 1). Thus, 69 

the selection of one or another method is of great importance. 70 

The methods based on vertical/inclined shear are the most utilized. Despite the 71 

simplification they imply about the particle motion, they make predictions on the fault 72 

shape and detachment depth (e.g., Verrall, 1981; White et al., 1986), the rollover 73 

morphology (e.g., Matos, 1993), the algorithms to forward model and/or restore the 74 

structures and the deformation undergone (e.g., Matos, 1993; Poblet and Bulnes, 2007) 75 

easily. Furthermore, they have been proved to be suitable methods for modelling both 76 

natural (Groshong, 1990; White and Yielding, 1991; Matos, 1993; Poblet and Bulnes, 77 

2005a) and experimental examples (Groshong, 1990; Poblet and Bulnes, 2005a, 2005b). 78 

Consequently, the vertical/inclined shear methods are considered to be a good 79 

approximation of the behaviour of the hangingwall of normal faults during extension 80 

(McClay et al., 1995). However, the uncertainty about the type of shear and the shear 81 

angle that should be chosen in each case constitutes a crucial disadvantage for their 82 

application, as different angles result in dissimilar results (Figures 1c, 1d and 1e). There 83 

are diverse approaches to estimate the shear angle and its character (synthetic, vertical 84 

or antithetic): a) shear parallel to the rollover axial traces (Xiao and Suppe, 1992), b) 85 

shear parallel to the subsidiary faults associated with the main one (White et al., 1986; 86 

Xiao and Suppe, 1992), c) the trial and error method (White and Yielding, 1991), and d) 87 

quantitative methods that require knowing the amount of layer-parallel strain and the 88 

rollover general dip (Groshong, 1990). 89 
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The horizontal extension is another parameter that controls greatly the results. 90 

Some of the methods to estimate it from the available data were proposed originally for 91 

contraction, but were adapted to extensional settings: a) comparison between unfolded 92 

bed length and structure width (Gwinn, 1970), b) maximum displacement along the 93 

fault (Chapman and Williams, 1984), c) fault heave (Ziegler, 1982; Jackson and 94 

Galloway, 1984; Barr, 1985), d) mean between the extension estimated using bed length 95 

and the maximum fault displacement (Williams and Vann, 1987), e) rollover axial 96 

traces separation (Xiao and Suppe, 1992), and f) slope of the lost-area best-fit function 97 

(Groshong, 1994, 1996). Dissimilar extension values are obtained depending on the 98 

technique employed (Poblet and Bulnes, 2005a, 2005b), which has important 99 

consequences for the predictions that can be made. 100 

We present a new method that provides estimation of the shear properties (dip 101 

and character) and of the amount of extension to model normal faults. The main 102 

difference with previous procedures is that it is able to estimate both parameters using 103 

simply a portion of the main fault offsetting a minimum of, at least theoretically, two 104 

horizons, although to use more horizons is recommended. The method only requires 105 

simple measurements on a geological section across a fault, projecting them on a graph 106 

and finding a best-fit function for the plotted data. Theoretically, this method could be 107 

used as a predictive tool. However, its application to experimental and natural examples 108 

suggests that it supplies minimum shear dips and maximum amounts of extension that 109 

get closer to actual values for faults with high amounts of extension. Checking the 110 

results using a new area-based method, which involves comparison between the area in 111 

the present-day, deformed section, and that in an undeformed section, supports this 112 

conclusion. In addition, the method presented can help in determining how much 113 
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studied structures deviate from the expected behaviour if they were solely the result of 114 

vertical/inclined shear with a uniform dip. 115 

 116 

2. Analysis of the heave, throw and displacement in normal faults with associated 117 

rollovers 118 

One of the aims of this work is to find a procedure that allows the determination 119 

of: 1) the shear dip, 2) the shear character (antithetic, vertical or synthetic) and 3) the 120 

amount of extension taking as input parameters the heave, throw and displacement of 121 

several horizons along a fault. This makes of capital importance a thorough analysis of 122 

how the fault slip components vary along successions offset by normal faults emanating 123 

from a detachment. In any normal fault the horizon located at the detachment level has a 124 

null throw, which implies that the heave and the displacement are the same and, 125 

assuming no strain within the hangingwall, equal to the extension. To visualize how 126 

these parameters vary for the rest of the horizons, theoretical rollover were created using 127 

the models of vertical shear (Verrall, 1981), inclined shear (White et al, 1986), flexural 128 

slip (Davison, 1986) and constant thickness beds (Morris and Ferrill, 1999). They were 129 

built using different values of extension and fault shapes (ramp-flat, segmented, cubic 130 

or arctangent functions, splines) (Figure 2). The models created are based on a series of 131 

assumptions: a) the hangingwall is deformed as a rollover (fault-bend folding) 132 

according to the inclined or vertical shear mechanisms and combinations of mechanisms 133 

are not considered, b) the shear dip is constant over time and all along the whole 134 

hangingwall, c) the geometry of the fault and the footwall beds does not vary along the 135 

process, and d) compaction is not considered. In this paper we present only the most 136 

significant cases analyzed. For each geological section we measured the heave, throw, 137 
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displacement, and stratigraphic height with respect to an arbitrary reference level of the 138 

horizons offset by the fault (Figure 3a). Subsequently, we plotted the fault slips of each 139 

horizon versus its stratigraphic height on one graph (Figure 3b), and its throw versus its 140 

heave on another graph (Figure 3c). The later graphs are the foundation of the proposed 141 

methodology as it is more extensively explained in a section below. 142 

The simplest case is a planar fault formed by a flat and a constant dip ramp. The 143 

values of heave, throw and displacement for the different horizons, plotted against their 144 

stratigraphic height, are constant for the horizons whose hangingwall cut-off points lay 145 

on the ramp (upper graphs in figure 4). The situation changes for those horizons whose 146 

cut-off points lay directly on the detachment. Irrespective of the type of shear and shear 147 

dip, displacement and throw always decrease stratigraphically downwards, whereas the 148 

behaviour of the heave depends on the shear angle applied to generate the rollover. With 149 

vertical shear (Figure 4a) the heave is constant along the whole stratigraphic succession; 150 

antithetic shear (Figure 4b) implies an increase of heave when moving towards deeper 151 

stratigraphic horizons; and synthetic shear (Figure 4c) shows a decrease of heave values 152 

stratigraphically downwards. In the throw versus heave graphs the points of horizons 153 

whose cut-offs are located on the ramp are superposed, since they all share the same 154 

values for heave and throw (lower graphs in figure 4). On the contrary, the points 155 

representing the horizons whose cut-off points lay on the detachment follow a straight 156 

line that may be vertical (vertical shear) or inclined (antithetic and synthetic shear). The 157 

throw decreases as heave increases with antithetic shear (Figure 4b), whereas 158 

increments of throw imply increases of heave with synthetic shear (Figure 4c). 159 

