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partido las comidas y otros “eventos sociales”, Fernando, Mı́riam, Ricardo,
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Lucas Fernández Seivane y otros muchos compañeros cuyos nombres no logro
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Abstract

In this thesis we study the vibrational properties of different nanostructures
by using the continuum and the discrete models.

The continuum method is based on the elasticity theory while the discrete
method employs the molecular dynamics.

With the continuum method we obtain the dispersion curves and the
displacement patterns of the vibrational modes. We also calculate the radial
acoustic modes of cylinders, cylindrical shells, “core-shell” and composite
cylinders of general anisotropy.

We finally use the Surface Green Function Matching method to obtain
the acoustic waves dispersion curves in superlattices formed by anisotropic
hexagonal crystallographic materials.

With the discrete method, we develop a technique for the calculation of
the density of states and the Raman spectra from the data obtained by the
molecular dynamics approach.
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lation.(Source: Samuel Peláez Machado [3] with thanks) . . . 2

1.2 Organisation diagram . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Dispersion curves in a linear diatomic chain . . . . . . . . . . 13

2.2 Sketch of the top view of a thin material shell of cylindrical
anisotropy with the strains and stresses. . . . . . . . . . . . . 29

2.3 Scheme of the formal framework of the superlattice. . . . . . 41

2.4 Sketch of the superlattices considered in this work showing
the different layers with the corresponding thicknesses, elastic
constants and mass densities of the constituent materials. . . . 58

2.5 Sketch of the superlattice having as period a second Fibonacci
generation (it coincides with the usual binary superlattice).
The materials belong to the 6mm class with the C-axis parallel
to the x3 direction and we choose the normal to the interfaces
as the x2 direction. The different layers with the corresponding
thicknesses and the nomenclature for the different interfaces
are also shown. The case of more complex superlattice periods,
including more interfaces, is a generalization of this picture [39]. 63

2.6 Functional form of the Lennard-Jones energy potential with
ε = σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.7 Two-dimensional representation of a simulation box with its
8 surrounding image boxes.(Source:Samuel Peláez Machado,
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Chapter 1

Introduction

This thesis describes the work I have done during my PhD, under the su-
pervision of Prof. Victor R. Velasco, on the study of phonons in nanometric
structures.

The famous Richard Feynman’s talk (1959) to the American Physical
Society, entitled “There’s Plenty of Room at the Bottom” [1] discussed mi-
crotechnology as a frontier to overcome. Feynman suggested the possibility to
manipulate matter at atomic levels in order to achieve electronic or mechan-
ical systems with molecular size levels. At his speech conclusion, Feynman
told the audience that a new world of possibilities would arise that could
radically change our technology.

Also, as shown by K. Eric Drexler [2] , Nature already exhibits that kind
of systems inside all biological life forms. Nevertheless, artificial systems can
go far beyond those biological models. Today, the subject generally known as
nanotechnology is an interdisciplinary science aiming to the understanding,
fabrication and control of such atomic scale systems.

Computer simulations are a useful instrument to provide insights and an-
swers on the behaviour of complex systems, which otherwise could only be
treated as rough approximations. Basically, a computer simulation is a test
on the theoretical model, and as such it had been used to discriminate be-
tween well-founded approximations and ideas that were plausible but wrong.
If the model is accurate, it may even be possible to assist in novel interpre-
tations of experimental data and contribute to the discovery of new results.
As illustrated in figure 1.1 computer simulations work as a bridge between
theoretical models and experimental results.

This connecting role between theoretical predictions and experimental
results, and the way the simulations are tested and analysed are the basis
for the term “computer experiments” [4].

While it may be almost impossible to perform experiments under certain

1
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Figure 1.1: Connection between experiments, theory and computer simula-
tion.(Source: Samuel Peláez Machado [3] with thanks)

extreme values of temperature, pressure, radiation, etc., a computer simula-
tion of a material in, for example, a shock wave or a planetary core, would
be perfectly feasible. Also, subtle details of molecular motion and structure
playing an important part in phenomena such as, for example the heteroge-
neous catalysis, or thermal phonon percolation by defects scattering, that are
difficult to probe experimentally can be extracted readily from a computer
simulation. Finally, while the speed of some physical events constitutes an
experimental difficulty, it is not a hindrance to computer simulations. There-
fore a wide range of physical phenomena, from the atomic or even nuclear
scale to the galactic one, may be studied using some form of computer sim-
ulation.

In the area of nanotechnology the usage of continuum models, if employed
with care, is of substantial value in the design and analysis of nanoscale sys-
tems. Continuum models also represent the first step into a hierarchy of
approximations of increasing accuracy and complexity. On the other hand,
the use of computer molecular dynamics simulation gives us the ability to
make “experiments” providing the knowledge of the exact positions and ve-
locities of each particle as they evolve in time. Of course, the model used
in such “experiments” determines the accuracy, and the available computa-
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tional resources determine the possible models.
In most instances the use of approximations is unavoidable. While real

nano-systems are governed by the laws of quantum mechanics, these sys-
tems typically contain many electrons and nuclei. This usually means that
the calculation of exact solutions with full quantum theories is not possible.
Nowadays the most fundamental technique, the so called ab-initio, is the
density functional theory which is a stationary electronic state approxima-
tion on the Schrödinger equation, which approximates the Dirac equation,
which approximates the quantum electrodynamics, etc.

We must balance the models between accuracy, system size, and the sim-
ulation time frame in order to make a reliable (and accurate enough) calcu-
lation with the available computers in a reasonable time.

1.1 Scientific context of the thesis

There is a great interest in the physics of the nanoscale because the behaviour
of nano systems is different from that of the known macroscopic systems.
Usually the origin of those differences comes from two sources: the surface
effects and the quantum confinement effects.

Surface effects come from the surface atoms of the system. Those atoms
experience a different environment due to the neighbourhood atoms and usu-
ally this difference consist in the lack of first or second neighbours in a di-
rection. Therefore in nanoscale systems the surface vs. bulk ratio is greater
and those effects increase.

The quantum effects arise when the wavelenght of an electron or phonon
in the material has the same order of magnitude than a geometrical dimension
of the material, which makes the electron or phonon state quantized in the
confined dimension. Therefore the density of states changes depending on
the dimensions of the system.

The usual nanoscale systems on study are the dots and the wires. The
dots are clusters, islands and other quasi-1D systems like quantum dots. The
wires are nanotubes, nanowires (hollow or not) and nanoribbons.

The study of vibrations in nanostructures is of great interest for different
reasons. In the first place, the possible thermoelectric applications [5] and on
the other hand for the thermal dissipation problem that modern microchips
have as they reduce their dimensions while increasing the number of tran-
sistors. As modern technology tends to reduce the scale of the electronic
components to their limits, the understanding of the effects of the nanoscale
becomes very important as they usually differ from the macroscale behaviour.
Finally nowadays is possible to make phonon engineering and manipulate the
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phonon behaviour at the nanoscale (phonon filters [6] )
Also, in some situations [7] , only a detailed knowledge of the phonon

spectrum allows to understand a great variety of phenomena such as charge
and heat transport, infrared, Raman and electron-phonon scattering and give
a view on related effects like superconductivity and resistivity.

The concept of phonon was introduced by Debye in 1912 [8]. The phonon
is defined as a quantum of vibration energy in the crystal structure and is a
quasi-particle with angular frequency ω and wave-vector q. The energy of a
phonon mode is ~ω and the momentum is ~q.

From a theoretical point of view, discrete and continuum models have
been employed for the study of vibrational modes in nanostructures.

Discrete methods employ phenomenological (usually by means of force
constants) models or ab initio approaches and provide reliable results for
acoustic and optical modes. Continuum approaches rely on elasticity theory.

Continuum approaches based on the elasticity theory [9] allow for a first
step in the study of the vibrational properties of nanosystems.

Discrete approaches based on phenomenological models allow for more
accurate study of the dynamics of the nanostructures while still being fast
enough to deal with a great number of particles.

Discrete approaches based on ab-initio methods are the most slow tech-
niques but do not need any parameter in order to solve the calculations.
This is perfect in order to study unknown systems but not always gives new
knowledge on the physics or ideas for modelization.

1.1.1 Properties of Nanostructures

Due to their size, the nanostructures show unusual properties. Many of these
features such as quantisation and integer current flow cannot be observed
in their “bulk” counterparts. Some of these characteristic properties are
described in the following sections.

1.1.1.1 Electronic and optical properties

Nanostructures exhibit different electronic properties than their “bulk” equiv-
alents due to their small size. In particular, silicon and carbon nanotubes
show several changes from their respective “bulk” structures.

The electronic properties of a nanotube are determined by its struc-
ture, therefore these properties are dependent on the tube’s chiral num-
ber1 (n1, n2). For carbon nanotubes, the chiral number determines if the

1For information about CNT’s chirality see Apendix in page 192
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nanotube is metallic or semiconductor and for nitride nanotubes, the chiral
number determines the size of the electronic band gap. For example, for a
carbon nanotube, if the chiral number obey the formula (n2 + 2n1) = 3i for i
an integer, then the nanotube is metallic. However, if the carbon nanotube
does not obey the previous formula, then the nanotube is a semiconductor
with a band gap between 0.0 eV and 3.0 eV . For single walled carbon nan-
otubes, this bandgap is inversely proportional to the radius of the nanotube.
This is already explained using the electron dispersion curves of graphene,
which can be simply calculated from a tight-binding method [10, 11]. By
applying a technique known as zone-folding, the electron bands of a carbon
nanotube can be approximately obtained from the graphene ones. This re-
sults in the one-dimensional energy bands of a carbon nanotube being cross
sections of those for a two-dimensional graphene-type structure [10]. Ab ini-
tio calculations of the electronic structure of carbon nanotubes have shown
this relatively simple model to be reasonably accurate [12, 13, 14]. One of
the results of this behaviour in carbon nanotubes is the appearance of a plas-
mon mode which has an energy between 5 eV and 7 eV independent of the
chiral number [15]. This mode is a result of the π-bonds on nanotube’s sur-
face and a divergence in the electronic density of states near the band edge.
This plasmon shows strong optical properties under electron emission loss
spectroscopy and shows the graphene sheet as the common heritage of all
carbon nanotubes. Calculations have also revealed higher energy plasmons,
but these have weaker optical properties.

Nanotubes, due to their unique structure, are expected to act as quantum
wires. Multi-wall nanotubes have been shown to have two-dimensional be-
haviour, but single wall carbon nanotubes show quantised step like flow. This
is characteristic of a one-dimensional system. However, due to the contacts
resistance, which is greater than the quantum resistance within the nanotube,
Coulomb charging occurs as the capacitance of the nanotube/nanowire is very
small. This leads to the Coulomb blockade effect and the electron pump. This
shows that quantised conductance can be expected in most one-dimensional
conducting materials, even if they have a very different basic structure. In
fact, quantised characteristics are a key feature in such systems [16].

Electronic properties of silicon nanowires also change substantially in
character from their corresponding “bulk” counterpart and some have been
shown to have direct bandgaps. These structures may also be metallic or
semi-metallic if the surface is clean and allowed to relax [17, 18] and have
also been joined with carbon nanotubes to form heterojunctions [19].

Also of interest in nanostructures is the highest optical active vibrational
mode, which can be detected via Raman scattering [20, 21]. This mode is
highly affected by the confining dimension(s) of the nanostructure and thus,
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Raman scattering measurements can be a fundamental technique for the
characterisation of the size of the nanostructures.

1.1.1.2 Magnetic properties

Nanostructures show interesting magnetic properties. A thin sheet of mate-
rial grown between two larger materials can be used to form a tunnel junction.
A current flow across a tunnel junction is dependent on the spin of the charge
carriers and the thickness of the barrier. As the barrier is, in-effect, a two-
dimensional nanoslab joining two separate systems, the reduced size enables
electrons to tunnel through the material from one side to the other.

Carbon nanotubes have also been shown to perform electron spin trans-
port. As long as the two contacts are comparatively close (< 100 nm), nan-
otubes show clear hysteretic switching in the magnetoresistace, providing the
basis for a single-wall nanotube spin transistor.

Graphene also shows magnetic properties. Whereas bulk graphene is a
diamagnetic semimetal, simple tight-binding models predict that one-dimensional
ribbons with zigzag edges are paramagnetic metals [22].

1.1.1.3 Thermal properties

Promising and attractive thermal properties are shown in nanostructures
which are dramatically different from their “bulk” counterparts. Some nanos-
tructures (like carbon nanotubes) have shown much greater thermal conduc-
tivity than that found in their “bulk”, while others (like silicon nanowires)
display a much lower thermal conductivity than in the “bulk”. Due to the
increased density of components on processor chips, these factors are be-
coming increasingly important in the field of heat management. Without
effective methods for reducing the heat built in such components, electron-
ics error due to electron-phonon interaction and lattice distortion increases
and makes these components useless. On the other hand, for thermoelectric
systems (thermoelectric refrigeration/electric generator) the thermoelectric
performance depends on the relation between the heat flux and the electric
conductivity.

The electronic applications also emphasise a second feature which changes
in nanostructures, the specific heat capacity. It was predicted early that
the temperature dependence for structures of reduced dimension would be
different from that of “bulk” materials. In particular, the change in specific
heat capacity in nanotubes and nanowires, with temperature, is expected to
show a change from one-dimensional behaviour to two- (three-)dimensional,
in the case of nanotubes (nanowires).
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1.1.1.4 Vibrational properties

Understanding the vibrational features of a material is the first step in order
to understand the thermal properties. Theoretical calculations of the vibra-
tional characteristics of a structure are usually carried out by two methods:
discrete atomistic dynamical calculations and continuum medium calcula-
tions. While continuum techniques are generally only applicable to the low
energy ranges (the acoustic branches) and long wave-length regions of the
Brillouin zone(the zone centre), these techniques are often more able to yield
useful analytic expressions. Also, the dominant contributors to the thermal
properties of a material are usually the acoustic phonon branches.

Now, for nanostructures, all these methods have been used with varying
degrees of success for different materials and most techniques produce qual-
itatively similar results. There are several vibrational features existing on
nanostructures. The most common to all nanostructures are:

• The appearance of new low-lying vibrational modes near the zone cen-
tre which have energies comparable to the zone edge frequency of the
acoustic modes. Those new phonon branches with zone centre fre-
quency ω, have a large non-zero group velocity (unlike optical modes
in the “bulk”) and are a direct result of quantisation within these struc-
tures.

• The appearance of a fourth acoustic mode. Normally, for “bulk” ma-
terials, there are three acoustic modes, one longitudinal and two trans-
verse. In nanotubes these three modes exist and a new fourth mode
known as the twist mode is added. This mode is a result of the “twist-
ing” degree of freedom available to the nanotube (and nanowire) which
is not normally available to “bulk” objects. In nanowires, the four
acoustic branches are the dilatational, the doubly degenerated flexu-
ral, and the torsional mode [23]. These four branches in nanotubes and
nanowires are expected to have a major effect on the thermal properties
of these structures.

1.2 Objectives

Vibrational properties play an important role on different areas. Phonons
influence the thermal properties and electron-phonon interaction is the key
feature in conventional superconductivity.

The physical properties of nanostructures are different from those of the
bulk materials. The vibrational properties of these systems exhibit different
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characteristics from those of their bulk constituent materials. In spite of their
interest, vibrational properties in nanostructures have received less attention
than the electronic ones.

Different approaches can be considered for their study. The continuum
approach based on the elasticity theory and the discrete approach based on
molecular dynamics are used in this work.

In this thesis we work with semiconductor nanowires and nanodots but
not in exclusive, as the methods used are able to work with a great variety
of materials. The analysis has been presented for nanowires of various sizes
in order to obtain the dimensionality behaviour of these effects.

In the case of nanodots the presence of structural defects has been studied
in order to quantify the influence of the defects on the properties of interest.

We will also obtain the vibrational density of states which is related to
the dispersion curves and the Raman spectra.

Therefore, the objectives are:

• To analyse the strengths and weaknesses of the main numerical methods
based on continuum and discrete models.

• To understand the basic technique needed to obtain the spectra (VDOS
and Raman), first from a theoretical point of view and then in prac-
tice by creating and testing an algorithm that will work on the data
extracted from the numerical methods.

• To analyse the spectra of different nanosystems: Nanowires, nanodots
to compare with bulk and surface systems.

1.3 Document organisation
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Figure 1.2: Organisation diagram
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Chapter 2

Methodology: Tools,
techniques and models

In this chapter we will discus the different tools and the methodology used
in order to get information on the vibrational characteristics of the nanos-
tructures.

The main ingredient of any computer simulation is to define the models
for the physical system. In this thesis we will use two models, the continuum
media and the discrete media models.

We will divide the techniques between the continuum approach and the
discrete one.

In the continuum approach we will use the elasticity theory in order to
obtain the dispersion relations, and the amplitude and directionality of the
displacements (displacement pattern).

In the discrete approach we will use the molecular dynamics technique to
obtain the vibrational density of states (VDOS) and the Raman spectra.

2.1 Dispersion curves

The representation of the phonon frequencies ω against the wave number q
is called the dispersion relation or the dispersion curves.

For a crystal that has at least two atoms in its primitive cell we have in
the bulk that the dispersion relations show two kinds of phonons:

Acoustic phonons: The acoustic modes corresponds to the lower sets of
curves in the dispersion curves. Acoustic phonons are coherent move-
ments of atoms of the lattice out of their equilibrium positions. Acous-
tic phonons exhibit a linear relationship between frequency and phonon
wavevector for long wavelengths Also if the wavelength of acoustic

11
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phonons goes to infinity, this corresponds to a simple displacement
of the whole crystal, and this costs zero energy1. If the phonon dis-
placement is along the propagation direction , then in some areas the
atoms will be closer, in others further apart, as in a sound wave in
air (hence the name acoustic). These phonons are called Longitudinal
Acoustic modes. If the displacement is perpendicular to the propaga-
tion direction then the phonon is called Transverse Acoustic mode and
it is similar to waves in water. Longitudinal and transverse acoustic
phonons are often abbreviated as LA and TA phonons, respectively.
The speed of propagation of an acoustic phonon, which is also the
speed of sound in the material, is obtained by the slope of the acoustic
dispersion curve ∂ωq

∂q
.

Optical phonons: The optical modes corresponds to the upper sets of curves
in the dispersion curves. The optical phonons are an out of phase move-
ment of the atoms in the lattice, one atom moving to the left, and its
neighbour to the right. They are called optical because in ionic crys-
tals, such as sodium chloride, they are excited by infra-red radiation.
The electric field of the light will move every positive sodium ion in the
direction of the field, and every negative chloride ion in the other direc-
tion, starting the crystal vibration. Optical phonons have a non-zero
frequency at the Brillouin zone centre and show no dispersion near
that long wavelength limit. Optical phonons that are Raman active
can interact indirectly with light, through Raman scattering. Optical
phonons are often abbreviated as LO and TO phonons, for the longi-
tudinal and transverse modes respectively.

In confined systems like nanowires, we still have the acoustic modes with
the characteristic null frequency at zero wave number and the optical modes,
but there are also some modes whose slope is not that of the typical optical
phonon and their frequencies are not zero at q = 0. These are a kind of
“mixed” modes whose origin comes from the reduced dimensions and the
free surfaces.

The thermodynamic properties of a solid are directly related to its phonon
structure2. The entire set of all possible phonons that are described by the
above phonon dispersion relations combine in what is known as the phonon
density of states which determines the heat capacity of a crystal.

1This means that the dispersion curves of the acoustic phonons have zero frequency at
the Brillouin zone center q = 0

2Shiomi and Maruyama [24] used the dispersion curve in their analysis of thermal
conduction in carbon nanowires.
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Figure 2.1: Dispersion curves in a linear diatomic chain

2.2 Continuum approach

Continuum mechanics is a branch of mechanics that deals with the analy-
sis of the kinematics and the mechanical behaviour of materials modelled as
a continuum medium rather than as discrete particles. The French mathe-
matician Augustin Louis Cauchy was the first to formulate such models in
the 19th century, but research in the area continues today, in different areas,
ranging from engineering to nanostructures.

Mathematically speaking, a continuum is a body that can be continually
sub-divided into infinitesimal elements with the properties being those of the
bulk material.

The assumption of the continuum approach is that the substance of the
material fills completely the space it occupies, thus ignoring the atomistic
nature of matter. Also in this approximation, every portion of the continuum
exhibit the macroscopic physical properties of the bulk, no matter how small
the portion is. The field variables such as mass density, displacement and
velocity, are conceptual constructs. They are defined at all points of the
continuum and their values are calculated via axiomatic rules of procedure.

This approach is highly accurate for length scales being orders of mag-
nitude bigger than the interatomic distances. But used with caution may
be employed to approximate some mechanical and dynamical properties of
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smaller structures.
Continuum mechanics deals with physical properties of solids and fluids

which are independent of any particular coordinate system in which they are
observed. These physical properties are then represented by tensors, which
are mathematical objects having the required property of being independent
of coordinate systems. These tensors can be expressed in coordinate systems
for computational convenience.

Continuum mechanics


Solid mechanics

{
Elasticity

Plasticity

Fluid mechanics

{
Newtonian fluids

Non-Newtonian fluids

Plasticity + Non-Newtonian fluids→ Rheology

Table 2.1: Major areas of continuum mechanics

Within the continuum model the behaviour is determined by:

1. Conservation of mass.

2. Linear momentum balance. The rate of change of the total linear mo-
mentum is equal to the sum of the external forces.

3. Angular momentum balance.

The continuum hypothesis enables the use of these laws on the local scale as
well as on the global scale.

Deformation of matter is a geometrical problem that may be treated out
from two different points of view:

Lagrangian: With respect to the undeformed state.

Eulerian: With respect to the deformed state.

Locally, the mapping of the deformed to the undeformed state can be as-
sumed to be linear and described by a differential relationship, which is a
combination of a pure stretch and a pure rotation. The mechanical effects of
the deformation are confined to the stretch and are characterised by a strain
measure. For example, in a wire under load in the direction of its main axis,
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the strain ε will be ε = change in length
initial length

. The generalisation of this requires to
introduce a strain tensor at each point of the continuum.

Let us consider a string with one end fixed and under the action of a
force on the other end. As it is not necessary that all parts of the string
are stretched in the same way, it must be defined the deformation of a small
element. Lets suppose a section between x and x + ∆x. When the force is
applied, these points come to x + u(x) and x + u(x + ∆x) + ∆x and the

relative deformation is u(x+∆x)−u(x)
∆x

. By definition, in the continuum model,

the strain is the limit when ∆x goes to 0, i.e. ε = lim∆x→0
u(x+∆x)−u(x)

∆x
= du

dx

For a solid of general shape all points of the solid under deformation are
determined by the vector ~x′ = ~x + ~u. The square of the distance between
two points separated by the vector d~x′ = d~x+ d~u is:

(d~x′)2 = (d~x)2 + 2(d~x)(d~u) + (d~u)2 (2.1)

Expanding the scalar products:

(d~x′)2 − (d~x)2 = 2dxidui + dukduk (2.2)

where d~u =
∑

i
∂~u
∂xi
dxi, so in Einstein notation we obtain:

(d~x′)2 − (d~x)2 = 2
∂ui
∂xj

dxidxj +
∂uk
∂xi

∂uk
∂xj

dxidxj (2.3)

The sum is not changed by permuting the indices i and j so eq.(2.3) can be
written as:

(d~x′)2 − (d~x)2 =

(
∂ui
∂xj

+
∂uj
∂xi

+
∂uk
∂xi

∂uk
∂xj

)
dxidxj (2.4)

or
(d~x′)2 − (d~x)2 = 2εijdxidxj (2.5)

being

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

+
∂uk
∂xi

∂uk
∂xj

)
(2.6)

the strain tensor.
If the deformations are small, as in most of the situations in solids, the

relative variations of distances inside the solid are small ∂ui
∂xj

<< 1 so the

strain tensor can be reduced to:

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.7)
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The value of the strain depends on the point where the deformation is ob-
served. Thus the strain in a generic medium is a tensor field consisting of
symmetric second rank tensors.

Following classical Newtonian and Eulerian dynamics, the motion of a
material body is produced by the action of externally applied forces which are
assumed to be of two kinds: surface forces and body forces. When external
contact forces act on a body, internal contact forces pass from point to point
inside the body to balance their action, according to Newton’s second law of
motion of conservation of linear momentum and angular momentum.

Stress can be thought as a measure of the internal contact forces’ intensity
acting between particles of the body across imaginary internal surfaces. In
other words, stress is a measure of the average amount of force exerted per
unit area of the surface on which these internal forces act.

In an orthonormal reference frame, ∆Fi is the i-th component of the force
∆~F exerted on the surface element perpendicular to the k-axis ∆Sk by the
medium in the positive direction. The stress Tik is defined as the limit, of
the ratio ∆Fi

∆Sk
when ∆Sk tends to zero, :

Tik = lim
∆Sk→0

∆Fi
∆Sk

(2.8)

The mechanical stress vector ~T (~n) at any point P in a continuum associ-
ated to a plane with normal unit vector ~n can be expressed as a function of
the stress vectors on the planes perpendicular to the coordinate axes, i.e. in
terms of the components Tik of the stress tensor.

Ti(~n) = Tik · nk (2.9)

For a material in static equilibrium, the net force and torque on any given
volume must be zero. Let us assume that the stress comes from forces applied
to the surface. Then from the principle of action and reaction, the net force
arising from the interactions between different parts of a volume inside the
solid must be zero. Since the forces are applied on the boundary surface S,
the force ~F is the integral over S of the mechanical stress:

~F =

∫
S

~T (~n)dS (2.10)

and after substituting with eq.(2.9):

Fi =

∫
S

TiknkdS (2.11)
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with can be converted into a volume integral due to the Green’s theorem:

Fi =

∫
V

∂Tik
∂xk

dV (2.12)

The integrand can be regarded as the density of force per unit volume:

fi =
∂Tik
∂xk

(2.13)

So the static equilibrium condition Fi = 0 implies fi = 0 or:

∂Tik
∂xk

= 0 (2.14)

If the solid is elastic, then by definition it will return to its initial state after
the external forces are removed. This return to the initial state is due to the
internal stress, therefore there is a correspondence between stress and strain.

For small deformations the elastic behaviour can be described by the first
order term in the Taylor expansion, so:

Tij(εkl) = Tij(0) +

(
∂Tij
∂εkl

)
εkl=0

εkl +
1

2

(
∂2Tij

∂εkl∂εmn

)
εkl=0;εmn=0

εklεmn + . . .

