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Multi-label was introduced as an extension of multi-class classification. The

aim is to predict a set of classes (called labels in this context) instead of a

single one, namely the set of relevant labels. If membership to the set of rel-

evant labels is defined to a certain degree, the learning task is called graded

multi-label classification. These learning tasks can be seen as a set of ordinal

classifications. Hence, recommender systems can be considered as multi-label

classification tasks. In this paper, we present a new type of nondeterministic

learner that, for each instance, tries to predict at the same time the true grade

for each label. When the classification is uncertain for a label, however, the

hypotheses predict a set of consecutive grades, i.e., an interval. The goal is

to keep the set of predicted grades as small as possible; while still containing

the true grade. We shall see that these classifiers take advantage of the inter-

relations of labels. The result is that, with quite narrow intervals, it is possible

to obtain dramatic improvements in the number of right predictions compared

with those achieved by a state-of-the-art deterministic learner which always

predicts only one grade for all labels.

c© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-label classification (MLC) has recently received in-

creasing attention from the Machine Learning community both

as an application field and as an intellectual challenge. Given an

instance, the aim in MLC is to simultaneously obtain a collec-

tion of binary classifications. In other words, each instance has

a set of labels attached, the relevant labels, instead of a single

one, as occurs in multi-class classification tasks.

Tsoumakas et al. have made a detailed presentation of

multi-label classification and its applications (Tsoumakas and

Katakis, 2007; Tsoumakas et al., 2010). These applications

arise in different fields; for instance, in many text document,

video, music or movie databases, items are tagged with several

labels.
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Cheng et al. (2010) extended MLC to consider situations in

which a label is relevant to an instance to a certain degree. They

call this extension graded multi-label classification (GMLC).

The relevance of each label is represented by a fuzzy set instead

of a (crisp) standard 0/1 membership relation. Thus, the set of

degrees of relevance or membership are generalized from {0, 1}

to a finite ordered set, M, typically represented by a subset of

contiguous integers that can be read as linguistic variables.

Additionally, GMLC can be seen as a set of ordinal clas-

sifications. For each label, instead of a binary classification,

GMLC defines a ranking of instances in the set M of degrees of

membership. Let us recall that the aim of ordinal classification

(sometimes called ordinal regression) is to find hypotheses able

to predict classes or ranks that belong to a finite ordered set,

like the set M of degrees of membership.

From this point of view, GMLC is a reasonable framework

for handling recommender systems. The ratings of users over a

collection of items can be considered as grades of membership

of those items with respect to the set of preferable items. Thus,
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items would play the role of labels, while ratings are grades. In

the experimental results reported at the end of the paper, we

illustrate this application field of GMLC with some datasets

built from Jester, an online joke recommender system (Gold-

berg et al., 2001).

On the other hand, the ordinal classifications involved in

GMLC tasks can be extended to nondeterministic classifiers. In

multi-class classification tasks, nondeterministic classifiers are

able to predict one or more classes, while traditional (determin-

istic) classifiers predict only one. The central idea is that nonde-

terministic classifiers return more than one class when there are

reasonable doubts about the right prediction, instead of risking

a single prediction. These classifiers were introduced in Alonso

et al. (2008); del Coz et al. (2009); Luaces et al. (2011) for

multi-class and for ordinal classification tasks, although these

approaches are not devised to deal with multi-label data.

In the context of GMLC, nondeterministic classifiers would

predict intervals of grades for each label. We shall show that,

with quite narrow intervals, the performance of predictors can

be dramatically improved in terms of right predictions, while

the size of the predicted intervals is forced to be as small as

possible. For this purpose, we define the predictions as those

with the best expected trade-off between accuracy and size in a

sense that will be explained in Section 4. Formally, the multi-

label classification of an instance x is defined as the output that

optimizes the expected F1 measure.

