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___________________________________________________________________________ 

Abstract 

The hydration of nitriles is an atom economical route to generate primary amides of 

great academic and industrial significance. From an academic perspective, considerable 

progress has been made toward the development of transition metal catalysts able to promote 

this hydration process under mild conditions. In this context, with regard to activity, 

selectivity, functional group compatibility and modes of reactivity, the most versatile nitrile 

hydration catalysts discovered to date are based on ruthenium complexes. Herein, a 

comprehensive account of the different homogeneous ruthenium catalysts described in the 

literature is presented. Heterogeneous ruthenium-based systems are also discussed. 
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1. Introduction 

 

The amide functionality is one of the most relevant in organic and biological chemistry. 

Amides are present in multitude of natural products, pharmaceuticals and drug candidates, 

and have found applications as starting materials in the preparation of various industrial 

products including detergents, lubricants and polymers [1]. Amides are commonly prepared 

by the reaction of activated carboxylic acid derivatives (acid chlorides, anhydrides and 

esters) with amines including ammonia [2], or by direct union of the acids with the amines 

assisted by coupling reagents, such as carbodiimides or 1H-benzotriazole derivatives [3]. 

However, despite being of great applicability, these methods suffer from a low atom 

economy and are associated to the generation of large quantities of waste products, making 

their environmental profile unfavourable. For this reasons, increasing attention is being 

devoted to the development of more efficient and sustainable synthetic routes that allow 

access to this important class of compounds [4]. 

The hydration of nitriles is probably the simplest method for preparing primary amides 

in an atom-economical manner (Scheme 1). However, conventional protocols for hydrating 

nitriles involve the use of highly acidic/basic media and harsh reaction conditions, methods 

that are frequently unable to control hydrolysis to the corresponding carboxylic acids 

(Scheme 1) and are not compatible with many sensitive functional groups [2]. The formation 
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of a large amount of salts after neutralization is another problem associated with these 

classical methodologies. 

 

 

Scheme 1. The nitrile hydration and amide hydrolysis reactions. 

 

To overcome these drawbacks, considerable efforts have been expended in the search 

of alternative methods for the nitrile hydration process. In this context, nitrile hydratases 

(NHases), a family of enzymes containing non-heme low spin Fe(III) or non-corrinoid low-

spin Co(III) active centers, have demonstrated great potential to promote the selective 

transformation of nitriles into amides under mild conditions [5]. In fact, this type of 

biocatalysts have found application in the commercial production of some relevant amides, 

such as acrylamide, nicotinamide, 5-cyanovaleramide and levetiracetam, an antiepileptic 

drug marketed under the trade name Keppra
®

 (Scheme 2) [5,6]. However, the necessity of 

special procedures to handle microorganisms, their high cost and narrow substrate specificity 

restrict severely the use of NHases. 

 

 

Scheme 2. Synthetic route of levetiracetam employing a nitrile hydratase. 

 

Metal ions are able to favour nitrile hydration by activating the nitrile substrate, the 

water nucleophile, or both upon coordination. Accordingly, a variety of homogeneous [7] 

and heterogeneous [8] metal-based catalysts, showing a high selectivity to the amide under 

milder conditions to those employed with strong acids or bases, have been described in the 
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literature during the last two decades. For synthetic purposes, given their greater substrate 

scope and easier handling, these methods based on metal catalysts are much appealing than 

the enzymatic ones. This fact is endorsed, for example, by the extraordinary success 

achieved by the hydrido-platinum(II) complex [PtH{(PMe2O)2H}(PMe2OH)] developed by 

Parkins and co-workers (Fig. 1) [9]. This Pt system is able to catalyze the selective hydration 

of a wide range of nitriles, including very bulky nitriles, unsaturated nitriles (such as 

acrylonitrile) and nitriles containing acid and base-sensitive functional groups, under 

relatively mild (70-100 ºC) and neutral reaction conditions. All these properties, along with 

its exquisite functional group tolerance, has allowed the implementation of 

[PtH{(PMe2O)2H}(PMe2OH)] in the synthesis of a large number of complex organic 

molecules and natural products [10]. 

 

 

Fig. 1. Structure of the Parkins catalyst. 

 

Ruthenium compounds constitute a versatile class of catalysts for synthetic organic 

chemistry and feature a large panel of applications [11]. There are several aspects that make 

ruthenium interesting for homogeneous catalysis, such as its rich coordination chemistry, the 

wide range of oxidation states that it can adopt (from -2 to +8) or its ability to accommodate 

a large variety of ligands in various coordination geometries. No less important is the fact 

that ruthenium is much less expensive than other platinum-group metals such as palladium, 

platinum, rhodium and iridium. Ruthenium complexes have therefore a great potential for the 

development of new nitrile hydration catalysts. Indeed, the most recent breakthroughs in the 

field have been reached using this metal. Herein, a comprehensive account of the different 

ruthenium-based catalysts for nitrile hydration described in the literature is presented. Both 

homogeneous and heterogeneous systems will be discussed. 

 

2. Homogeneous ruthenium-based catalysts 

 

The application of a ruthenium complex to promote the selective hydration of nitriles to 

primary amides was described for the first time by Taube and co-workers in the 1970´s [12]. 