Similar graphs were generated for faults with more complex geometries. For 160 

example, we used listric faults built with the arctangent function (Figure 5). Throw and 161 

displacement diminish towards deeper stratigraphic levels in rollover constructed by 162 
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vertical shear (upper graph in figure 5a). They show a continuous, smooth variation, 163 

which seems to depend on the fault geometry. Though, the general tendency (i.e. 164 

stratigraphically downwards decrease) is the same as in the ramp-flat fault. The heave 165 

has the same value for each and every horizon that is equal to the extension. It is smaller 166 

than displacement until reaching the detachment horizon where they are equal and 167 

throw is zero. The points representing the heave are located along the following 168 

function: 169 

 x = e (1), 170 

where e is the extension. In addition, the curve depicting the displacement along the 171 

fault tends to be asymptotic to the straight line that fits the heave data in the horizons 172 

close to the detachment. Irrespective of the fault shape and amount of extension, the 173 

graphs of throw versus heave (lower graphs in figures 4a and 5a) are virtually identical 174 

(all the horizons have the same heave). This means that all the points are situated along 175 

a vertical straight line that responds to Eq. (1). 176 

For rollover folds constructed using inclined shear and the same fault shape as 177 

above, the functions of throw and displacement versus their stratigraphic height (upper 178 

graphs in figures 5b and 5c) are analogous to those of vertical shear. Both the 179 

displacement and the throw decrease towards the detachment. Nevertheless, contrary to 180 

what happened with vertical shear, the heave varies along the stratigraphic succession 181 

and its variation allows us to recognise whether the shear is antithetic or synthetic and 182 

its dip. Antithetic shears imply a heave increment stratigraphically downwards (upper 183 

graph in figure 5b), whereas synthetic shears mean a heave decreasing down section 184 

(upper graph in figure 5c). The inclination of the best-fit line for the heave data depends 185 

on the shear dip. Shear dips close to 90º will be reflected in almost vertical straight 186 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 9 

 

lines, whereas gentler shear dip values will result in functions of greater curvatures and 187 

lesser slopes. As with the vertical shear, the displacement and heave curves tend to be 188 

asymptotic when approaching the detachment. In the graphs of throw versus heave 189 

(lower graphs in figures 5b and 5c) the points representing the different horizons may 190 

be fitted by the following linear function: 191 

 y = m·x+n, (2) 192 

where m: 193 

 m = tan(α) (3), 194 

α being the shear angle measured respect to the horizontal (i.e., the shear dip), and m < 195 

0 for antithetic shears (lower graph in figure 5b) and m > 0 for synthetic ones (lower 196 

graph in figure 5c). The intersection with the abscissae axis: 197 

 x = -n/m (4), 198 

is the value of the extension, equal to the displacement of the horizon along the 199 

detachment. The explanation of this relation is shown in figure 6. In the case of 200 

antithetic shear, the larger the throw the smaller the heave (Figure 6a), because 201 

 h = e – t·tan(α) (5), 202 

where h is the heave, e is the extension, α is the shear dip and t is the throw. In synthetic 203 

shear (Figure 6b) greater throws lead to larger heaves, 204 

 h = e + t·tan(α) (6). 205 

The parameter that relates both values is the shear dip. From the expressions above we 206 

can deduce that the heave equals the extension when the throw is zero, i.e. at the 207 

detachment. 208 
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The method presented in the next section is not thought to be applied to rollovers 209 

built by flexural slip, in which bed thickness and lengths are maintained. Nevertheless, 210 

the analysis of the resulting graphs for these types of folds is interesting due to the 211 

information they may supply. We elaborated models of rollovers developed over listric 212 

normal faults formed by segments of constant dip following the method of Morris and 213 

Ferrill (1999) and others using the method of Davison (1986). In the graphs derived 214 

from the analysis of Morris and Ferrill (1999) structures, both the displacement along 215 

the fault and the throw tend to diminish when descending in the stratigraphic succession 216 

(upper graph in figure 7a). This variation is not continuous but shows steps as result of 217 

the segmented fault geometry. The heave behaves differently; it does not show a 218 

consistent trajectory, because, at least in the examples built, it increases downwards in 219 

the upper part of the stratigraphic succession and decreases downwards, broadly, in the 220 

lower one (upper graph in figure 7a). The behaviour of the throw versus heave function 221 

in the folds constructed using the Morris and Ferrill (1999) method would be equivalent 222 

to a variation in the shear character along the stratigraphic succession (lower graph in 223 

figure 7a), being comparable to antithetic (upper part of the graph) and synthetic (lower 224 

part). In the graphs obtained for the structures constructed following the method of 225 

Davison (1986), both the throw and displacement tend to decrease when moving down 226 

through the stratigraphic succession (upper graph in figure 7b). The heave takes values 227 

approximately constant in the upper part of the stratigraphic succession, but downwards 228 

it diminishes initially to grow at deeper levels. The throw versus heave function (lower 229 

graph in figure 7b) shows three different regions, an upper one in which heave is more 230 

or less invariable (as if vertical shear acted), a middle one where it decreases 231 

downwards (comparable to synthetic shear) and a lower one in which it increases 232 

downwards (as when antithetic shear acts).  233 
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 234 

3. Shear and extension determination via graphs and checking through area 235 

balancing 236 

In the graphs of slip versus stratigraphic height we could not find a universal 237 

best-fit function which allowed, from the available data, to extrapolate the function and 238 

obtain parameters as, for instance, the detachment depth. However, the evolution of the 239 

heave permits to recognize if vertical or inclined shear has acted, giving, in addition, 240 

qualitative information on the shear dip (the smaller the slope of the heave function the 241 

gentler the shear dip) and its synthetic or antithetic character (heave decreases down 242 

section with synthetic shear and increases with antithetic shear). These graphs may also 243 

help to find out whether the main mechanism responsible for the structure formation is 244 

different from vertical or inclined shear. In listric normal faults, if vertical or inclined 245 

shear acted the throw should decrease down section, together with the displacement 246 