The paper is organized as follows. In the next section we

present a motivating example of a GMLC task. We then intro-

duce the formal framework for classical, graded and nondeter-

ministic graded multi-label classification. The fifth section is

devoted to reporting and discussing a number of experiments

carried out to evaluate the proposals put forward in this paper.

The last section summarizes some conclusions about the work

presented here.

2. A Motivating Example

Let us consider BeLa-E, the dataset employed in Cheng et al.

(2010), where graded multi-label classification was introduced.

The origin of the data (Abele-Brehm and Stief, 2004) was the

result of a poll conducted to find out the opinion of a sample

of students about different aspects of their potential future jobs.

Each student was asked to grade, on an ordered scale of 5 val-

ues, the degree of importance of properties of future jobs, in-

cluding ‘reputation’, ‘safety’, ‘high income’ and ‘friendly col-

leagues’. The poll records, for each student, the answers to 48

questions plus 2 additional items, the student’s sex and age.

There are several reasons to reduce the number of questions

in a poll like this one. First, in order to gain insight into the

rationale behind the answers, it is useful to discover whether

some answers can be deduced from others. Second, to increase

the quality of the information gathered by the poll, if it is possi-

ble to reduce the number of questions, the students will be more

willing to answer the questions while maintaining the necessary

attention.

Thus, let us suppose that we want to learn to predict the opin-

ion of students regarding a group of 10 issues according to the

answers given to the remaining questions. Notice that, instead

of concluding whether the label ‘reputation’ is relevant or not

for a student, the purpose of the learning process is to predict

the degree of relevance. This is the framework of graded multi-

label classification tasks (Cheng et al., 2010). This is, in fact, a

learning task that arises in many recommender systems.

It is a difficult task to learn the exact grade of each label for

a number of different factors; we shall see this in detail in Sec-

tion 5, where we report some experiments conducted with this

dataset. The upshot of this situation is that the usefulness of

such a learned hypothesis may be limited.

In this paper we explore a type of hypothesis allowed to pre-

dict more than one grade for each label in doubtful situations.

The idea is to be able to predict, for instance, that a label is not

very relevant, since the grade is ‘very low’ or ‘low’.

To capture this approach, we need to extend the set of outputs

from grades to intervals of grades. The use of intervals instead

of arbitrary subsets is important, given that predictions must

somehow incorporate the fact that grades are an ordered set.

On the other hand, we must establish a tradeoff between the

proportion of true predictions and the size of the intervals. Ob-

viously, an interval including all grades will contain the true

one, but that is not useful. To accomplish this task, we shall use

a function employed in information retrieval, the Fβ presented

in the next section.

Furthermore, we can opt for learning each issue separately

or all together, trying to take advantage of the interdependence

between issues. In Section 4, we prove that if we are willing

to make a prediction with a fixed number of grades (joining

all the labels together), then we must search for those intervals

with the highest sum of probabilities. This implies that a joint

strategy outperforms the attempt to optimize the predictions of

each label separately.

The results in the poll dataset show that it is possible to dra-

matically increase the score of a state-of-the-art deterministic

learner. The percentage of times that predictions include the

true grade rise from 49.35% to 74.58%, while the average num-

ber of predicted grades per label (question in the poll) is only

1.64.

3. A Formal Framework for Graded and Nondeterministic

multi-label Classification

Let L be a finite and non-empty set of labels {l1, . . . , l|L|}, and

let X be an input space. A multi-label classification task can be

represented by a dataset

D = {(x1, Y1), . . . , (x|D|, Y|D|)}

of pairs of instances x ∈ X and subsets of labels Yx ⊂ L. The

goal is to induce from D a hypothesis defined as follows.

Definition 1. A multi-label hypothesis is a function h from the

input space to the set of subsets (power set) of labels; in sym-

bols,

h : X −→ {0, 1}L. (1)
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The prediction h(x) can be understood as the set of relevant

labels retrieved for a query x. There is a straightforward ap-

proach to inducing a multi-label hypothesis from a dataset D,

the so-called Binary Relevance strategy. For each l ∈ L, in-

duce a binary hypothesis hl : X −→ {0, 1}, and then define

h(x) = {l : hl(x) = 1}.