(2.15)
or, since Tij(0) = 0

Tij = Cijklεkl (2.16)

where Cijkl is the stiffness tensor :

Cijkl =

(
∂Tij
∂εkl

)
εkl=0

. (2.17)

Thus substituting from eq.(2.7) in eq.(2.16):

Tij =
1

2
Cijkl

∂uk
∂xl

+
1

2
Cijkl

∂ul
∂xk

(2.18)

and since Cijkl = Cijlk due to the fact that Tij and εkl are symmetric tensors:

Tij = Cijkl
∂ul
∂xk

(2.19)

With this it is possible to calculate the equation of motion from the funda-
mental law of classical dynamics ~F = M~a which can be rewritten for the
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continuum calculus into fi = ρ
∂2ui
∂t2

. As it was shown, the force density per

unit volume of stressed material is given by:

fi =
∂Tij
∂xj

(2.20)

So if the effect of gravity is neglected, the fundamental law is:

ρ
∂2ui
∂t2

=
∂Tij
∂xj

(2.21)

and using eq.(2.19) the equation of motion becomes:

ρ
∂2ui
∂t2

= Cijkl
∂2ul
∂xj∂xk

(2.22)

Continuum approaches based on the elasticity theory allow for a first
step in the study of the vibrational properties of nanostructures. This has
been done for superlattices [26, 27], including the elastic anisotropy of the
constituent materials. Also in the case of CNT, where the elastic isotropy in
the graphene plane and the cylindrical shape allow for a solution in closed
form [28]. In the case of wires (treated in this work) they are thick thus
making necessary the inclusion of the elastic anisotropy of the materials
considered. In the case of general anisotropy it is not possible to obtain a
solution in closed form even for nanotubes [29].

The use of elasticity theory for the calculation of the phonons in nanos-
tructures is, in principle, only applicable in the vicinity of the centre of the
Brillouin zone, but it has been found that in fact the elasticity theory gives
a good qualitative approximation for bigger ranges.

Elasticity has been employed to study the elastic waves of carbon nan-
otubes. A solution for infinitely long cylindrical shells of isotropic materials
was obtained [28]. The limit of very thin shells allows for an analytical
expression that can be used for carbon nanotubes, assuming carbon as an
isotropic material. As shown in Velasco and Muñoz [30] it is possible to ob-
tain a solution in closed form for nanotubes of materials having hexagonal
symmetry. It was shown there that the former approaches considering car-
bon as an isotropic elastic material remained valid for the carbon nanotubes
due to the transverse elastic isotropy of the hexagonal systems in the basal
plane. This was not valid for wires.

In order to deal with nanowires of elastically anisotropic crystals and dif-
ferent cross sections, as those obtained experimentally, a theoretical method
originally developed in resonant ultrasound spectroscopy to obtain the free



2.2. CONTINUUM APPROACH 19

vibrational modes of inhomogeneous objects [31, 32, 33, 34] can be used.
The method studies the free vibrations of elastic anisotropic systems hav-
ing arbitrary shape and mass density variation, thus being quite adequate
for the present case. This is performed by expanding the elastic displace-
ments in terms of a set of basis functions. The method has been applied to
macroscopic samples, having varied cross sections, to obtain the vibrational
frequencies (direct problem) and in other cases for the calculation of the elas-
tic constants of the sample (inverse problem) [31, 32, 33, 34] . Recently this
method has also been applied to the study of acoustic modes in a wide variety
of nanotubes and nanowires having different cross-sections [23, 35, 36, 37, 38].

The Surface Green Function Matching (SGFM) method provides a very
efficient way to study the vibrational modes of superlattices [39, 40, 41, 42,
43, 44, 45, 46]. With this method, it is possible to consider two or more
materials in the superlattices, and also to account for the effect of the elastic
anisotropy of the constituent materials. Thus this method also allows the
study of periodic, quasiregular and hybrid superlattices [27, 47, 48, 49, 50, 51].
It provides not only the dispersion relations but also the local density of states
(LDOS) in such a way that it is possible to obtain the spatial distribution of
the different modes in the structure.

2.2.1 Nanowires: Elasticity theory

The elasticity theory constitutes a first step, in the theoretical toolkit, to
study the dynamical properties of nanowires.

Isotropic continuum models have been widely used to study the vibra-
tional properties of nanowires and nanotubes [53, 54, 55, 56, 57, 58] consid-
ered as cylindrical shells thick or thin, respectively. In the case of carbon
nanotubes, the elastic studies assumed that graphene was isotropic and good
agreement with first principles calculations has been found, provided the
NT wall thickness is an adjustable parameter [57]. However III-V nitride
NT’s and other hexagonal materials NT with several nanometer thick walls
have been synthesised in the last years [59, 60]. The analysis of their vibra-
tional spectra needs the introduction of the full bulk hexagonal symmetry
and therefore to go beyond the isotropic model.

The three-dimensional equations of motion (eq.(2.22)) in cylindrical co-
ordinates (r, θ, z) of an elastic medium having transverse isotropy are given
by
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[
C11

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
+ C66

1

r2

∂2

∂θ2
+ C44

∂2

∂z2

]
ur +

[
(C12 + C66)

1

r

∂2

∂θ∂r
− (C11 + C66)

1

r2

∂

∂θ

]
uθ +

(C13 + C44)
∂2uz
∂r∂z

= ρ
∂2ur
∂t2

,

[
(C12 + C66)

1

r

∂2

∂θ∂r
+ (C11 + C66)

1

r2

∂

∂θ

]
ur +

[
C66

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
+ C11

1

r2

∂2

∂θ2
+ C44

∂2

∂z2

]
uθ +

(C13 + C44)
1

r

∂2uz
∂θ∂z

= ρ
∂2uθ
∂t2

,

(C13 + C44)

(
∂2

∂r∂z
+

1

r

∂

∂z

)
ur + (C13 + C44)

1

r

∂2uθ
∂θ∂z

+

[
C44

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)
+ C33

∂2

∂z2

]
uz = ρ

∂2uz
∂t2

,

(2.23)
where Cij are the elastic coefficients of the material and ρ the mass den-

sity. Then solutions of these equations are looked for in the form

u = ∇ϕ+ rot(ψêz) (2.24)

and then the u components are

ur =

[
∂ϕ

∂r
+

1

r

∂ψ

∂θ

]
cos(ωt+ kz) ,

uθ =

[
1

r

∂ϕ

∂θ
− ∂ψ

∂r

]
cos(ωt+ kz) ,

uz = βϕ sin(ωt+ kz) ,

(2.25)

being ω the frequency, k the wavenumber and β an arbitrary constant to
be determined. By substituting eq.(2.25) in eq.(2.23) we obtain the following
expressions
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∂

∂r

[
C11

~∇2ϕ+ (ρω2 − C44k
2 + (C13 + C44)kβ)ϕ

]
+

1

r

∂

∂θ

[
C66

~∇2ψ + (ρω2 − C44k
2)ψ
]

= 0 ,

1

r

∂

∂θ

[
C11

~∇2ϕ+ (ρω2 − C44k
2 + (C13 + C44)kβ)ϕ

]
−

∂

∂r

[
C66

~∇2ψ + (ρω2 − C44k
2)ψ
]

= 0 ,

[C44β − (C13 + C44)k]~∇2ϕ+ (ρω2 − C33k
2)βϕ = 0 ,

(2.26)

being

~∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
(2.27)

instead of the complete ∇2 operator including
∂2

∂z2
.

The two first equations are verified if

C11
~∇2ϕ+ [ρω2 − C44k

2 + (C13 + C44)kβ]ϕ = 0 ,

C66
~∇2ψ + (ρω2 − C44k

2)ψ = 0 ,
(2.28)

are satisfied.
In addition, all equations (2.26) are consistent if β satisfies

β(ρω2 − C33k
2)

C44β − (C13 + C44)k
=
ρω2 − C44k

2 + (C13 + C44)kβ

C11

≡ −Υ2 . (2.29)

This leads to the following equation

C11C44(Υ2)2 + Υ2[(C11 + C44)ρω2 +

(C2
13 + 2C13C44 − C11C33)k2] +

(ρω2 − C44k
2)(ρω2 − C33k

2) = 0 .

(2.30)

Being Υ2
1 and Υ2

2 the solutions of eq.(2.30) the potential functions will be
given by
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−→
∇2ϕ1 −Υ2

1ϕ1 = 0 ,

−→
∇2ϕ2 −Υ2

2ϕ2 = 0 ,

−→
∇2ψ + (ρω2 − C44k

2)
ψ

C66

= 0 .

(2.31)

If we choose ψ(r, θ) in the form

ψ(r, θ) = f(r) sin(nθ) (n = 0, 1, 2, . . .) (2.32)

when substituting in eq.(2.31) we obtain:

r2d
2f

dr2
+ r

df

dr
+ [(ρω2 − C44k

2)
r2

C66

− n2]f = 0 , (2.33)

which is the Bessel equation for f(r) [61]. The solution will be then

f(r) = AtJn(βtr) +BtYn(βtr) , ρω2 > C44k
2 ,

f(r) = AtIn(βtr) +BtKn(βtr) , ρω2 < C44k
2 ,

(2.34)

with

βt = |(ρω2 − C44k
2)/C66|1/2 . (2.35)

On the other hand the solutions of eq.(2.30) are

Υ2
1 =
−B +D

2A
, Υ2

2 = −B +D

2A
, (2.36)

with

A = C11C44 ,

B = (C11 + C44)ρω2 + (C2
13 + 2C13C44 − C11C33)k2 ,

C = (ρω2 − C44k
2)(ρω2 − C33k

2) ,

D =
√
B2 − 4AC .

(2.37)

The main difference with the isotropic case, besides the appearance of all
the elastic constants, is that Υ2

1 and Υ2
2 can be real or complex conjugates,



2.2. CONTINUUM APPROACH 23

instead of real or pure imaginary. The nature, real or complex, of these
solutions depends on the frequency range and the material considered.

By assuming

ϕ1(r, θ) = g1(r) cos(nθ) ,

ϕ2(r, θ) = g2(r) cos(nθ) ,
(2.38)

we obtain the following equation

r2d
2gi
dr2

+ r
dgi
dr
− (Υ2

i r
2 + n2)gi = 0 , (i = 1, 2) , (2.39)

and we obtain the Bessel equation anew.

For the solutions we must distinguish the two cases, Υ2
i > 0 and Υ2

i < 0,
respectively.

When Υ2
i > 0 we have

gi(r) = AiIn(γir) +BiKn(γir) , (i = 1, 2) (2.40)

being γi = |Υ2
i |1/2.

When Υ2
i < 0 we have

gi(r) = AiJn(γir) +BiYn(γir) , (i = 1, 2) . (2.41)

The displacement components are then given by

ur =

[
dg1

dr
+
dg2

dr
+

1

r
nf

]
cos(nθ) cos(kz + ωt) ,

uθ = −
[
n

r
(g1 + g2) +

df

dr

]
sin(nθ) cos(kz + ωt) ,

uz = [Υ1g1 + Υ2g2] cos(nθ) sin(kz + ωt) .

(2.42)

In the case of wave propagation with stress-free boundary conditions the
stress must vanish on the cylindrical shell boundaries, r = a, b, thus the
boundary conditions at r = a and r = b are
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C11
∂ur
∂r

+ C12

(
ur
r

+
1

r

∂uθ
∂θ

)
+ C13

∂uz
∂z

= 0 ,

C66

(
∂uθ
∂r
− uθ

r
+

1

r

∂ur
∂θ

)
= 0 ,

C44

(
∂ur
∂z

+
∂uz
∂r

)
= 0 ,

(2.43)

that can be written as

[(C11Υ2
1 + C13kβ1)g1 + (C11Υ2

2 +

C13kβ2)g2 + 2nC66

(
1

r

df

dr
− f

r2

)
−

2C66

r

(
dg1

dr
+
dg2

dr

)
+

2n2

r2
C66(g1 + g2)] cos(nθ) cos(kz + ωt) = 0 ,

C66[
2n

r2
(g1 + g2)− 2n

r

(
dg1

dr
+
dg2

dr

)
+

2

r

df

dr
− 2n2

r2
f +

(ρω2 − C44k
2)

C66

f ] sin(nθ) cos(kz + ωt) = 0 ,

C44

[
(β1 − k)

dg1

dr
+ (β2 − k)

dg2

dr
− nk

r
f

]
×

cos(nθ) sin(kz + ωt) = 0 .

(2.44)

The dispersion relations are obtained by forming the determinant of the
coefficients At, Bt, A1, B1, A2 and B2. In this way we obtain

|dij| = 0 , (i, j = 1, . . . , 6) (2.45)

where
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d11 = C66[2n(n− 1)Fn(βta)− 2nβtaσ2Fn+1(βta)] ,
d12 = C66[2n(n− 1)Sn(βta)− 2nβtaSn+1(βta)] ,
d13 = [2n(n− 1)C66 + a2(C44k

2 − ρω2 − C44kβ1)]Fn(γ1a) + 2C66γ1aσ1Fn+1(γ1a) ,
d14 = [2n(n− 1)C66 + a2(C44k

2 − ρω2 − C44kβ1)]Sn(γ1a) + 2C66γ1aSn+1(γ1a) ,
d15 = [2n(n− 1)C66 + a2(C44k

2 − ρω2 − C44kβ2)]Fn(γ2a) + 2C66γ2aσ2Fn+1(γ2a) ,
d16 = [2n(n− 1)C66 + a2(C44k

2 − ρω2 − C44kβ2)]Sn(γ2a) + 2C66γ2aSn+1(γ2a) ,

d21 = C66

[(
ρω2 − C44k

2

C66

− 2n(n− 1)

)
Fn(βta)− 2nβtaσ2Fn+1(βta)

]
,

d22 = C66

[(
ρω2 − C44k

2

C66

− 2n(n− 1)

)
Sn(βta)− 2nβtaSn+1(βta)

]
,

d23 = C66[−2n(n− 1)Fn(γ1a) + 2nγ1aσ1Fn+1(γ1a)] ,
d24 = C66[−2n(n− 1)Sn(γ1a) + 2nγ1aSn+1(γ1a)] ,
d25 = C66[−2n(n− 1)Fn(γ2a) + 2nγ2aσ2Fn+1(γ2a)] ,
d26 = C66[−2n(n− 1)Sn(γ2a) + 2nγ2aSn+1(γ2a)] ,
d31 = C44[−nkFn(βta)] ,
d32 = C44[−nkSn(βta)] ,
d33 = C44[(β1 − k)nFn(γ1a)− (β1 − k)γ1aσ1Fn+1(γ1a)] ,
d34 = C44[(β1 − k)nSn(γ1a)− (β1 − k)γ1aSn+1(γ1a)] ,
d35 = C44[(β2 − k)nFn(γ2a)− (β2 − k)γ2aσ2Fn+1(γ2a)] ,
d36 = C44[(β2 − k)nSn(γ2a)− (β2 − k)γ2aSn+1(γ2a)] ,

and the remaining three rows are obtained from these given above by
substituting b for a. F denotes either a J or I Bessel function, whereas S
denotes either a Y or K Bessel function, the proper choice being given by

(0 < ρω2 < C44k
2)


f −→ In(βtr) , Kn(βtr) ,

g1 −→ In(γ1r) , Kn(γ1r) ,

g2 −→ In(γ2r) , Kn(γ2r) ,

(C44k
2 < ρω2 < C33k

2)


f −→ Jn(βtr) , Yn(βtr) ,

g1 −→ In(γ1r) , Kn(γ1r) ,

g2 −→ Jn(γ2r) , Yn(γ2r) ,

(ρω2 > C33k
2)


f −→ Jn(βtr) , Yn(βtr) ,

g1 −→ Jn(γ1r) , Yn(γ1r) ,

g2 −→ Jn(γ2r) , Yn(γ2r) ,



26 CHAPTER 2. METHODOLOGY

The parameters σ1 and σ2 are associated to the differences in the recursion
and differentiation relations between the different kinds of Bessel functions.
They take the value 1 when J and Y functions are used and the value -1
when I and K functions are used. For the different frequency ranges they
have the following values

0 < ρω2 < C44k
2 , σ1 = −1 , σ2 = −1 ,

C44k
2 < ρω2 < C33k

2 , σ1 = −1 , σ2 = 1 ,
ρω2 > C33k

2 , σ1 = 1 , σ2 = 1 .

For motion independent of θ and z, corresponding to n=0 and k=0, we
would have only the radial component of the displacement. It is easy to see
that in that case

Υ2
1 = −ρω

2

C11

, Υ2
2 = −ρω

2

C44

,

β1 ' −
(C13 + C44)k

(C11 − C44)
, β2k '

(C11 − C44)ρω2

C44(C13 + C44)
.

Then the secular determinant can be factored as

∣∣∣∣ d21 d22

d51 d52

∣∣∣∣ = 0 ,

∣∣∣∣∣∣∣∣
d13 d14 d15 d16

d43 d44 d45 d46

0 0 d35 d36

0 0 d65 d66

∣∣∣∣∣∣∣∣ = 0 .

The second determinant is also factored as∣∣∣∣ d13 d14

d43 d44

∣∣∣∣ × ∣∣∣∣ d35 d36

d65 d66

∣∣∣∣ = 0 ,

and when ∣∣∣∣ d13 d14

d43 d44

∣∣∣∣ = 0 ,

we obtain

∣∣∣∣ A1a
2J0(A2a)− 2C66A2aJ1(A2a) A1a

2Y0(A2a)− 2C66A2aY1(A2a)
A1b

2J0(A2b)− 2C66A2bJ1(A2b) A1b
2Y0(A2b)− 2C66A2bY1(A2b)

∣∣∣∣ = 0 .

(2.46)
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where
A1 = ρω2

A2 =
√

ρω2

C11

. (2.47)

By considering b = a + h, h being the thickness of the cylindrical shell,
and expanding (2.46) to first order in h/a we arrive to

[J1(
√

ρω2

C11
a)Y0(

√
ρω2

C11
a)− J0(

√
ρω2

C11
a)Y1(

√
ρω2

C11
a)] ×

[−2C12C66γ1a+ C11γ1a[C11γ
2
1a

2 − 2C66]] = 0 .

The dispersion relation is then given by

C2
11γ

2
1a

2 = 2C66(C11 + C12) (2.48)

and from here we arrive to the following expression for the radial breathing
mode

ω =
1

a

√
2C66(C11 + C12)

ρC11

(2.49)

equivalent to

ω =
2

a

√
C66(C12 + C66)

ρ(C12 + 2C66)
. (2.50)

This expression is the same used in the isotropic case. In hexagonal
crystals the in-plane transverse waves are associated to C66, whereas the
out-plane transverse waves are associated to the C44 coefficient. Therefore
the isotropic approximation would be reasonable for NT of hexagonal crystals
having almost negligible thickness where the influence of the C44 coefficient
could be neglected. This could be the case of single wall (SW) CNT and
BN NT formed by rolling up a monolayer of the corresponding material.
Clearly this would not be suitable for other hexagonal materials nanotubes
having non-negligible thickness and thus inclusion of the full anisotropy of
the constituent material is necessary.

It has been possible to solve the equations of motion of nanowires and
nanotubes with circular cross-sections, for isotropic and hexagonal materials.
On the other hand , it was impossible to extend this approach to the cylyn-
drical structures of other anisotropic crystal systems [29, 62, 63]. To our
knowledge, this continues to be the situation. Although a general solution
has not been found, solutions for some types of vibrational modes of general
anisotropic crystals can be found.
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2.2.2 Acoustic radial (breathing) frequency modes in
cylinders, cylindrical shells and composite cylin-
ders of general anisotropic crystals

The radial (breathing) modes are a characteristic signature in the nanotubes
and nanowires spectra. They are also of interest in the design of resonators
and to generate sound radiation [64].

Besides this, the vibrational radial (breathing) modes of cylinders have a
much simpler form than a general vibrational mode, thus making easier the
obtention of its dispersion relation for general anisotropic crystals.

We shall consider here an infinitely long cylinder, a cylindrical shell, a
core-shell cylinder and a composite cylinder of general anisotropic materials
and we shall obtain the frequency values of the acoustic breathing modes of
these systems.

In subsection 2.2.2.1 we present the formal equations for the thick cylin-
ders and cylindrical shells. Subsection 2.2.2.2 deals with the core-shell and
composite cylinders formed by several materials. Subsection 3.4.2.1 deals
with the results for nanowires of different materials, belonging to different
crystals systems, grown in the last years. In subsection 3.4.2.2 an application
to recently grown core-shell Au/Ag and ZnS/SiO2 nanowires is done.

2.2.2.1 Radial acoustic breathing modes in cylinders and cylin-
drical shells of general anisotropic crystals

We shall consider a general anisotropic crystal. We shall assume that the
systems possess cylindrical anisotropy. In this case two of the material axes
coincide with the tangent and the normal to concentric circles in a given
plane, while the third one coincides with the normal to that plane.

The matrix transforming both coordinate systems is given by

M =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 .

The cylindrical anisotropy can be defined as the case where at each point,
the material has the properties of a material of Cartesian anisotropy with its
coordinate directions x, y and z coinciding with the local r, θ and z directions,
respectively [65]. In this way the material properties become independent of
θ, and the material stiffness and compliance matrices are constants. If we
choose θ = 0, the matrix M becomes the unit matrix and those matrices
become identical to those of the Cartesian anisotropy. We present in Fig.2.2
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Figure 2.2: Sketch of the top view of a thin material shell of cylindrical
anisotropy with the strains and stresses.

a sketch of the top view of a thin material shell of cylindrical anisotropy
with the strains and stresses. This could be interpreted as a thin layer of
a Cartesian anisotropic material folded over the surface of a circular tube.
Many of the nanowires have a structure of ”concentrical” atom layers and
the cylindrical anisotropy can be considered as a reasonable starting point
for these systems.

The matrix of elastic coefficients will be given in this case by

Cαβ =


C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66

 , (2.51)

including up to twenty-one independent elastic constants.

We shall consider a homogeneous thick cylinder of infinite length and
radius R, or a homogeneous cylindrical shell of infinite length, inner radius
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a, outer radius b and thickness h (b = a + h). We shall use the cylindrical
coordinate system (r,θ,z).

We assume that the mass density ρ is constant in the cylinder (cylindrical
shell). The cylinder axis coincides with the crystalline axis z and the surfaces
are stress free.

The strain-displacement relations are

εrr =
∂ur
∂r

; εrθ =
1

2

(
1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r

)
εθθ =

1

r

(
∂uθ
∂θ

+ ur

)
; εθz =

1

2

(
∂uθ
∂z

+
∂uz
∂θ

)
(2.52)

εzz =
∂uz
∂z

; εrz =
1

2

(
∂ur
∂z

+
∂uz
∂r

)
.

The equations of motion are given now by

∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
∂σrz
∂z

+
1

r
(σrr − σθθ) = ρ

∂2ur
∂t2

∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
∂σθz
∂z

+
2

r
σrθ = ρ

∂2uθ
∂t2

(2.53)

∂σrz
∂r

+
1

r

∂σθz
∂θ

+
∂σzz
∂z

+
1

r
σrz = ρ

∂2uz
∂t2

,

where


σrr
σθθ
σzz
σθz
σrz
σrθ

 =


C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66




εrr
εθθ
εzz

2 εθz
2 εrz
2 εrθ

 . (2.54)

The general solution of this problem, as we told before, must be ob-
tained numerically, but we shall consider now the particular case of the radial
breathing modes.

The radial breathing modes are purely radial vibrations, so that ur 6= 0
and uθ = uz = 0. In the same way

∂ur
∂θ

=
∂ur
∂z

= 0 . (2.55)
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It can be shown that the second and third equations in (2.53) are satisfied
automatically and we are left with

d2ur
dr2

+
1

r

dur
dr

+ (β2
l −

µ2

r2
)ur = 0 , (2.56)

with β2
l =

ρω2

C11

and µ2 =
C22

C11

.

Eq.(2.56) is a Bessel equation of non-integer order. Thus we have the
solution

ur(r) =

{
AJµ(βlr) +BJ−µ(βlr) , βl > 0

Ar +
B

r
, βl = 0 .

(2.57)

It is easy to see that if C22 = C11 we have µ=1 and we recover the Bessel
equation of integer order. In that case the solution is given by

ur(r) =

{
AJ1(βlr) +BY1(βlr) , βl > 0

Ar +
B

r
, βl = 0 ,

(2.58)

Y1 being the second-kind Bessel function of order 1.
The boundary conditions at the surfaces are now

C11
dur
dr

+ C12
ur
r

= 0 . (2.59)

In the case of a thick cylinder, in order that ur be finite at r=0, we must
have B=0. Thus we shall have:

ur(r) =

{
AJµ(βlr) , βl > 0
Ar , βl = 0 .

(2.60)

If σrr(R)=0, A=0 when βl=0, and for βl > 0 we have

C11J
′
µ(βlR) + C12

1

R
Jµ(βlR) = 0 . (2.61)

As

J ′µ(βlr) = βlJµ−1(βlr)−
µ

r
Jµ(βlr) (2.62)

eq.(2.61) becomes
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C11βlJµ−1(βlR) + (C12 − C11µ)
1

R
Jµ(βlR) = 0 , (2.63)

thus giving

βlRJµ−1(βlR) = (µ− C12

C11

)Jµ(βlR) . (2.64)

This equation is a generalization of the expression obtained by Hu et al.
[66] for an infinitely long isotropic cylinder

βlJ0(βlR) =
1

R

(1− 2ν)

1− ν
J1(βlR) (2.65)

with the Poisson’s factor ν =
C12

2(C12 + C44)
.

In the isotropic case C11 = C22 and C11 = C12 + 2C44. Thus it is easy to
see that eq.(2.64) becomes eq.(2.65).

In the case of the cylindrical shell, using the boundary conditions given
in eq.(2.59) we would have:

A(C11J
′
µ(βlr) + C12

1

r
Jµ(βlr)) +B(C11J

′
−µ(βlr) + C12

1

r
J−µ(βlr)) , βl > 0

(2.66)

A(C11 − C12)−B(C11 − C12)
1

r2
, βl = 0 .

As σrr(a) = σrr(b)=0, we must have A = B = 0, for βl=0, whereas for
βl >0 we have

∣∣∣∣∣∣∣∣∣
C11βlJ

′
µ(βla) + C12

1

a
Jµ(βla) C11βlJ

′
−µ(βla) + C12

1

a
J−µ(βla)

C11βlJ
′
µ(βlb) + C12

1

b
Jµ(βlb) C11βlJ

′
−µ(βlb) + C12

1

b
J−µ(βlb)

∣∣∣∣∣∣∣∣∣ = 0 .(2.67)

This is the secular determinant giving the elastic radial breathing mode
frequencies of an infinitely long cylindrical shell in the case of general anisotropy.
In hexagonal crystals C22 = C11 and C12 = C11−2C66. Then the last equation
reduces to eq.(2.46) , for the hexagonal crystals.