(except for the horizons close to the detachment in which they may be constant or even 247 

increase slightly). Heave may increase, be constant or decrease (only one of the three 248 

options along the whole stratigraphic sequence) (Figure 5). Conversely, in ramp-flat 249 

normal faults the three parameters should remain constant except for the horizons lying 250 

directly on the detachment (Figure 4). If these premises are not met it is probable that a 251 

different mechanism has acted, alone or in conjunction with vertical/inclined shear. 252 

Despite that a graph derived from field, subsurface or experimental data exhibits similar 253 

characteristics to those described above, it does not ensure that vertical or inclined shear 254 

has really acted, as other mechanisms may provide similar results, at least along certain 255 

portions of the stratigraphic succession (upper graph of figure 7a). 256 
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Throw versus heave graphs do offer quantitative information. The arctangent of 257 

the slope of the best-fit linear function would be the shear dip, indicating also its 258 

vertical (infinite slope), antithetic (negative slope) or synthetic (positive slope) character 259 

(Figure 8). The amount of extension would be the intersection between the function and 260 

the x-axis (Figure 8), i.e. the heave value when the throw is zero. Once this information 261 

has been obtained, well-known techniques mentioned in the introduction section may be 262 

employed to reconstruct the geometry of the fault at depth from the rollover, or vice 263 

versa, to calculate the detachment depth, to choose the best restoration and/or forward 264 

modelling algorithm, and/or to estimate the strain. 265 

The application of this procedure to rollover folds formed by mechanisms 266 

different from vertical or inclined shear will result in graphs of throw versus heave that 267 

cannot be fitted adequately by a linear function. In such case the structure should not be 268 

modelled employing vertical or inclined shear solely and a different mechanism or 269 

combinations of mechanisms must be invoked to explain its origin. 270 

For those examples of structures in which the full geometry of the fault is 271 

available, the results can be checked using an area-based test that assumes plane strain. 272 

This procedure we propose consists of overlapping the present-day, deformed section 273 

(Figure 9a), on top of a theoretical, perfect undeformed section (Figure 9b) in such a 274 

way that the horizontal distance between the fault in the deformed section and that in 275 

the undeformed section is the extension value estimated (Figures 9c, 9d, 9e and 9f). 276 

This allows to recognize: 1) an approximately triangular region in the upper part of the 277 

overlapped sections (in dark grey in figures 9c, 9d, 9e and 9f) and 2) another region in 278 

the lower part of the overlapped sections (in light grey in figures 9c, 9d, 9e and 9f). If 279 

the area of these two regions is identical (Figure 9e), the application of the estimated 280 

shear to the undeformed horizons would lead to the formation of the rollover observed 281 
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in the present-day, deformed section. This means that the values of shear dip and 282 

extension, estimated using the method proposed in this paper, are correct. That the area 283 

of the upper region is smaller than the area of the lower region (Figure 9f), would imply 284 

that the shear type deduced is correct but the estimated dip is less than the actual one 285 

and the estimated extension exceeds the actual one. In this case, a forward model of a 286 

rollover fold using the calculated values and the undeformed section as input data would 287 

not correctly simulate the structure in the present-day section. When the area of the 288 

upper, triangular region is greater than the area of the lower region, it means that the 289 

estimated parameters are not correct either (Figures 9c and 9d). This phenomenon 290 

occurs when the shear type deduced is incorrect or when it is correct but the estimated 291 

dip is larger than the actual value and the amount of extension is less than the actual 292 

one. As before, a forward model created with these values would not reproduce 293 

correctly the deformed section. The larger the difference between the area of the upper, 294 

triangular zone and that of the lower zone, the more erroneous the shear dip and 295 

extension values estimated. The implementation of this area-based verification method 296 

may allow to determine whether the values obtained using the slips-based method 297 

proposed in this paper are correct, and to constrain to some extent the range of correct 298 

values of shear dip and extension usually influenced by the erratic behaviour of the slips 299 

functions obtained. 300 

 301 

4. Effects of tectonic inversion 302 

The simplest case is when a normal fault developed by vertical or inclined shear 303 

is reactivated with a reverse sense of movement and with the same shear angle as that 304 

employed in the extensional event. In this case, the resulting graphs should be equal in 305 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 14 

 

shape to those obtained for normal faults without reverse reactivation (Figures 4 and 5). 306 

The reason is that the extensional process is partially, or totally, reverted. If the 307 

inversion is partial, the graphs allow to calculate the shear dip and the remnant 308 

extension after the contraction. If, on the contrary, the contraction exceeds the 309 

extension, so that horizons exhibit reverse fault displacements (Figure 10), the throw 310 

versus heave graph would be slightly different. The shear dip will still be the arctangent 311 

of the slope of the function, but now there will be no horizon with throw equal to zero 312 

(lower graph in figure 10a). However, the intersection of the best-fit function with the x-313 

axis represents the value of the net contraction, i.e. difference between contraction and 314 

previous extension (about 5.60 units in the case of the example in figure 10a). These 315 

graphs are equal to those derived from fault-bend folds developed over thrusts or 316 

reverse faults in a purely compressive setting constructed using vertical/inclined shear. 317 

In the graphs of slips versus stratigraphic height the heave increases stratigraphically 318 

downwards, whereas the throw and the displacement diminish (upper graph in figure 319 

10a). 320 

Another option is that the reactivation is produced by vertical or inclined shear 321 

but with a shear dip different to that of the extension. The resulting graphs for a total 322 

inversion situation (Figure 10b) show a more erratic behaviour than those discussed 323 

above. For example, the throw does not decrease consistently along the stratigraphic 324 

sequence but it increases its value in some zones and diminishes in others. In the graph 325 

of throw versus heave the points are not aligned, as would be expected if the shear dip 326 

had remained constant during extension and contraction. This prevents the use of the 327 

method proposed here for such situations. 328 

The graphs in figure 10c correspond to an extensional rollover formed according 329 

to the method of Davison (1986) developed on a normal fault subsequently reactivated 330 
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using inclined shear until reaching total inversion. As expected, these graphs do not 331 

permit any estimation about the shear during the contraction or the amount of 332 

contraction because of the complex functions obtained. 333 

 334 

5. Effects of syntectonic sedimentation 335 

To check the possible incidences caused by sedimentation simultaneous to the 336 

fault activity we created two models, a growth normal fault with sedimentation during 337 

extension including pre-extension and syn-extension beds (Figure 11) and a growth 338 

normal fault with partial inversion in which pre-extension, syn-extension, post-339 

extension pre-inversion, and syn-inversion beds were included (Figure 12). 340 

In the fault slips versus stratigraphic height graph constructed for the growth 341 

normal fault (Figure 11a) two different tectono-stratigraphic units can be identified. The 342 

parameters of the lower unit, which corresponds to the pre-extension horizons, show the 343 

typical trajectory described above for rollover folds constructed with antithetic shear. 344 