When the set Yx of relevant labels is a fuzzy subset of L. That

is, Yx is defined by a membership function L → M, where M

is the discrete set of graded membership degrees, in our case,

without any loss of generality, M = {0, 1, . . . ,m}. In these cases,

the goal is to learn a graded multi-label hypothesis.

Definition 2. A graded multi-label hypothesis Cheng et al.

(2010) is a function h from the input space to the set of fuzzy

subsets of L with membership degrees in M; in symbols,

h : X −→ ML. (2)

We shall now take a further step forward by extending M to

the set of intervals of M.

Definition 3. A nondeterministic graded multi-label hypothesis

is a function h from the input space to the set of fuzzy subsets of

L with membership degrees in the set of intervals of M (subsets

of consecutive degrees); in symbols,

h : X −→ (Intervals(M))L. (3)

Alternatively, a graded multi-label hypothesis h, for each in-

stance x ∈ X, defines a relation h(x) from the set of labels L

into the set of grades M. For the sake of coherence with the

adjective nondeterministic, the hypotheses whose predictions

have always one membership grade, Eq. (2), are called deter-

ministic. In the deterministic case, h(x) is a function: for each

l ∈ L the prediction is only one grade of M, h(x)(l) ∈ M. In

general, in the nondeterministic case, we allow more than one

grade to be assigned to h(x)(l). However, in order to grasp the

ordinal meaning of M, the set of grades must be an interval,

h(x)(l) ∈ Intervals(M). Thus, the relation h(x) can be repre-

sented as

h(x) = {(l, g) : l ∈ L, g ∈ h(x)(l)} ⊂ L × M. (4)

Or, alternatively, as a function that returns one interval for each

label

h(x) = (I1, . . . , I|L|) (5)

3.1. Loss and Score Functions

Loss and score functions for nondeterministic classifiers

must take into account not only whether the true membership

grades are included in the predicted intervals, but also the length

of these intervals. In order to assess the performance of a graded

hypothesis h (deterministic or nondeterministic), it is useful to

consider its predictions as the relation in Eq. (4). Given an

input instance x ∈ X, we have to compare the set of predic-

tions h(x) ⊂ L × M and a subset of truly relevant graded labels

Y ⊂ L × M. For this purpose, we can compute the following

contingency matrix,

Y (L × M) \ Y

h(x) a b

(L × M) \ h(x) c d

(6)

in which each entry (a, b, c, d) is the number of elements of the

intersection of the corresponding sets of the row and column.

Notice, for instance, that in the binary case (|M| = 2), a is the

number of relevant labels predicted by h for x.

In the most general case, we have that a + b is the number

of predictions; i.e., the size of the prediction. Moreover, since

all labels have exactly one degree of membership, including the

lowest (0), which means that they are not relevant at all, a + c

is the number of labels. In symbols,

a + b = |h(x)| = |{(l, g) : l ∈ L, g ∈ h(x)(l)}|, (7)

a + c = |Y | = |L|. (8)

Notice that, in the deterministic case, the size of the prediction

is equal to the number of labels. For general nondeterministic

hypothesis, however, the size is bigger than |L|.

From another point of view, the predictions of a graded hy-

pothesis can be considered as the answers to a query repre-

sented by an instance x. Using this metaphor, we can extend the

loss and score functions from information retrieval to graded

multi-label hypotheses. We thus have the following definitions.