In the case of a thin shell it is possible to expand eq.(2.67) to first order

in
h

a
. Then we arrive to
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[(C2
12 − C11C22) + C2

11β
2
l a

2]βla[2µJµ(βla)J−µ(βla) +

βlaJµ(βla)J−µ−1(βla)− βlaJµ−1(βla)J−µ(βla)] = 0 . (2.68)

Taking into account that

J ′µ(βla) = βlJµ−1(βla)− µ

a
Jµ(βla)

J ′−µ(βla) = βlJ−µ−1(βla) +
µ

a
J−µ(βla) (2.69)

it can be seen that the factor involving the Bessel functions in eq.(2.68)
is the Wronskian, having the value

Jµ(βla)J ′−µ(βla)− J ′µ(βla)J−µ(βla) = −2 sin(µπ)

πβla
6= 0 . (2.70)

Thus the expression for the lowest breathing mode frequency of a thin
cylindrical shell of a general anisotropic crystal is given by

(C2
12 − C11C22) + C2

11β
2
l a

2 = 0 , (2.71)

which can be put in the form

ω =
1

a

√
C11C22 − C2

12

ρC11

=
2

d

√
C11C22 − C2

12

ρC11

, (2.72)

d = 2a being the diameter.
In the case of hexagonal crystals C22 = C11, C12 = C11−2C66 and eq.(2.72)

reduces to

ω =
2

a

√
C66(C12 + C66)

ρ(C12 + 2C66)
(2.73)

given in eq.(2.50).
For an isotropic crystal C22 = C11 and C12 = C11 − 2C44. Then eq.(2.72)

reduces to

ω =
2

a

√
C44(C12 + C44)

ρ(C12 + 2C44)
(2.74)

which coincides with the expressions given in Refs. [30, 55].
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On the other hand, for the cubic and other crystal systems C22 = C11,
but C12 6= C11 − 2C44, and then eq.(22) reads

ω =
1

a

√
C2

11 − C2
12

ρC11

. (2.75)

Eq.(2.72) is a simple analytic expression valid for all crystal systems.
It provides in a quick way a first estimate of the lowest breathing mode
frequency for nanotubes. It was seen [30] that eq.(2.73) and eq.(2.74) gave
extremely good agreement with experimental and first principles theoretical
values of the lowest breathing mode frequency of different carbon and other
materials nanotubes.

Eq.(2.67) gives the frequencies of higher order breathing modes.

2.2.2.2 Core-shell and composite cylinders

We shall consider in the first place a core-shell cylinder formed by two differ-
ent materials denoted by 1 and 2. The core will be of material 1 in a region
0≤ r ≤ R1. The shell will be formed by material 2 in a region R1 ≤ r ≤ R2.

The displacement would be now

ur(r) =

{
A(1)Jµ(1)(β1r) +B(1)J−µ(1)(β1r) , 0 ≤ r ≤ R1

A(2)Jµ(2)(β2r) +B(2)J−µ(2)(β2r) , R1 ≤ r ≤ R2 .
(2.76)

As the displacement must be finite at r = 0 this implies that B(1) = 0.
We must apply now the boundary conditions to this system.
At r = R1 the displacement must be continuous, thus giving

A(1)Jµ(1)(β1R1)− A(2)Jµ(2)(β2R1)−B(2)J−µ(2)(β2R1) = 0 . (2.77)

As the normal stress must also be continuous we must have σ
(1)
rr (R1) =

σ
(2)
rr (R1), and

A(1)(C
(1)
11 J

′
µ(1)(β1R1) + C

(1)
12

1

R1

Jµ(1)(β1R1)) −

A(2)(C
(2)
11 J

′
µ(2)(β2R1) + C

(2)
12

1

R1

Jµ(2)(β2R1)) − (2.78)

B(2)(C
(2)
11 J

′
−µ(2)(β2R1) + C

(2)
12

1

R1

J−µ(2)(β2R1)) = 0 .
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The outer surface at r = R2 is stress free, σ
(2)
rr (R2) = 0, thus

A(2)(C
(2)
11 J

′
µ(2)(β2R2) + C

(2)
12

1

R2

Jµ(2)(β2R2)) +

B(2)(C
(2)
11 J

′
−µ(2)(β2R2) + C

(2)
12

1

R2

J−µ(2)(β2R2)) = 0 . (2.79)

As a consequence, the frequencies of the acoustic radial breathing modes
of the cylindrical core shell system are obtained from the secular determinant

∣∣∣∣∣∣
d11 d12 d13

d21 d22 d23

0 d32 d33

∣∣∣∣∣∣ = 0 , (2.80)

being

d11 = Jµ(1)(β1R1)

d12 = −Jµ(2)(β2R1)

d13 = −J−µ(2)(β2R1)

d21 = (C
(1)
11 J

′
µ(1)(β1R1) + C

(1)
12

1

R1

Jµ(1)(β1R1))

d22 = −(C
(2)
11 J

′
µ(2)(β2R1) + C

(2)
12

1

R1

Jµ(2)(β2R1))

d23 = −(C
(2)
11 J

′
−µ(2)(β2R1) + C

(2)
12

1

R1

J−µ(2)(β2R1))

d32 = −(C
(2)
11 J

′
µ(2)(β2R2) + C

(2)
12

1

R2

Jµ(2)(β2R2))

d33 = −(C
(2)
11 J

′
−µ(2)(β2R2) + C

(2)
12

1

R2

J−µ(2)(β2R2)) . (2.81)

The most general composite cylinder is formed by N different materials
covering the range 0 ≤ R1 ≤ R2 ≤ R3 ≤ · · · ≤ RN . This problem is
a generalization of the core-shell one. It is easy to see that the secular
determinant is of dimension (2N − 1)× (2N − 1), having the structure
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d11 d12 d13 0 0 0 0 · · · 0 0
d21 d22 d23 0 0 0 0 · · · 0 0
0 d32 d33 d34 d35 0 0 · · · 0 0
0 d42 d43 d44 d45 0 0 · · · 0 0
0 0 0 d54 d55 d56 d57 · · · 0 0
0 0 0 d64 d65 d66 d67 · · · 0 0
...

...
...

...
...

...
...

. . .
...

...
0 0 0 0 0 0 0 · · · d

2N−2,2N−2
d

2N−2,2N−1

0 0 0 0 0 0 0 · · · d
2N−1,2N−2

d
2N−1,2N−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 ,

(2.82)
where d11, d12, d13, d21, d22, d23 are given in eq.(2.81). For 2 < n ≤ N − 1

the non-zero elements in the secular determinant have the form

d2n−1,2n−2 = Jµ(n)(βnRn)
d2n−1,2n−1 = J−µ(n)(βnRn)
d2n−1,2n = −Jµ(n+1)(βn+1Rn)
d2n−1,2n = −J−µ(n+1)(βn+1Rn)

d2n,2n−2 = C
(n)
11 J

′
µ(n)

(βnRn) + C
(n)
12

1

Rn

Jµ(n)(βnRn)

d2n,2n−1 = C
(n)
11 J

′
−µ(n)(βnRn) + C

(n)
12

1

Rn

J−µ(n)(βnRn)

d2n,2n = −C(n+1)
11 J ′

µ(n+1)(βn+1Rn)− C(n+1)
12

1

Rn

Jµ(n+1)(βn+1Rn)

d2n,2n+1 = −C(n+1)
11 J ′−µ(n+1)(βn+1Rn)− C(n+1)

12

1

Rn

J−µ(n+1)(βn+1Rn) .

(2.83)
The last row, corresponding to n = N , has only two non-zero terms given

by

d
2N−1,2N−2

= −C(N)
11 J ′

µ(N)(βNRN)− C(N)
12

1

RN

Jµ(N)(βNRN)

d
2N−1,2N−1

= −C(N)
11 J ′−µ(N)(βNRN)− C(N)

12

1

RN

J−µ(N)(βNRN)

(2.84)

When C22 = C11 we must substitute Jµ, J
′
µ, J−µ, J

′
−µ by J1, J

′
1, Y1, Y

′
1 in

eqs.(2.81, 2.83, 2.84).
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In this way we have obtained in eq.(2.80) and eq.(2.82) the secular deter-
minant of acoustic radial (breathing) modes in closed form for core-shell and
composite cylinders of anisotropic crystals.

2.2.3 XYZ method

In recent years, different experimental groups have grown nanowires having
circular, square or hexagonal cross-sections [67, 68, 60, 69, 70, 71, 72, 73, 74,
75, 19, 76]. As we have seen in the previous section, there is no way to solve,
in a general form, the equations of motion for cylindrical wires of anisotropic
crystals. The same is true for wires with different cross-sections. In order to
deal with this kind of nanowires, a theoretical method originally developed
in resonant ultrasound spectroscopy to obtain the free vibrational modes of
inhomogeneous objects [31, 32, 33, 34] can be used. The method studies
the free vibrations of elastic anisotropic systems having arbitrary shape and
mass density variation, thus being quite adequate for the present case. This
is performed by expanding the elastic displacements in terms of a set of basis
functions that are products of powers of the Cartesian coordinates, being
then called the xyz-algorithm.

In order to obtain the acoustic modes of the anisotropic nanowires we
shall use the theory of linear elasticity. In this way the Lagrangian of the
system comes in terms of the elastic displacement components ui, elastic
stiffness tensor Cijkl, mass density ρ and frequency ω in the form

L =
1

2

∫
V

(ρω2uiui − Cijkl
∂uj
∂xi

∂ul
∂xk

)dV , (2.85)

V being the volume of the nanowire.
The change in the elastic displacement components u

′
i = ui + δi induces

the variation δL of the Lagrangian given by

δL =

∫
V

[ρω2ui +
∂

∂xj
Cijkl

∂ul
∂xk

]δuidV −
∫
s

njCjikl
∂ul
∂xk

δuidS , (2.86)

where nj is the j-th component of the unit vector normal to the surface
S of the nanowire, while

σij = Cijkl
∂ul
∂xk

, (2.87)

is the stress tensor.
For a stress-free nanowire the stress field must vanish at the nanowire

surface, then:
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[σijnj]S = 0 . (2.88)

If we postulate now that the Lagrangian has a minimum with respect to
ui, we arrive to the elastic wave equation:

ρω2ui +
∂

∂xj
Cijkl

∂ul
∂xk

= 0 . (2.89)

Now we can expand the displacement components ui in terms of a com-
plete set of functions Ψλ

ui =
∑
λ

aiλΨλ . (2.90)

Substitution of this expansion in the wave equation gives

aiλρω
2Ψλ + ajλCijkl

∂2Ψλ

∂xj∂xk
= 0 . (2.91)

Multiplying by Ψ∗λ′ and integrating over the volume of the nanowire, V ,
we get the following eigenvalue equation

aiλρω
2

∫
V

Ψ∗λ′ΨλdV − ajλCijkl
∫
V

∂Ψ∗λ′

∂xj

∂Ψλ

∂xk
dV = 0 . (2.92)

Now it is possible to define the following matrix elements [32]

Eiλ′,jλ = δij
ρ

V

∫
V

Ψ∗λ′ΨλdV ,

(2.93)

Φiλ′,jλ =
Cijkl
V

∫
V

∂Ψ∗λ′

∂xj

∂Ψλ

∂xk
dV ,

and to express the eigenvalue equation in the following form

[ω2E−Φ]a = 0 . (2.94)

Obviously different choices for the basis functions are possible. In order
to perform numerical calculations for a variety of nanowire shapes the most
practical choice is the simplest possible complete set of functions [32]. This
choice is provided by the powers of the Cartesian coordinates, and then we
get the following set of basis functions
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Ψλ(x, y, z) =
( x
A

)l ( y
B

)m ( z
L

)n
, (2.95)

for a finite nanowire of dimensions (A,B,L), where λ = (l,m, n) the
function label is a set of three non-negative integers, or

Ψλ(x, y, z) =
( x
A

)l ( y
B

)m
exp(iQz) , (2.96)

for an infinite nanowire, Q being the longitudinal wavevector of the elastic
modes along the wire axis. λ = (l,m) the function label is a set of two non-
negative integers.

In terms of the basis the displacements are expanded in a truncated basis
until a maximum number N to obtain convergence. In the case of the finite
nanowire l +m+ n ≤ N , whereas for the infinite nanowire l +m ≤ N .

The price paid for not using an orthonormal basis set is that E is not
the identity matrix. On the other hand the use of an orthonormal set would
entail the need to choose a different {Ψλ} set for each different shape and
for each different mass density ρ, which can be a function with arbitrary
position dependence. As a consequence the required matrix elements could
not be expressed in closed form.

Applications to wires with square, rectangular and circular cross-sections
have been presented in Visscher[32], Nishiguchi et al.[23] and Li et al.[37],
but no application to hexagonal cross-section has been done until now.

We shall consider now in some detail the hexagonal cross-section case.

We shall choose in this case the following basis functions

Ψλ(x, y, z) =
( x
A

)l( 2y√
3A

)m
exp(iQz) , (2.97)

for an infinite wire, A being the hexagon side.

In this case the integrals entering the E and Φ matrices are of the form

∫
V

( x
A

)l( 2y√
3A

)m
dV =

2m

(
√

3)mAl+m

∫
V

xlymdV . (2.98)

The volume integral can be divided in three parts
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∫
V

xlymdV =

∫ −A
2

−A

∫ √3(A+x)

−
√

3(A+x)

xlymdydx+

∫ A
2

−A
2

xldx

∫ √
3A
2

−
√
3A
2

ymdy+

(2.99)∫ A

A
2

∫ √3(A−x)

−
√

3(A−x)

xlymdydx .

After some manipulation it can be written as

∫
V

( x
A

)l( 2y√
3A

)m
dV =

2m
√

3
m+1

√
3
m
Al+m

(
1− (−1)m+1

m+ 1

)(
1− (−1)l+1

l + 1

)
×

(2.100)[
Al+m+2

2l+m+2
+ (m+ 1)

∫ A

A
2

xl(A− x)m+1dx

]
.

The last integral can be expressed in the form

∫ A

A
2

xl(A− x)m+1dx =
Al+m+2

l + 2

(
Γ(l + 2)Γ(m+ 2)

Γ(l +m+ 3)
−

(2.101)

2F1(l + 1;−m− 1; l + 2; 1
2
)

2l+1

)
.

Thus we have finally

∫
V

( x
A

)l( 2y√
3A

)m
dV =

A2
√

3

2l+2

(
1− (−1)m+1

m+ 1

)(
1− (−1)l+1

l + 1

)
×(

1 + 2l+m+2 Γ(l + 2)Γ(m+ 2)

Γ(l +m+ 3)
(2.102)

−2m+1
2 F1

(
l + 1;−m− 1; l + 2;

1

2

))
.

where 2F1(l + 1;−m − 1; l + 2; 1
2
) is the Gauss hypergeometric function

[61]. We have then all the possible integrals entering the matrices E and Φ.
In the case of a hollow nanowire we must take into account that all the in-

tegrals can be obtained by integrating over a full prism and then substracting
the empty core [37]. In this case no new boundary conditions are needed.
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Also in the case of nanowires grown along a direction not coinciding with
one of the crystal axes, the elastic stiffness tensor must be transformed to
the new reference system.

2.2.4 Multilayer structures: Surface Green Function
Matching method (SGFM)

To obtain the dispersion curves of the acoustic waves in the superlattices we
employ the Surface Green Function Matching (SGFM) method [40] which
is very adequate to study the properties of multi-layer systems formed by
anisotropic materials [39].

Figure 2.3: Scheme of the formal framework of the superlattice.

2.2.4.1 SGFM for the superlattice. Continuous media.

The simplest superlattice is formed by the infinite repetition of two materials,
labelled 1 and 2, having thicknesses d1 and d2 respectively, the superlattice
period being d = d1 +d2. Polytype superlattices are formed by more material
layers in the period, but they can be considered as a generalisation of the
simplest ones.

The formal framework to describe the superlattice is represented in a
schematic way in Figure 2.3. We see a two-interface domain formed by the
interfaces l(left) and r(right), with medium 2, contained between l and r,
defined as the internal one. We see also two external layers designed by 1
and 3. We shall use the symbol Pµ to denote either the projector of domain
µ = 1, 2, 3, or a point of this domain. The external and internal domains are
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defined as:
Pe = P1 + P3 ; Pi = P2 (2.103)

Gµ is the Green function of the bulk medium µ. The Green functions 1
and 3 are equal, because media 1 and 3 are physically equal. We keep the
labels 1 and 3 to denote that they are in different domains.

We shall obtain GS, the Green function of the composite matched system,
in terms of the corresponding projections defined by:

Gi = PiGiP
′
i = P2G2P

′
2 ; Ge = PeGeP

′
e = P1G1P

′
1 + P3G3P

′
3 (2.104)

If t is a translation through a distance d, equal to the superlattice period,
then every time we consider a point P1 we shall consider also its translated
point P3, denoted tP1 and viceversa, P1 will be t−1P3. This is convenient be-
cause the superlattice states can be labelled by a quantum number q which
is the (super)wavevector associated to the (super)periodicity so that the am-
plitudes at z and z + d are related by the Bloch phase factor:

f = eiϕ = eiqd . (2.105)

We must note that Gi and Ge are not Green functions. They are simply
objects defined by the projections specified above.

Our aim is to obtain the system Green function GS(Ω, κ, q, z, z′) from
G1(Ω, κ, z, z′) and G2(Ω, κ, z, z′), Ω being the eigenvalue (energy, frequency)
of the problem considered.

We define the matching surface to consist of both l and r. Now we must
specify on which part, left or right, of the matching surface are the variables
z and z′. Consequently we define the two-surface or full interface projections

Ĝi = Ĝ2 =

∣∣∣∣∣∣
∣∣∣∣∣∣
G2l G2(l, r)

G2(r, l) G2r

∣∣∣∣∣∣
∣∣∣∣∣∣ ; Ĝe =

∣∣∣∣∣∣
∣∣∣∣∣∣
G1l G1(l, r)

G3(r, l) G3r

∣∣∣∣∣∣
∣∣∣∣∣∣ . (2.106)

where Gµl/Gµr is the one surface projection at l/r. In general, for a differ-
ential system with N coupled differential equations each one of the elements
appearing in G̃i and G̃e is an NxN matrix and then G̃i and G̃e are 2Nx2N
matrices. We shall refer to any G(z, z′), like Gl or G(l, r), as matrix ele-
ments - on the understanding that they may not be scalar quantities - and
to the objects like G̃i and G̃e as 2×2 supermatrices. The 2×2 supermatrix
format is very suitable for the study of the two-surface problem, as will be
seen. The purpose of the analysis is to obtain the full Gs(z, z

′), which of
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course has nonvanishing elements between any (z, z′) and, in particular, its
full interface projection

G̃s =

∣∣∣∣∣∣
∣∣∣∣∣∣
Gs l Gs(l, r)

Gs(r, l) Gs r

∣∣∣∣∣∣
∣∣∣∣∣∣ . (2.107)

We can use the symbols l and r according to convenience either as labels or
to denote the numerical values of z or z′. We can also use them to denote
the corresponding one-surface projectors, in which case the unit I of the full
matching surface is the two-surface projector

I = l + r . (2.108)

By definition the new two-surface objects carry the projector I on both sides.
For instance G̃2 is identically IG̃2I, but this will only be explicitly shown
when it is necessary.

The purpose of this compact notation is to provide a concise way to carry
out the SGFM analysis of the two-surface problem so a lengthy explicit
algebra is avoided.

Let us now look at the physical picture. Suppose, for instance, a standard
unit input starts at some point of the internal domain. It can then propagate
to another point inside either directly or after reflection at the two interfaces,
and to a point outside only through transmission. We now combine this
physical argument with the compact algebraic notation for the two-surface
problem and write for the form of Gs(z, z

′), when z, z′ ∈ Pi,

PiGsP
′
i = P2G2P

′
2 + P2G2 · R̃ ·G2P

′
2 . (2.109)

We have introduced the two-surface object R̃, a 2×2 supermatrix related to
reflection at the full interface domain. Note the physical picture embodied
in the reflection term. Since we use the bulk propagator G2, before and
after R̃, this is defined to be a (reflection) T -matrix in the sense of scattering
theory. The fact that it gives by definition the total reflection scattering at
the full interface has an important practical consequence as it avoids the
need to sum the infinite series which would otherwise have to account for the
multiple reflections at the two interfaces. By definition these are all included
in the last term of (2.109). Now take the full interface projection:

G̃s = G̃2 + G̃2 · R̃ · G̃2 . (2.110)
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This is an equality among 2×2 supermatrices, whereby by ordinary matrix
algebra

R̃ = G̃−1
2 · (G̃s − G̃2) · G̃−1

2 , (2.111)

which substituted in (2.109) yields

PiGsP
′
i = P2G2P

′
2 + P2G2 · G̃−1

2 (G̃s − G̃2) · G̃−1
2 ·G2P

′
2 . (2.112)

In the same way, with the unit input at some point inside, the form of the
amplitude at a final point outside is

PeG̃sP
′
i = PeG̃e · T̃ · G̃iP

′
i , (2.113)

whence by projecting

T̃ = G̃−1
e · G̃s · G̃−1

i , (2.114)

which substituted in (2.113) yields

PeGsP
′
i = PeGe · G̃−1

e · G̃s · G̃−1
i ·GiP

′
i . (2.115)

The argument can be repeated with the initial point outside and the
formulae are of course isomorphic with (2.112), that is,

PeGsP
′
e = PeGeP

′
e + PeGe · G̃−1

e · (G̃s − G̃e) · G̃−1
e ·GeP

′
e (2.116)

and with (2.115), that is

PiGsP
′
e = P2G2 · G̃−1

2 · G̃s · G̃−1
e ·GeP

′
e , (2.117)

but the four formulae lead to different explicit expressions, on account of the
different connectivities of Pe and Pi. Let us see how these formulae must
be read. We indicate by zµ the fact that z is in domain µ and likewise for
z′µ. Then the l.h.s. of (2.112), for instance, is Gs(z2, z

′
2). The first term on

the r.h.s. is G2(z2, z
′
2) but the second term requires more detailed scrutiny.

The factor P2G2 is actually P2G2I, as it is multiplied on the right by a
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two-surface object. But I consists of l and r, so z′2 can be at l or at r and
P2G2I is the 2-component row supervector

P2G2I = [G2(z2, l),G2(z2, r)] , (2.118)

where we recall that each component is in general an NxN matrix. Likewise

IG2P
′
2 =

 G2(l, z′2)

G2(r, z′2)

 (2.119)

is a 2-component column supervector. Finally

Gs(z2, z
′
2) = G2(z2, z

′
2) + [G2(z2, l),G2(z2, r)] · G̃−1

2 · (G̃s − G̃2) ·

G̃−1
2 ·

 G2(l, z′2)

G2(r, z′2)

 . (2.120)

The last term is formally a contracted product of a matrix with a row vector
on its left and a column vector on its right, of the form

[al , ar] ·

∣∣∣∣∣∣
∣∣∣∣∣∣
Mll Mlr

Mrl Mrr

∣∣∣∣∣∣
∣∣∣∣∣∣ ·
 bl

br

 . (2.121)

We recall that we take the pair of surfaces (l, r) as the projection - eventu-
ally matching - domain. The form of PiGsP

′
i is obviously (2.112) or (2.120).

Consider the two cases of PeGsP
′
i . These will involve mF1 or nF3, which we

can eliminate from the analysis by using the phase relationships

mF1 = f−1 × rF3 ; nF3 = f × lF1 . (2.122)

Then, for instance

P1GsP
′
i = P1G1l · lF1 + P1G1m ·mF1

= P1G1l · lF1 + f−1 × P1G1m · rF3 . (2.123)
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The meaning of the first line is obvious by inspection of Figure 2.3 and the
advantage of the second line is that the form of the two unknown amplitudes
can be obtained from the physical picture: A standard unit input at P ′2
propagates with propagator G2 to l and to r and there the amplitudes emitted
into domains 1 and 2 are, respectively,

lF1 = lT̃ I · IG2P
′
2 ; rF3 = rT̃ I · IG2P

′
2 , (2.124)

where T̃ is a two-surface transmission T -matrix. Thus

P1GsP
′
i = P1G1l · lT̃ I · IG2P

′
2 + f−1 × P1G1m · rT̃ I · IG2P

′
2 (2.125)

and, by the same sort of argument

P3GsP
′
i = f × P3G3n · lT̃ I · IG2P

′
2 + P3G3r · rT̃ I · IG2P

′
2 . (2.126)

Now define an ’external Green function’ Gf
e in the following way

P1G
f
eI = [P1G1l, f

−1 × P1G1m] =[
G1(z1, l), f

−1 ×G1(z1,m)] = [P1G
f
e l, P1G

f
er
]

;

P3G
f
eI = [f × P3G3n, P3G3r] =[

f ×G3(z3, r),G3(z3, r)] = [P3G
f
e l, P3G

f
er
]
.

(2.127)

Then (2.125) and (2.126) can be condensed into

PeGsP
′
i = PeG

f
e · T̃ ·G2P

′
2 . (2.128)

Now, define the 2× 2 supermatrix
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Ĝe = IGf
eI =

∣∣∣∣∣∣
∣∣∣∣∣∣

Ĝe(l, l) Ĝe(l, r)

Ĝe(r, l) Ĝe(r, r)

∣∣∣∣∣∣
∣∣∣∣∣∣ =

∣∣∣∣∣∣
∣∣∣∣∣∣

G1l f−1 ×G1(l,m)

f ×G3(r, n) G3r

∣∣∣∣∣∣
∣∣∣∣∣∣ , (2.129)

take the full I projection of (2.128) and solve for T̃ . Then

PeGsP
′
i = PeG

f
e · Ĝ−1

e · G̃s · G̃−1
2 ·G2P

′
2 . (2.130)

Suppose the input is outside. We note that with just a standard unit input
at, say, P ′1 we cannot generate a superlattice eigenstate satisfying Bloch’s
theorem. We must put simultaneously δ at P ′1 and f × δ at P ′3 = tP ′1. Then
the amplitudes of Figure 2.3 have different forms, namely:

lF1 = R̂ll · lG1P
′
1 + f × R̂lr · rG3P

′
3 ;

lF2 = T̂ll · lG1P
′
1 + f × T̂lr · rG3P

′
3 ;

rF2 = T̂rl · lG1P
′
1 + f × T̂rr · rG3P

′
3 ;

rF3 = R̂rl · lG1P
′
1 + f × R̂rr · rG3P

′
3 .

(2.131)

We have introduced appropriate reflection and transmission objects to de-
scribe the reemission of amplitudes into the external or internal domains,respectively.
We then have

P1GsP
′
1 = P1G1P

′
1 + P1G1l · [R̂ll · lG1P

′
1 + f × R̂lr · rG3P

′
3]

+ f−1 × P1G1m · [R̂rl · lG1P
′
1 + f × R̂rr · rG3P

′
3] ,

(2.132)

which has an obvious physical interpretation by using the same kind of ar-
gument we have repeatedly invoked. Likewise
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P2GsP
′
1 = P2G2l · [T̂ll · lG1P

′
1 + f × T̂lr · rG3P

′
3]

+ P2G2r · [T̂rl · lG1P
′
1 + f × T̂rr · rG3P

′
3] (2.133)

and

P3GsP
′
1 = f × P3G3P

′
3 + f × P3G3n · [R̂ll · lG1P

′
1 + f × R̂lr · rG3P

′
3]

+ P3G3r · [R̂rl · lG1P
′
1 + f × R̂rr · rG3P

′
3] (2.134)

Due to the periodicity we can put

rG3P
′
3 = mG1P

′
1 (2.135)

in the above three formulae. The first term on the r.h.s. of (2.134) is also
of the right form again because P ′3 is tP ′1. This will be sorted out later. The
terms PµGsP

′
3 are written in much the same way with the only difference

that for these we put a standard unit input δ at P ′3 and an input f−1 × δ at
P ′1 = t−1P ′3. By using systematically the fact that G3 and G1 are equal, and
the periodicity property

P3G3P
′
3 = P1G1P

′
1 , (2.136)

of which (2.135) is a particular case, the above results and those for PµGsP
′
3

can be finally condensed in the following compact forms:

PeGsP
′
e = PeG

f
eP
′
e + PeG

f
e · R̂ ·Gf

eP
′
e (2.137)

and

PiGsP
′
e = P2G2 · T̂ ·Gf

eP
′
e , (2.138)

where we have defined the 2-component (super)column vectors
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IGf
eP
′
1 =

 lGf
eP
′
1

rGf
eP
′
1

 =

 lG1P
′
1

f ×mG1P
′
1

 =

 G1(l, z′1)

f ×G1(m, z′1)

 ;

IGf
eP
′
3 =

 lGf
eP
′
3

rGf
eP
′
3

 =

 f−1 × nG1P
′
3

rG1P
′
3

 =

 f−1 ×G1(n, z′3)

G1(r, z′3)

 ,

(2.139)

which are complementary to (2.127). It is now obvious that by projecting
(2.137) and (2.138), solving for R̂ and T̂ and substituting back in these
formulae we obtain

PeGsP
′
e = PeG

f
eP
′
e + PeG

f
e · Ĝ−1

e · (G̃s − Ĝe) · Ĝ−1
e ·Gf

eP
′
e (2.140)

and

PiGsP
′
e = P2G2 · G̃−1

2 · G̃s · Ĝ−1
e ·Gf

e · P ′e . (2.141)

Together with (2.130) and (2.112) we have the formulae for all possible ele-
ments of Gs in the superlattice case.