On the contrary, the fault slips for the syn-extension horizons decrease stratigraphically 345 

upwards towards the top of the succession. The same tectono-stratigraphic units can be 346 

individualized in the throw versus heave graph (Figure 11b). The points corresponding 347 

to the pre-extension horizons follow a straight line whose slope indicates the shear dip 348 

used to create the rollover fold. In contrast, the syn-extension horizons do not exhibit a 349 

rectilinear trajectory, but they follow a curve. These horizons are not useful to 350 

determine the shear or the amount of extension using the method presented here. Thus, 351 

we conclude that any estimation should be exclusively performed using the pre-352 

extension horizons. 353 
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In figure 12 a model of a growth normal fault, with subsequent inversion and the 354 

same shear dip and dip sense for both the extensional and contractional events, has been 355 

analyzed. The reverse slips in the graphs in figure 12 have been depicted as negative. In 356 

the slip versus stratigraphic height graph (Figure 12a) four different zones may be 357 

identified and used to separate four tectono-stratigraphic units. The pre-extension 358 

horizons exhibit the behaviour previously observed (Figures 4 and 5) when no 359 

syntectonic sedimentation occurred. In a graph of throw versus heave for only the pre-360 

extension horizons (Figure 12c) we can calculate the shear dip, its character and the 361 

remnant extension after the inversion (intersection of the best-fit function with the x-362 

axis). The boundary between the pre-extension and the syn-extension beds would 363 

correspond to the point that displays the greatest normal displacement along the fault 364 

(Figure 12a), or that after which the points of the throw versus heave graph (Figure 12b) 365 

depart from a rectilinear trajectory. Stratigraphically below the null point, the situation 366 

is the same as one can expect in a growth normal fault (Figure 11). The points in the 367 

throw versus heave graph representing the syn-extension horizons cannot be fit by a 368 

linear function since they show a curvilinear trajectory (Figure 12b). These horizons are 369 

useful for calculating neither the shear dip nor the amount of extension. These beds are 370 

overlain by layers deposited during a period of tectonic quiescence after the extension 371 

and prior to the inversion event. The absolute value of heave decreases stratigraphically 372 

upwards within these horizons, whereas the absolute values of throw and displacement 373 

increase (Figure 12a). In a throw versus heave graph for these horizons the points fall 374 

onto a straight line whose slope supplies information about the shear dip and its 375 

character (Figure 12d). The intersection between this function and the x-axis would 376 

indicate the amount of contraction (negative value). In the upper part of the stratigraphic 377 

sequence, the syn-inversion beds show a progressive loss of displacement, becoming 378 
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null for the horizon deposited at present-day (Figures 12a and 12b). The points 379 

representing these horizons in the graphs seem to follow a straight line, however, this is 380 

probably because they have been transported along a constant dip segment of the fault. 381 

These syn-tectonic horizons should not be employed to calculate the shear angle, its 382 

character or the amount of contraction using the methodology described here. 383 

According to the results obtained from figure 10b, if the contraction were 384 

produced through vertical or inclined shear whose dip were different to that of the shear 385 

during the extensional event, only data for the compressive stage (shear dip and 386 

character and amount of contraction) could be obtained utilizing the post-extension pre-387 

inversion horizons. 388 

 389 

6. Application to experimental and natural examples 390 

The possible applicability of the method proposed in this study has been tested 391 

using experimental and natural examples of listric normal faults. We have chosen 392 

sequential physical experiments in order to compare the results obtained to different 393 

temporal stages of development of the same structure. 394 

The first example corresponds to a clay experiment presented in Dula (1991). 395 

We used two sections constructed by the author (Figures 13a and 13d) derived from two 396 

photographs of different stages of the experiment (Figures 5d and 7a of Dula, 1991). In 397 

the graph of slips versus stratigraphic height obtained for the less extension stage 398 

(Figure 13a) the throw decreases slightly with depth, whereas the heave and the 399 

displacement tend to grow slowly with depth (Figure 13b). The fact that the increase in 400 

the displacement is slightly greater in the stratigraphically lowest horizon (this horizon 401 

practically rests on the detachment) might be indicative of antithetic shear according to 402 
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the theoretical models studied above. According to the linear best-fit of the throw versus 403 

heave data (Figure 13c) the shear obtained is antithetic and dips 25º, notably smaller 404 

than that proposed by Dula (1991) estimated using the particle paths, whereas the 405 

extension is larger than the actual one (3.9 centimetres versus 2 centimetres). The 406 

extension calculated by Poblet and Bulnes (2005a) for this stage of the experiment using 407 

the shear angle suggested by Dula (1991) on different horizons ranges from 1.6 to 2.3 408 

centimetres. The application of the area method presented above to this stage of the 409 

experiment also indicates that the estimated shear dip is substantially less than the 410 

correct one and that the estimated extension is larger than the actual one (Figure 14a). 411 

As a consequence, the model generated with these parameters fails to reproduce 412 

correctly the original shape of the clay experiment (Figure 13a). In the graph of slip 413 

versus stratigraphic height for the experimental stage with greater extension (Figure 414 

13d) the displacement along the fault is pretty constant, whereas the heave grows with 415 

depth and the throw diminishes in a pronounced manner (Figure 13e). The constant 416 

displacement is apparently consistent with the theoretical models in which the horizons 417 

lying close to the detachment exhibit constant displacements when vertical or steeply 418 

dipping shear operates (Figures 4 and 5). The linear fit of the points depicted on the 419 

throw versus heave graph (Figure 13f) indicates an antithetic shear dipping slightly 420 

more than 63º. From the analysis of the displacement paths of material points, Dula 421 