Thus, using a stoichiometric amount of [RuCl(NH3)5][Cl]2 in combination with Ag2O, 
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trifluoroacetic acid and zinc amalgam, they were able to transform in high yields (64-95%) 

several aromatic, aliphatic and α,β-unsaturated organonitriles into the corresponding amides 

after 6-8 h of heating at 40-50 ºC in wet dichloromethane. However, despite this early 

discovery, it was not until 1992 that the first truly catalytic system could be developed by 

Murahashi and co-workers employing the ruthenium-dihydride complex [RuH2(PPh3)4] as 

catalyst [13,14]. In the presence of 3 mol% of this complex and 2 molar equivalents of water, 

several organonitriles were successfully hydrated in 1,2-dimethoxyethane (DME) under 

neutral conditions, giving the desired amides in excellent yields (77-94%) after 24 hours of 

heating at 120 ºC (TOF ≤ 2 h
-1

; Scheme 3) [13]. A reaction pathway involving the 

intermolecular nucleophilic addition of water to the coordinated nitrile, to give an iminolate 

complex, was proposed. Reductive elimination, isomerization of the iminol to the amide, and 

subsequent dissociation regenerates the catalytically active ruthenium species [13c]. 

 

 

Scheme 3. Catalytic hydration of nitriles by means of complex [RuH2(PPh3)4]. 

 

Under the same reaction conditions, complex [RuH2(PPh3)4] was also able to transform 

a large variety of δ-ketonitriles into ene-lactams through a tandem process involving the 

initial hydration of the C≡N unit, followed by intramolecular condensation of the resulting 

keto-amide (representative examples are shown in Scheme 4) [13]. 
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Scheme 4. Catalytic synthesis of ene-lactams using complex [RuH2(PPh3)4]. 

 

The usefulness of this tandem reaction was fully demonstrated by the total synthesis of 

the naturally occurring alkaloid (-)-pumiliotoxin C (3) starting from the δ-ketonitrile 1, 

where the [RuH2(PPh3)4]-catalyzed conversion of 1 to ene-lactam 2 was one of the key steps 

(Scheme 5) [13]. Deisopropylidenation of 1 (retroaldol reaction), nitrile hydration and 

cyclization occurred sequentially at 160 ºC to give 2 in a one-pot manner. 

 

 

Scheme 5. The role of complex [RuH2(PPh3)4] in the total synthesis of the alkaloid (-)-pumiliotoxin C. 

 

The half-sandwich hydrido-ruthenium(II) complex [RuH(η
5
-C9H7)(dppm)] (4; dppm = 

bis(diphenylphosphino)methane; C9H7 = indenyl) revealed also as a quite effective catalyst 

for the selective conversion of nitriles to amides [15]. Thus, performing the reactions directly 

in water at 120 ºC with 0.1 mol% of 4, TOF and TON values of up to 12 h
-1

 and 865, 

respectively, could be reached in the hydration of acetonitrile and benzonitrile. Worthy of 

note, its chloride counterpart [RuCl(η
5
-C9H7)(dppm)] was found to be completely 
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ineffective, suggesting that the hydride ligand plays a key role during the catalytic events. To 

clarify this point, Density Functional Theory (DFT) calculations were performed, pointing 

out an unusual promoting effect of the hydride. Thus, as shown in Scheme 6, this ligand 

activates the incoming water molecule through a Ru-H···H-OH dihydrogen-bonding 

interaction, favoring the nucleophilic attack of water on the coordinated nitrile. In this rate-

determining step an iminol intermediate is produced, which quickly tautomerizes to the 

amide upon dissociation. Remarkably, despite the known tendency of the indenyl ligand to 

undergo η
5
→η

3
 ring slippage [16], the DFT calculations indicated that coordination of the 

nitrile to ruthenium takes place by dissociation of one arm of the diphosphine dppm. 

 

 

Scheme 6. Promoting effect of the hydride ligand of complex 4 during the catalytic hydration of nitriles. 

 

The same promoting effect of the hydride ligand, via Ru-H···H-OH dihydrogen-

bonding, was evidenced by means of DFT calculations in the reaction of the isoelectronic 

hydro(trispyrazolyl)borate complex [RuH(Tp)(PPh3)(NCMe)] (5) with water, which led to 

the formation the acetamido derivative [Ru(Tp)(PPh3)(H2O){NHC(=O)Me}] (6) (Scheme 7) 
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[17]. As in the preceding case, a marked difference in reactivity with respect to the 

corresponding chloride complex [RuCl(Tp)(PPh3)(NCMe)] was observed, since the latter 

resulted to be inert towards water. 

 

 

Scheme 7. Reactivity of the hydrido-Ru(II) complex [RuH(Tp)(PPh3)(NCMe)] (5) towards water. 

 

The hydrido and acetamido complexes 5 and 6 were able to promote the selective 

conversion of several organonitriles to the corresponding primary amides, in 1,4-

dioxane/water mixtures, at 120-150 ºC [18]. However, modest results in terms of activity 

were in general obtained, with maximum TOF and TON values of 8 h
-1

 and 200, 

respectively, being reached in the hydration of 4-chlorobenzonitrile by the acetamido 

complex 6 (0.5 mol%) at 150 ºC. Probably, the most relevant aspect of 

[Ru(Tp)(PPh3)(H2O){NHC(=O)Me}] (6) is related to its mechanism of action, which was 

revealed through NMR measurements in combination with DFT calculations (Scheme 8). 

The mechanism involves the initial displacement of the H2O ligand by a nitrile molecule, 

followed by the isomerization of the N-bonded acetamido ligand to an O-bonded iminolate. 