In order to discuss the matching analysis, we must consider the continu-
ity conditions in terms of Green functions. In general the Green function
is continuous, but the normal derivative with respect to the interface has a
discontinuous jump which depends only on the form of the differential sys-
tem irrespective of the boundary conditions away from the planes chosen as
interfaces.

In a general case, the Green function will be a matrix and the linear
differential system can be represented in the form:

[
d

dz

[
S · d

dz
+ P

]
+

(
Y
d

dz
+ W

)]
·G(z, z′) = Iδ(z − z′). (2.142)

We define also the following linear differential form:

A(z, z′) =

[
S · d

dz
+ P

]
·G(z, z′) (2.143)



50 CHAPTER 2. METHODOLOGY

Taking an arbitrary point z′ = 0, integrating from −µ to +µ and letting
µ→ 0 we obtain

A(+0)−A(−0) = −I. (2.144)

Since A(z, z′) contains the first order derivative of G(z, z′), the side where
the surface projection A is evaluated must be specified. Note that

A(±0) = lim
z→±0

A(z, 0) ≡ A(∓) ≡M(±0) · ′G(∓) + P(±0) · G, (2.145)

whence
A(+) −A(−) = −I (2.146)

and we obtain the general discontinuity condition[
M(−0) · ′G(+) + P(−0) · G

]
−
[
M(+0) · ′G(−) + P(+0) · G

]
= −I

(2.147)
We are now ready to carry out the matching analysis for the two-surface

problem. The idea is to study the configurations (z1, z
′
2), (z2, z

′
2) with z2 < z′2

and (z2, z
′
2), (z3, z

′
2) with z2 > z′2. In the first case we impose the matching

conditions at l and then let z′2 → l+0 and z′2 → r−0 while in the second case
we impose the matching conditions at r and then do the same again with
z′2. The four equalities, condensed in the compact 2×2 supermatrix notation
yield the matching formula for G̃−1

s . Then we have

{−s−1
1 · [′G

(+)
1l , 0] + P1 · [G1l, 0]} · G̃−1

e · G̃s · G̃−1
2 ·

 G2(l, z′2)

G2(r, z′2)

 =

{−s−1
2 · [′G

(−)
2l ,

′G2(l, r)]

+P2 · [G2l,G2(l, r)]} · G̃−1
2 · G̃s · G̃−1

2 ·

 G2(l, z′2)

G2(r, z′2)



+s−1
2 ·

−′G2(l, z′2) + [′G(−)
2l ,

′G2(l, r)] · G̃−1
2 ·

 G2(l, z′2)

G2(r, z′2)


+P2 ·

G2(l, z′2)− [G2l,G2(l, r)] · G̃−1
2 ·

 G2(l, z′2)

G2(r, z′2)

 .

(2.148)
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The factor multiplying P2 is

G2(l, z′2)− [l, 0] ·

 G2(l, z′2)

G2(r, z′2)

 = 0 . (2.149)

Now take z′2 → l + 0. The second term on the r.h.s. of (2.148) is then

s−1
2 · {−′G

(+)
2l + [′G(−)

2l ,
′G2(l, r)] ·

[
l
0

]
} =

s−1
2 · {′G

(−)
2l −′ G

(+)
2l } = −l

(2.150)

and the matching condition (2.148) reads

{−s−1
1 · [′G

(+)
1l , 0] + P1 · [G1l, 0]} · G̃−1

e · G̃s ·
[
l
0

]
=

{−s−1
2 [′G(−)

2l ,
′G2(l, r)] + P2 · [G2l,G2(l, r)]} · G̃−1

2 · G̃s ·
[
l
0

]
− l ,

(2.151)

while on taking z′2 → r− 0 the second term on the r.h.s. of (2.148) becomes

s−1
2 · {−′G2(l, r) + [′G(−)

2l ,
′G2(l, r)] ·

[
0
r

]
} =

s−1
2 · {−′G2(l, r) +′ G2(l, r)} = 0 (2.152)

and we obtain

{−s−1
1 · [′G

(+)
1l , 0] + P1 · [G1l, 0]} · G̃−1

e · G̃s ·
[

0
r

]
=

{−s−1
2 · [′G

(−)
2l ,

′G2(l, r)] + P2 · [G2l,G2(l, r)]} · G̃−1
2 · G̃s ·

[
0
r

]
.

(2.153)

For the second configuration we obtain
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{−s−1
3 · [0,′ G

(−)
3r ] + P3 · [0,G3r]} · G̃−1

e · G̃s · G̃−1
2 ·

 G2(l, z′2)

G2(r, z′2)

 =

{−s−1
2 · [′G2(r, l),′ G(+)

2r ] + P2 · [G2(r, l),G2r]} · G̃−1
2 ·

G̃s ·

 G2(l, z′2)

G2(r, z′2)

+ s−1
2 · {−′G2(r, z′2) +

[′G2(r, l),′ G(+)
2r ]} · G̃−1

2 ·

 G2(l, z′2)

G2(r, z′2)

 . (2.154)

By means of a similar algebra we find on taking z′2 → l + 0:

{−s−1
3 · [0,′ G

(−)
3r ] + P3 · [0,G3r]} · G̃−1

e · G̃s ·
[
l
0

]
=

{−s−1
2 · [′G2(r, l),′ G(+)

2r ] + P2 · [G2(r, l),G2r]} · G̃−1
2 · G̃s ·

[
l
0

] (2.155)

and on taking z′ → r − 0:

{−s−1
3 · [0,′ G

(−)
3r ] + P3 · [0,G3r]} · G̃−1

e · G̃s ·
[

0
r

]
=

{−s−1
2 · [′G2(r, l),′ G(+)

2r ] + P2 · [G2(r, l),G2r]} · G̃−1
2 · G̃s ·

[
0
r

]
+ r .

(2.156)

The four equations of interest are (2.151), (2.153), (2.155) and (2.156). In
order to condense these in supermatrix format we define
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′G̃e =

∣∣∣∣∣
∣∣∣∣∣ ′G(+)

1l f−1 ×G1(l,m)

−f ×G1(r, n) −′G(−)
1r

∣∣∣∣∣
∣∣∣∣∣ ; ′G̃i =

∣∣∣∣∣
∣∣∣∣∣ ′G(−)

2l
′G2(l, r)

−′G2(r, l) −′G(+)
2r

∣∣∣∣∣
∣∣∣∣∣ ;

S̃e =

∣∣∣∣∣∣∣∣ s1 0
0 s3

∣∣∣∣∣∣∣∣ ; S̃i =

∣∣∣∣∣∣∣∣ s2 0
0 s2

∣∣∣∣∣∣∣∣ ;

P̃e =

∣∣∣∣∣∣∣∣ P1 0
0 P3

∣∣∣∣∣∣∣∣ ; P̃i =

∣∣∣∣∣∣∣∣ P2 0
0 P2

∣∣∣∣∣∣∣∣ .
(2.157)

Then the above four equations are, respectively, the (l, l), (l, r), (r, l) and
(r, r) supermatrix elements of the compact equation

{[−S̃−1
e ·′ G̃e+ P̃e ·G̃e] ·G̃−1

e − [−S̃−1
i ·′ G̃i+ P̃i ·G̃i] ·G̃−1

i } ·Gs = I , (2.158)

whence the matching formula

G̃−1
s = {S̃−1

e ·′ G̃e · G̃−1
e − S̃−1

i ·′ G̃i · G̃−1
i } − {P̃e − P̃i} . (2.159)

Alternatively, we can define

Ãe = −S̃−1
e ·′ G̃e + P̃e · G̃e ; Ãi = −S̃−1

i ·′ G̃i + P̃i · G̃i . (2.160)

Then (2.159) takes the general form

−G̃−1
s = Ãe · G̃−1

e − Ãi · G̃−1
i . (2.161)

In the case of a sandwich structure of the type 1–2–3 it is clear that there
is no periodicity present and both interfaces, l and r are not coupled. The

off-diagonal blocks of the external domain
(
G̃e,

′G̃e,
′Ãe
)

vanish and these

supermatrices are block-diagonal. This is the modification to be introduced
in the formulation described above.

In the case of a polytype layer structure, including N layers, the analysis
can be repeated and the general matching formula in that case is given by:

−G̃−1
s = I

(
Ã1 · G̃−1

1 −
N∑
i=2

Ãi · G̃−1
i

)
I . (2.162)
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2.2.4.2 SGFM for the superlattice. Hexagonal systems.

We shall give here the detailed expression for the Green’s function and normal
derivatives particular to the hexagonal system together with the essential
formal expressions for the study of the superlattices.

The bulk material Green’s function G for hexagonal crystals is given by

G =


C33k2z+(C44κ2−ρω2)

C33C44(β2
1+k2z)(β2

2+k2z)
0 − (C44+C13)κkz

C33C44(β2
1+k2z)(β2

2+k2z)

0 1
C44(β2

t+k2z)
0

− (C44+C13)κkz
C33C44(β2

1+k2z)(β2
2+k2z)

0 C44k2z+(C11κ2−ρω2)

C33C44(β2
1+k2z)(β2

2+k2z)

 ,
(2.163)

where

β2
1 =

1

2
[B + (B2 − 4C2)

1
2 ] , (2.164)

β2
2 =

1

2
[B − (B2 − 4C2)

1
2 ] , (2.165)

B =
1

C33C44

[(C2
44 + C11C33)κ2 −

(C13 + C44)2κ2 − (C33 + C44)ρω2] , (2.166)

C2 =
1

C33C44

(C44κ
2 − ρω2)(C11κ

2 − ρω2) , (2.167)

βt =

(
C11 − C12

2C44

κ2 − ρω2

C44

) 1
2

=

(
C66

C44

κ2 − ρω2

C44

) 1
2

, (2.168)

(In all cases Re(βi)>0, Im(βi)>0, i=1,2,t.)
The surface projected elements of the Green function are obtained from

Gij(κ, ω2) = lim
ε→0

1

2π

∫ ∞
−∞

exp[iεkz]Gij(κ, kz;ω
2)dkz , (2.169)

whereas the normal derivatives are obtained from

′G(±)
ij (κ, ω2) = lim

ε→0

1

2π

∫ ∞
−∞

exp[∓iεkz]ikzGij(κ, kz;ω
2)dkz , (2.170)

thus giving
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G =



C33β1β2 + C44κ
2 − ρω2

2C33C44β1β2(β1 + β2)
0 0

0
1

2C44βt
0

0 0
C44β1β2 + C11κ

2 − ρω2

2C33C44β1β2(β1 + β2)


,

(2.171)

and

′G± =



± 1

2C44

0 − i(C13 + C44)κ

2C33C44(β1 + β2)

0 ± 1

2C44

0

− i(C13 + C44)κ

2C33C44(β1 + β2)
0 ± 1

2C33


.(2.172)

We obtain also

Gij(κ, z, z
′;ω2) =

1

2π

∫ ∞
−∞

exp[ikz(z − z′)]Gij(κ, kz;ω
2)dkz , (2.173)

and

′Gij(κ, z, z
′;ω2) =

∂

∂z
Gij(κ, z, z

′;ω2) . (2.174)

From here we obtain in our case
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G11(κ, z, z′;ω2) =
1

2C33C44β1(β2
1 − β2

2)
(C33β

2
1 − C44κ

2 + ρω2)exp(−β1|z − z′|)

− 1

2C33C44β2(β2
1 − β2

2)
(C33β

2
2 − C44κ

2 + ρω2)exp(−β2|z − z′|) ,

G13(κ, z, z′;ω2) = sgn(z − z′) iκ(C13 + C44)

2C33C44(β2
1 − β2

2)
(exp(−β1|z − z′|)− exp(−β2|z − z′|)) ,

G22(κ, z, z′;ω2) =
1

2C44βt
exp(−βt|z − z′|) , (2.175)

G31(κ, z, z′;ω2) = G13(κ, z, z′;ω2) ,

G33(κ, z, z′;ω2) =
1

2C33C44β1(β2
1 − β2

2)
(C44β

2
1 − C11κ

2 + ρω2)exp(−β1|z − z′|)

− 1

2C33C44β2(β2
1 − β2

2)
(C44β

2
2 − C11κ

2 + ρω2)exp(−β2|z − z′|) ,

with G12=G21=G23=G32=0, and

′G11(κ, z, z′;ω2) = − sgn(z − z′)
2C33C44(β2

1 − β2
2)

[(C33β
2
1 − C44κ

2 + ρω2)exp(−β1|z − z′|)

− (C33β
2
2 − C44κ

2 + ρω2)exp(−β2|z − z′|)] ,
′G13(κ, z, z′;ω2) = − iκ(C13 + C44)

2C33C44(β2
1 − β2

2)
[(β1exp(−β1|z − z′|)− β2exp(−β2|z − z′|))] ,

′G22(κ, z, z′;ω2) = −sgn(z − z′)
2C44

exp(−βt|z − z′|) , (2.176)

′G31(κ, z, z′;ω2) = ′G13(κ, z, z′;ω2) ,

′G33(κ, z, z′;ω2) = − sgn(z − z′)
2C33C44(β2

1 − β2
2)

[(C44β
2
1 − C11κ

2 + ρω2)exp(−β1|z − z′|)

− (C44β
2
2 − C11κ

2 + ρω2)exp(−β2|z − z′|)] ,

with ′G12 = ′G21 = ′G23 = ′G32=0.
These projections and the boundary conditions at the different interfaces

(continuity of the displacements and normal stress) give the interface projec-
tion of the Green function of the system G̃S, whose formal representation is
given by

G̃−1
s =

(
Ã−1

1 · G̃−1
1 − Ã−1

2 · G̃−1
2

)
. (2.177)

The elements entering in the former expression are defined in the following
way:
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G̃1 =

 G1 e−iqd G1(l,m)

eiqd G1(r, p) G1

 ;

Ã1 =

 A(+)
1 e−iqd A1(l,m)

−eiqd A1(r, p) −A(−)
1

 ; (2.178)

G̃2 =

 G2 G2(l, r)

G2(r, l) G2

 ;

Ã2 =

 A(−)
2 A2(l, r)

−A2(r, l) −A(+)
2

 , (2.179)

where l, m, p and r denote the z coordinates from the interfaces shown in
Fig.2.4, q is the normal wavevector associated to the superlattice periodicity
and the dependencies on κ and ω2 must be understood.

The normal components of the stress are represented by the Ã through
the A and A± operators. In the present case they are given by

A =



C44(
∂G11

∂z
+ iκG31) 0 C44(iκG33 +

∂G13

∂z
)

0 C44
∂G22

∂z
0

iC13κG11 + C33
∂G31

∂z
0 iC13κG13 + C33

∂G33

∂z


,

(2.180)

and
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Figure 2.4: Sketch of the superlattices considered in this work showing
the different layers with the corresponding thicknesses, elastic constants and
mass densities of the constituent materials.

A± =


C44(′G±11 + iκG31) 0 C44(iκG33 +′ G±13)

0 C44
′G±22 0

iC13κG11 + C33
′G±31 0 iC13κG13 + C33

′G±33

 .(2.181)

It is clear from these expressions that there is a decoupling from the
terms corresponding to the x and z axes, the sagittal plane, from those cor-
responding to the y axis, the transverse motion contained in the basal plane
with velocity3 vT2. This is due to the elastic isotropy of the basal plane in
hexagonal systems. It is interesting to note that in this case we have two
different transverse waves possessing different propagation velocities. This

3v2
T1 = C44

ρ ; v2
T2 = C66

ρ ; v2
L = C11

ρ
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is a different situation from that found in isotropic crystals where the two
transverse waves have the same propagation velocity. This allows the possi-
bility of having more (vT1 > vT2) or less (vT1 < vT2) frequency ranges allowed
to propagation of transverse waves and forbidden to sagittal waves than in
purely isotropic materials.

The dispersion curves are obtained by means of the peaks of the local
density of states (LDOS), which is obtained from the trace of the interface
projection of the system Green function G̃S.

To obtain the dispersion curves we study the LDOS as a function of κd.
For each κd value we analyze the LDOS for 100 qd values ranging from zero
to π. The allowed acoustic branches exhibit non-zero LDOS values. On the
other hand the forbidden gaps have LDOS zero values. A small imaginary
part (0.001) is added to the frequency to perform the numerical calculations.

2.2.4.3 SGFM for the superlattice. Piezoelectric hexagonal sys-
tems.

In the case of piezoelectric materials belonging to the 6mm class with the
C-axis parallel to the x3 direction and the direction x2 normal to the interface
there is a decoupling between motion along the x1 and x2 directions and the
motion along the x3 direction, due to the symmetry [77]. We shall consider
here only the transverse acoustic wave having the electric potential coupled
to the elastic displacement u3.

We shall give here only the detailed expressions for the Green’s functions
and normal derivatives particular to the case of the transverse acoustic waves,
including the piezoelectric coupling, in hexagonal crystals. The essential
formal expressions for the study of the superlattices will be also given.

The bulk material Green’s function is given in this case by [78]

G =


ε11

N
−e15

N

e15

N

C44k
2 − ρω2

Nk2

 , (2.182)

where

N = Ck2 − ε11ρω
2 , C = C44ε11 + e2

15 . (2.183)

N=0 gives the dispersion relation of the bulk piezoelectric transverse
acoustic wave
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ω2 = v2
t k

2 , v2
t =

C

ρε11

. (2.184)

The surface projected elements of the bulk Green function are obtained
from equation (2.169), in this case

Gij(κ, ω2) = lim
ε→0

1

2π

∫ ∞
−∞

exp[iεkx2 ]Gij(κ, kx2 ;ω
2)dkx2 , (2.185)

κ being the parallel wavevector, kx2 being the perpendicular wavevector in
the bulk and i being the imaginary unit, whereas the normal derivatives are
obtained from equation (2.170)

′G(±)
ij (κ, ω2) = lim

ε→0

1

2π

∫ ∞
−∞

exp[∓iεkx2 ]ikx2Gij(κ, kx2 ;ω
2)dkx2 , (2.186)

thus giving [78]

G =


ε11

2Cβ
− e15

2Cβ

e15

2Cβ

Cβ − e2
15κ

2ε11Cκβ

 , (2.187)

and

′G± =


± ε11

2C
∓e15

2C

±e15

2C
±C − e

2
15

2Cε11

 , (2.188)

where

β = (κ2 − ε11ρω
2

C
)
1
2 . (2.189)

We need also equations (2.173)

Gij(κ, x2, x
′
2;ω2) =

1

2π

∫ ∞
−∞

exp[ikx2(x2 − x′2)]Gij(κ, kx2 ;ω
2)dkx2 , (2.190)

and equation (2.174)
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′Gij(κ, x2, x
′
2;ω2) =

∂

∂x2

Gij(κ, x2, x
′
2;ω2) . (2.191)

They are given by

G11(κ, x2, x
′
2;ω2) =

ε11

2Cβ
exp(−β|x2 − x′2|) ,

G12(κ, x2, x
′
2;ω2) = − e15

2Cβ
exp(−β|x2 − x′2|) ,

G21(κ, x2, x
′
2;ω2) =

e15

2Cβ
exp(−β|x2 − x′2|) ,

G22(κ, x2, x
′
2;ω2) =

1

2ε11

(
1

κ
exp(−κ|x2 − x′2|)−

e2
15

Cβ
exp(−β|x2 − x′2|)) ,

(2.192)

and

′G11(κ, x2, x
′
2;ω2) = −sgn(x2 − x′2)

ε11

2C
exp(−β|x2 − x′2|) ,

′G12(κ, x2, x
′
2;ω2) = sgn(x2 − x′2)

e15

2C
exp(−β|x2 − x′2|) ,

′G21(κ, x2, x
′
2;ω2) = −sgn(x2 − x′2)

e15

2C
exp(−β|x2 − x′2|) ,

′G22(κ, x2, x
′
2;ω2) = −sgn(x2 − x′2)

1

2ε11

(exp(−κ|x2 − x′2|)−
e2

15

C
exp(−β|x2 − x′2|)) .

(2.193)

The boundary conditions at the different interfaces (continuity of the
u3 displacement, the electric potential, the normal stress and the electric
displacement) expressed in terms of these projections give the interface pro-
jection of the Green function of the superlattice system [43], whose formal
representation is

G̃−1
s = −

(
Ã−1

1 · G̃−1
1 − Ã−1

2 · G̃−1
2

)
. (2.194)

The generalization for N different interfaces is presented in [39] and shall
not be discussed here.

The elements entering in the former expression are defined in the following
way:
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G̃1 =

 G1 e−iqd G1(l,m)

eiqd G1(r, p) G1

 ;

Ã1 =

 A−1 e−iqd A1(l,m)

−eiqd A1(r, p) −A+
1

 ; (2.195)

G̃2 =

 G2 G2(l, r)

G2(r, l) G2

 ;

Ã2 =

 A+
2 A2(l, r)

−A2(r, l) −A−2

 , (2.196)

where l, m, p and r denote the x2 coordinates from the interfaces shown
in Fig.2.5, d is the superlattice period, q is the normal wavevector associated
to the superlattice periodicity and the dependencies on κ and ω2 must be
understood.

The normal components of the stress and the electric displacement are
represented by the Ã through the A and A± operators. In the present case
they are given by

A =


C44

∂G11

∂x2

+ e15
∂G21

∂x2

C44
∂G12

∂x2

+ e15
∂G22

∂x2

−e15
∂G11

∂x2

+ ε11
∂G21

∂x2

−e15
∂G12

∂x2

+ ε11
∂G22

∂x2

 , (2.197)

and

A± =

 C44
′G±11 + e15

′G±21 C44
′G±12 + e15

′G±22

−e15
′G±11 + ε11

′G±21 −e15
′G±12 + ε11

′G±22

 . (2.198)
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Figure 2.5: Sketch of the superlattice having as period a second Fibonacci
generation (it coincides with the usual binary superlattice). The materials
belong to the 6mm class with the C-axis parallel to the x3 direction and we
choose the normal to the interfaces as the x2 direction. The different layers
with the corresponding thicknesses and the nomenclature for the different
interfaces are also shown. The case of more complex superlattice periods,
including more interfaces, is a generalization of this picture [39].

The dispersion curves are obtained from the peaks of the local density of
states (LDOS), which is obtained from the trace of the interface projection
of the system Green function G̃S [43, 39].

To obtain the dispersion curves we study the LDOS as a function of κd.
For each κd value we sample the LDOS for 100 qd values ranging from zero
to π, “d” being the period of the structure being considered. The allowed
transverse acoustic branches have non-zero LDOS values. The forbidden
gaps have LDOS zero values. A small imaginary part (0.001) is added to the
frequency to perform the numerical calculations.
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2.3 Discrete approach

The discrete approach usually gives more accurate results in exchange for a
bigger need of computational resources. The most used discrete methods are
Monte Carlo (MC) and Molecular Dynamics (MD).

In Molecular Dynamics and Monte Carlo methods, forces are derived from
a potential energy function that depends on the particles coordinates ~ri:

~Fi = −∇V (~r1, . . . , ~rN) (2.199)

So the capability to generate an accurate potential function V (~r1, . . . , ~rN)
for that material is the core of the reliability of the calculations. The ma-
terial atoms are controlled by the quantum mechanics laws. Besides this,
the electrons play a major role in the bond properties. This fact makes the
calculation of the potential energy functions a complicated key issue in this
kind of computer simulations.

In fact the atoms are composed of nuclei and electrons, therefore, the
interactions between atoms are derived from those occurring between these
components.

The non-relativistic hamiltonian of imteracting atoms may be written as:

H =
∑

i
P 2
i

2Mi
+
∑

n
p2n
2m

(2.200)

+1
2

∑
i,j

ZiZje
2

| ~Ri− ~Rj |
+ 1

2

∑
n,m

e2

| ~rn− ~rm| −
∑

i,n
Zie

2

| ~Ri− ~rn|

where the i, j indices run on the nuclei and n,m on the electrons. ~Ri are the
positions and ~Pi the momenta of the nuclei, ~rn and ~pn are, respectively, the
positions and momenta of the electrons, Zi and Mi are the atomic number
and the mass of the nucleus i, and m and e are the electron mass and charge.

The first two summands/terms of eq.(2.200) are the kinetic energies of nu-
clei and electrons and the remaining three terms correspond to the Coulomb
interaction between pairs of nuclei, pairs of electrons and nucleus-electron
pairs respectively. In principle, solving the Schrödinger equation for the to-
tal wave function Ψ( ~Ri, ~rn) will give all the information of the system since
all the electronic and mechanical properties depend on the electronic struc-
ture of the system. However, in practice, this is impossible. Thus the use
of approximation schemes is necessary. In 1927 Born and Oppenheimer [79]
noticed that the masses of the nuclei are always much bigger than the elec-
tron mass, an electron having a mass being approximately 1

1836
that of the

proton. Therefore the electrons move on a frequency scale which is about
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two orders of magnitude larger than that of the nuclei:

ωelectron
ωnucleus

∼
√
M

m
>
√

1836 (2.201)

So from the point of view of the electrons, the nuclei are approximately static.
Therefore it is possible to decouple the nuclear motion from the electronic
one, and factorise the total wavefunction as:

Ψ( ~Ri, ~rn) ' χ( ~Ri)φ(~rn; ~Ri) (2.202)

where χ( ~Ri) is the wavefunction that describes the nuclei and φ(~rn; ~Ri) is the
wavefunction that describes the electrons, which parametrically depends on
the positions of the nuclei.