Definition 4. The Recall in a query (i.e., an instance x) is de-

fined as the proportion of relevant labels Y included in h(x):

R(h(x), Y) =
a

a + c
. (9)

Definition 5. The Precision is defined as the proportion of re-

trieved labels in h(x) that are truly relevant:

P(h(x), Y) =
a

a + b
. (10)

Finally, the tradeoff between Recall and Precision is formal-

ized by

Definition 6. The Fβ (β ≥ 0) is defined, in general, by

Fβ(h(x), Y) =
(1 + β2)PR

β2P + R
=

(1 + β2)a

|h(x)| + β2|L|
. (11)

The size of predictions coincides exactly with the number of

labels (|L| = |h(x)|) for deterministic hypotheses; thus, Recall,

Precision, and Fβ have the same value: the proportion of suc-

cessful grade predictions. However, these score functions take

on a proper meaning in nondeterministic hypotheses, as the size

of predictions |h(x)| is, in general, greater than the number of

labels.

To illustrate these concepts let’s suppose a graded multi-label

dataset where each example belongs to 4 labels with different

degrees of membership (grades), ranging each one from 0 to

9. The true values for a given instance could be, for example,

Y = {9, 3, 5, 2}. If a deterministic algorithm makes the predic-

tion hdet(x) = {9, 4, 5, 2} for this instance, the corresponding

contingency matrix is:

Y (L × M) \ Y

hdet(x) 3 1

(L × M) \ h(x) 1 35

where L×M represents all the possible grades (10 in this exam-

ple) for all the labels (4 in this example). Thus, a = 3, since the
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grades for the first, third and fourth labels have been correctly

predicted by hdet.

A deterministic learner predicts just one grade for each label,

so the length of a prediction, |hdet(x)|, is equal to the number

of labels, |L|; Therefore, considering equations (7) and (8), we

have that b = c and thus, Recall, Precision and F1 yield the

same value for any deterministic prediction.

However, a nondeterministic learner predicts an interval of

grades for each label which can contain several grades. Let’s

suppose a nondeterministic prediction

h(x) = {9, {3, 4, 5}, {4, 5}, {5, 6, 7, 8}}.

that can be read as:

the grade for label 1 is 9, for label 2 it is in the inter-

val [3,5] (i.e. it can be 3, 4 or 5), for label 3 it is in

[4,5] and for label 4 it is in [5,8].

The contingency matrix for this prediction/example is:

Y (L × M) \ Y

h(x) 3 7

(L × M) \ h(x) 1 29

which yields different values for Precision, Recall and F1, since

the length of a nondeterministic prediction, |h(x)|, is usually

larger than the number of labels, |L| and thus, b , c, as opposite

to deterministic learners.

4. The Nondeterministic Graded Approach

We wish to define a hypothesis h for each instance x, (Eq. 5),

that optimizes a score function defined in terms of the entries

a, b, c of the contingency matrix (6). In our case we are trying to

optimize the F1 measure. Therefore, we only need the number

of correct grade predictions throughout the list of labels, a, and

the length of the intervals.

h(x) = argmax
(I1 ,...,I|L|)

2
∑|L|

a=1
a Pr(a|(I1, . . . , I|L|), x)
∑|L|

i=1
|Ii| + |L|

. (12)

From hereon, we shall assume that we have learned an esti-

mation of the posterior probabilities for each label l ∈ L and

each grade g ∈ M, given x:

Pr(l, g|x),∀l ∈ L,∀g ∈ M. (13)

To derive an algorithm to find optimum values for h predic-

tions, let us generalize the case where we only have a single la-

bel. That is, |L| = 1, trying to optimize the F1 measure, Alonso

et al. (2008), if p is the posterior probability of an interval of

grades I, Eq. (12) can be written as

h(x) = argmax
I

(

2p

|I| + 1

)

. (14)

In the next proposition we shall generalize this formula to any

number of labels. For this purpose, we need to assume the in-

dependence of the probabilities of labels.

Proposition 1 (Average number of correct classifications). If

the posterior probabilities of labels are independent, the aver-

age number of correct classifications for h(x) = (I1, . . . , I|L|) is

the sum of the posterior probabilities of the intervals. In sym-

bols,

|L|
∑

a=1

a Pr(a|(I1, . . . , I|L|), x) =

|L|
∑

i=1

Pr(Ii|x).