Then, intramolecular nucleophilic attack of the nitrogen atom of the iminolate unit to the 

coordinated nitrile occurs to generate the intermediate species 7, featuring a chelating N-

imidoylimidato ligand. Final nucleophilic attack of water to this intermediate breaks the C-N 

bond of the metallacycle and generates an iminol-iminolate species from which the amide 

product is generated. The intermediate N-imidoylimidato complex 7 could be independently 

prepared, its structure fully confirmed by X-ray crystallography, and its involvement in the 

catalytic transformation experimentally demonstrated [19]. The DFT calculations also 

indicated that the highest energy barrier in the catalytic cycle is associated to the ring-

opening of this remarkably stable intermediate by water. 
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Scheme 8. Catalytic cycle for the hydration of nitriles promoted by the acetamido complex 

[Ru(Tp)(PPh3)(H2O){NHC(=O)Me}] (6). 

 

The tetranuclear cluster 8 and the mononuclear derivative 9 are additional examples of 

hydrido-ruthenium complexes able to promote the selective hydration of C≡N bonds (Fig. 2). 

In particular, the former (1 mol%) proved to be effective in the hydration of a large variety of 

aromatic, heteroaromatic, α,β-unsaturated and aliphatic nitriles, employing 
i
PrOH, THF or 

DME as solvent, 10-20 equivalents of water and temperature regimes in the range 80-100 ºC 

[20]. The desired amides were produced in all the cases in excellent yields (84-99%) after 6-

18 h of heating (TOF and TON values up to 16 h
-1

 and 99). On the basis of kinetic analyses 

and NMR studies, formation of a mononuclear hydrido-ruthenium species was proposed 

during the hydration of electron-rich nitriles, while the tetrameric ruthenium core remained 

intact with electron-poor substrates. There was no noticeable decrease in the rate of the 

hydration when Hg(0) was added to the reaction mixtures, which suggested to the authors 
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that, despite decomposition of the cluster occurs with electron-rich nitriles, the catalytically 

active species remains homogeneous. Concerning the mononuclear complex 9, it was 

exclusively applied to the transformation of benzonitrile into benzamide [21]. Compared to 

cluster 8, the activity of 9 was remarkably lower (TOF < 1 h
-1

) under similar reaction 

conditions (acetone, 80 ºC, 0.5 mol% of Ru, 10 equiv. of H2O). In addition, it deactivated 

over time so that the complete conversion of the substrate could not be achieved even after 

40 h of heating. 

 

 

Fig. 2. Structure of the hydrido-ruthenium complexes 8 and 9. 

 

The key role played by the auxiliary ligands in this catalytic transformation was clearly 

evidenced by Oshiki and co-workers using the octahedral ruthenium(II) derivative cis-

[Ru(acac)2(PPh2py)2] (10; acac = acetylacetonate; PPh2py = 2-(diphenylphosphino)pyridine) 

[22]. Unlike its analog with triphenylphosphine, i.e. cis-[Ru(acac)2(PPh3)2] (11), complex 10 

was able to hydrate efficiently a large number of nitriles at 180 ºC, employing DME as 

solvent and 4 equivalents of water. Impressive TOF values of up to 20900 h
-1

 could be 

reached with this ruthenium catalyst. As an illustrative example of the remarkably different 

catalytic behavior shown by complexes 10 and 11, the results obtained in the hydration of 

benzonitrile with a metal loading of 2 mol% are presented in Scheme 9. 

 

 

Scheme 9. Cooperative effect of the 2-(diphenylphosphino)pyridine ligand in benzonitrile hydration. 
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Thus, despite both catalysts have the same structure and similar electronic and steric 

properties, complex cis-[Ru(acac)2(PPh2py)2] (10) is much more active than cis-

[Ru(acac)2(PPh3)2] (11) due to the ability of the 2-(diphenylphosphino)pyridine ligand to 

establish an hydrogen bond with water. In this way, the formation of intermediate A, not 

accessible when PPh3 is used as ligand, activates the water molecule facilitating its addition 

to the coordinated nitrile. Such a cooperative effect of the PPh2py ligand is a clear example 

of the so-called “bifunctional catalysis”, in which the substrates are activated by the 

combined action of the metal, which acts as a Lewis acid, and the ligand, which acts as a 

Lewis base. Such a concept has been largely exploited in homogeneous catalysis during the 

last years [23]. Similarly to cis-[Ru(acac)2(PPh3)2] (11), mediocre results were also obtained 

with complexes cis-[Ru(acac)2(PMe3)2] and cis-[Ru(acac)2(PBu3)2] containing non-

cooperative phosphine ligands [22d]. On the other hand, we must also point out that cis-

[Ru(acac)2(PPh2py)2] (10) only displayed an exceptional reactivity at 180 ºC (Scheme 9). A 

decreasing of the temperature to 150 ºC decreased the TOF to 222 h
-1

. At 80 ºC, the activity 

of 10 was completely halted [22b]. 

Employing the bis(allyl)-ruthenium(II) complex [Ru(η
3
-2-C3H4Me)2(cod)] (cod = 1,5-

cyclooctadiene; 0.5-1 mol%), in combination with different pyridyl-phosphines (see Fig. 3; 

2-3 equiv. per Ru), Oshiki and co-workers were able to perform the selective hydration of a 

variety of organonitriles in DME at 80 ºC [24]. However, the TOF values reached were only 

modest (up to 5 h
-1

) and incomplete conversions were in some cases observed. The best 

activities were obtained with the 2-diphenylphosphino-4-pyridyl(dimethyl)amine ligand, fact 

that, according to the authors, is related to the increased ability of the nitrogen atom of the 

pyridyl ring to act as a H-bond acceptor due to the presence of the electron-donating 

dimethylamino substituent in the structure. 