These assumptions of the Born-Oppenheimer approximation make pos-
sible to reformulate the problem in two steps. In the first step the nuclear
kinetic energy is neglected and the nuclear positions enter as parameters so
the Hamiltonian of the system (2.200) gives the “electronic” Hamiltonian:

Hel =
∑
n

p2
n

2m
+

1

2

∑
i,j

ZiZje
2

| ~Ri − ~Rj|
+

1

2

∑
n,m

e2

|~rn − ~rm|
−
∑
i,n

Zie
2

| ~Ri − ~rn|
(2.203)

where in the nuclei Coulomb interaction the nuclei are assumed to be static,
and the electron-nucleus interaction is not removed as the electrons still feel
the Coulomb potential of the nuclei “clamped” at certain positions in space.

The Schrödinger electronic equation is therefore:

Hel(~rn; ~Ri)φ(~rn; ~Ri) = Eelφ(~rn; ~Ri) (2.204)

where the electronic energy eigenvalues Eel depend on the “static” positions
of the nuclei ~Ri.

In the second step of the Born-Oppenheimer approximation the nuclear

kinetic energy Tn( ~Ri) =
∑

i
P 2
i

2Mi
is reintroduced and the Schrödinger equation

of the nuclear motion[∑
i

P 2
i

2Mi

+ Eel( ~Ri)

]
χ( ~Ri) = Eχ( ~Ri) (2.205)

is solved. The energy eigenvalues E that include the electrons contributions
and the nuclear motion are the total energy of the system.

Notice that the term Eel, the eigenvalue of the equation (2.204), can be
viewed as an “interatomic potential” of the equation (2.205). This “inter-

atomic potential” V ( ~Ri) will give the forces felt by the nuclei. Also note that
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in the equation (2.205) no electronic degrees of freedom are present as all the

electronic effects are incorporated into V ( ~Ri), thus allowing to substitute the
electronic equation (2.200) with an approximation.

Finally this separation in electronic and nuclear contributions allows an
additional approximation which assumes as adequate the classical description
of the nuclear dynamics.

The Born-Oppenheimer approximation is used in both methods (MC and
MD) so the nuclear motion is segregated from the electronic motion in the
Hamiltonian of the system.

Monte Carlo simulations aim to explore the conformation space of a sys-
tem in order to determine the equilibrium average of some property [80].
This could be achieved, in principle, by evaluating the integral:

< A >=

∫
A(~r)P (~r)d~r, (2.206)

where the probability function P (~r) is given by:

P (~r) =
e
− E(~r)
κBT∫

e
− E(~r)
κBT d~r

, (2.207)

where E(~r) is the energy of the system characterised by the particle’s coor-

dinates ~r and
∫
e
− E(~r)
κBT d~r is the partition function of the system. The above

equations cannot be evaluated analytically but they could, in principle, be
calculated using a numerical integration procedure. However, for all but the
very smallest systems this would involve an unfeasible number of calculations.
Fortunately there is a numerical method for obtaining numerical solutions to
problems which are too complicated to solve analytically based on random
sampling. The method was named by S. Ulam, who in 1946 became the first
mathematician to dignify this approach with a name, in honour of a relative
having a propensity to gamble. In the Monte Carlo integration method, in
order to integrate a function over a complicated domain D, Monte Carlo
integration picks random points over some simple domain D′ which is a su-
perset of D, checks whether each point is within D, and estimates the area
of D (volume, n-dimensional content, etc.) as the area of D′ multiplied by
the fraction of points falling within D. Monte Carlo method is a sampling
experiment model based on the generation of random numbers in order to
create sample states from a statistical ensemble and then accept or reject the
sample according to some rules (usually trying to minimise the energy). The
crudest form of MC would consist of making random changes to the coor-
dinates of the system. From the energies calculated at each step, A(~r)P (~r)
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can be estimated and < A > can be found. This approach is flawed as each
different configuration would contribute equally to the integral. Since P (~r) is

proportional to the Boltzmann factor e
− E(~r)
κBT , only low energy configurations

make significant contributions to the integrals. However, a large number
of configurations have a small Boltzmann factor due to high energy over-
laps between particles. Thus only a small proportion of configuration space
corresponds to physically observed states. Therefore many of the generated
configurations would have little or no influence and so proper sampling would
not have been achieved. The sampling problem above can be solved by em-
ploying importance sampling, which is the essence of the Metropolis Monte
Carlo method [80]. The crucial feature is that it biases the generation of
configurations to those that make a significant contribution to the equation
(2.207). Specifically it generates a series of states with a Boltzmann distri-
bution and counts them equally. This differs from the crude method outlined
above which generates states with equal probability and then assigns them
a Boltzmann weight. The simulation must have a procedure for generat-
ing new configurations so that at the end of the simulation the appropriate
probability distribution has occurred. This is achieved by setting up what is
known as a Markov chain [4], which satisfies the following conditions:

• The outcome of each trial belongs to a finite set of possible outcomes.

• Each trial depends only on the outcome of the trial that precedes it.

These conditions are required to produce the correct limiting distribution,
i.e. to produce the correct ensemble averages. The advantage of the MC
method is that it can be easily adapted to different ensembles (canonical,
grand canonical, etc.). Also the MC method is often used in the optimisation
of solid state systems. We include its description here only for completeness
because we need to know the velocity of the particles in order to obtain the
VDOS and Raman spectra, which can not be obtained from MC simulations.

On the other hand Molecular Dynamics studies the dynamical evolution
in time of the model. In MD the dynamics of the system is studied by means
of a finite difference method. Given the particles positions, velocities, and
other dynamical information at a time t, the idea is to calculate the positions,
velocities, etc. at a time t + δt. With the sufficient degree of accuracy and
if the finite difference method is stable (it depends on the procedure used to
calculate the next state and the time interval δt) then the evolution in time
of the system is obtained step by step.
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2.3.1 Classical regime in discrete approximations

The adequacy of using the classical approximation for the motion of the nuclei
in the discrete approach is related to the de Broglie thermal wavelength of
the system:

Λ =

√
2π~2

MκBT
(2.208)

where M is the mass of the nuclei (which may be approximated by the
atomic mass), T is the temperature, ~ is the reduced Plank constant (~ =

1.054571726(47) × 10−34 kg m2

s
) and κB is the Boltzmann constant (κB =

1.3806503× 10−23 m
2kg

s2K
).

If the de Broglie wavelength is smaller than the mean nearest neighbour
distance of the nuclei (Λ << dnn) then the classical approximation is jus-
tified [81]. For example, in a simulation of an Al crystal at 100 K the de
Broglie length is Λ = 0.336 Å and the nearest neighbour is at dnn ' 2.86 Å
which is an order of magnitude bigger. Therefore only when lighter elements
are considered (Li or Ar) or if the temperature is very low, the classical
approximation of the nuclei motion should be interpreted with caution4.

On the other hand, solving the electronic Schrödinger equation (2.203)
directly is technically unfeasible without some approximations, like those
used by the ab initio methods (which we shall explain later). Even with the
usual approximations solving the equation (2.203) requires massive computer
resources.

The classical approach to the equation (2.203) aims to substitute it and

describe the nuclei motion through some potential function V ( ~Ri) which
depends on the kind of atoms, the structure we want to simulate and the
data we want to extract, whose analytical form is specified in advance.

This potential function is selected from some functional forms that mimic
the behaviour of the “true” potential under specific conditions. The process
of selecting the potential involves two steps: selecting the analytical form that
behaves like the “true potential” and finding the appropriate parameters for
this function that fit the experimental data available.

A variety of classical potentials have been used over the years to this end.
And in any case, those potentials are designed with a “range of applicability”
in mind. Simulation results should be critically interpreted when obtained
in unusual conditions. However, it may be possible to model a bulk and
a surface environment with the same potential if the environment does not

4Also quantum effects begin to rise for light elements below the Debye temperature.
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differ dramatically. This ability of a potential to work properly in different
enviroments is called transferability.

2.3.2 Classical Potentials

Assuming a system of N atoms, the potential energy may be divided into
terms depending on the coordinates of individual atoms, pairs of atoms,
triplets, etc.

V =
∑
i

v1(~ri) +
∑
i,j>i

v2(~ri, ~rj) +
∑

i,j>i.k>j>i

v3(~ri, ~rj, ~rk) + . . . (2.209)

the first term represents the effect of an external field on the system, the
second term is the pair potential, the third term is the tree body potential,
etc.

The two body potentials V =
∑

i,j>i v2(~ri, ~rj) are the most commonly
used, being the Lennard-Jones potential [82] the classical example of two
body potential.

φL−J(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]

(2.210)

where r = |~rj − ~ri| and the parameters ε and σ are chosen to fit some of the
physical properties of the material.

Figure 2.6: Functional form of the Lennard-Jones energy potential with ε =
σ = 1.

Two body potentials are not adequate at all to model systems with strong
localised bonds, as covalent systems or where there is a delocalised “electron
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sea” as in metals. In these systems the two body interactions fail dramati-
cally. In noble metals there are several experimental data indicators of many
body effects. The ratio between the cohesive energy and the melting tem-
perature indicates that metals show extra cohesion with respect to pairwise
systems. This shows that is less effective than two-body forces in keeping the
system in the crystalline state[83]. The ratio between two elastic constants
of a cubic crystal C12

C44
, which due to the Cauchy relation in two body systems,

is exactly 1, while in real cubic metals deviations of this value are the rule.
In fact the high value in the C12

C44
ratio in Au is related to its well known high

ductility and malleability.
In semiconductors the deviations from a two-body behaviour are even

bigger.
Consider for instance silicon. Its most stable phase is the diamond struc-

ture, which is very open and has a coordination number Nc = 4. However it
changes rapidly to other structures from tetrahedral to β-tin to simple cubic
to FCC when pressure is applied, which means that these other structures
are not too far away in energy. Besides, its liquid structure is a metal, and
it is more dense than the solid.

In other words, the cohesive energy is nearly independent of the coordi-
nation, while a two-body model should favour the more packed structures,
which have more bonds.

The properties of the semiconductors make the finding of suitable poten-
tial functions describing their properties a specially complex task.

Some approaches to the semiconductor potential function are the Stillinger-
Weber [84] (in which the potential functions have angular terms that favour
some preferred angles) and the Tersoff potential [85] (based on the concept
of bond order).

2.3.3 Periodic boundary conditions

Usually, computer simulations of discrete systems are performed on a rela-
tively small number of particles 10 ≤ N ≤ 10000 as the size of a system is
limited by the available data storage and, more crucially, by the calculation
time defined by the processors performance and the design of the computa-
tional code. The time taken for a double logical loop used by the algorithm
to evaluate the forces or the potential energy is proportional to N2. It may
be possible to reduce this dependence to O(N) with special techniques for
very large systems, but the force/energy loop dictates inevitably the overall
calculation speed. Smaller systems will always be less time consuming. If
the interest is in the properties of a very small cluster, then the simulation
will be straightforward and the virtual space used in the calculations could
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be limitless. However if the interest is in the analysis of a bulk system, it
is not possible to simulate with a relatively small number of atoms due to
the fact that a representative fraction of particles will lie on the surface of
any small sample. Those atoms on the surface will experience quite different
forces than those atoms in the bulk. Therefore it is necessary to overcome the
finite size effects when using cells for the representation of infinite systems
[4].

The problem of surface effects can be overcome by implementing periodic
boundary conditions [86]. In the periodic boundary conditions the particles
are fitted inside a virtual box. This cubic box is replicated indefinitely in
order to tessellate the space to form an infinite lattice. During the course
of the simulation, as the particles move in the original box, all their image
particles in each of the copied boxed move in exactly the same way. Thus,
as an atom leaves the “real” box through a given face, one of its images
will enter through the opposite face. Therefore there is no surface atoms as
there are no walls at the boundary of the “real” box. Figure 2.7 shows a
simplified two dimensional version of such periodic system. The image boxes
are labelled as Im1, Im2, etc. and the particles A, B, C and D have their
respective images A1, B1, C1 and D1 in Im1, and so on. With this scheme,
the number of particles in each box is conserved as if a particle exits the box,
a neighbour box’s image enters. It is not necessary to store the coordinates
of all the images in a simulation. When an atom leaves the box by crossing a
boundary, the attention then shifts to the atom image just entering into the
simulation box through the opposite boundary. Therefore only the atoms in
the “real” box count for the simulation.

It is important to consider if the properties of a small, infinitely periodic,
system and the macroscopic system which represents are the same. This will
depend both on the range of the inter-atomic potential and the phenomenon
under investigation. If the potential is long ranged (i.e. V (r) ∼ r−ν where
ν is less than the dimensionality of the system) then, for typical size boxes,
there will be a substantial interaction between a particle and its own images
in neighbouring boxes, and consequently the symmetry of the cell structure
is imposed on a system which is actually isotropic.

Also, the use of periodic boundary conditions inhibits the occurence of
long-wavelength fluctuations. For a cube of side L, the periodicity will sup-
press any density waves with a wavelength greater than L. Thus, it would not
be possible to simulate a liquid close to the gas-liquid critical point, where the
range of critical fluctuations is macroscopic. Furthermore, transitions which
are known to be first order often exhibit the characteristics of higher order
transitions when modelled in a small box, because of the suppression of fluc-
tuations. The same limitations apply to the simulation of long-wavelength
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Figure 2.7: Two-dimensional representation of a simulation box with its 8
surrounding image boxes.(Source:Samuel Peláez Machado, with thanks.)

phonons in model solids, where, in addition, the cell periodicity picks out a
discrete set of available wave-vectors (i.e. ~k = (kx, ky, kz)2π/L, where kx, ky,
kz are integers) in the first Brillouin zone [87].

Despite the above remarks, the common experience in simulation work
is that PBC have little effect on the equilibrium thermodynamic properties
and structures of fluids away from phase transitions and where interactions
are short-ranged. However, it is always important to check that this holds
for each model studied. It should be checked that increasing the number of
particles (and box size, so as to maintain constant density) does not influence
the results.

2.3.3.1 Potential truncation

Now let us consider the question of how to calculate the properties of sys-
tems subject to periodic boundary conditions. The core of any Monte Carlo
or Molecular Dynamic simulation program is the calculation of the potential
energy (and/or force in the case of MD) of a particular configuration. To this
end, we must include interactions between particle i and every other parti-
cle j in the simulation box. There are N − 1 terms in this sum. However,
we must also include all interactions between particle i and image particles
lying in the surrounding boxes. This is an infinite number of terms, and of
course impossible to calculate in practice. For a short-ranged potential en-



2.3. DISCRETE APPROACH 73

(a) Full potential (b) Cut potential: Discontinuous

(c) Displaced potential:
Shifted to V (rc) = 0

(d) Adjusted potential:
Set to 0 for r > rc
interpolate for r′ < r < rc

Figure 2.8: Cutoff methods
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ergy function, we may restrict this summation by making an approximation.
The largest contribution to the potential and forces comes from neighbours
(real or periodic images) close to the particle of interest. This is called the
minimum image convention, and is a natural consequence of the periodic
boundary conditions.

Then in the minimum image convention, the calculation of the potential
energy involves 1

2
N(N−1) terms which may still be a very substantial calcu-

lation for a system of (for example) 1000 particles. A further approximation
is based on the fact that the largest contribution to the potential and forces
comes from neighbours close to the particle of interest, and therefore, is a
standard practice to apply a spherical cutoff. This means setting the pair
potential V (r) to zero for r ≥ rc, where rc is the cutoff distance. The dashed
circle in figure 2.7 represents a cutoff region, and in this case particles B and
C4 contribute to the force on A, since their centres lie inside such region. In
a cubic simulation box of side L, the number of neighbours explicitly con-
sidered is reduced by a factor of approximately 4πr3

c/3L
3, and this may be a

substantial saving. The introduction of a spherical cutoff should be a small
perturbation, as the cutoff distance should be sufficiently large to ensure this.
As an example, in the simulation of atoms interacting through Lennard-Jones
potentials, the value of the pair potential at the boundary of a cutoff sphere
of typical radius rc = 2.5 σ is just 1.6 percent of the well depth.

Any cutoff introduces a truncation in the potential (Fig.2.8b). But it
also introduces other problem: whenever a particle pair “crosses” the cutoff
distance, the energy makes a little jump. A large amount of those little jumps
will likely spoil the energy conservation in a MD calculation over the time. To
avoid this problem the potential is usually shifted in order to make V (rc) = 0
as seen in Fig.2.8c. But shifting only solves the energy discontinuity, not the
force discontinuity. For this reason, to obtain a continuous energy and force
it is common to alter the potential near rc (Fig.2.8d) in order to make it
“smooth” (that is second order derivable). There is no standard way to do
this “smoothing”.

Physical quantities are affected by the cutoff. The effects of truncation
can be approximately estimated in bulk systems by considering an uniform
continuum medium beyond the cutoff, but for geometries with free surfaces
it is not possible to estimate easily the truncation effect.

2.3.3.2 Geometries with surfaces

The purpose of the periodic boundary conditions is to eliminate surface ef-
fects, but there are also situations where the interest is in the surfaces.

For surface simulations, is common to eliminate the periodic boundary
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conditions in one direction (usually taken to be z) while retaining them in
the orthogonal plane. In this way it is possible to simulate a slab with two
free surfaces normal to z and indefinitely large in the xy plane.

There are circumstances where it is preferable to freeze some layers on one
side of the slab at the perfect bulk-like crystal structure positions in order to
simulate a one-surface material. Usually this is done when there is a massive
perturbation of the surface, such as surface reconstructions (where there is
a massive rearrangement of the atoms) or local melting. If a side of a slab
is frozen, care must be taken to freeze a number of layers corresponding to
a thickness of at least the cutoff radius (rc) in order to avoid the possibility
that one mobile atom could “see” the surface through the fixed atoms.

Finally, the wire geometry is obtained by using periodic boundary condi-
tions in only one direction, thus having the wire axis along the PBC direc-
tion.

2.3.4 Molecular Dynamics

The molecular dynamics method is a computational tool for the simulation,
modelling and study of the evolution of a set of particles from the interactions
between them. In other words, from the knowledge of the characteristics of
the particles and the forces generated by their interactions (usually repre-
sented by their potential energies), we can estimate the displacements of the
particles and with that information we will be able to study the evolution of
the system.

The molecular dynamics was introduced by Alder and Wainwright in
the late 1950’s [88, 89] to study the interactions of hard spheres. The first
MD simulation of a realistic system was done by Rahman and Stillinger in
their simulation of liquid water in 1974 [90] . Although having its origin in
theoretical physics of fluids, the MD method gained popularity in materials
science and since 1970 also in biochemistry and biophysics. In physics, MD
is used to examine the dynamics of atomic-level phenomena that cannot
be observed directly. It is also used to examine the physical properties of
nanotechnological devices that have not or cannot yet be created.

The molecular dynamics is a powerful technique but it has limitations.
The essential ingredient in a MD simulation is the calculation of the interac-
tions between the particles.

Depending on the type of interactions we can classify three types of molec-
ular dynamics:

D.F.T.: Density functional theory, an approximation to the many-body
problem in quantum mechanics, based on first principles and which
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gives a good description of the lower states of elemental semiconduc-
tors but not a good description of excited states5. On the other hand,
this scheme is very demanding on computer resources and slow for big
systems.

T.B.: Tight-Binding, a semi-empirical method adequate for greater number
of particles and for covalent binding materials, but not adequate for
metallic systems.

Empiric/semi-empiric: This scheme is the best option for very big sys-
tems and “long” periods of time, but it needs a careful choice of the
interaction potential.

On the other hand, the macroscopic measurements and the molecular dy-
namics model are related by the statistical mechanics. So in order to link
the model with the macroscopic knowledge is necessary to acquire enough
data to make the proper statistics. Also, to place a proper system statistics
is necessary to fulfill the ergodic theorem. Although proving that a system
is ergodic is an unsolved problem in general (i.e. is not computable). That
is, you can visit the whole phase space along a specific path of the system
if this path is long enough. Not necessarily any path because it is possible
for certain energies to have a potential barrier that prevents the trajectory
from visiting certain areas of phase space of that state. This means that, in
principle, integrating the trajectory in time will give us the volume of the
phase space, but doing so is very difficult to calculate as well.

In Molecular Dynamics, the parameters that are naturally fixed are the
volume, the total energy and the number of particles, i.e. “the micro-
canonical ensemble” (NV E) (see Appendix in page 201). But in our model
the temperature is one of the important parameters to maintain, so the
canonical ensemble (NV T ) is needed. So first, in order to simulate the tem-
perature in our model we can add a random term to the velocities of the
particles. Usually, in a MD simulation, the random velocities of the particles
are initially set with the normalised Maxwell-Boltzmann distribution:

W (vl) =

(
mi

2πκBT

) 1
2

e
− miv

2
l

2κBT (2.211)

with vl the components of the velocity (l = x, y, z), mi the mass of the
particles, κB the Boltzmann constant, T the temperature, and the standard

5Despite recent improvements, there are still difficulties in using density functional
theory to properly describe charge transfer excitations; transition states, global potential
energy surfaces and some other strongly correlated systems; and in calculations of the
band gap in semiconductors.
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deviation
√

κBT
mi

. When doing this, the system may have a small total linear

momentum, corresponding to a translational motion of the whole system
due to the random choice of velocities and the finite number of particles.
So, before starting the simulation, all the velocities are transformed by a
factor to ensure the zero momentum condition (

∑
i ~vi) = 0. This operation

is also performed from time to time during the simulation, because due to
discretization and round-off errors the system may drift away from the zero
total momentum condition.

It is possible to approximate the inter-atomic potential to an harmonic
one, 1

2
Kx2, near the minima. As the temperature is linked with the kinetic

energy 1
2
mx2 and our velocity distribution is initially a random Maxwell-

Boltzmann distribution, then when the system acquires the condition of sta-
bility the total energy will be equally distributed between the potential and
the kinetic energies.

The temperature is a measure of the average kinetic energy of the atoms.
Thus if we initially set the kinetic energy distribution according to a temper-
ature that doubles the target temperature, then after some time the energy
will be equally distributed between kinetic and potential and we approxi-
mately will have our system at the wished temperature.

This method is only adequate for a range of temperatures in which the
harmonic approximation is valid. Obviously this method is not adequate for
temperatures greater than half of the fusion temperature. In order to solve
these situations it is necessary to use other methods, like the thermostat. In
this method the temperature is rescaled at each step in order to match the
system temperature with the wished one. But in that situation the model
does not correspond to a physical system, as we are modifying it artificially.
That’s why the thermostat techniques are usually set at the beginning of the
calculation in order to fix the initial conditions, and then put the system in
equilibrium in order to start the “real” simulation6 7 8.

So the scheme is this: We begin the calculation by choosing a reasonable
guess of the initial positions of the structure we want to calculate. Then the
steepest descent method is used to bring the whole system to the minimum
of the potential energy. Once the system is at the static equilibrium in the
minimum of the potential, we set the temperature and begin the integration
in time until we equilibrate the system again but now at the temperature of
interest. Finally the system is integrated forward in time until we get enough

6If the system keeps the unstable condition after we turn of the thermostat,then we
turn on and repeat the process.

7Typical thermostat 1
2

∑
(v2
x + v2

y + v2
z) = 3

2NκBT

8Berendsen temperature control factor λ =
√

1 + ∆T
100∆T (T0

T − 1)
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data in order to make sure that enough of the space phase is sampled.

Figure 2.9: Basic Molecular Dynamics diagram.
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2.3.4.1 The basic Molecular Dynamics algorithm

Molecular dynamics can be thought as the way Newton would have simulated
the movement of planets in a solar system. . . if he have had a computer [91].
The method is simple, in principle:

1. Initial conditions. Let’s assume that the positions ~ri and velocities
~vi of all the particles of a system at a time t are known.

2. Force computation. Also assume that the laws that govern the inter-
action between these particles are known, so it is possible to compute
the force ~Fi exerted on every particle i.

3. Integration. Then the Newton’s equations of motion for every one of
the particles are solved in order to get their positions and velocities at
a later time ∆t:

~ri(t+ ∆t) = ~ri(t) + ~vi(t)∆t+
1

2

~Fi
mi

∆t2

(2.212)

~vi(t+ ∆t) = ~vi(t) +
~Fi
mi

∆t

4. Loop back. Return to step 1 with the newly computed positions and
velocities.

2.3.4.2 Integration algorithms: Verlet

The engine of a molecular dynamics program is its time integration algorithm,
required to integrate the equations of motion of the interacting particles and
follow their trajectories.

Time integration algorithms are based on finite difference methods, where
time is discretized on a finite grid, the time step ∆t being the distance be-
tween consecutive points on the grid. Knowing the positions and some of
their time derivatives at time t (the exact details depend on the type of al-
gorithm), the integration scheme gives the same quantities at a later time
t+ ∆t. By iterating the procedure, the time evolution of the system can be
followed for long times.

Of course, these schemes are approximated, giving rise to some intrinsic
errors. In particular, one can distinguish between

• Truncation errors, related to the accuracy of the finite difference method
with respect to the true solution. Finite difference methods are usually
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based on a Taylor expansion truncated at some term, hence the name.
These errors do not depend on the implementation: they are intrinsic
to the algorithm.

• Round-off errors, related to errors associated to a particular implemen-
tation of the algorithm. For instance, to the finite number of digits used
in computer arithmetics.

Both errors can be reduced by decreasing ∆t. For large ∆t, truncation er-
rors dominate, but they decrease quickly as ∆t is decreased. For instance,
the Verlet algorithm (to be discussed below) has a truncation error propor-
tional to ∆t4 for each integration time step. Round-off errors decrease more
slowly with decreasing ∆t, and dominate in the small ∆t limit. Using 64-bit
precision in computer codes and hardware architectures helps to decrease
round-off errors, making them negligible.

In Molecular Dynamics, the most commonly used time integration algo-
rithm is, probably, the so-called Verlet algorithm [92, 93]. The basic idea is
to write two third-order Taylor expansions for the positions ~r(t), one forward
and one backward in time. Calling ~v the velocities, ~a the accelerations, and
~b the third derivatives of ~r with respect to t, one has

~r(t+ ∆t) = ~r(t) + ~v(t)∆t+ (1/2)~a(t)∆t2 + (1/6)~b(t)∆t3 +O(∆t4)

(2.213)

~r(t−∆t) = ~r(t)− ~v(t)∆t+ (1/2)~a(t)∆t2 − (1/6)~b(t)∆t3 +O(∆t4).

Adding the two expressions gives

~r(t+ ∆t) + ~r(t−∆t) = 2~r(t) + ~a(t)∆t2 +O(∆t4). (2.214)

And moving to the right the t−∆t term gives

~r(t+ ∆t) = 2~r(t)− ~r(t−∆t) + ~a(t)∆t2 +O(∆t4). (2.215)

This is the basic form of the Verlet algorithm. Since we are integrating
Newton’s equations, ~a(t) is just the force divided by the mass, and the force
is in turn a function of the positions ~r(t):

~a(t) = −(1/m)∇V (~r(t)). (2.216)

As one can inmediatly see, the truncation error of the algorithm when
evolving the system by ∆t is of the order of ∆t4, even if third derivatives do
not appear explicitly. This algorithm is at the same time simple to imple-
ment, accurate and stable, explaining its large popularity among MD code
developers.
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A problem with this version of the Verlet algorithm is that velocities
are not directly generated. While they are not needed for the time evolu-
tion, their knowledge is sometimes necessary. Actually, they are required to
compute the kinetic energy K, whose evaluation is necessary to test the con-
servation of the total energy E = K + V . To overcome this difficulty, some
variants of the Verlet algorithm have been developed. They give rise to ex-
actly the same trajectory, and differ in what variables are stored in memory
and at what times.