(1991) determined an antithetic shear with a dip of 70º, somewhat large than that 422 

calculated employing our method. The intersection of the linear best-fit function with 423 

the x-axis yields an extension of 6.6 centimetres, slightly greater than the actual one (6 424 

centimetres). Poblet and Bulnes (2005a) calculated the amount of extension for the 425 

same experiment employing the shear angle suggested by Dula (1991) on different 426 

horizons and their results varied from 6.2 to 8.0 centimetres, also larger than the actual 427 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 19 

 

one. The application of the area-based procedure described above to this stage of the 428 

experiment reinforces the observation that the estimated shear dip is somewhat less than 429 

the correct one and that the estimated extension is slightly larger than the actual one 430 

(Figure 14b). Thus, the rollover modelled with the calculated parameters is comparable 431 

to a certain extent to that of the clay experiment (Figure 13d). We conclude that the 432 

method proposed supplies better results for the last stage of the experiment than for the 433 

early stage, and that the shear dip is greater for the last stage than for the early stage. 434 

The second example is a sequence of cross sections derived from photographs 435 

showing the evolution of a sand experiment run by Burger (2012) (Figure 15a). The slip 436 

versus stratigraphic height graphs (Figure 15b) show that the displacement is 437 

approximately constant along the stratigraphic succession in the last stages, whereas the 438 

heave tends to increase and the throw tends to decrease stratigraphically downwards. 439 

The linear best-fit functions for the throw versus heave data offer better extension 440 

values and shear dips for the last five stages (Figure 15c). As a consequence, the general 441 

geometry of the rollover folds modelled with the estimated parameters is not far from 442 

that of the experimental folds, overlooking the minor faults the inclined shear model is 443 

not able to predict (Figure 15d). One of the main discrepancies would be the tendency 444 

of the theoretical model to generate slightly wider half-grabens than the experimental 445 

ones in the early stages. The graphs of slip versus stratigraphic height (Figure 15b) point 446 

out that our method could not produce good results for the initial stages of the 447 

experiment. The slips show erratic behaviours for the first stages, growing and 448 

shrinking a number of times along the stratigraphic succession. In addition, the R-449 

squared parameter for the best-fit functions in the throw versus heave graphs for the 450 

early stages of the experiment is very low (Figure 15c). In the more evolved stages, the 451 

deduced shear is antithetic and dips about 50º, with a faint tendency to increase in the 452 
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last stages (from 48º to 53º dip). We compared the amounts of extension measured in 453 

the experiment with those estimated using the graphs for the last stages. We took as 454 

reference, assigning it an extension value equal to zero, the third stage of the evolution 455 

(the earliest one with a proper linear fit) (Figure 15e). The differences between both 456 

datasets are small, with discrepancies oscillating between 1% and 13% of the total 457 

extension. The application of the area method described above to the Burger (2012) 458 

experiment suggests that the estimated shear dip is less than the correct one and that the 459 

estimated extension is larger than the actual one, these differences being greater for the 460 

early stages than for the last stages, similarly to the Dula (1991) experiment. 461 

The third example employed consists of a series of cross sections derived from 462 

photographs of different stages of a sand experiment carried out by Edwards (2013) 463 

(Figure 16a). In the slips versus stratigraphic height graphs constructed for the different 464 

stages of the experiment (Figure 16b), the heave increases stratigraphically downwards, 465 

the displacement is approximately constant, and the throw decreases down section. 466 

Although the path of the heave function is very similar to that obtained in faults formed 467 

by antithetic shear, the displacement does not exhibit an asymptotic trajectory and the 468 

heave does not decrease down section as in theoretical models (Figures 4 and 5). The 469 

value of the R-squared parameter points out that the throw versus heave data exhibits a 470 

slightly worse linear best-fit for the early stages of the experiment than for the late ones 471 

(Figure 16c). The extension obtained for each stage of the experiment (Figure 16c) 472 

reaches a maximum value of almost 7 cm. The values of extension obtained are between 473 

0.72 and 1.04 cm higher than the actual values. The estimated shear is antithetic and its 474 

dip, calculated using the graphs, ranges from around 42º to 60º, so that the higher the 475 

amount of extension the higher the shear dip obtained. The estimated shear dips are 476 

between 4º and 9º less than those derived from the analysis of the particle trajectories 477 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 21 

 

imaged by Edwards (2013). As result, the rollover folds modelled with the calculated 478 

parameters are not very different from those of the experiment, overlooking the minor 479 

faults the inclined shear model is not able to predict (Figure 16d). The area-based test 480 

indicates that the estimated shear dips are less than the correct ones and that the 481 

estimated values of extension are slightly larger than the actual ones. But, contrary to 482 

the experiments above these differences are slightly smaller for the early stages than for 483 

the last stages of the experiment. 484 

The field example analyzed consists of a photograph taken by Maher (2013) of a 485 

Triassic normal fault that crops out along a cliff at the Edgeoya island, Svalbard Islands, 486 

Norway (Figure 17a). In the slips versus stratigraphic height graph the heave increases 487 

stratigraphically downwards, the throw decreases down section and the displacement 488 

decreases in the upper stratigraphic horizons and increases in the deepest horizons 489 

(Figure 17b). The paths of these functions are similar to those obtained in the theoretical 490 

rollovers generated by antithetic shear. The linear best-fit function plotted on the throw 491 

versus heave data has a high R-squared parameter value indicating a good fit (Figure 492 

17c), and the differences between the areas of the upper and lower regions according to 493 

the method proposed here are not very high. They indicate that the predicted shear dip is 494 

slightly less than the correct one and that the estimated extension is a bit greater than the 495 

actual one. Therefore, the theoretically predicted horizons do not differ substantially 496 

from the actual horizons (Figure 17a). The shear obtained for this particular field 497 

example is antithetic and dips around 49º, whereas the estimated extension is around 498 

6100 units. 499 

 500 
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6.1. Discussion 501 

 The analysis of a natural example and different stages of sequential laboratory 502 

experiments using the method based on fault slips and the area balancing technique 503 

proposed here, points out that: a) the estimated dip of the antithetic shear increases as 504 

the amount of extension increases (Figure 18a); b) the calculated shear dip is usually 505 

less than that obtained by other methods; c) the shear dips obtained for two experiments 506 

(Dula, 1991 and Burger, 2012) are closer to those obtained by other methods as the 507 

amount of extension increases, whereas it is the other way round for another experiment 508 

(Edwards, 2013); d) the extension value obtained is usually greater than the actual 509 

value; e) the extension values obtained for two experiments (Dula, 1991 and Burger, 510 