 

 

Fig. 3. Pyridyl-phosphines employed by Oshiki and co-workers in the [Ru(η
3
-2-C3H4Me)2(cod)]-catalyzed 

nitrile hydration reactions. 

 

Inspired by the works of Oshiki and co-workers, Šmejkal and Breit described the 

preparation and catalytic behaviour of the bis(acetylacetonate)-ruthenium(II) complexes 12-

14, bearing the potentially cooperative P-donor ligands 6-diphenylphosphino-N-pivaloyl-2-
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aminopyridine and 3-diphenylphosphinoisoquinolone (Fig. 4) [25]. All of them were able to 

promote the selective conversion of the model substrate 4-methylbenzonitrile into 4-

methylbenzamide. However, under the same reaction conditions (in DME at 150 ºC), their 

effectiveness was comparatively lower (TOF values up to 20 h
-1

) to that shown by complex 

cis-[Ru(acac)2(PPh2py)2] (10). Within this family of compounds the observed catalytic 

activity order 12 > 13 > 14 was explained by the weaker donor character of the 3-

diphenylphosphinoisoquinolone ligand compared to the 6-diphenylphosphino-N-pivaloyl-2-

aminopyridine one, which makes the ruthenium atom a stronger Lewis acid center. Also, as 

pointed out for the authors, an additional reason for the low catalytic activity shown by 14 

might be related with the chelation of the pyridyl-phosphine ligand to ruthenium. This fact, 

evidenced during the preparation of this complex, would inhibit the formation of the required 

coordinative unsaturated ruthenium species that are needed for the activation of the nitrile. 

 

 

Fig. 4. Structure of the bis(acetylacetonate)-ruthenium(II) complexes 12-14. 

 

As evidenced by NMR spectroscopy and catalytic experiments performed with the 

isolated chelate complexes, κ
2
-(P,N)-coordination of the pyridyl-phosphines 2-

(diphenylphosphino)pyridine and 2-diphenylphosphino-4-pyridyl(dimethyl)amine (Fig. 3) 

was behind the poor activities (TOF < 1 h
-1

) found by Crochet, Cadierno and co-workers for 

a series of arene-ruthenium(II) and bis(allyl)-ruthenium(IV) complexes containing these 

ligands [26]. In order to avoid the chelation of the pyridyl unit, related ruthenium complexes 

15 and 16 bearing the pyridyl-phosphine PPh2(py-6-tert-amyl) were also synthesized by the 

same authors as potentially more active catalysts (Scheme 10) [26]. As expected, the 

presence of the bulky tert-amyl substituent adjacent to nitrogen totally suppressed the 

coordination ability of the pyridyl unit. However, despite this fact, the catalytic activities 

found in the hydration of the model benzonitrile substrate at 100 ºC were very modest (TOF 
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< 1 h
-1

), and comparable to those shown by complexes [RuCl2(η
6
-arene)(PPh3)] (arene = 

benzene, p-cymene) and [RuCl2(η
3
:η

3
-C10H16)(PPh3)] (C10H16 = 2,7-dimethylocta-2,6-diene-

1,8-diyl) containing the non-cooperative triphenylphosphine ligand. Steric congestion around 

the Lewis acid metal center, preventing the approach and coordination of the benzonitrile 

molecule, was evoked to explain low effectiveness shown by complexes 15 and 16 [27]. 

 

 

Scheme 10. Catalytic hydration of benzonitrile using the pyridyl-phosphine ruthenium complexes 15 and 16. 

 

In the search for cooperative effects of the ligands, the catalytic behaviour of different 

arene-ruthenium(II) complexes 17-19 with potentially H-bond accepting amino-aryl-

phosphines was also explored by Crochet, Cadierno and co-workers (Fig. 5) [28]. All these 

complexes (5 mol%) were able to hydrate the model benzonitrile substrate in pure water as 

solvent, leading to the selective formation of benzamide in 43-98% yield after 24 h of 

heating at 100 ºC. Using the most active complex [RuCl2{κ
1
(P)-3-Ph2PC6H4CH2NH

t
Bu}(η

6
-

1,3,5-C6H3Me3)], the generality of the reaction could be demonstrated for a number of 

functionalized benzonitriles, as well as nitriles containing alkyl- and alkenyl-CN bonds. 

Remarkably, although the activity of complexes 17-19 was only moderate (TOF up to 3 h
-1

), 

they were comparatively more active than their corresponding non-functionalizalized 

triphenylphosphine counterparts [RuCl2(η
6
-arene)(PPh3)] (TOF < 0.1 h

-1
 under identical 

reaction conditions). This fact was explained by the participation of the pendant amino group 

of the ligands as an internal Brønsted base during catalysis, generating the more nucleophilic 

OH
-
 group (Fig. 5). In accord with this proposal, rate enhancements were observed when the 

catalytic hydration of benzonitrile by complexes [RuCl2(η
6
-arene)(PPh3)] was performed in 
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the presence of free PhCH2NH
i
Pr or PhCH2NH

t
Bu, amines that mimic the substituents of the 

phosphine ligands in complexes 17-19 [28]. 

 

 

Fig. 5. Structure of the arene-ruthenium(II) complexes 17-19 and its mechanism of action. 

 

In order to facilitate the solubility of the catalysts in water, remarkable efforts have 

been devoted in recent years to the study of ruthenium complexes bearing water-soluble 

phosphines. In this context, a possible cooperative effect of the “cage-like” phosphines PTA, 

PTA-Bn, DAPTA, THPA and THDP [29], via H-bonding of the nucleophilic water molecule 

with the nitrogen atoms present in their structures, has been proposed to explain the 

remarkably higher effectiveness shown by the arene-ruthenium(II) 20 [30] and bis(allyl)-

ruthenium(IV) complexes 21-22 [31] in comparison with the related species 23-24 bearing 

the sulphonated phosphine TPPMS, in which such an interaction cannot be established (Fig. 