The best implementation of the same basic algorithm is the so-called
velocity Verlet scheme, where positions, velocities and accelerations at time
t+ ∆t are obtained from the same quantities at time t in the following way:

~r(t+ ∆t) = ~r(t) + ~v(t)∆t+ (1/2)~a(t)∆t2

~v(t+ ∆t/2) = ~v(t) + (1/2)~a(t)∆t

~a(t+ ∆t) = −(1/m)∇V (~r(t+ ∆t)) (2.217)

~v(t+ ∆t) = ~v(t+ ∆t/2) + (1/2)~a(t+ ∆t)∆t.

Note that we need 9N memory locations to save the 3N positions, velocities
and accelerations, but we never need to have simultaneously stored the values
at two different times for any of these quantities.

2.3.4.3 The Tersoff potential

In this work we will use the Tersoff potential for the calculation of the semi-
conductors molecular dynamics.

The Tersoff potential is a bond order potential in with we have a three-
body potential depending on the bond length and angles. The Tersoff ap-
proach relies on the fact that the strength of the bonds depends on the
environment defined as a series of factors that depends on the coordination
of the atom.

Therefore this family of potentials have the general formulation:

Vi =
1

2

(∑
i 6=j

Ai,jΦR(ri,j) +
∑
i 6=j

Bi,jΦA(ri,j)

)
(2.218)

where ΦR and ΦA are the repulsive and attractive pair potential respec-
tively, ri,j is the distance between the atoms i and j and A and B are the
coordination factors.

In order to avoid energy conservation problems, we will smooth the po-
tential and make it continuous and derivable inside the cutoff radius. Thus
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we introduce a smoothing potential ΦC so we can express the potential as:

Vi =
1

2

∑
i 6=j

(ΦC(ri,j)[Ai,jΦR(ri,j) +Bi,jΦA(ri,j)]) (2.219)

The repulsive and atractive potentials are the Morse:

ΦR(r) = CRe
−λRr

(2.220)

ΦA(r) = −CAe−λAr

Figure 2.10: Three body scheme.

The smoothing-cutoff potential is:

ΦC(r) =


1 if r ≤ R−D
1
2

(
1− sin

(
π(r−D)

2D

))
if R−D < r < R +D

0 if r ≥ R +D

(2.221)

where R and D are the cutoff parameters that depend on the atoms involved.
And the coordination factors are:

Ai,j =
(
1 + αnµni,j

)−1
2n (2.222)

and
Bi,j =

(
1 + βnνni,j

)−1
2n (2.223)

where
µi,j =

∑
k 6=i,j

ΦC(ri,k)e
λ3µ(ri,j−ri,k)3 (2.224)
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and
νi,j =

∑
k 6=i,j

ΦC(ri,k)γ(θi,j,k)e
λ3µ(ri,j−ri,k)3 (2.225)

with

γ(θi,j,k) = 1 +
c2

d2
− c2

d2 + (h− cos(θi,j,k))2
(2.226)

Where θi,j,k is the angle made by the links between the atoms i − j and
i − k, and the terms C, λ, α, β, c, d and h are parameters [85] that depend
on the atoms and other characteristics like the kind of information we want
from the system.

The term νi,j defines the effective coordination number of atom i, i.e. the
number of nearest neighbours, taking into account the relative distance of
two neighbours ri,j − ri,k and the bond-angle θ. The function γ(θi,j,k) has
a minimum for h = cos(θi,j,k), the parameter d determines how sharp the
dependence on angle is, and c expresses the strength of the angular effect.

Si Ge
CR (eV ) 1.8308× 103 1.769× 103

CA (eV ) 4.7118× 102 4.1923× 102

λ
(
Å−1

)
2.4799 2.4451

µ
(
Å−1

)
1.7322 1.7047

β 1.1000× 10−6 9.0166× 10−7

n 7.8734× 10−1 7.5627× 10−1

c 1.0039× 105 1.0643× 105

d 1.6217× 101 1.5652× 101

h −5.9825× 10−1 −4.3884× 10−1

(R−D) (Å) 2.7 2.8

(R +D) (Å) 3.0 3.1

Table 2.2: Tersoff parameters for Si and Ge with α = 0 [85]

2.3.5 Vibrational density of states

The Vibrational density of states (VDOS), also known as phonon density
of states of a system, describes the number of states per interval of energy
at each energy level that are available to the phonons. The VDOS is the
integral on the Brillouin zone over all the phonon bands of the dispersion
relations. The VDOS can be given as a function of energy or wave vector.

The dispersion relations of the system can be obtained from molecular
dynamics by the autocorrelation function of the velocities, but due to the
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fact that we will work with a great amount of data, we will calculate the
VDOS directly by changing the order of the operations as the output of the
MD method are sampled in time. In this way the data will be used from
each time step instead of working with the data from each atom.

As we know, the thermodynamic properties of a solid are directly related
to its phonon structure. The vibrational density of states describes the en-
tire set of possible phonon states which determines the heat capacity of the
system.

2.3.5.1 Velocity-Velocity correlation function

Once we get the evolution of the system by molecular dynamics it is possible
to obtain the vibrational spectrum from the analysis of the velocities by the
auto-correlation function9:

G(τ) =< ~vi(t0) · ~vi(t0 + τ) >i,t0=
1

N

N∑
i=1

1

tmax

tmax∑
t0=1

~vi(t0) · ~vi(t0 + τ) (2.227)

This auto-correlation gives us the spectrum because when we auto-correlate
the velocities, we are in fact looking for a time relation in the evolution of
the velocities. That is, if we get a periodic movement, then at characteris-
tic differences in the τ -time, we have the same velocities, and it is easy to
see that these characteristic times are in fact multiples of the oscillation pe-
riod. That is how the oscillation frequencies of the particles and the velocity
auto-correlations are related. Therefore, the auto-correlation function has
the information of the oscillation periods of the velocities.

Then, if we calculate the auto-correlation function and use a Fourier
transform,

I(ν) =

∫ ∞
−∞

exp(−2πıντ) ·G(τ)dτ (2.228)

we will obtain the oscillation frequencies of the particles. The choice of a
time step greater than the lowest semi-period of the system would produce
a non-physical model (as explained in the Nyquist-Shannon theorem). Thus
the knowledge of the frequencies of the system would be very useful for the
selection of the adequate time step for the molecular dynamics model.

On the other hand due to the properties of Fourier transforms, we are
able to simplify some of the calculus by making the auto-correlation inside

9The correlation of two continuous functions is defined by:
Corr(g, h) ≡

∫∞
∞ g(τ + t)h(τ)dτ
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of the Fourier transformed data of the velocities. According to the correla-
tion10 theorem of Fourier transform we are able to calculate the convolution
by multiplying their Fourier transformed data and then invert the Fourier
transform. As the convolution and the correlation functions are related, it
is possible to calculate directly the Fourier transform of the correlation by
multiplying the Fourier transforms of the velocities (due to the fact that they
are real).

2.3.6 Raman spectra

One of the most used methods for the determination of nanostructure’s vi-
brational characteristics and properties is the Raman scattering. Raman
scattering is the easiest method to perform and can be used to identify both
the energy of optically active vibrational modes near the zone centre of the
Brillouin zone, and the energy of electronic transitions.

The Raman spectra are obtained from the inelastic scattering of photons
by matter. While most of the photons are scattered elastically (Rayleigh
scattering) a small fraction is scattered by an excited state which changes
the frequency of the scattered photon. This inelastic scattering was predicted
by Adolf Smekal in 1923 [108].

The Raman effect was discovered by Sir Chandrasekhara Venkata Raman
and Kariamanickam Srinivasa Krishnan [109, 110] in 1928 and virtually at
the same time by Grigory S. Landsberg and Leonid I. Mandelstam [111].

In the Raman scattering there are energy exchanges between the photons
and the particles. In perfect crystals, due to their periodic nature, only
specific phonons are possible, and the Raman scattering only happens at
certain allowed frequencies. On the other hand, in amorphous materials the
spectral lines become broad due to the existence of more allowed phonons.

When the photon exchanges energy with the material there are two pos-
sible outcomes, the system absorbs the energy (Stokes scattering) or the
system loses energy (anti-Stokes scattering). In both situations the energy
differences are, in absolute value, the same as only the difference of the energy
of the vibrational levels are relevant.

However, as the wave-vector of the photon is very much smaller than
the Brillouin zone, all interactions between it and the phonons must occur
near the Brillouin zone centre due to momentum conservation. Momentum
conservation also enables one to calculate the polarisation of the phonon

10The Correlation Theorem is Corr(g, h) ⇔ G(f)H(−f) with g(t) and h(t) the pair
of functions to correlate and G(f) and H(f) the corresponding Fourier transforms. If
the function is real, then G(−f) = G∗(f) and the autocorrelation becomes Corr(g, g) ⇔
|G(f)|2 the “Wiener-Khinchin Theorem”[94].
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involved in the scattering, as depending on the orientation of the sample
and the incident beam selection rules are created and thus particular modes
are not allowed to interact. But, in nanostructures, this information is less
prevalent as the samples tend to not have a uniform (or known) orientation,
which makes observing photon polarisation (and hence phonons polarisation)
impossible as the scattering cannot be linked with the orientation of the
crystal structure.

The Raman spectra, the infrared spectra and fundamental vibrational-
rotational spectra of dense systems (high pressure gases, liquids, and solids)
are essentially classical. With that we mean that they can be computed and
understood from a basically classical mechanics viewpoint plus some simple
quantum corrections [112].

For a polarizable system, an incident photon can excite vibrational modes,
thus changing the energy of the scattered photon by the amount of energy of
the related vibrational states in the system.Therefore, the Raman scattering
depends on the polarizability of the system.

Our theoretical calculation of the Raman spectra has several steps:

• First we use Molecular Dynamics to compute the atomic trajectories
of the system.

• Then we calculate the time-dependent polarizability tensor from the
variation of the positions of the particles.

• Then we use linear response theory to derive the Raman spectra from
the polarizability time history. The linear response is only applicable
in systems at equilibrium. Therefore we need to be sure that the sys-
tem is not under outside perturbations, that is, undisturbed except for
thermal fluctuations.

– The Raman spectra (with dependence on time) are obtained from
the autocorrelation function of the polarizability tensor [112, 113]

∗ The polarizability tensor is obtained from the variation of the
longitudinal bond polarizabilities.

– The Raman spectra with dependence on frequency are obtained
by Fourier transforming the autocorrelation function of the polar-
izability tensor.

• Then, if possible, the spectrum is averaged over the ensemble. To
provide a sufficiently accurate ensemble average we must ensure that
enough phase space is sampled.
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2.3.6.1 Polarizability tensor

A molecule or atom placed in an electric field undergoes a deformation. Thus,
the centroid of negative charges (electrons) is shifted slightly from that of pos-

itive charges (nuclei) from which an induced electronic moment ~P appears.
In the di- or polyatomic molecules and crystals, the atoms also move against
each other giving an additional contribution called atomic polarizability.

Polarizabilities determine the dynamical response of a bound system to
external fields, and provide insight into a molecule’s internal structure.

For weak fields, the induced moment is proportional to the field following
the relationship :

~P = P̄ ~E (2.229)

where P̄ is the tensor of polarizability and ~E the local field experienced by
the molecule (known as local field).

The polarizability is the sum of two contributions. The electronic po-
larizability and the atomic polarizability. In molecules, the first one is by
far the most important while the atomic polarizability plays a minor role
although not negligible. On the other hand, in crystals the importance of
the contributions is the opposite and the most important contribution is the
atomic polarizability.

2.3.6.2 Bond-polarization method

In the Bond-polarization method the polarizability tensor is obtained from
the summation of the polarizabilities of the bonds.

In this approach, the polarizability is modelled in terms of bond contri-
butions:

P̄ (~rij) = α(rij)Ī + γ(rij)

[
~rij~rij
|rij||rij|

− 1

3
Ī

]
(2.230)

Where Ī is the unit 2-tensor (a matrix), α(rij) is the mean polariz-
ability11, γ(rij) describes the anisotropy of the polarizability12 and ~rij =
~rij(0) + ~rij(t) = ((~rj(0)− ~ri(0)) + (~rj(t)− ~ri(t))) is a vector which defines
the direction and the distance of a pair of nearest neighbour atoms at sites
~ri and ~rj.

The bond polarizability model further assumes that the bond polariz-
abilities αL and αP and therefore α and γ only depend on the length of the

11α =
(
αL+αPO+αPI

3

)
12γ = αL−αP where αL and αP correspond to the longitudinal and perpendicular bond

polarizability, respectively.
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bond. Thus the derivative of the bond polarizability with respect to the
displacement of one of the atom reads:

∂Pαβ
∂ ~xj

~xj = 1
3
(α′L( ~rij) + 2α′P ( ~rij))( ~xαij · ~̂rβij)Ī (2.231)

+(α′L( ~rij)− α′P ( ~rij))( ~xαij · ~̂rβij)
[
~̂rαij · ~̂rβij − 1

3
Ī
]

+
(αL( ~rij)−αP ( ~rij))

~rij

[
~xαij · ~̂rβij + ~̂rαij · ~xβij − 2( ~xαij · ~̂rβij)( ~̂rαij · ~̂rβij)

]
where α′L and α′P are the derivatives of the bond polarizabilities with respect

to bond length and ~̂r indicates the unit vector. Therefore, when one type
of bond occurs, the bond polarizability model is completely defined by three
parameters:

α′ = 1
3
(2α′P + α′L) (2.232)

γ′ = (α′L − α′P )

γ = (αL − αP )

The parameters of the bond polarizability model are usually obtained by
fitting the experimental intensities. Following this procedure, the parameters
of the bond polarizability model remain indeterminate by a scaling factor,
because the experimental intensities are only known on a relative scale.

2.3.6.3 Deduction and calculation of the Raman spectra

Since the Raman transitions are associated [115] with the induced dipole

moment ~M , the scattered intensity I(ω) expected at the frequency ω of the
Stokes spectra will be given by the fluctuation-dissipation theorem. The
fluctuation-dissipation theorem is a powerful tool in statistical physics for
predicting the behaviour of non-equilibrium thermodynamical systems. In
this case instead of the irreversible dissipation of energy into heat from their
reversible fluctuations at thermodynamic equilibrium we look into the energy
transfer from and into an external electromagnetic source by the induced
dipole moments. This theorem connects the linear response relaxation of a
system from a prepared non-equilibrium state to its statistical fluctuation
properties in equilibrium [116].

I(ω) ∼
∫ ∞
−∞
〈MS(t)MS(0)〉av e

iωtdt (2.233)

Let ~uI be the unit vector parallel to the electric vector of the incident

radiation ~EI and ~uS be the unit vector parallel to the electric vector of the
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scattered radiation ~ES. P̂ denotes the electric polarizability tensor. Then

the induced dipole moment ~M = P̄ · ~EI = P̄ · ~uIEI along ~uS can be expressed
as:

MS = ~us · ~M = ~us · (P̄ · ~EI) = (~us · P̄ · ~uI)EI . (2.234)

Therefore:

I(ω) ∼
∫ ∞
−∞

〈
(~us · P̄ (t) · ~uI)(~us · P̄ (0) · ~uI)

〉
av
eiωtdt =

∫ ∞
−∞

G(t)eiωtdt

(2.235)
Now we can calculate the average G(t) in a discrete setting as:

G(τ) =
〈
P̄ (τ)P̄ (0)

〉
av

=
1

tMax

tMax∑
t0=1

P̄ (t0)P̄ (t0 + τ) (2.236)

Therefore the method we use for the calculation of the Raman spectra is:

Ḡ(λ) =
1√
2π

∞∫
0

[
1

tMAX

tMAX∑
t0=1

P̄ (t0) · P̄ (t0 + τ)

]
e−iλτdτ (2.237)

by means of the series expansion:

P (t) = P0 +
∑
j

∂P

∂ ~xj
~xj + . . . (2.238)

where the first term is not relevant, so we have in first order approxima-
tion:

Gαβ(λ) =
1√
2π

∞∫
0

[
1

tMAX

tMAX∑
t0=1

[∑
j

(
∂Pαβ
∂ ~xj

~xj(t0)

)
·
∑
j

(
∂Pαβ
∂ ~xj

~xj(t0 + τ)

)]]
e−iλτdτ

(2.239)
By the Bond-polarization method (eq.(2.230) and eq.(2.231)):

∑
jγ

∂Pαβ
∂ ~xjγ

~xjγ =
∑links

i,j α′( ~rij)( ~xαij · ~̂rβij)Ī + γ′( ~rij)( ~xαij · ~̂rβij)
[
~̂rαij · ~̂rβij − 1

3
Ī
]

+
γ( ~rij)

~rij

[
~xαij · ~̂rβij + ~̂rαij · ~xβij − 2( ~xαij · ~̂rβij)( ~̂rαij · ~̂rβij)

]
(2.240)

∂Pαβ
∂ ~xj

~xj = α′( ~rij)( ~xαij · ~̂rβij)Ī + γ′( ~rij)( ~xαij · ~̂rβij)
[
~̂rαij · ~̂rβij − 1

3
Ī
]

+
γ( ~rij)

~rij

[
~xαij · ~̂rβij + ~̂rαij · ~xβij − 2( ~xαij · ~̂rβij)( ~̂rαij · ~̂rβij)

]
(2.241)
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Where ~rij = ~rj−~ri and ~ri is the position of the “i” atom in equilibrium and
is independent of time, ~xij = ~xj − ~xi and ~xi is the displacement vector of the
“i” atom from equilibrium. The parameters α′ = 1

3
(2α′‖+α

′
⊥), γ′ = (α′‖−α′⊥)

and γ = (α‖ − α⊥) are taken as13 α′ = 0, γ′ = 1, γ =
3rij

8
.

Finally we use the Alonso-Winer formula [117] I ∝ 1
ω

(G2
xy + G2

xz + G2
yz)

in order to obtain the Raman spectra.

2.4 Models

In this section we will show the different classes of systems used in this work
from the simplest to the more complex ones. We will also give the reasons
to choose these systems.

There are many nanostructures of interest, from the fundamental point
of view and for their possible applications. Among then we shall concentrate
on superlattices of ZnO/MgO and III-nitrides, and nanowires and nanodots.
These structures have been grown in recent years by different experimental
groups. The number of materials forming these nanostructures is increasing,
although the control and reproducible growth of many of them remain an
open subject.

Because of this, we shall employ the continuum medium (elasticity the-
ory) approach to obtain the qualitative properties of these systems with an
economy of computing resources and a flexibility for different materials. In
the case of more controlled systems, we shall use the discrete approach by
means of the Molecular Dynamics.

2.4.1 Bulk

The bulk system is used as a model to test our VDOS and Raman methods.
With the knowledge of the evolution of the “bulk” systems we will be able
to discriminate the effects of the perfect crystalline structure of the material
from other effects of the studied nanostructures, like the surface effect.

• Silicon, Germanium and SixGe1−x alloys bulk systems will be analysed
and the characteristic phonon frequencies of each system will be ob-
tained. Also the number of particles needed for good statistics will be
sought.

• The strain effects over the frequencies of the spectra will be analysed
and therefore we will be able to identify strain effects on the systems.

13According to Aldes et al. [107] these are the values for Si “bulk”.
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In Molecular Dynamics the bulk system is simulated by the periodic bound-
ary conditions as seen in Section 2.3.3 on page 70.

2.4.2 Surface

The surface systems are used to check the effects of surface reconstruction
and the effect on the VDOS and Raman spectra. Due to the fact that sur-
faces have spatially inhomogeneous interactions as the particles in the surface
“feel” in the direction perpendicular to the surface only the interactions in
one way, we will see a different rearrangement of the particles from that seen
in the “bulk”.

With the data obtained from this system we will be able to compare with
the “bulk” system and extract and discriminate the effects introduced to the
vibrational spectra by the surfaces rearrangement.

2.4.3 Nanowire

Nanowires are systems of great interest due to the possible future use in
nanoelectronics, photonics and acoustics due to their mechanical properties.

Many kinds of nanowires will be studied. Those with square and circular
cross-sections are the nanowires usually studied. We also study the hexagonal
cross-section nanowires as in [59]. Many of the semiconductor nanowires
grown in different laboratories have the hexagonal prism shape. We show in
Fig.2.11 the shape of GaN nanowires.

In the continuum method, square, circular and hexagonal cross-sections
nanowires of different materials will be studied. The nanowires will be studied
in the cases of solid structure and hollowed from the axis with different
radius’s holes. Also in the continuum method, core-shell nanowires of circular
cross-section will be analysed with the equations obtained in page 34. In the
discrete method, silicon nanowires will be studied with square, circular and
hexagonal cross-sections and different radius/side.

2.4.4 Nanodot

The quantum dot studied in this work will be a “dome” kind. As shown in
Fig.2.12, the dome is on a substrate and has multiple surface orientations.
The substrate will be always silicon, and the dome composition will be varied
between germanium and silicon-germanium alloys.

The effects of displacement defects will also be studied in the spectra.
The Si−Ge alloys studied here are both homogeneous or non-homogeneous.

The homogeneous dome will be built as a Si0.65Ge0.35 alloy. On the other
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Figure 2.11: GaN nanowire. Source: P. Yang[59]

Figure 2.12: A view of the “Dome” quantum dot.
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hand, the non-homogeneous dome will consist of two sections (as a simplifi-
cation of the Rastelli experimental observations [118]). The lower section in
contact with the substrate has one third (1

3
) of the total height of the dome

and a Si0.83Ge0.17 alloy composition. The upper section is a Si0.66Ge0.44 alloy
having the remaining two thirds (2

3
) height of the dome. Thus both kinds of

domes are designed with approximately equal proportions of Si and Ge.
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Chapter 3

Discussion

3.1 Acoustic waves in (0001) III−N and MgO/ZnO

superlattices. Analysis of superlattices

with SGFM

Many problems of physical interest involve multi-layer systems. In many of
these structures the constituent layers have thicknesses of a few nm. Among
these systems the superlattices constitute a field of great interest due to their
interesting physical properties and technological applications.

III-N semiconductors have been studied quite recently as a consequence of
being good candidates for applications in optoelectronics [119, 120] and mi-
croelectronics [121]. These potential capabilities come from the wide range of
direct bandgaps, 6.3 eV (AlN), 3.4 eV (GaN) and 0.7 eV (InN), that together
with those of their ternary compounds cover the range from the infrared to
the ultraviolet. In the wurtzite crystal structure, normally exhibited by these
materials, there is a macroscopic polarization playing a capital role in the
electrical and optical properties.

More recently the ZnO based materials are emerging as strong alternatives
to the III-N. This is due to the fact that many properties of ZnO are similar to
those of GaN. A very important fact, as compared to GaN, is the capability
of growing ZnO single crystals [122] to be employed as substrates for the
growth of thin film devices. This allows the production of high quality films
by homoepitaxy and avoids the troubles with the dislocation formation due
to epitaxial mismatch in GaN growth. Besides this, the ZnO bandgap (3.37
eV) [123] is quite close to that of GaN. It can also be varied in a systematic
way by alloying with CdO [124] or MgO [125, 126]. On the other hand CdO
and MgO do not appear naturally in the wurtzite structure. Nevertheless,

95
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several experimental groups achieved the growth of ZnO/MgZnO multiple
quantum wells [127, 128, 129, 130, 131]. It has also been found that a MgO
layer can take wurtzite structure on a high-quality ZnO buffer layer when
the thickness of the MgO layer is less than 10 nm [132].

Although there are no experimental values for the electronic and elastic
properties of MgO in the wurtzite structure, several theoretical calculations
[133, 134] have provided these values.

Superlattices (SL’s) are important for applications in acoustics and other
areas. There is a recent and very comprehensive review on the properties
of acoustic waves in layered materials [135]. Superlattices can operate as
phonon mirrors and filters [136, 137]. They can be employed also as acoustic
cavities, where a layer with a different material or a different thickness is
introduced in a finite superlattice [138, 139].

Not much is known about the acoustic properties of these systems. The
acoustic waves of the III-N (001) zinc-blende superlattices were studied re-
cently [26]. It was found that for the different propagation directions, due to
the elastic anisotropy of the materials, wide acoustic band gaps were present,
starting at reasonably low values of κd (κ being the absolute value of the par-
allel wavevector and d the superlattice period).

The basal plane of the wurtzite structure has transverse elastic isotropy
allowing in this case a decoupling of the motion of the transverse acoustic
wave travelling in this plane from the coupled displacements of the sagittal
motion along the other two axes perpendicular to the transverse motion on
the plane. Thus there will be different dispersion curves and gaps for the
transverse motion in the basal plane interfaces and for the sagittal compo-
nents. These gaps can exist for different ranges of frequency and parallel
wavevector values, thus opening, in principle, different possibilities for appli-
cations of the acoustic waves in these superlattices.

As we are interested in the vibrational properties of these systems, we
shall need a method able to deal with many different materials. Thus, we
shall employ the surface Green Function Matching (SGFM) method [39, 40],
which has proved to be a method specially well conceived for this task.

The systems considered here are superlattices formed by alternating layers
of AlN/InN, AlN/GaN, GaN/InN and MgO/ZnO, respectively. A schematic
view of the superlattices is given in Fig.2.4. There we show the layers of the
constituent materials together with their elastic coefficients, mass densities
and thicknesses. The crystal axes of all the materials forming the superlat-
tices are aligned and the interfaces are (0001) basal planes of the wurtzite
structure. Taking into account the transverse elastic isotropy of the hexag-
onal crystals we have to consider only the absolute value κ of the parallel
wavevector ~κ in the basal plane.
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In Table 3.4 we give the values of the mass densities and elastic constants
of the wurtzite AlN, GaN and InN [140], together with those of wurtzite ZnO
[141] and MgO [133, 134].

The velocities of the bulk acoustic waves propagating in the present ge-
ometry are:

v2
T1 =

C44

ρ
, v2

T2 =
C66

ρ
, v2

L =
C11

ρ
, (3.1)

In the present case we have two different transverse wave velocities.
In Table 3.1 we give the velocities of the acoustic waves of the materials

considered in Table 3.4. We can see that vT1 > vT2 in all materials, except
MgO, whose elastic data are obtained from theoretical calculations. It is seen
that AlN has the highest velocity values for the different elastic waves of all
the materials considered here.

Table 3.1: Velocities of the acoustic waves for AlN, GaN, InN, MgO(a) [133],
MgO(b) [134] and ZnO, calculated with the data of Table 3.4.

Material vT1(103 m s−1) vT2(103 m s−1) vL(103 m s−1)
AlN 6.307 5.970 11.030
GaN 4.463 4.132 7.963
InN 2.816 2.655 5.722

MgO(a) 4.294 5.416 7.875

MgO(b) 3.547 4.060 7.372
ZnO 2.811 2.753 6.116

The Surface Green Function Matching (SGFM) explained in section 2.2.4
is used to study these layered systems.