2012) and the actual ones get closer as the amount of extension augments, whereas it 511 

happens on the contrary in the case of another experiment (Edwards, 2013); and f) the 512 

results, both for the shear dip and the extension value, are more reliable in stages with 513 

greater extension since R-squared for the best-fit functions in the throw versus heave 514 

graphs is closer to 1 as the extension value is greater (Figure 18b). 515 

The fact that: a) the shear dip obtained using the method based on fault slips 516 

presented in this paper is less than that obtained by other methods that do not employ 517 

the slips of horizons, and b) that the estimated extension is greater than the actual values 518 

suggests that the best-fit functions obtained in the throw versus heave graphs possess a 519 

gentler slope than the one they should supposedly have, and therefore, they intersect 520 

with the abscissas axes at higher values. Since we obtained negative slope functions 521 

(antithetic shear) for all the analyzed experiments, this could mean that the slips 522 

undergone by the higher stratigraphic horizons are, broadly speaking, less than they 523 

should be. Alternatively, this could also be explained assuming that the slip values of 524 

the stratigraphically deeper horizons are higher than they should be. These observations 525 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 23 

 

suggest that additional mechanisms different from vertical/inclined shear may have been 526 

active as well. 527 

Whereas rollover folds generated over normal faults linked to detachments are a 528 

type of fault-bend folds, the phenomena described above could be interpreted as a result 529 

of an initial component of fault-propagation folding in the case of the Dula (1991) 530 

experiment; this would cause that slip along the fault would not follow the theoretical 531 

pattern expected in a deformation environment dominated by vertical/inclined shear 532 

(Figures 4 and 5). Thus, in stages with little extension when the fault is still 533 

propagating, upper horizons, whose cut-off points are close to the fault tip, could have 534 

suffered a certain slip decrease towards the upper fault termination as a result of the 535 

fault-propagation folding component accommodated by both fault propagation and 536 

folding. That would explain the low values obtained for the shear dip and its difference 537 

from the dip obtained by other methods, the high extension values obtained with respect 538 

to the actual extension and the worse results for the initial stages using the slips-based 539 

method proposed here. This hypothesis is supported by the fact that in the initial stages 540 

of some physical experiments of listric normal faults, such as in the experiment 541 

displayed in Cloos (1968), a fault-propagation fold first develops so that the master fault 542 

offsets only the lower part of the stratigraphic series and propagates stratigraphically 543 

upwards as extension increases (Figures 13 and 14 in Cloos, 1968). The structure ends 544 

up becoming a classical rollover fold-type when the master fault is developed all along 545 

the stratigraphic sequence (Figures 15 and 16 in Cloos, 1968). Comparable observations 546 

have been documented in field examples of listric normal faults. For instance, Uzkeda 547 

(2013) shows a 3D model and geological sections across a normal fault in which the 548 

hangingwall beds close to the fault dip against it and display a nice rollover geometry in 549 

a region where the fault displacement is relatively high (Figure 4.9 B-B’ in Uzkeda, 550 
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2013). In contrast, in a region where the displacement is less the uppermost beds are 551 

almost flat-lying whereas the lower beds dip against the fault (Figures 4.9 A-A’ in 552 

Uzkeda, 2013). The geometry of the hangingwall beds of this particular fault, very 553 

similar to that of the two stages of the Dula (1991) experiment illustrated in figures13a 554 

and 13d, could be explained assuming a component of fault-propagation folding during 555 

the initial stages of fault development. Drag folding could also be invoked as an 556 

additional mechanism to explain the anomalies observed in the fault slips which result 557 

in lower shear dips and higher amounts of extension estimations using the slips-based 558 

method. 559 

In the case of the Edwards (2013) experiment the low values of shear dip and the 560 

high values of extension obtained using the slips-based method, plus the fact that the 561 

stages with higher extension supply worse results may be the result of the activity of the 562 

crestal collapse graben developed over the rollover anticline. Thus, in the early stages of 563 

the experiment, the crestal collapse graben is hardly developed. However, as extension 564 

progresses the number of faults that belong to the crestal collapse graben and the 565 

displacement along them increases substantially (Figure 16a). The crestal collapse 566 

graben faults offset only the upper part of the stratigraphic succession and die out at 567 

depth. These faults accommodate part of the extension of the experiment causing a 568 

reduction of the displacement suffered by the uppermost stratigraphic horizons along 569 

the master fault. This would lead to a gentler slope of the best–fit function that fits the 570 

throw versus heave data, and therefore, would result in lower values of shear dip with 571 

respect to the dip obtained by other methods and higher values of extension with respect 572 

to the actual extension as well as worse results for the last stages of the experiment. 573 

Crestal collapse grabens with similar geometrical and kinematical features have been 574 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 25 

 

documented in many physical experiments such as those carried out by McClay and 575 

coworkers (see references in the introduction section). 576 

Regarding the Burger (2012) experiment, it is unclear whether the low values of 577 

shear dip and high values of extension obtained are caused by the occurrence of a fault-578 

propagation folding component as in the Dula (1991) experiment or due to the crestal 579 

collapse graben as in the Edwards (2013) experiment. The facts that: a) the crestal 580 

collapse graben is developed from the very early stages of the experiment and its degree 581 

of development remains approximately constant as extension increases, and b) that the 582 

worse results were obtained for the early stages of the experiment suggest that the fault-583 

propagation folding component is a better explanation. 584 

In the sequential physical experiments analyzed, the deduced shear dip seems to 585 

increase as extension augments. This suggests that the assumption of one homogeneous 586 

vertical/inclined shear direction throughout the deformation process is not valid, at least 587 

for these experiments, and that could be one of the reasons why the fit using the 588 

proposed method is not as good as it would be desirable. However, the lower reliability 589 

of the results obtained in the early stages with respect to the better reliability in the most 590 

advanced stages does not allow us to assert this point firmly. Unfortunately, we are 591 

unable to check whether this observation is a particular feature of the sequential 592 

physical experiments used or it takes place in natural examples as well because different 593 

stages of evolution of a structure are unavailable in nature. 594 

If the points exposed above are correct, then we should not expect excellent 595 

shear dips and amounts of extension derived from the proposed method because they 596 

are averages of deformation fields resulting from various mechanisms, perhaps shear 597 

orientations different than vertical/inclined shear, and maybe shear dips that have varied 598 
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over time. We have to keep in mind that we try to fit functions based on assumptions 599 

such as fault-bend folding developed by vertical/inclined, homogeneous shear through 600 

time and space to a series of data resulting from more than one process. However, the 601 

method can still be used as a guide to decipher how the basic assumptions deviate. 602 