6). The arene-ruthenium(II) catalysts 20 also showed a much higher reactivity in water than 

complexes [RuCl2(η
6
-arene)(PR3)] (arene = C6H6, p-cymene; PR3 = PPh3, P

i
Pr3, PPh2(OEt), 

PPh(OEt)2, P(OEt)3) in micellar media (TOF up to 5 h
-1

) [32] and [RuCl2(η
6
-p-

cymene)(PR3)] (PR3 = 3,5,6-bicyclophosphite-α-D-glucofuranoside-derived ligand) in water 

(TOF up to 12 h
-1

) [33]. Complexes 20-22 are all able to hydrate nitriles in pure water, within 
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the temperature regime 100-150 ºC (classical oil-bath or MW heating), without requirement 

of any acidic or basic co-catalyst. Best results in terms of activity (TOF and TON up to 127 

h
-1

 and 100, respectively) were found with the mononuclear compounds [RuCl2(η
6
-

C6Me6)(PTA-Bn)] and [RuCl2(η
3
:η

3
-C10H16)(THPA)], and the dinuclear one [{RuCl2(η

3
:η

3
-

C10H16)}2(μ-THDP)] (22). Almost quantitative conversions of a wide variety of aromatic, 

heteroaromatic, α,β-unsaturated and aliphatic nitriles were observed with these systems (5 

mol%) within 1-15 h, and the reactions tolerated common functional groups such as halides, 

nitro, hydroxy, ethers, thioethers, amino, ketones, aldehyde, esters or alkynes. In addition, 

after selective crystallization of the final amide, recycling of the aqueous phase containing 

the active species could also be demonstrated for [RuCl2(η
6
-C6Me6)(PTA-Bn)] [30]. 

 

 

Fig. 6. Structure of the water-soluble ruthenium(II) and ruthenium(IV) catalysts 20-24. 
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Recycling of [RuCl2(η
6
-C6Me6)(PTA-Bn)] by selective extraction of the amide with 

ethyl acetate could also be achieved employing a glycerol/water (1:1 v/v) mixture as the 

reaction medium (2 consecutive runs). However, longer reactions times and a higher 

temperature (160 ºC) were in this case needed to attain good conversions [34]. The suitability 

of glycerol, an emerging green solvent generated as byproduct in the biodiesel industries 

[35], for nitrile hydration reactions was further confirmed by Romero and co-workers [36]. 

Thus, employing the octahedral ruthenium(II) complexes [RuCl2(pypz-H)(dmso)2] and 

[RuCl2(pz-H)(dmso)3] (pypz-H = 2-(3-pyrazolyl)pyridine; pz-H = pyrazole; dmso = dimethyl 

sulfoxide) as catalysts (1 mol%), they demonstrated that decrease of activity after recycling 

is less pronounced in glycerol than in water (up to 4 consecutive runs). However, we must 

note that faster reactions were in general observed using pure water as solvent (TOF up to 5 

h
-1

 and TON up to 175 at 80 ºC). 

In the same context, the octahedral complex [RuCl2(PTA)4], described by Lee and 

Frost, merits to be highlighted since it featured a good catalytic activity and high functional 

group tolerance, combined with a superior recycling (more than five times without a 

significant loss of activity after selective crystallization of the amide product) [37]. Using 5 

mol% of [RuCl2(PTA)4], nearly quantitative conversion of a variety of aromatic, 

heteroaromatic, aliphatic and α,β-unsaturated nitriles to their corresponding amides was 

observed after 7-24 h of heating at 100 ºC in pure water. TOF and TON values of up to 30 h
-1

 

and 22000, respectively, could be reached with this complex in the hydration of benzonitrile 

at a low ruthenium loading (0.001 mol%). However, we must note that, under these 

conditions, a maximum conversion of 22% was observed after 97 days. Interestingly, 

[RuCl2(PTA)4] tolerated the presence of air and the catalytic reactions could be carried under 

atmospheric conditions (no inert atmosphere required). The arene-ruthenium(II) complex 25, 

containing a β-aminophosphine ligand derived from 1,3,5-triaza-7-phosphaadamantane 

(PTA), proved to be also active in water under aerobic conditions (Scheme 11) [38]. Thus, 

using a 5 mol% of this complex, various aromatic and aliphatic organonitriles could be 

transformed into the corresponding amides in moderate to good yields after 24 h of heating 

(TOF up to 3 h
-1

). The lifetime and activity of this catalyst was explored in depth for the 

hydration of benzonitrile to benzamide at various catalyst loadings (from 5 mol% to 0.001 

mol%). Interestingly, the TOF increased significantly as the catalyst loading was reduced. In 

particular, using only 0.001 mol% of 25, TON and TOF values of 97000 and 285 h
-1

 could 

be reached with a 97% conversion after 14 days. These values are higher than those reached 

with [RuCl2(PTA)4]. However, despite of its remarkable longevity and activity, we must note 
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that 25 presents an important limitation concerning the substrate scope since mixtures of 

products are formed starting from α,β-unsaturated nitriles, such as acrylonitrile. As 

commented by the authors, a cooperative effect of the pendant amino group during catalysis 

may be behind the high activity shown by complex 25. 