3.1.1 (0001) superlattices

All the formal aspects needed for this study have been presented in section
2.2.4. We shall present now the results for the superlattices considered here.

The dispersion curves are presented as a function of the absolute value

of the reduced parallel wavevector (κd) and the reduced frequency
ωd

vt
, be-

ing vt the lowest velocity of the bulk transverse waves of the two materials
forming the superlattice. We have considered the same maximum value for
the frequency ω for all the different materials. Although these materials are
piezoelectric, we shall not include here the effect of the piezoelectric coef-
ficients. It can be expected that as in other cases [142] the changes thus
introduced would not be very important.
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For all the systems considered here we shall present results for three
superlattices having the arbitrary values d1=0.125d, d2=0.875d, d1=0.5d,
d2=0.5d and d1=0.875d, d2=0.125d, respectively. They have been chosen to
cover three ranges where the layer thickness of material 1 is much smaller,
equal or much bigger, respectively, than the layer thickness of material 2, to
see if there are qualitative changes in the dispersion curves.

When comparing superlattices formed by different materials, the strict
equivalence of both systems is not guaranteed by having the same values of
the thicknesses of the constituent materials. In order to do this it would
be necessary to normalise the size of the layers to the corresponding sound
velocities [143].

We shall present now the dispersion curves of the sagittal and transverse
acoustic waves as a function of κd.

Fig.3.1a presents the dispersion curves of the sagittal acoustic waves and
Fig.3.1b gives the dispersion curves of the transverse acoustic waves for a
(0001) AlN/InN superlattice with d1(AlN)=0.125 d and d2(InN)=0.875 d.
For the transverse waves we can see a collection of not very wide gaps each
one opening at higher κd and reduced frequency values. The first gap starts
around κd=2, continuing to bigger κd values. The sagittal waves show less
gaps of this kind, the first one starting around κd=6, while they also exhibit
narrow pocket gaps.

Fig.3.1c and Fig.3.1d show the same information for a (0001) AlN/InN
superlattice with d1(AlN)=0.5 d and d2(InN)=0.5 d. The gaps are much
wider now than in the previous case, although the qualitative picture is the
same.

Fig.3.1e and Fig.3.1f illustrate the case of the (0001) AlN/InN superlattice
with d1(AlN) = 0.875 d and d2(InN)=0.125 d. We see that in this case the
number of gaps present is smaller than in the two previous cases and the first
one opens at higher reduced frequency values than in the former cases. In
the case of the transverse waves the first gap is quite wide.

In the case of the transverse modes there are very small and narrow gaps
starting at κd=0, not visible at the scale of the figure.

Fig.3.2 shows the dispersion curves of the acoustic waves for a (0001)
AlN/GaN superlattice. In this case we have the two materials with higher
transverse waves velocities. As we include the same range of real frequencies
ω for all the materials, in the present case we shall have a smaller range of
reduced frequencies than in the other cases considered here.

Fig.3.2a presents the dispersion curves of the sagittal acoustic waves and
Fig.3.2b gives the dispersion curves of the transverse acoustic waves for the
case d1(AlN)=0.125 d and d2(GaN)=0.875 d. We see here a similar picture
to that shown in Fig.3.1a and Fig.3.1b, of several gaps for increasing values
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of κd and reduced frequency.
Fig.3.2c and Fig.3.2d illustrate the case d1(AlN)=0.5 d and d2(GaN)=0.5

d. We obtain here less gaps, but the picture is similar to that shown in
Fig.3.1c and Fig.3.1d.

Fig.3.2e and Fig.3.2f present the case d1(AlN)=0.875 d and d2(GaN)=0.125
d. The picture is quite similar to that seen in Fig.3.2c and Fig.3.2d, although
the width of the gaps is smaller.

In the case of the transverse modes we see that many gaps start at κd=0
and they exist for almost all values of the parallel wavevector. They also
appear for the sagittal waves, but are smaller.

Fig.3.3 presents the dispersion curves of the acoustic waves of a (0001)
GaN/InN superlattice.

Fig.3.3a gives the dispersion curves of the sagittal acoustic waves and
Fig.3.3b presents the dispersion curves of the transverse acoustic waves for
the d1(GaN)=0.125 d and d2(InN)=0.875 d case. We obtain the same pic-
ture previously seen for other materials, although now there are less gaps
and they are narrower.

Fig.3.3c and Fig.3.3d show the d1(AlN)=0.5 d and d2(InN)=0.5 d case.
We obtain another time the picture of less gaps with bigger widths seen in
the case of equal thicknesses.

Fig.3.3e and Fig.3.3f give the d1(GaN)=0.875 d and d2(InN)=0.125 d
case. We see an analogous image to that previously obtained for these thick-
nesses. Now there are less gaps than in previous cases.

We see also in this case that the dispersion curves for the transverse waves
have the gaps starting at κd=0. They are also present for the sagittal modes
in Fig.3.3e but cover a small range of parallel wavevector values.

The three different superlattices show analogous behaviours for the three
cases considered, d1 < d2, d1 = d2 and d1 > d2. They present different de-
tails but the overall behaviour of the dispersion curves corresponding to the
three relative thicknesses considered here for the different constituent III-N
materials is the same. A direct comparison with the results obtained for
superlattices of the same materials in the zinc-blende structure [26] is not
possible, due to the elastic anisotropy associated to the cubic systems. Prop-
agation along the [100] and [110] directions allow for a decoupling in sagittal
and transverse modes, not possible for arbitrary propagation directions. In
those cases the dispersion curves exhibit similarities, but also differences with
the behaviour presented here.

We shall consider now the MgO/ZnO superlattices. As quoted before
there are no experimental values of the elastic constants of hexagonal MgO.
Thus we shall consider the two sets of theoretical values given in Table 3.4
together with the experimental values of wurtzite ZnO [141] in order to see if
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we obtain similar or different pictures for the dispersion curves of MgO/ZnO
(0001) superlattices acoustic waves.

Fig.3.4 presents the dispersion curves of the acoustic waves of a MgO/ZnO
(0001) superlattice, with the MgO elastic coefficients given in Gopal et al.[133].

Fig.3.4a gives the dispersion curves of the sagittal acoustic waves and
Fig.3.4b presents the dispersion curves of the transverse acoustic waves for
the d1(MgO)=0.125 d and d2(ZnO)=0.875 d case. We see now less gaps.
The gaps are very narrow and the first one opens at a higher κd value than
in the III-N superlattices.

Fig.3.4c and Fig.3.4d illustrate the d1(MgO)=0.5 d and d2(ZnO)=0.5 d
case. The picture shown here is equivalent to that found in previous cases
for equal thicknesses.

Fig.3.4e and Fig.3.4f present the d1(MgO)=0.875 d and d2(ZnO)=0.125
d case. The behaviour seen here is similar to that found in the III-N super-
lattices, the gaps being now quite narrow.

We see the gaps starting at κd=0 for the transverse modes.
In Fig.3.5 we show the dispersion curves of the acoustic waves of a

MgO/ZnO (0001) superlattice with the MgO elastic coefficients given in
Duan et al.[134]. The behaviour shown here is basically the same presented
in Fig.3.4 but with narrower gaps in the present case.

Thus we see that all the superlattices studied here show the same quali-
tative features for each one of the three relative thicknesses considered in the
work.

As we have presented the results for the sagittal and transverse waves in
a separate way we illustrate now the dispersion curves for the acoustic waves
including both polarisations. In Fig.3.6 we show the dispersion curves of
the acoustic waves of a MgO/ZnO (0001) superlattice with the MgO elastic
coefficients given in Duan et al.[134]. It is clear that there are band gaps
for both polarisations. The picture presented in Fig.3.6 is valid for all the
superlattices considered here, with differences in the ranges of existence of
the band gaps for the different materials.

We shall discuss now briefly the dispersion curves as a function of the
perpendicular wavevector (qd) for some fixed values of the parallel wavevector
(κd). This approach is related to the complex band structure of acoustic
phonons in superlattices [144, 145, 146]. This allows to see the evolution of
the gaps with the relative thicknesses.

Fig.3.7 gives the lower dispersion curves of the sagittal and transverse
acoustic waves of a MgO/ZnO (0001) superlattice, with the MgO elastic
coefficients given in Gopal et al.[133] being d1(MgO) = 0.5 d and d2(ZnO)
= 0.5 d, as a function of qd. We consider four different values for κd, 1, 3,
6, and 8, respectively. We see how the bands go to higher frequencies for
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increasing κd values. In the case of the sagittal waves we see the interplay
of the two branches. In Fig.3.7a we see some gaps at qd ≈ 1.1, qd ≈ 1.6 and
qd ≈ 2.2 respectively. Fig.3.7c and Fig.3.7e show the evolution of these gaps
for increasing κd values. Fig.3.7g does not present this kind of gap in the
frequency range shown there.

It is then quite clear that the dispersion curves of the sagittal modes show
differences when compared to those of the transverse waves. The sagittal
waves present in general wider gaps for intermediate and high κd values and
narrow closed gaps having a variety of shapes in different ranges of values of
κd and the reduced frequency. On the other hand the dispersion curves of
the transverse waves present several narrow gaps starting at low values of κd
and then starting at higher values of κd. They also show very narrow gaps
opening at κd =0.

It can be seen also that the behaviour shown here for the cases in which
the material with higher velocity values has the bigger thickness is similar
to that seen in Nougaoui et al.[26] for the [110] direction in the zinc-blende
structure. In that case there are two different transverse waves propagating
at different velocities like here.

The main feature of the studied superlattices is the presence of different
gaps starting at nonzero κd values and going from low reduced frequency
values to higher ones.

Due to the elastic isotropy of the basal plane of the hexagonal crystals
it is possible to uncouple the motion of the transverse waves along the y
axis from that of the sagittal modes coupling the motion along the x and
z axes. We have seen that the transverse modes exhibit a series of narrow
gaps starting at κd=0 and some wider gaps starting at higher κd values. On
the other hand the sagittal modes exhibit many wide and narrow gaps at
different ranges of values of κd and reduced frequency. The overall image
of the sagittal waves dispersion curves is quite different from that of the
transverse waves. The features of the dispersion curves for each different
thickness range studied here are essentially the same for all the superlattices
considered in this work.

3.2 Fibonacci superlattices and other com-

plex structures

The effects of the compositional or positional disorder on the properties of
periodic structures has also been studied. One of the reasons for this interest
is the localization or spatial confinement of the waves due to disorder. The
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disorder can be low, intermediate or high. The highest degree of disorder is
represented by the completely disordered system, where random perturba-
tions are present [147]. The lowest degree of disorder is represented by the
presence of a compositional or positional defect in the periodic structure. In
this case highly localized modes may appear as very narrow bands within
the gaps of the periodic structure. Because of this, these systems could be
employed as frequency filters [137].

In the wide range of disordered systems the aperiodic ones are an inter-
mediate case between the periodic and random systems. In these structures
layers of, at least, two different materials can be arranged according to a
given aperiodic sequence. The corresponding structures exhibit two different
orders at different length scales. At the atomic level the crystalline order de-
termined by the periodic disposition of atoms in each layer is present. On the
other hand at longer scales the aperiodic order dictated by the growth of the
different layers according to a given aperiodic sequence can be found. This
allows to use the aperiodic order as a tool to modify different physical phe-
nomena, with their own physical scales, by tuning the characteristic length
scales. Many works have been done on the optical, electronic, vibrational
and magnetic properties of aperiodic systems based on different generating
sequences [148, 149, 150, 151, 152, 153].

The systems including aperiodic parts present interesting physical prop-
erties. This has been the case in the optical capabilities of aperiodic systems
concerning second [154] and third harmonic generation [155], as well as local-
ization of light in these systems [156, 157]. Hybrid-order devices formed by
periodic and Fibonacci (aperiodic) blocks have been found to exhibit comple-
mentary optical responses [158]. Perfect optical transmission has been found
in symmetric Fibonacci-class multilayers [159, 160]. Broad omnidirectional
reflection bands have been predicted when combining Fibonacci sequences
and periodic 1D photonic crystals [161]. Phonon confinement has been pre-
dicted in 1D periodic/Fibonacci structures [48, 49, 162], as well as in 1D
Fibonacci systems with mirror symmetry [163, 164].

Although the full character of the aperiodic systems would be reached for
very high generation orders of the different sequences, many characteristics
can be obtained with lower generation orders. We shall use this approach in
which we shall study different Fibonacci sequences forming the period of a
superlattice.

The vibrational spectrum of aperiodic systems presents a highly frag-
mented character [165, 166]. By means of combinations of Fibonacci and
periodic layer structures we can modify the structure of the primary and
secondary gaps in the different frequency ranges. We have also an additional
freedom, because we can start the Fibonacci sequence with a block A formed
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by a slab of a given material followed by a block B formed by a slab of a
different material , or viceversa, thus generating different layered systems.

As materials we shall consider wurtzite ZnO, MgO, GaN and AlN. All
these materials are piezoelectric. In the case of materials belonging to the
6mm class with the C-axis parallel to the x3 direction and the direction x2

normal to the interface there is a decoupling between motion along the x1 and
x2 directions and the motion along the x3 direction, due to the symmetry
[77]. We shall consider here only the transverse acoustic wave having the
electric potential coupled to the elastic displacement u3.

Although no experimental values for the electronic, elastic and piezo-
electric data of MgO in the wurtzite structure are available, they can be
obtained from theoretical calculations [134]. The data for ZnO are taken
from [141, 167], whereas those of GaN and AlN are taken from [140, 168].

We shall study the transverse acoustic waves of Fibonacci superlattices
of the above materials. We shall consider also the cases of more complex
superlattices including Fibonacci and periodic parts.

We shall consider superlattices formed by the periodic repetition of ma-
terial blocks according to the Fibonacci sequence. The A block is formed by
layers of material 1, in our case: ZnO and GaN, respectively. The B block
is formed by layers of material 2, in our case: MgO and AlN, respectively.

A finite Fibonacci generation is produced by recursive stacking with these
A and B blocks, mapping the mathematical rule in the Fibonacci sequence

S1 = {A} , S2 = {AB} , S3 = {ABA} , S4 = {ABAAB} , · · · , Sn = Sn−1Sn−2 ,
(3.2)

or

S̄1 = {B} , S̄2 = {BA} , S̄3 = {BAB} , S̄4 = {BABBA} , · · · , S̄n = S̄n−1S̄n−2 ,
(3.3)

We shall consider also more complex superlattice systems formed by com-
bining different Fibonacci sequences and hybrid systems including a given
Fibonacci generation together with a finite periodic repetition of blocks AB
(BA). All the superlattices considered here are obtained by stacking the
material layers along the x2 axis. A schematic view of the systems is pre-
sented in Fig.2.5. There we show the layers of the constituent materials
together with the axes orientation and thicknesses. The crystal axes of all
the materials forming the superlattices are aligned. Taking into account the
transverse elastic isotropy of the hexagonal crystals we have to consider only
the absolute value κ of the parallel wavevector ~κ in the interfaces.
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We shall assume that the thicknesses of the different layers are d1(ZnO)
= d1(GaN) = 1.7 nm, and d2(MgO) = d2(AlN) = 4.2 nm. We choose these
values because they are equal to those of the first Fibonacci superlattices
grown experimentally [169]. The superlattice period is d = d1 +d2. It is easy
to see that in this case d1 = 0.29 d and d2 = 0.71 d.

In Table 3.2 we give the mass densities, elastic, dielectric and piezoelectric
coefficients , together with the velocities of the transverse acoustic waves for
the materials considered here.

Table 3.2: Elastic, dielectric and piezoelectric constants and mass densities
for ZnO [141, 167], MgO [134], GaN [140, 168] and AlN [140, 168] and the
velocities of the transverse acoustic waves obtained from these data.

Material C44 ε11 e15 ρ vt
(GPa) (10−11 F m−1) (C m−2) (103 kg m−3) (103 m s−1)

ZnO 42.5 7.38 .0.37 5.606 2.813
MgO 59.0 8.766 -0.428 3.6 4.119
GaN 105.0 8.58 -0.3 6.156 4.150
AlN 116.0 7.52 -0.48 3.255 6.048

We shall consider now the dispersion relation of the transverse acoustic
waves of Fibonacci superlattices and other more complex superlattices whose
periods are formed by Fibonacci generations and periodic parts. The period
length of these systems will be quite different, due to its dependence on the
number of A and B blocks.

We shall work with the reduced parallel wavevector κD and the reduced

frequency
ωD

v
M

, v
M

being an average velocity as that of the classical binary

superlattice [170], given by

v
M

=
v1v2D

v1d2 + v2d1

, (3.4)

which reflects the inner structure of the supercell modulation.
This can be generalized to the case of more complicated structures having

N1 layers of material 1 and N2 layers of material 2, thus giving

v
M

=
v1v2D

v1D2 + v2D1

, (3.5)

being D1 = N1d1, D2 = N2d2 and D = D1 +D2.
We shall present in the following results for the second, third, fourth and

fifth generation Fibonacci superlattice, in order to see the evolution of the
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dispersion curves with increasing order generation. We must note that the
second order Fibonacci generation, having AB as period, is nothing more
than the classical superlattice. In the same way the third order Fibonacci
generation, having as period AAB or BBA is also a normal superlattice
having A or B layers with double thickness.

Fig.3.8a presents the dispersion curves of the transverse acoustic waves
of a ZnO/MgO second generation Fibonacci superlattice. Fig.3.8b, 3.8c and
3.8d give the dispersion curves for superlattices having as periods a third,
fourth and fifth Fibonacci generation, respectively.The first gap opens at
κD=0 at ωD/v

M
∼ 3, but is very narrow and it is not seen at the scale

of the figure. We can see in all the cases a wide second gap quite wide at
non-zero κD values. There are higher gaps of similar characteristics. It can
be seen that for the second and third generations the second gap is wide at
higher κD values than the first one. On the other hand for periods formed
by higher order generations the second gap is wide at lower κD values than
the first one. The fifth generation exhibits all the features found in the
dispersion curves of higher order generation periods. We have calculated
also the dispersion curves neglecting the piezoelectric coupling. We have
found no important changes in the dispersion curves. This is also true for all
other systems studied in this work. Nevertheless, in the case of piezoelectric
materials the inclusion of the piezoelectric coupling is mandatory to get the
transverse surface waves [77, 171] and the transverse interface waves [172].

Fig.3.9a presents the dispersion curves of the transverse acoustic waves
for a MgO/ZnO (BA) second generation Fibonacci superlattice (obviously
coinciding with the periodic superlattice). Fig.3.9b, 3.9c and 3.9d give the
dispersion curves for superlattices having as periods a third, fourth and fifth
Fibonacci generation, respectively. We can see here changes due to the dif-
ferent ordering of the A and B blocks. Now we have BB pairs instead of AA
ones. We see now that from the third generation onwards there is a closed
and narrow gap just above the lower and wide gap. We observe also that
a new feature appears from the fourth generation onwards. This is a closed
and very narrow gap in the bands above the lower wide gap seen before. The
higher gaps are narrower than those found in Fig.3.8 for the AB ordering.
As before the fifth generation exhibits all the features found in higher order
generation periods. We see here that the lower wide gap is not divided in
parts by narrow bands as those appearing in Figure 3.8 for increasing order
of periods.

Fig.3.10a presents the dispersion curves of the transverse acoustic waves
for a GaN/AlN (AB) second generation superlattice. Fig.3.10b, 3.10c and
3.10d give the dispersion curves for superlattices having as periods a third,
fourth and fifth Fibonacci generation respectively. In this case we see that we
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have reasonably wide gaps opening at κD=0, for different frequency ranges.
From the fourth generation onwards we see that the first gap starting at
κD=0 becomes narrower and is only visible at non-zero κD values. The fifth
generation exhibits all the features found in higher order generation periods.

Fig.3.11a presents the dispersion curves of the piezoelectric transverse
acoustic waves for an AlN/GaN (BA) second generation superlattice. Fig.3.11b,
3.11c and 3.11d give the dispersion curves for superlattices having as periods
a third, fourth and fifth Fibonacci generation respectively. In this case we see
a similar situation to that found in Fig.3.9 for the MgO/ZnO (BA) system.
From the fourth generation onwards there is a first closed gap opening at
zero κD values above the first gap.

Due to the differences seen in the dispersion curves of the sequences or-
dered following the AB or BA stacking in the Fibonacci rule, it is reasonable
to look for the changes introduced in the dispersion curves when combin-
ing Fibonacci sequences with both ordering schemes. This is presented in
Fig.3.12 for the ZnO/MgO system. Fig.3.12a shows the dispersion curves
of the piezoelectric transverse acoustic waves for the ABBA system (second
generations). This corresponds to a normal superlattice having double pe-
riod. Fig.3.12b, 3.12c and 3.12d give the dispersion curves for superlattices
with periods formed by joining both stackings of the fourth, fifth and sixth
Fibonacci generations, respectively. The case corresponding to the third
generation would be ABABAB and corresponds to the binary superlattice
stacking. In all the cases we see several lower gaps being wide at non-zero
κD values and narrow higher gaps with closed form.

As it has been quoted before, the mixing of Fibonacci aperiodic blocks
together with periodic blocks opens the possibility for new features in the
dispersion relations of the acoustic waves in multilayer systems.

In Fig.3.13 we present the dispersion curves of a superlattice having as
constituents a ZnO/MgO fourth Fibonacci generation and a single ZnO/MgO
block, with different orderings. Fig.3.13a corresponds to to the ABAAB/AB
case. Fig.3.13b illustrates the ABAAB/BA case. Fig.3.13c corresponds to
the BABBA/AB case and Fig.3.13d to the BABBA/BA case. We can see
that the region of the lower gaps is quite different in all the cases consid-
ered. We must compare with the dispersion curves of Fig.3.8c and Fig.3.9c
corresponding to the fourth Fibonacci generation ABAAB and BABBA re-
spectively, in order to see the changes introduced. Fig.3.13a shows only small
differences when compared with Fig.3.8c. This can be easily understood be-
cause the additional AB block does not introduce any substantive change to
the structure. On the other hand the BB block introduced in the superlattice
corresponding to Fig.3.13b was not present in the original structure. The dif-
ferences introduced in the dispersion curves for the lower frequencies are clear
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and important, showing a wider first gap than in Fig.3.8c. Fig.3.13c when
compared with Fig.3.9c shows important differences due to the presence of
the AA pair not present in the fourth Fibonacci generation BABBA. We
see now that the first gap is substituted by three narrower gaps. Fig.3.13d
shows not important differences when compared to Fig.3.9c, because no new
pairs are introduced in the structure.

The same is true for the GaN/AlN systems represented in Fig.3.14. Fig.3.14a
and Fig.3.14d show almost no differences with Fig.3.10c and Fig.3.11c, re-
spectively, for the reasons discussed above. In Fig.3.14b we can see a wide
first gap starting at κD=0, than the one present in Fig.3.10c. It is clear there
that the two lower gaps are quite different in both cases. This is due to the
presence of the BB pair in the structure. In Fig.3.14c we see the influence of
the AA pair in the narrow bands that appear now in the region of the first
gap seen in Fig.3.11c.

In Fig.3.15 we present the case of a GaN/AlN superlattice whose period
is formed by blocks (ABAB) or (BABA) sandwiched between two fourth
order Fibonacci generations. In this way we have four material slabs in the
periodic part and five material slabs in the aperiodic one. We can see now
differences in the lower gaps region of Fig.3.15b and Fig.3.15c when compared
with Fig.3.10c and Fig.3.11c respectively, for the reasons discussed above. In
the same way there are not important differences in Fig.3.15a and Fig.3.15d
when compared to Fig.3.10c and Fig.3.11c, respectively.

Fig.3.16 presents a complementary case in which the period is formed by
the fourth Fibonacci generation sandwiched between two AB or BA blocks
respectively. The results are analogous to those of Figure 3.15.

In the different superlattices studied here very narrow bands for fixed κD
values, are present, thus indicating the existence of flat, or almost flat, bands.
We shall illustrate this in Figure 3.17 for the case of the dispersion curves of
Fig.3.12c at κD = 26.0. Fig.3.17 gives the dispersion curves as a function of
the superlattice reduced normal wavevector qD. We see some flat bands at
different frequency ranges.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Dispersion curves of the acoustic waves of a (0001)
AlN/InN superlattice with: (a) sagittal, (b) transverse for d1(AlN)=0.125d
and d2(InN)=0.875d; (c) sagittal, (d) transverse for d1(AlN)=0.5d
and d2(InN)=0.5d; (e) sagittal, (f) transverse for d1(AlN)=0.875d and
d2(InN)=0.125d.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Dispersion curves of the acoustic waves of a (0001) AlN/GaN
superlattice with: (a) sagittal, (b) transverse for d1(AlN)=0.125d and
d2(GaN)=0.875d; (c) sagittal, (d) transverse for d1(AlN)=0.5d and
d2(GaN)=0.5d; (e) sagittal, (f) transverse for d1(AlN)=0.875d and
d2(GaN)=0.125d.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Dispersion curves of the acoustic waves of a (0001)
GaN/InN superlattice with: (a) sagittal, (b) transverse for d1(GaN)=0.125d
and d2(InN)=0.875d; (c) sagittal, (d) transverse for d1(GaN)=0.5d
and d2(InN)=0.5d; (e) sagittal, (f) transverse for d1(GaN)=0.875d and
d2(InN)=0.125d.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Dispersion curves of the acoustic waves of a (0001) MgO/ZnO
superlattice with the MgO elastic coefficients given in Gopal et al. [133] and:
(a) sagittal, (b) transverse for d1(MgO)=0.125d and d2(ZnO)=0.875d; (c)
sagittal, (d) transverse for d1(MgO)=0.5d and d2(ZnO)=0.5d; (e) sagittal,
(f) transverse for d1(MgO)=0.875d and d2(ZnO)=0.125d.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Dispersion curves of the acoustic waves of a (0001) MgO/ZnO
superlattice with the MgO elastic coefficients given in Duan et al. [134] and:
(a) sagittal, (b) transverse for d1(MgO)=0.125d and d2(ZnO)=0.875d; (c)
sagittal, (d) transverse for d1(MgO)=0.5d and d2(ZnO)=0.5d; (e) sagittal,
(f) transverse for d1(MgO)=0.875d and d2(ZnO)=0.125d.



3.2. FIBONACCI SUPERLATTICES ANDOTHER COMPLEX STRUCTURES113

(a) (b)

(c)

Figure 3.6: Dispersion curves of the acoustic waves of a (0001) MgO/ZnO
superlattice with the MgO elastic coefficients given in Duan et al. [134]
and: (a) d1(MgO)=0.125d and d2(ZnO)=0.875d; (b) d1(MgO)=0.5d and
d2(ZnO)=0.5d; (c) d1(MgO)=0.875d and d2(ZnO)=0.125d.