Unfortunately we do not know to what extent these physical experiments 603 

emulate correctly natural structures, and therefore, whether the conclusions derived 604 

from them can be extrapolated to field and subsurface examples of normal faults that 605 

emanate from a detachment. For instance, the physical experiment run by Dula (1991) 606 

includes a thin, flexible plastic sheet between the hangingwall and the footwall/basal 607 

plate. This film helps with the development of the experiment because it possesses a 608 

high slipping coefficient, and therefore, facilitates slip between fault blocks. According 609 

to some authors (e.g., Hauge and Gray, 1996), quantitative analysis of physical 610 

experiments developed using this particular experimental design, which is an artifact 611 

that may not occur in nature, may produce misleading results. 612 

 613 

7. Conclusions 614 

In theoretical models of normal faults emanating from a detachment at depth 615 

whose hangingwall consists of a rollover fold deformed by vertical or inclined shear, a 616 

pattern for the variation of the displacement along the fault, heave and throw has been 617 

recognized. For the horizon located on the detachment the throw is zero, and the heave 618 

and the fault displacement are equal, and equal to the horizontal extension. The linear 619 

best-fit of the data for several horizons plotted on a throw versus heave graph supplies 620 

quantitative information about the shear (character and dip) and the amount of extension 621 

responsible for the rollover formation. The slope of such function is the tangent of the 622 
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shear dip (positive slope for synthetic, negative for antithetic and infinite for vertical 623 

shear) and its intersection with the x-axis is the amount of extension. 624 

By using data from the upper part of a stratigraphic sequence offset by a normal 625 

fault, the proposed method would allow to estimate the character and dip of the shear, as 626 

well as the amount of extension to produce the analyzed rollover. In addition, for those 627 

cases in which the complete geometry of the fault is known, an area-based method has 628 

been presented that allows us to estimate whether the shear dip and amount of extension 629 

calculated are higher or lower than the correct values. Both the throw versus heave and 630 

slips versus stratigraphic height graphs would enable recognizing mechanisms 631 

additional to vertical or inclined shear. If that is the case, the graphs would not follow 632 

the patterns deduced from the theoretical models. This observation is of major 633 

importance when attempting to reconstruct, restore and/or forward model structures 634 

since the proposed tool supplies valuable information regarding the selection of the 635 

most appropriate algorithms. 636 

The proposed method is still valid when reverse reactivation of a normal fault 637 

with the same shear dip takes place. If the inversion is partial the graphs permit to 638 

obtain both the shear dip and the remnant extension at present-day. In the case of total 639 

inversion, a certain amount of reverse slip would appear and the graphs would allow to 640 

calculate the shear dip and the net contraction. If sediments pre-extension and post-641 

extension pre-inversion are preserved, it is possible to calculate the shear dip, the 642 

remnant extension, the contraction and, by adding both, the total extension. 643 

The application of the proposed method to a natural example and different stages 644 

of sequential physical experiments of rollovers related to normal listric faults, and 645 

verification of the results using a method based on comparing areas, permits to extract 646 
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the following conclusions: a) the shear dip obtained using the slips-based method are 647 

minimum estimates, and b) the extension values calculated are maximum estimates. In 648 

those cases where the greater the amount of extension undergone by the structures the 649 

more accurate both the shear dip and amount of extension estimates, these points have 650 

been explained assuming that the generation of rollovers include a certain component of 651 

fault-propagation folding (and/or drag folding) in the early stages of the experiments 652 

whose effects ameliorate as cut-off points of horizons in the hangingwall approach the 653 

detachment. In those cases in which the better results are obtained for the early stages of 654 

the experiment, these points have been related to the development of a crestal collapse 655 

graben that becomes more active as extension progresses. In addition, the analysis of the 656 

experiments shows that the shear dip is not uniform during the extensional process but 657 

seems to increase as the extension progresses. All these observations led us to state that 658 

we should not expect obtaining excellent shear dips and amounts of extension using the 659 

slips-based method proposed because these results are averages of deformation fields 660 

resulting from various processes, but the method is still useful as a guide on checking 661 

how the basic assumptions of rollover folds formed by vertical/inclined shear deviate in 662 

each particular example analyzed. 663 
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FIGURE CAPTIONS 798 

Figure 1. Examples of listric normal faults reconstructed at depth through different 799 

methods using the same rollover geometry as input data: a) flexural slip; b) 800 

constant displacement; c) antithetic shear of 80º dip; d) vertical shear and e) 801 

synthetic shear of 80º dip. 802 

Figure 2. Examples of rollover folds generated with antithetic shear of 80º dip in the 803 

hangingwall of different shape faults: a) ramp-flat, b) segments of constant dip, 804 

c) arctangent function, d) spline, and e) cubic function. 805 

Figure 3. a) Example of a rollover fold constructed with antithetic shear of 80º dip 806 

illustrating the measurements (stratigraphic height, heave, throw and 807 

displacement) that must be taken for each horizon offset by the fault. These 808 

values are plotted on two graphs: b) fault slip (heave, throw and displacement) 809 

versus stratigraphic height and c) throw versus heave. The position of the 810 

reference level is arbitrary and it is used to measure the stratigraphic height of 811 

each horizon. The different stratigraphic horizons are labelled as a, b, c, d, e, f, g 812 

and h in a), b) and c). 813 

Figure 4. Graphs for rollover folds formed above planar ramp-flat normal faults created 814 

with: a) vertical shear, b) antithetic shear of 80º dip and c) synthetic shear of 80º 815 

dip. The fault and rollover fold shape are shown inside the grey rectangle. The 816 

arbitrary reference level chosen is the highest stratigraphic horizon. The 817 

measurements have been taken according to the procedure illustrated in figure 3. 818 