Proof. The proof can be made by induction on the number of

labels. For only one label, the thesis of this proposition is triv-

ial; see (14). Then, assuming the proposition proven for r la-

bels, we now prove the equation for r + 1.

Since x was fixed, we get rid of it to facilitate the reading of

the following formulae.

r+1
∑

a=1

a Pr(a|(I1, . . . , Ir+1)) =

=

r+1
∑

a=1

a
[

(1 − Pr(Ir+1)) Pr(a|(I1, . . . , Ir)) +

+ Pr(Ir+1) Pr(a − 1|(I1, . . . , Ir))
]

=

= (1 − Pr(Ir+1))

r
∑

a=1

a Pr(a|(I1, . . . , Ir)) +

+ Pr(Ir+1)

r+1
∑

a=1

(a − 1) Pr(a − 1|(I1, . . . , Ir)) +

+ Pr(Ir+1)

r+1
∑

a=1

Pr(a − 1|(I1, . . . , Ir)),

given that Pr(r + 1|(I1, . . . , Ir)) = 0. Moreover, since

r+1
∑

a=1

Pr(a − 1|(I1, . . . , Ir)) =

r
∑

a=0

Pr(a|(I1, . . . , Ir)) = 1,

applying the induction hypothesis, we finally have that

r+1
∑

a=1

a Pr(a|(I1, . . . , Ir+1)) =

=

[

(1 − Pr(Ir+1)) + Pr(Ir+1)

]
r

∑

a=1

a Pr(a|(I1, . . . , Ir)) +

+ Pr(Ir+1) =

r+1
∑

i=1

Pr(Ii).

Corollary 1 (Defining optimal F1 predictions). If the posterior

probabilities of labels are independent, the prediction for an

input x with the maximum expected F1 score is given by

h(x) = argmax
(I1 ,...,I|L|)

2
∑|L|

i=1
Pr(Ii|x)

∑|L|

i=1
|Ii| + |L|

.
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4.1. Searching for a Near Optimum

Once we have an estimation of the expected F1 given an in-

stance x and an output (I1, . . . , I|L|), we need to search for the

best set of intervals. According to Corollary 1, we only need

to compute the scores obtained by the best intervals for each

possible length. But notice that, for a given length of the pre-

diction, there are many possibilities; moreover, it is not clear

how to divide a prediction length between labels. Depending

on the distribution of probabilities, the risk of error in labels

may be different. This is hence the point at which we explic-

itly consider the set of labels at the same time. Although we

assumed independence between label probabilities, we have to

adopt a multi-label point of view when searching for the best

combination of intervals.

Thus, given an input x, let us first compute the matrix S with

one column for each label in L, and one row for each grade in

M, defined by

S (i, j) = (pi
j, I

i
j), ∀i ∈ M,∀ j ∈ L, (15)

where Ii
j

is the interval of grades, of size i, with the highest

posterior probability, pi
j
, for label l j. These probabilities can be

computed by means of a simple loop.

The prediction h(x) is a combination of intervals, one from

each column of the matrix S . Notice that we do not consider

the possibility of abstention in any label: all labels will have a

nonempty interval of grades. Therefore, the search space has

|M||L| possible combinations of intervals.

To avoid exponential complexity, we use a greedy breadth-

first search. So, let us start assuming that the best combination

of intervals is given by the first row of matrix S ; i.e., by assum-

ing that, for each label, the best prediction is the interval with

just one grade: the one with the highest posterior probability.

Then, the algorithm iteratively tries to replace one of the inter-

vals by another with one more grade. To do so, the algorithm

computes the highest increase in the sum of probabilities. The

algorithm stops when no improvements can be reached after

searching the columns of S .