 

 

Scheme 11. Catalytic hydration of nitriles in water under aerobic conditions using complex 25. 

 

A significant TON value of 9800 has been recently attained in the catalytic hydration of 

benzonitrile using the arene-ruthenium(II) complex 26, which contains the water-soluble 

heterocyclic P-donor ligand tris(5-(2-aminothiazolyl))-phosphine trihydrochloride (Fig. 7) 

[39]. The reaction, performed in pure water with 0.01 mol% of 26, led to the selective 

formation of the desired benzamide in 98% GC-yield after 7 days of heating at 100 ºC. The 

generality and great functional group tolerance shown by this catalyst was demonstrated in 

the selective hydration of a large variety of aromatic, heteroaromatic, aliphatic and α,β-

unsaturated nitriles. Thus, using 3 mol% of 26, they could be converted into the 

corresponding primary amides in high isolated yields (≥ 78%) and after short reaction 

periods (0.5-7 h; TOF up to 66 h
-1

). In addition, the high solubility of complex 26 in water 

allowed a facile amide product separation (by selective crystallization), and the effective 

reuse of the remaining aqueous solution containing the catalyst (up to five consecutive runs). 

On the other hand, the utility of complex 26 in promoting the formation of primary amides in 

water by catalytic rearrangement of aldoximes and direct coupling of aldehydes with 

hydroxylamine was also demonstrated [39]. 

 

 

Fig. 7. Structure of the water-soluble arene-ruthenium(II) complex 26. 
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Despite the remarkable activity in water shown by complexes 20-22, [RuCl2(PTA)4] 

and 25-26, the requirement of rather elaborated phosphine ligands makes them unappealing 

face to practical applications. In this context, the arene-ruthenium(II) complexes [RuCl2(η
6
-

arene){P(NMe2)3}] (arene = C6H6, p-cymene, 1,3,5-C6H3Me3, C6Me6), described by 

Cadierno, Crochet and co-workers [40], represent more simple and competitive alternatives 

since they make use of the commercially available and inexpensive ligand 

tris(dimethylamino)phosphine. All these complexes are able to operate in pure water under 

neutral conditions.
 

In particular, the hexamethylbenzene derivative [RuCl2(η
6
-

C6Me6){P(NMe2)3}] (27) proved to be highly effective, providing the desired amides from a 

wide range of organonitriles in excellent yields and short times (TOF values up to 11400 h
-1

 

could be reached at 150 ºC under MW irradiation) [40,41]. Remarkably, the corresponding 

hexamethylbenzene derivatives proved to be also the most active within the series of 

complexes 20 discussed above (Fig. 6) [30]. Since an increase of the steric bulk of the η
6
-

arene ligand would lead to an increase in the rate of ligand dissociation, the rate-determining 

step in these hydration reactions may be the dissociation of the amide from the metal. 

Additionally, having a more electron-donating η
6
-arene ligand would make the metal center 

less Lewis acidic, which would make the ruthenium-amide bond weaker. 

 

 

Scheme 12. Catalytic synthesis of ibuprofenamide 29 using complex [RuCl2(η
6
-C6Me6){P(NMe2)3}] (27). 

 

Taking advantage of the remarkable activity of [RuCl2(η
6
-C6Me6){P(NMe2)3}] (27), an 

efficient and practical synthesis of the non-steroidal anti-inflammatory drug ibuprofenamide 

29 by catalytic hydration of 2-(4-isobutylphenyl)propionitrile 28 could be developed 

(Scheme 12) [40]. Complex 27 proved to be also useful for the one-pot conversion of δ-

ketonitrile to ene-lactams in water [40], thus representing a water-soluble substitute of the 

Murahashi´s catalyst [RuH2(PPh3)4] (Scheme 4) [13]. However, we must note that, despite 
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the remarkable activity shown by [RuCl2(η
6
-C6Me6){P(NMe2)3}] (27), the TON values 

reached with this catalyst were only modest (up to 196) due to its progressive decomposition 

in the reaction media. Such decomposition generates in solution the less active 

dimethylamine-ruthenium(II) complex [RuCl2(η
6
-C6Me6)(NHMe2)] by hydrolysis of the P-N 

bonds and displacement of the resulting phosphorus species (P(NMe2)3-x(OH)x; x = 1, 2 or 3) 

[40]. 

Subsequent studies by Tyler and co-workers revealed the utility of complexes 

[RuCl2(η
6
-arene){P(NMe2)3}] to promote the challenging hydration of α-hydroxynitriles 

(cyanohydrins) to the corresponding α-hydroxyamides [42]. Homogeneous catalysts, 

including the Parkin´s one (Fig. 1) [43], usually show a extremely low reactivity towards this 

class of nitriles due to their poisoning by cyanide, a species that is generated in solution by 

partial decomposition of the cyanohydrins. As shown in Scheme 13, using 5 mol% of 

[RuCl2(η
6
-p-cymene){P(NMe2)3}] (30) as catalyst, and running the catalytic reactions within 

the pH range 3.5-8.5 to minimize the decomposition of the substrates into the corresponding 

aldehydes and HCN, complete conversion of glycolonitrile (R = H) and lactonitrile (R = Me) 

could be achieved at room temperature. 

 

 

Scheme 13. Catalytic hydration of cyanohydrins using complex [RuCl2(η
6
-p-cymene){P(NMe2)3}] (30). 