Figure 5. Graphs for rollover folds related to listric normal faults created using the 819 

arctangent function constructed with: a) vertical shear, b) antithetic shear of 80º 820 

dip and c) synthetic shear of 80º dip. The fault and rollover fold shapes are 821 
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shown inside the grey rectangle. The arbitrary reference level chosen is the 822 

highest stratigraphic horizon. The measurements have been taken according to 823 

the procedure illustrated in figure 3. 824 

Figure 6. Relation between the throw, heave and extension in rollovers related to listric 825 

normal faults generated by: a) antithetic shear and b) synthetic shear. e: amount 826 

of extension, h: heave, t: throw, and α: shear dip. 827 

Figure 7. Graphs for rollover folds developed above listric normal faults constituted by 828 

segments of constant dip constructed maintaining constant both bed lengths and 829 

thicknesses, following the methods of: a) Morris and Ferrill (1999) and b) 830 

Davison (1986). The fault and rollover fold shape are shown inside the grey 831 

rectangle. The arbitrary reference level chosen is the highest stratigraphic 832 

horizon. The measurements have been taken according to the procedure 833 

illustrated in figure 3. 834 

Figure 8. Calculation of the amount of extension and the shear angle using the throw 835 

versus heave graphs. The fault and rollover fold shape used are shown inside the 836 

grey rectangle. The measurements have been taken according to the procedure 837 

illustrated in figure 3. 838 

Figure 9. Area-based procedure to check whether the values of shear dip and extension 839 

estimated using the slips-based method proposed in this paper are correct for 840 

those cases in which the full geometry of the fault is known. a) Present-day, 841 

deformed section and b) undeformed section. Present-day, deformed section 842 

overlapped onto the undeformed section constructed with synthetic shear of 80º 843 

dip (c), vertical shear (d), and antithetic shear of 80º dip (e) and 45º dip (f), and 844 

comparison of the areas of the upper, triangular zone and lower zone. 845 
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Figure 10. Graphs for folds developed over listric normal faults that underwent reverse 846 

reactivation greater than the initial extensional motion: a) inversion by shear 847 

with equal dip to that of extension (antithetic shear of 80º dip); b) inversion by 848 

shear with a dip different to that of extension (extension with antithetic shear of 849 

80º dip and contraction with antithetic shear of 60º dip); c) extension following 850 

the flexural slip method of Davison (1986) and inversion with inclined shear 851 

(antithetic shear of 80º dip). The fault and rollover fold shape are shown inside 852 

the grey rectangle. The arbitrary reference level chosen is the highest 853 

stratigraphic horizon. The measurements have been taken according to the 854 

procedure illustrated in figure 3. 855 

Figure 11. Graphs for a fold developed over a listric normal fault including pre-856 

extension and syn-extension beds: a) slips versus stratigraphic height graph and 857 

b) throw versus heave graph. The fault and rollover fold shape are shown in the 858 

inside figure below the slips versus stratigraphic height graph. The arbitrary 859 

reference level chosen is the highest stratigraphic horizon. The measurements 860 

have been taken according to the procedure illustrated in figure 3. 861 

Figure 12. Graphs for a fold developed over a listric normal fault that underwent a 862 

positive tectonic inversion including pre-extension, syn-extension, post-863 

extension pre-inversion, and syn-inversion beds: a) slips versus stratigraphic 864 

height graph, b) throw versus heave graph, c) throw versus heave graph for the 865 

pre-extension horizons and d) throw versus heave graph for the post-extension 866 

pre-inversion horizons. The fault and rollover fold shape are shown in the inset 867 

figure below the slip versus stratigraphic height graph. The arbitrary reference 868 

level chosen is the highest stratigraphic horizon. The measurements have been 869 

taken according to the procedure illustrated in figure 3. 870 
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Figure 13. Results obtained for photographs of the clay experiment of figures 5d and 7a 871 

in Dula (1991) consisting of a rollover developed above a listric normal fault. a) 872 

and d) Line drawings of two different stages of the experiment derived from 873 

photographs, including the beds employed to construct the graphs and the 874 

modelled upper horizon; b) and e) slip versus stratigraphic height graphs for the 875 

experiment depicted in a) and d) respectively; and c) and f) throw versus heave 876 

graphs for the experiment depicted in a) and d) respectively. The arbitrary 877 

reference level chosen is the highest stratigraphic horizon. The measurements 878 

have been taken according to the procedure illustrated in figure 3. 879 

Figure 14. Application of the area-based procedure to the a) less evolved and to the b) 880 

more evolved stages of the Dula (1991) experiment. The areas of the lower 881 

regions are greater than those of the upper regions, specially for the less evolved 882 

stage of the experiment, suggesting that the estimated shear dip is gentler than 883 

the correct value and that the estimated extension is larger than the actual one. 884 

The measurements have been taken according to the procedure illustrated in 885 

figure 3. 886 

Figure 15. Results obtained for a series of photographs from a sand experiment by 887 

Burger (2012) consisting of a rollover developed above a listric normal fault. a) 888 

Line drawing of the experiment derived from the photographs, b) slip versus 889 

stratigraphic height graphs, c) throw versus heave graphs, d) comparison 890 

between the experimental upper horizons and the modelled ones, and e) 891 

comparison between the extension increments of the experiment and the 892 

modelled ones for the last five stages (taking the third stage as reference). The 893 

arbitrary reference level chosen is the highest stratigraphic horizon. The 894 

measurements have been taken according to the procedure illustrated in figure 3. 895 
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Figure 16. Results obtained for a series of photographs from a sand experiment by 896 

Edwards (2013) consisting of a rollover developed above a listric normal fault. 897 

a) Line drawings of the experiment derived from photographs, b) slip versus 898 

stratigraphic height graphs, c) throw versus heave graphs, and d) comparison 899 

between the experimental upper horizons and the modelled ones. The arbitrary 900 

reference level chosen is the highest stratigraphic horizon. The measurements 901 

have been taken according to the procedure illustrated in figure 3. 902 

Figure 17. Results obtained for a photograph taken by Maher (2013) of a field example 903 

of a rollover developed above a listric normal fault. a) Geological interpretation 904 

of the photograph, including the beds employed to construct the graphs and the 905 

modelled horizons; b) slip versus stratigraphic height graph, and c) throw versus 906 

heave graph. The arbitrary reference level chosen is the highest stratigraphic 907 

horizon. Since no scale is available in the photograph we assigned arbitrary 908 

units. The measurements have been taken according to the procedure illustrated 909 

in figure 3. 910 

Figure 18. Plots of a) the shear dip and b) the R-squared parameter obtained for the 911 

different stages of the physical experiments analyzed in this study versus 912 

extension. 913 
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HIGHLIGHTS 

-A method to estimate shear character and dip and amount of extension is 
proposed. 

-It helps when reconstructing listric normal faults and associated structures. 
-The effects of tectonic inversion and syntectonic sedimentation are considered. 

 