In the worse case, the algorithm considers the optimization

of each possible prediction length (from |L| to |M| × |L|). The

optimization involves checking |L| possibilities. Therefore, the

complexity of our algorithm is

O (|L| (|M| × |L| − |L|)) = O
(

|L|2|M|
)

.

Despite this search, the algorithm does not guarantee finding

the optimum combination. The experiments reported in the next

section show that the classifiers achieved using this algorithm

outperform the Binary Relevance strategy, which would make

predictions for each label separately.

5. Experimental Results

In this section we report the results of a set of experiments de-

signed to evaluate the learners proposed in the paper. We com-

pare the nondeterministic learners introduced in the preceding

section with a state-of-the-art deterministic learner. After pre-

senting these learners in detail, we describe the datasets used in

the comparison discussed in the last subsection.

Table 1. Description of the datasets used in the experiments. Sources: †

Cheng et al. (2010); Abele-Brehm and Stief (2004); ⋆Goldberg et al. (2001)

Dataset Instances Attribs. Range Labels Sources

BeLa-E 1930 5 †

10 40 10

20 30 20

Jester-1.1 7200 80 5, 10, 20 20 ⋆

Jester-1.2 6916 80 5, 10, 20 20 ⋆

Jester-2 3091 80 5, 10, 20 20 ⋆

Table 2. Average F1 scores (expressed as percentages) of all learners and

average size of the predictions for nondeterministic learners

F1 |h|

IBLRGML BRnd GMLnd BRnd GMLnd

BeLa-E

10 49.35 56.22 56.65 1.85 1.64

20 47.99 54.75 55.21 1.90 1.70

Jester-1.1

5 40.46 46.66 46.82 2.35 2.07

10 22.31 28.95 29.20 3.50 2.52

20 11.71 16.66 16.79 5.27 2.52

Jester-1.2

5 41.25 46.73 46.86 2.35 2.05

10 22.96 29.13 29.43 3.46 2.48

20 12.10 16.81 16.88 5.19 2.51

Jester-2

5 48.16 50.08 50.44 2.12 1.84

10 29.58 31.81 31.94 2.90 2.06

20 16.26 18.35 18.17 3.91 2.09

5.1. Learners Compared

As a deterministic learner, we used IBLRGML, the graded ver-

sion of IBLR-ML (Cheng and Hüllermeier, 2009) presented by

Cheng et al. (2010). We employed the implementation provided

by the authors through the library Mulan1 (Tsoumakas et al.,

2010, 2011). We wrote an interface using Matlab to ensure that

cross-validations were carried out with the same splits of train-

ing and testing data.

On the nondeterministic side, we used LibLinear (Fan et al.,

2008) to estimate posterior probabilities (Wu et al., 2004). We

used a Binary Relevance strategy (BRnd), with the implementa-

tion provided by the authors of Alonso et al. (2008). The learner

proposed in Section 4 shall be called GMLnd .

5.2. Datasets and Parameter Settings

We used 11 datasets to compare the performance of the dif-

ferent approaches. Table 1 reports the characteristics of these

datasets. Their structure is quite similar: they are basically ma-

trices of grades from an ordered set M of integers or real num-

bers. From an abstract point of view, all datasets can be seen

1http://mulan.sourceforge.net/
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Table 3. Average Recall and Precision (expressed as percentages). Notice

that for deterministic learners Recall and Precision are the same as F1

scores; however, we repeat the values of Table 2 for ease of reference

Recall Precision

IBLRGML BRnd GMLnd BRnd GMLnd

BeLa-E

10 49.35 79.61 74.58 43.60 45.94

20 47.99 79.10 74.49 41.89 43.98

Jester-1.1

5 40.46 78.00 71.99 33.40 34.85

10 22.31 65.08 51.81 18.69 20.54

20 11.71 52.45 29.88 9.98 11.87

Jester-1.2

5 41.25 77.96 71.49 33.48 35.05

10 22.96 64.80 51.64 18.88 20.80

20 12.10 52.14 30.05 10.11 11.94

Jester-2

5 48.16 77.13 70.95 37.52 39.64

10 29.58 61.17 48.75 21.84 24.26

20 16.26 44.95 28.64 11.79 13.76

as records from a recommender system. The rows gather the

assessments of people regarding different items represented by

the columns.