 

The effectiveness shown by these readily accessible [RuCl2(η
6
-arene){P(NMe2)3}] 

complexes in nitrile hydration processes is ascribed to the excellent hydrogen bond accepting 

properties of P(NMe2)3, which activates the water molecule by H-bonding thus facilitating its 

approach and addition to the coordinated nitrile (Fig. 8). Such a cooperative effect was 

supported by DFT calculations. In a more recent article, Tyler and co-workers described 

faster glycolonitrile and lactonitrile hydrations employing the related phosphinite-Ru(II) 

complex [RuCl2(η
6
-p-cymene){PMe2(OH)}] (quantitative transformations after 6-17 h under 

the conditions indicated in Scheme 13) [44,45]. H-bonding between the OH group and the 

incoming water molecule in the secondary coordination sphere of the catalyst was again 

evidenced by DFT calculations. Despite these relevant results, that represent a benchmark for 
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future studies in the field, we must note that complexes [RuCl2(η
6
-p-cymene){P(NMe2)3] 

(30) and [RuCl2(η
6
-p-cymene){PMe2(OH)}] are susceptible to cyanide poisoning. This fact 

explains the poor conversions observed in the hydration of acetone cyanohydrin (up to 15%), 

a substrate particularly prone to decompose into acetone and hydrogen cyanide. 

 

 

Fig. 8. The cooperative effect of the P(NMe2)3 ligand. 

 

In addition to all the examples commented above, other hydration processes catalyzed 

by homogeneous ruthenium catalysts described in the literature include (Scheme 14): (i) The 

hydration of the benzoxazolylacetonitrile 31 by dimer [{RuCl(µ-Cl)(η
6
-p-cymene)}2], which 

allowed the synthesis of the benzoxazolylacetamide 32 in high yield [46]. (ii) The hydration 

of the chloroacetonitriles 33 employing the mononuclear arene-ruthenium(II) complexes 35 

containing different pyranone- and pyridinone-based ligands [47]. The corresponding 

chloroacetamides 34, a particular class of compounds that exhibit biological properties and 

are widely used as building blocks in preparative organic chemistry [48], could be obtained 

in modest to high yields employing low ruthenium loadings (0.1-0.2 mol%) and pure water 

as solvent (TOF up to 39 h
-1

 and TON up to 562). (iii) The asymmetric hydration of the 

prochiral dinitrile α-benzyl-α-methylmalononitrile 36 by the optically active catalysts 38, 

which led to cyanoamide 37 in modest yields and low enantiomeric excesses [49]. And, (iv) 

the selective transformation, in water at pH 10.5, of acetonitrile into acetamide by means of 

the octahedral dicationic Ru(II) complex [Ru(H2O)(NCMe)4(P
i
Pr3)][BF4]2 (initial TOF = 50 

h
-1

) [50]. At pH > 9 this complex is deprotonated to form [Ru(OH)(NCMe)4(P
i
Pr3)][BF4], 

which gradually evolves into the bidentate acetamido derivative [Ru{κ
2
-(N,O)-

NH(CO)Me}(NCMe)3(P
i
Pr3)][BF4] by intramolecular nucleophilic attack of the hydroxide 

on one of the coordinated nitrile ligands. This conversion was proposed to be part of the 

catalytic cycle [51]. 
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Scheme 14. Some nitriles hydration reactions catalyzed by ruthenium(II) complexes. 

 

Quite recently, in an attempt of mimicking the active sites of the iron-containing NHase 

enzymes [5], C. A. Grapperhaus and co-workers have also described the catalytic hydration 

of benzonitrile using the octahedral ruthenium(II) derivatives 39 (Fig. 9) [52]. These 

complexes were able to operate in neat substrate/water mixtures, without the requirement of 

added base or buffer, generating benzamide in a selective manner albeit in very low yields (< 

10%; TON and TOF values up to 242 and 13 h
-1

, respectively, at 124 ºC using ca. 10
-3

 mol% 

of 39). During this study, it was found that those catalysts with an oxidized sulfur 

environment were less susceptible to product inhibition, increasing the catalytic efficiency at 

low nitrile/water ratios. 
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Fig. 9. Structure of the active sites of Fe-containing NHase enzymes and complexes 39. 

 

3. Heterogeneous ruthenium-based catalysts 

 

Despite the enormous interest for industry of heterogeneous catalysts due to their easier 

handling, higher stability, easier recovery and reusability, heterogeneous ruthenium-based 

systems for nitrile hydration reactions have been comparatively much less developed than 

the homogeneous ones. In this context, the use of ruthenium supported on carbon (Ru/C) 

[53] and alumina (Ru/Al2O3) [54], as well ruthenium nanoparticles combined with oxygen-

containing copper compounds [55], has been described in a series of Japanese patents. All of 

them were active and selective towards amide formation under temperatures regimes of 80-

135 ºC. However, little can be said about the scope, activity and recyclability of these 

systems given the scarce information included in the documents. Quite recently, Kumar and 

Das reported the preparation of ruthenium nanoparticles supported on the polystyrene ion 

exchange resin Amberlite IRA 900 chloride, which proved to be catalytically active under 

microwave irradiation [56]. Thus, performing the reactions in water at 130 ºC with a Ru 

loading of 3 mol%, a wide range of aromatic, heteroaromatic, aliphatic and α,β-unsaturated 

nitriles were efficiently and selectively converted to their corresponding primary amides in 

high yields (60-88%) after 1-2 h of irradiation (TOF up to 33 h
-1

). In addition, after 

extraction of the amide products with ethyl acetate, the catalytic system could be reused up 

to ten times without significant loss of activity and selectivity (accumulated TON of ca. 

300). Effective reuse of a Nafion resin-supported ruthenium catalyst (up to six cycles; 

accumulated TON of 155) has also been described by Prakash, Mathew and workers 

(Scheme 15) [57]. This catalytic system, which was generated from Nafion-K by ion-

exchange with anhydrous RuCl3 in 1,2-dichloroethane, proved to be operative with a large 

variety of aromatic and heteroaromatic nitriles in water at 175 ºC, employing a metal loading 

of 4 mol% (TOF up to 2 h
-1

). Separation of the catalyst from the amide product was held in 
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this case by centrifugation of the crude reaction mixture. Once the catalyst was recovered, 

the amides were isolated by evaporation of the aqueous solution and further chromatographic 

purification. 

 

 

Scheme 15. Catalytic hydration of nitriles employing Nafion-Ru as catalyst. 

 

Efficient and selective hydration of a number of organonitriles, in water at 140 ºC, was 

described by Mizuno and co-workers employing ruthenium hydroxide supported on alumina 

(Ru(OH)x/Al2O3) as catalyst (TOF and TON values up to 13 h
-1

 and 234, respectively) [58]. 

Worthy of note, using Ru(OH)x/Al2O3, a totally organic solvent free protocol was developed 

since the solid catalyst can be easily separated from the reaction mixture by hot filtration at 

90 ºC, and the amides crystallize in pure form from the filtrate upon cooling at 0 ºC. 

Furthermore, the heterogeneous Ru(OH)x/Al2O3 system could be reused two times without 

any change in the activity. In the hydration of methylbenzonitriles, the lower reaction rate 

observed with o-methylbenzonitrile relative to its meta- and para-substituted counterparts 

indicated a marked steric effect, which was not found when the same hydration reactions 

were performed with NaOH. These observations strongly suggest that the nitrile coordinates 

to the ruthenium center on the surface of Ru(OH)x/Al2O3, and that the hydration reaction 

proceeds via attack of a ruthenium hydroxide species on the coordinated nitrile (Scheme 16) 

[51]. On the other hand, Ru(OH)x/Al2O3 was also able to promote the formation of primary 
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amides in water by catalytic aerobic oxidation of primary amines [59] and azides [60]. In 

these processes, the hydration of an in situ formed nitrile was proposed as a key step in the 

corresponding catalytic cycles. 

 

 

Scheme 16. Proposed mechanism for the Ru(OH)x/Al2O3-catalyzed hydration of nitriles. 

 

Organic solvents-free protocols for the selective conversion of nitriles to amides have 

also been developed by means of ruthenium hydroxide supported on dopamine-

functionalized Fe3O4 nanoparticles 40 [61], and Ru(OH)x nanoparticles 41 [62] and a 

bifunctional ruthenium(II) complex 42 [63] supported on silica-coated Fe3O4 nanoparticles 

(Fig. 10). 

 

 

Fig. 10. Structure of the ruthenium-based nanocatalysts 40-42. 

 

All these nanocatalysts showed excellent activities (TOFs up to 170 h
-1

) and 

selectivities for a broad range of activated and inactivated benzonitriles, as well as 

heteroaromatic, aliphatic and α,β-unsaturated nitriles, leading to the corresponding primary 

amides in high yields (70-95%) after 0.5-7 h of MW irradiation at 100-150 ºC in pure water. 
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None of them needed the use of acidic or basic co-catalysts, all showed a remarkable 

functional group tolerance, and no overhydrolysis to carboxylic acids was observed with 

them. Noteworthy, the selective mono and dihydration of dinitriles could be conveniently 

achieved using 42 just by controlling the time of MW irradiation (Scheme 17) [63]. Because 

the super-paramagnetic nature of the Fe3O4 support, all these nanocatalysts could be easily 

separated from the reaction products with the help of an external magnet, and recycled up to 

three (40 and 41) or six (42) times (cumulated TON up to 358). Crystals of the amides 

precipitated by cooling down the remaining aqueous solution and were isolated by simple 

decantation/filtration. 

 

 

Scheme 17. Catalytic hydration of dinitriles employing the nanocatalyst 42. 

 

Ruthenium-substituted hydroxyapatite ((RuCl)2Ca8(PO4)6(OH)2) was also employed by 

Kaneda and co-workers to promote the selective hydration of various kinds of nitriles in 

water at 150 ºC. Very modest activities were observed with this heterogeneous system (TOF 

up to 0.2 h
-1

) [64]. 

 

4. Conclusions 

 

The development of metal catalysts for the hydration of nitriles to amides is a field that 

has received considerable attention in the past two decades. In this review article we have 

discussed the specific contribution of ruthenium compounds to the process. As the reader 

will have noticed, many homogeneous ruthenium catalysts have been developed in the last 

years. Remarkably, some of them allow to carry out this synthetically useful reaction directly 

in water, without the assistance of any acidic or basic additive, under relatively mild 

conditions and with a high functional group compatibility. The greatest advances in the field 
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have been achieved through the concept of “bifunctional catalysis” where the ligands 

attached to ruthenium play a key role in the activation of the water nucleophile. The TOF and 

TON values reached with this type of catalysts are the highest described so far for this 

catalytic transformation. Promising results have also been described in the challenging 

hydration of cyanohydrins, a particular class of nitriles that remains elusive towards catalytic 

hydration. The results achieved can be surely improved through the design of new 

bifunctional systems. Concerning heterogenous ruthenium catalysts, although some relevant 

results have obtained employing magnetic nanocatalysts, the field remains almost 

unexplored. We hope that this article will serve as inspiration for future work in the area, 

which offer with many opportunities for the new discoveries. 
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