The first 2 datasets were built from BeLa-E (Cheng et al.,

2010; Abele-Brehm and Stief, 2004) presented in Section 2. We

built a matrix whose rows record the data for each student: sex,

age, and the answers to the 48 questions about the degree of

importance of properties of future jobs. From this matrix, 2

different datasets were generated following the scheme used in

Cheng et al. (2010). In BeLa-E-10, we randomly selected 10

(respectively 20 in BeLa-E-20) columns from the set of 48 stu-

dents’ answers as the set of class labels, while all the remaining

columns, including sex and age, were taken as predictive fea-

tures.

The other datasets used were compiled from Jester, an online

joke recommender system2 (Goldberg et al., 2001). There are 3

different datasets, Jester-1.1, Jester-1.2, and Jester-2. The first

two, Jester-1.*, collect anonymous continuous ratings (-10.00

to +10.00) of 100 jokes from 73,421 users, collected between

April 1999 and May 2003. Jester-1.1 (respectively Jester-1.2)

gathers data from 24,983 (respectively 23,500) users who have

rated 36 or more jokes. To avoid missing values, in both cases

we considered the subset of users who have rated the whole

collection of 100 jokes.

In the case of Jester-2, there are 150 jokes rated by 63,974

users, collected between November 2006 and May 2009. We

selected the 100 jokes with the highest number of ratings, and

then the users who have rated all of them.

From the resulting matrices, in all the Jester datasets we ran-

domly separated subsets of 20 columns as class labels, while the

remaining 80 columns were taken as predictive features. The

2Available at http://eigentaste.berkeley.edu/dataset/

continuous ratings of label columns were discretized in scales

of 20, 10 and 5 values using a simple equal length procedure.

In all datasets, we used LibLinear to estimate the poste-

rior probabilities needed by nd classifiers, with the default

behavior of the learner as a logistic regressor. An internal

grid search adjusted the C parameter selection from {10i :

i = −3,−2,−1, 0, 1} using a 2-fold cross-validation repeated 3

times.

5.3. Comparisons

Following the experimental method of Cheng et al. (2010),

each learner was evaluated on each dataset estimating different

scores using a 10-fold cross-validation. These estimations were

then averaged over a total number of 25 randomly generated

datasets to avoid the influence of random splits in labels and

predictive features.

Since graded multi-label classification can be seen from dif-

ferent points of view, we made different comparisons. First we

compared the F1 scores of deterministic and nondeterministic

learners, since optimizing this measure was the aim of our pro-

posal. To contrast deterministic and nondeterministic learners,

we attached the average size of predictions to F1 scores for non-

deterministic learners. Table 2 shows these scores.

The nondeterministic multi-label GMLnd outperforms the

other options in F1. Moreover, the differences are significant.

To compare the performance of the 3 learners considered, fol-

lowing Garcı́a and Herrera (2008), we performed a Bergmann-

Hommel procedure using the software provided in the paper.

GMLnd is the best learner in all cases except on one occasion,

BRnd is the second best, while the deterministic IBLRGML comes

third. The differences between every pair of learners are signif-

icant with p < 0.02.

We used a Wilcoxon two-sided signed rank test to compare

the two nondeterministic options in all cases. The differences

in F1 between nondeterministic learners are slight, though sys-

tematic and significant (p < 0.02). These results provide statis-

tical support to the claim that the optimization strategy of BRnd

is suboptimal with respect to that of GMLnd. On the other hand,

the differences in the average size of predictions are bigger and

significant with p < 0.001. In this case, BRnd always predicts

more grades than the multi-label option, GMLnd.

Note that the highest differences appear in datasets where

the level of successful predictions are the lowest, in the Jester

dataset with 20 degree options. The quality of posterior prob-

abilities is lower in these datasets than in the others. In these

cases, BRnd tries to improve the performance by spending more

predictions in each label. On the other hand, the multi-label

approach somehow discovers that it is possible from a general

perspective, using 2 or 3 predictions less, to achieve a similar

or better F1 performance. In fact, Jester-2 with 20 grades is the

only dataset in which BRnd achieves better F1 than the multi-

label GMLnd.

These results mean that the multi-label strategy is able to dis-

tribute the number of predictions between the labels better than

BRnd. The global point of view of multi-label outperforms the

marginal perspective adopted by the binary relevance learner.
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To complete the information retrieval point of view, Table 3

shows the scores achieved in Recall and Precision. Remem-

ber that for deterministic learners Recall and Precision are the

same as F1 scores. The Recall in BRnd is higher than in GMLnd ,

though in Precision the results are the opposite. The reason is

that BRnd needs more grades than GMLnd, therefore the right

grade is more often included in its predictions (Recall), but

the density of correct predictions (Precision) is lower. In both

cases, the differences are significant (using a Wilcoxon two-

sided signed rank test) with p < 0.001. Yet again the highest

differences appear in datasets with 20 degrees.

In both nondeterministic classifiers, the scores in Precision

are generally lower than those obtained by the deterministic

IBLRGML. This is a typical side effect of nondeterminism; see

del Coz et al. (2009). To improve F1 scores, nd classifiers in-

crease the size of predictions, which worsens Precision scores.

6. Conclusions

We have presented graded multi-label hypotheses (Cheng

et al., 2010) as a set of ordinal classifications. This allows us

to consider recommender systems as a straightforward applica-

tion field. Furthermore, we have introduced nondeterministic

classifiers in this context.

For each instance, the learner proposed in this paper, GMLnd ,

needs the estimations of the posterior probabilities of each

grade and label to compute the prediction with the best expected

F1. Since the search for the optimum has a huge search space,

we propose a greedy algorithm that returns a near-optimum set

of predictions. The complexity is O(|L|2 · |M|), where |L| is the

number of labels and |M| the number of grades.

The complexity is acceptable for a small number of labels,

such as those used in the experiments reported in the previous

section. If we had very large sets of labels, we could cluster

them into small subsets using some similarity measure between

labels.

The paper includes an experimental comparison with another

nondeterministic (binary relevance) alternative and a determin-

istic state-of-the-art learner for GMLC tasks, IBLRGML. The

result is the consequence of a formal proof that establishes that

the best option for a given amount of predictions is the one with

highest sum of probabilities among all labels.

The role of nondeterministic learners can be illustrated not-

ing that GMLnd, predicting around 2 grades on average, gener-

ally succeeds many more times than IBLRGML, which only pre-

dicts one grade. The difference is quite important, around 25

percentage points on average; see the Recall scores in Table 3.

Since an interval of size 2 is often a good approximation to a

degree of membership, the improvement may be noteworthy in

most practical applications.

The approach presented in this paper is related to a couple

of papers previously published by our research group (del Coz

et al., 2009; Quevedo et al., 2012). The proposal put forward in

del Coz et al. (2009) is a method for extending multiclass clas-

sification to allow predictions with more than one class: non-

deterministic classifiers. The contribution of Quevedo et al.

(2012) is a method to learn multi-label using a thresholding

strategy. The algorithm presented in this paper uses the idea of

del Coz et al. (2009), extending it with new results to a more dif-

ficult setting: multi-label classification. It is additionally based

on some ideas from Quevedo et al. (2012), although the exten-

sion to a new setting, graded multi-label classification, allows

completely new results that have no sense if there are any grad-

uation of the membership of labels. These new results comprise

Propositions 1 and 2 and the algorithm described in Section 4.1.
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