114 CHAPTER 3. DISCUSSION

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.7: Normalized frequencies ωd/vt versus qd of the acoustic waves of
a (0001) MgO/ZnO superlattice with the MgO elastic coefficients given in
Gopal et al. [133] having d1(MgO)=d2(ZnO)=0.5d: (a) sagittal, (b) trans-
verse for κd=1; (c) sagittal, (d) transverse for κd=3; (e) sagittal, (f) trans-
verse for κd=6; (g) sagittal, (h) transverse for κd=8.
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(a) (b)

(c) (d)

Figure 3.8: Dispersion curves of the transverse acoustic waves of a ZnO/MgO
superlattice having as period: (a) a second Fibonacci generation; (b) a third
Fibonacci generation; (c) a fourth Fibonacci generation; (d) a fifth Fibonacci
generation.
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(a) (b)

(c) (d)

Figure 3.9: Same as Figure 3.8 for a MgO/ZnO (BA) superlattice.
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(a) (b)

(c) (d)

Figure 3.10: Same as Figure 3.8 for a GaN/AlN (AB) superlattice.
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(a) (b)

(c) (d)

Figure 3.11: Same as Figure 3.8 for an AlN/GaN (BA) superlattice.
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(a) (b)

(c) (d)

Figure 3.12: Dispersion curves of the transverse acoustic waves of ZnO/MgO
superlattices having as periods (AB...|BA...) blocks of: (a) a second Fi-
bonacci generation; (b) a fourth Fibonacci generation; (c) a fifth Fibonacci
generation; (d) a sixth Fibonacci generation.
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(a) (b)

(c) (d)

Figure 3.13: Dispersion curves of the transverse acoustic waves of ZnO/MgO
superlattices having as periods the following stacking of layers: (a)
ABAAB|AB; (b) ABAAB|BA; (c) BABBA|AB; (d) BABBA|BA.
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(a) (b)

(c) (d)

Figure 3.14: Same as Figure 3.13 for a GaN/AlN system.
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(a) (b)

(c) (d)

Figure 3.15: Dispersion curves of the transverse acoustic waves of
GaN/AlN superlattices having as periods the following stacking of lay-
ers: (a) ABAAB|ABAB|ABAAB; (b) ABAAB|BABA|ABAAB; (c)
BABBA|ABAB|BABBA; (d) BABBA|BABA|BABBA.
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(a) (b)

(c) (d)

Figure 3.16: Dispersion curves of the transverse acoustic waves of
GaN/AlN superlattices having as periods the following stacking of lay-
ers: (a) ABAB|ABAAB|ABAB; (b) ABAB|BABBA|ABAB ; (c)
BABA|ABAAB|BABA; (d) BABA|BABBA|BABA.
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Figure 3.17: Dispersion curves of the transverse acoustic waves of ZnO/MgO
superlattices having as periods ABAABABA|BABBABAB, for κD=26.0.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.18: Local density of states along the superlattice period-length for

several modes of those presented in Fig.3.17: (a) (
ωD

v
M

=25.02, qD=0); (b)

(
ωD

v
M

=25.02, qD=π); (c) (
ωD

v
M

=31.68, qD=0); (d) (
ωD

v
M

=40.02, qD=π); (e)

(
ωD

v
M

=36.42, qD=0); (f) (
ωD

v
M

=35.76, qD=π). The vertical line gives the

position of the interface separating both fifth Fibonacci generations (S5|S̄5)
forming the superlattice period.
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We shall look now at the spatial distribution of the spectral strength, rep-
resented by the local density of states (LDOS as a function of x2/D), of some
of the modes represented in Fig.3.17. This is obtained from the superlattice
Green function GS(κ, q, x2, x

′
2, ω

2)) [43, 39]. Fig.3.18 gives this information

for the following modes: (a) (
ωD

v
M

=25.02, qD=0); (b) (
ωD

v
M

=25.02, qD=π);

(c) (
ωD

v
M

=31.68, qD=0); (d) (
ωD

v
M

=40.02, qD=π); (e) (
ωD

v
M

=36.42, qD=0);

(f) (
ωD

v
M

=35.76, qD=π). We see that the lower frequency modes at the center

and border of the Brillouin zone are confined to the domain of the (AB · · · )
block in the superlattice period. We can see also that they are essentially
localized in the AA zone corresponding to 0.125≤ x2/D ≤0.197. There are
intermediate frequency modes extended along the whole period. On the other
hand we find also intermediate frequency modes predominantly confined to
the domain of the (BA · · · ) block in the superlattice period. In this case they
are mainly localized in the BB zone corresponding to 0.57≤ x2/D ≤0.75.
Thus we see that in some of the systems analysed here there are flat or very
narrow bands and that for some modes there exists the spatial confinement
of the elastic displacement and the electric potential in the different parts of
the total superlattice period.

We have found that by using the two kinds (AB · · · ) and (BA · · · ) of
Fibonacci sequences we can modify the structure of the lower gap regions
for the acoustic waves of the superlattice structures and materials considered
here. Some modes are spatially confined in different parts of the superlattice
period.

We have seen in this case that the possibility to use (AB · · · ) and (BA · · · )
Fibonacci sequences including AA and BB pairs allows for important modi-
fications of the lower gaps region. It is possible to introduce narrow and flat
bands that divide the original gaps in narrower ones. We have found modes
at different frequency ranges having spatial confinement in one of the con-
stituent parts of the superlattice period. This opens the possibility for their
employ in frequency filters. The case of transverse acoustic waves propagat-
ing along symmetry directions of (100) and (110) interfaces of piezoelectric
materials belonging to the cubic system is governed by equations similar to
those of the hexagonal crystals studied here. Thus we can expect similar
results to those presented here for analogous structures of cubic crystals.
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3.3 Nanowire discussion

Nanowires are important for many applications. First, nanowires can be
used as nanotechnology building blocks to reach higher device integration
densities than conventional fabrication methods. Second, they have high
interest for thermoelectric applications (energy transport by phonons deteri-
orate the performance) as the thermal conductivity shown in such materials
can be drastically reduced compared with bulk. This large reduction in ther-
mal conductivity was attributed to enhanced scattering of phonons on the
surfaces of the nanochannels [173].

Vibrational properties are very important for the development of nan-
otechnological devices. For example, phonon scattering is an important
feature for all sorts of electronic devices. It is then clear that the vibra-
tional properties of nanowires are very important. In recent years nanowires
of different materials have been grown in several laboratories by different
techniques. They exhibit different forms; cylinders, square, rectangular and
hexagonal prisms. Due to the dispersion of growth techniques, the quality of
the samples varies greatly. Because of these problems and in order to obtain
the maximum of general information for the different systems at a reasonable
computational cost, we shall start our study by using of the elasticity theory.
These results will be supplemented for Si/Ge systems with the Molecular
Dynamics method.

Because the breathing modes provide a characteristic signature in spec-
troscopy for the nanowires, we shall devote part of the study to these modes
in different materials.

3.4 Elastic waves in nanowires

In order to deal with nanowires of elastically anisotropic crystals and dif-
ferent cross-sections a theoretical method originally developed in resonant
ultrasound spectroscopy to obtain the free vibrational modes of inhomoge-
neous objects [31, 32, 33, 34] can be used. Recent developments can be
found in [35, 36, 37, 38]. The method studies the free vibrations of elastic
anisotropic systems having arbitrary shape and mass density variation, thus
being quite adequate for the present case. This is performed by expanding
the elastic displacements in terms of a set of basis functions that are products
of powers of the Cartesian coordinates, being then called the xyz-algorithm.
The method has been applied to the study of acoustic modes in rectangular
wires [23] and CNTs [37].

In order to illustrate how the different cross-sections affect the elastic
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(a) (b)

(c) (d)

Figure 3.19: Dispersion relation curves for the elastic waves of a silicon
nanowire having different cross-section: (a) circular with radius 30 nm; (b)
square with side 30 nm; (c) hexagonal with side 30 nm; (d) rectangular with
dimensions 30 nm X 40 nm.

waves dispersion relations on nanowires, we show in Fig.3.19 the dispersion
relations for the elastic waves propagating in solid silicon nanowires, of differ-
ent sections, as a function of the wavevector along the nanowire axis. We ob-
serve that Fig.3.19a wich presents the nanowire with circular cross-section is
similar in the lower frequencies to the nanowire with hexagonal cross-section
(Fig.3.19c). Also we observe that in the rectangular cross-section nanowire
(Fig.3.19d), the lower mode degeneration observed in the other symmetric
wires is now broken. The picture shown here is qualitatively the same in
other materials.

3.4.1 Elastic waves in GaN nanowires

GaN has been widely studied because of its wide direct band and high carrier
mobility thus having many possible applications. Besides this GaN nanowires
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exhibit a low density of structural defects [174, 175] and they can be used in
nanoelectronic devices [176]. Because of this and as no experimental data on
the phonons of the III-nitride nanowires are available we shall concentrate
on GaN nanowires in order to obtain the basic features for the III-nitride
nanowires. We shall study also the influence of the cross-section shape on
the vibrational modes by considering also circular cross-sections, a shape
frequently found in other material nanowires. The influence of the thickness
on the vibrational modes will be considered also. Wires with a zinc-blende
structure, a possibility pointed in some theoretical studies [177, 178], will be
considered and the differences with the wurtzite case will be analysed.

Table 3.3: Elastic constants and mass densities employed in our calculations
for GaN wurtzite [179] and zinc-blende [180].

GaN C11 C12 C13 C33 C44 C66 ρ
(GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (103 kg m−3)

wurtzite 390 145 106 398 105 123 6.15
zinc-blende 293 159 155 6.10

We shall discuss now the elastic waves propagating in infinite GaN nanowires
of hexagonal cross-section. The grown GaN nanowires come from the wurtzite
structure [60, 67, 68, 69]. On the other hand, theoretical studies allow also
the existence of GaN nanotubes originating from the zinc-blende structure
[177, 178], and we shall present some results for comparison. The elastic
coefficients and mass densities for GaN wurtzite and zinc-blende are given in
Table 3.3. The grown nanowires have sides ranging from ' 1 nm to several
tens of nm. We shall consider two nanowires with side 1 nm and 10 nm,
respectively, as representative of the thicknesses of the experimental samples
and we assume them to be of infinite length. We have employed the “xyz”
method explained in section 2.2.3. We have studied the convergence by con-
sidering different systems with different values of N . When comparing the
results for N = 11, 12 and 13, respectively, we have seen that for N = 12
and 13 the differences are less than 10−10, while the differences with the case
N = 11 are bigger. Thus in all our calculations we have employed N = 12
as a good choice for accuracy and speed of calculation.

In order to number the different modes we shall use as reference the
number of the modes at Q =0 for increasing frequencies. In the following
figures we shall present results for frequencies up to several THz, in some
cases. In spite of the fact that some of these frequencies are strictly beyond
the range of validity of the elasticity theory, they give a qualitative picture
of the frequency spectra of these nanowires and thus they will be presented
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here.

Figure 3.20: Dispersion relation for the elastic waves propagating in: (a) solid
wurtzite nanowire of hexagonal cross-section and side 1 nm as a function of
the wavevector along the nanowire axis; (b) hollow wurtzite nanowire of
hexagonal cross-section, where the outer side is 1 nm and the inner side is
0.25 nm, as a function of the wavevector along the nanowire axis, and (c)
hollow wurtzite nanowire of hexagonal cross-section, where the outer side is
1 nm and the inner side is 0.75 nm, as a function of the wavevector along
the nanowire axis.

Fig.3.20a presents the dispersion relation for the elastic waves propagating
in a solid wurtzite nanowire of side 1 nm as a function of the wavevector
along the nanowire axis. We observe the three lower modes starting from zero
frequency. We observe three lower modes starting from zero frequency instead
of the four modes observed in other less symmetric wires [181, 182]. The
lowest one is a doubly degenerate mode.This is the same situation observed in
CNTs [55, 57] and square nanowires [23, 183]. It has a quadratic dependence
on Q for low frequency values and corresponds to a bending of the wire [182],
whereas for bigger Q values it takes a linear dependence. The other two
modes have a linear variation with Q at low frequency values and correspond
to a torsion mode and to the longitudinal acoustic mode [181, 182].

Fig.3.20b presents the dispersion relation for a hollow wurtzite nanowire
where the inner side is 0.25 nm. We observe that all the modes with non-zero
frequencies at Q=0 have now lower frequencies than in the solid wire. We
see also that the third and fourth modes are now more separated. On the
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other hand the fifth mode crosses the third one at high Q values.

This trend continues when we increase the size of the hollow part in the
nanowire, as it can be seen in Fig.3.20c, where we present the dispersion
relation for a hollow wurtzite nanowire with 0.75 nm as the inner side. Here
the fourth mode crosses the three lower modes at low Q values. We see also
that the third mode after the initial linear variation flattens at Q=109 m−1

and the latter increase does not reach the high frequency values seen in the
previous figures.

Figure 3.21: Dispersion relation for the elastic waves propagating in: (a) solid
wurtzite nanowire of hexagonal cross-section and side 10 nm as a function
of the wavevector along the nanowire axis; (b) hollow wurtzite nanowire of
hexagonal cross-section, where the outer side is 10 nm and the inner side
is 2.5 nm, as a function of the wavevector along the nanowire axis, and (c)
hollow wurtzite nanowire of hexagonal cross-section, where the outer side is
10 nm and the inner side is 7.5 nm, as a function of the wavevector along
the nanowire axis.

Now we shall consider a wider nanowire having 10 nm size. Fig.3.21a
gives the dispersion relation for the solid wurtzite nanowire. We see now
many more branches at lower frequencies than in the 1 nm side nanowire.



132 CHAPTER 3. DISCUSSION

It is easy to see that the lower frequency modes have the same behavior
previously seen in the 1 nm side nanowire.

In the case of hollow nanowires we obtain the same trends seen in the 1
nm side nanowire. This is evident in Fig.3.21b and 3.21c where we present
the dispersion relation for the nanowires with 2.5 nm as inner side and 7.5
nm as inner side respectively.

Figure 3.22: Dispersion relation for the elastic waves propagating in a solid
zinc-blende nanowire of hexagonal cross-section and side 1 nm as a function
of the wavevector along the nanowire axis.

We present in Fig.3.22 the dispersion relation for a solid zinc-blende
nanowire of hexagonal cross-section and 1 nm side. Although the quali-
tative picture is the same than in the wurtzite case the dispersion relations
are clearly different in both cases. The behavior of the three lower modes
starting from zero frequency exhibit important differences. For the hollow
wires the same trends discussed before are found.

We have also considered the wurtzite structure circular wire, that is the
nanotube, in order to compare the results with those of the hexagonal cross-
section. Fig.3.23 presents the dispersion relation for a solid wurtzite nan-
otube of radius 1 nm compared to the case of a solid wurtzite nanowire of
side 1 nm. When comparing both dispersion relations we observe that the
seven lower modes have very similar dispersion relations in both geometries
in shape as in frequency value, but for higher modes the differences are evi-
dent both in shape and frequency values. This is also true for the case of the
hollow nanotubes.

Besides the knowledge of the frequencies of the propagating modes it is
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Figure 3.23: Dispersion relation for a solid wurtzite nanowire as a function
of the wavevector along the nanowire axis: (a) hexagonal cross-section and
side 1 nm; (b) circular cross-section and radius 1 nm.

also possible to obtain information on the displacement field of the modes.
This can be obtained by means of the spatial distribution of the squared
displacement vectors |u|2.

Fig.3.24a presents a projected view of |u|2 for the first mode of the solid
wurtzite nanowire of side 1 nm at Q=0. We see here a constant value for
all the points, thus corresponding to an uniform motion. This motion is
perpendicular to the nanowire length. The second mode (not shown) is the
broken degeneracy of the first mode. In the first mode the motion goes in the
direction of two opposing vertices of the hexagon while in the second mode
the oscillation goes perpendicular to a pair of opposite faces.

Fig.3.24b shows the third mode. In this mode the movement goes in
the direction of the wire length. In these first modes the amplitude of the
oscillations does not varies across the cross-section.

Fig.3.24c gives the same information for the fourth mode. We see how
the displacements are mainly concentrated in the outer region of the wire,
while decaying towards the wire inner part.

In Fig.3.24d we see the results for the fifth mode. In this case we see
a similar behaviour, but now there is a narrow region near the hexagon x-
axis where the displacement is zero. Similar behaviour has the sixth mode,
Fig.3.24e, except that in this case the region of zero displacement is along
the the y-axis.

Fig.3.24f gives the same information for the seventh mode. We see there
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(a) Acoustic Mode 1 (b) Acoustic Mode 3 (c) Mode 4

(d) Mode 5 (e) Mode 6 (f) Mode 7

(g) Mode 8 (h) Mode 9 (i) Mode 10

Figure 3.24: Projected view of |u|2 for the first 10 modes of the solid wurtzite
nanowire of side 1 nm at Q = 0.

that the bigger displacements are concentrated in a cruciform region around
the inner centre of the hexagon. We have a similar situation in Fig.3.24g but
with the cruciform region rotated 45o.

In fact the geometry of the cross-section breaks the degeneracy of the
asymmetric modes as we see also in Figs.3.24h and 3.24i.

Fig.3.25 presents a projected view of |u|2 for several modes of the hollow
wurtzite nanowire of side 1 nm and inner side 0.50 nm at Q=0.

Fig.3.25a gives the results for the first mode. We see that there is a
constant value for all the nanowire regions, thus corresponding to a uniform
motion.

Fig.3.25b shows the |u|2 values of the third mode. This mode is also a
uniform oscillation motion like Fig.3.25a but the oscillations are done in the
direction of the wire length.

Fig.3.25c gives the results for the fourth mode. We see how the displace-
ments are mainly concentrated in the outer region of the wire, while decaying
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(a) Acoustic Mode 1 (b) Acoustic Mode 3 (c) Mode 4

(d) Mode 5 (e) Mode 6 (f) Mode 7

(g) Mode 8 (h) Mode 9 (i) Mode 10

Figure 3.25: Projected view of |u|2 for the first 10 modes of the hollow
wurtzite nanowire of side 1 nm at Q = 0.

strongly towards a region near the wire hollow part.

In Fig.3.25d we see the results for the fifth mode. We see here the dis-
placements having a cross shape with the highest values concentrated around
the x- and y-axes. As in the previous nanowire, the hexagonal cross-section
breaks the degeneracy of the modes represented in Figs.3.25d and 3.25e.

The results for the seventh mode are presented in Fig.3.25f. We appreciate
that the displacements are zero in a region close to the y-axis of the hexagon.
In Fig.3.25g the results for the broken degeneracy mode are given.

Fig.3.25h shows the 9th mode, which is a symmetric mode similar to
Fig.3.25c but with the strongest displacements concentrated in the hollowed
inner region of the wire.

Finally in Fig.3.25i the 10th mode shows the maximal displacements in
planes connecting the inner and outer vertices of the hollowed hexagon cross-
section.

In Fig.3.26 the projected view of the |u|2 for several modes of the solid
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(a) Acoustic Mode 1 (b) Mode 3 (c) Acoustic Mode 4

(d) Mode 5 (e) Mode 6 (f) Mode 7

(g) Mode 8 (h) Mode 9 (i) Mode 10

Figure 3.26: Projected view of |u|2 for the first 10 modes of the solid wurtzite
nanowire of side 1 nm at Q = 1.4× 108m−1.

wurtzite nanowire of side 1 nm at Q = 1.4× 108m−1 are shown. The results
for the equivalent hollow nanowire is shown in Fig.3.27. The main differences
with the Figs.3.24 and 3.25 are the order of the modes as the highest acoustic
mode crosses the lower non acoustic mode as we can see in Fig.3.23.

Fig.3.28 presents a projected view of the |u|2 for several modes of the
solid wurtzite nanowire of side 10 nm at Q = 1.4× 108m−1. Fig.3.28a gives
the results for the first mode. We see that there is an almost constant value
for all the nanowire regions, the highest values being near the outer region of
the nanowire with a small decrease towards the inner part. Fig.3.28b gives
the results for the third mode. We see how the displacements are mainly
concentrated in the outer region of the wire, while decaying towards the wire
inner part as in Fig.3.26b. Fig.3.28c shows that the highest acoustic mode
crosses the lower non acoustic mode. In Fig.3.28d we see the results for the
fifth mode. In this case we see a four lobe pattern for the displacements.
Fig.3.28e is the broken degeneracy mode related to Fig.3.28d. The results
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for the seventh mode are presented in Fig.3.28f. We see that in this case
the lowest values are in a region near the x-axis having an ∞ shape. Fi-
nally modes eighth and ninth are shown in Figs.3.28g and 3.28h which are
equivalent to those of the 1 nm side hexagonal nanowire modes Figs.3.26g
and 3.26h respectively. Fig.3.28i shows the broken degeneracy of the mode
by the hexagonal cross-section of the nanowire as in Fig.3.26i.

Analogous behaviours to those seen here can be found in lattice dynamic
calculations for Si nanowires [181, 182].

Qualitatively analogous patterns are obtained for nanowires coming from
the zinc-blende structure.

In conclusion, we have shown how to obtain the dispersion relations of
the elastic waves in hexagonal cross-section nanowires coming from elastically
anisotropic materials. We have studied solid and hollow nanowires and the
differences in the frequency spectra have been discussed.

The case of nanowires coming from the zinc-blende structure, allowed
in principle by theoretical studies, has been considered also. A comparison
with nanotubes (circular cross-section) has been presented. We found that
the lower modes have a very similar dispersion relation both in shape and
frequency value, but higher frequency modes exhibit more important differ-
ences. The study of the squared displacement vectors |u|2 allow to see the
spatial distribution of the different modes in the nanowires. There are several
modes whose elastic displacement components concentrate around the bor-
ders of the nanowire and they decay towards the inner part of the nanowire.
And in the hollow nanowire, there are modes with similar behaviour, where
the elastic displacement components concentrate around the borders of the
nanowire but they decay towards the outer part of the nanowire.

3.4.2 Elasticity model: Breathing modes

As it was told in Sections 2.2.2 and 2.2.3, radial acoustic breathing modes
are a characteristic feature of nanotubes and nanowires spectra. In the case
of cylinders, we were able to obtain the frequencies of these modes in a closed
form, and an analytical expression for the lowest mode. The formula was a
function of the mass density and the elastic constants of the material, and it
was valid for general cylindrical anisotropy.

In the case of nanowires of non-circular cross-sections, no closed form
expressions can be obtained, even for isotropic materials.

Many of the nanowires grown in the laboratories exhibit non-circular
cross-sections, and the hexagonal cross-section is quite common.

We illustrate now the study of the behaviour of the lowest breathing mode
frequency against the length of the hexagonal side. We employ the elasticity
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(a) Acoustic Mode 1 (b) Mode 3 (c) Acoustic Mode 4

(d) Mode 5 (e) Mode 6 (f) Mode 7

(g) Mode 8 (h) Mode 9 (i) Mode 10

Figure 3.27: Projected view of |u|2 for the first 10 modes of the hollow
wurtzite nanowire of side 1 nm at Q = 1.4× 108m−1.

theory and the xyz-method explained before. This is shown in Fig.3.29c
for CdSe and in Fig.3.30c for ZnO. The elastic data and mass densities
employed in our calculus are given in Table3.4. Fig.3.29a and Fig.3.30a
present the elastic displacement of the breathing mode.

The behaviour of the frequency against the hexagon side-length is pre-
sented in Fig.3.29b and Fig.3.30b, whereas the behaviour of the frequency
against the inverse of the side-length is shown in Fig.3.29c and Fig.3.30c. We
see the 1

a
behaviour in a clear way. As in the cylinder, the ratio with the

side-length is maintained in the case of hexagonal prism nanowires. These
results agree quite well with the experimental results for CdSe [184] and
ZnO [185] nanowires.

The results for the case of cylindrical cross-sections obviously follow the
1
r

behaviour, with some small differences in the numerical values of the slope.
Then is quite clear that the elasticity theory fairly accounts for the frequency
values of the first breathing acoustic mode in nanowires.
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(a) Acoustic Mode 1 (b) Mode 3 (c) Acoustic Mode 4

(d) Mode 5 (e) Mode 6 (f) Mode 7

(g) Mode 8 (h) Mode 9 (i) Mode 10

Figure 3.28: Projected view of |u|2 for the first 10 modes of the solid wurtzite
nanowire of side 10 nm at Q = 1.4× 108m−1.

The radial breathing modes (also known as pulsating modes) are calcu-
lated with the elasticity model looking for the pattern shown in Fig.3.29a (and
Fig.3.30a. Then the evolution with the section size is analysed in Fig.3.29c
and Fig.3.30c. The graphics are compared with the analytical equation ob-
tained before (eq.2.50) where we see a total agreement with the 1

a
relation of

the frequency and the side of the hexagonal cross-section. Although the an-
alytical formula (2.50) is specifically obtained for cylindrical nanowires, it is
observed that, as in the cylinder, the ratio is maintained with the side-length
in the case of hexagonal prism nanowires.

3.4.2.1 Acoustic breathing mode frequencies of Au, CdSe, InAs,
GaAs, Ag and Bi nanowires

In recent years different groups have grown Au[66, 186, 187], CdSe[184],
InAs[188], GaAs[189], Ag[190, 191] and Bi[70] nanowires. They have also
obtained the frequency of the lowest acoustic breathing mode. We shall apply
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(a) Breathing mode of a CdSe nanowire.

(b) Evolution of the Breathing mode fre-
quency with the section size.

(c) Evolution of the Breathing mode fre-
quency with the inverse of the section
size.

Figure 3.29: Breathing mode of a CdSe nanowire of hexagonal cross-section.
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(a) Breathing mode of a ZnO nanowire.

(b) Evolution of the Breathing mode fre-
quency with the section size.

(c) Evolution of the Breathing mode fre-
quency with the inverse of the section
size.

Figure 3.30: Breathing mode of a ZnO nanowire of hexagonal cross-section.

now equation (2.64) in order to compare with the experimental results.
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We present in Table 3.4 the elastic constants and mass densities of CdSe[192],
InAs[193], InAs[194], Au[195], GaAs[196], Ag[197] and Bi[198]. The different
materials in the nanowires belong to the hexagonal (CdSe, InAs), cubic (Au,
GaAs, Ag) and trigonal (Bi) systems. Thus in all the studied cases C11 = C22

(as seen in Section 2.2.2) and then µ=1.

In the case of InAs the nanowires grown exhibit the wurtzite structure
[188]. This form of InAs does not appear in the bulk and therefore no ex-
perimental values of the elastic coefficients are available. Thus, we have
employed two different sets of elastic constants. The first one comes from ab
initio calculations [193], whereas the second one [194] was obtained from the
Martin approximation [199] allowing to obtain the elastic coefficients for an
ideal wurtzite structure from those of the zinc-blende structure appearing in
nature. The approximation is based on a rotation of the crystal structure
and a correction due to the internal strain state. This approximation gives
a reasonable accuracy for materials which can appear in the zinc blende and
wurtzite structures.

We present in Table 3.5 a comparison with the experimental results. The
experimental data come from different groups where different growth and
detection techniques were employed. In some cases the samples grown do
not comply strongly with the infinitely long cylinder approximation. Besides
this, the samples grown are not cylindrical in shape in many occasions. Nev-
ertheless we can see that the agreement with the experimental results is quite
good for all the materials considered here. This good agreement can be jus-
tified at least in the case of metals, because theoretical studies indicate that
the size effects on the elastic properties of nanostructures are very small for
nanostructures having cross-section widths larger than 10 nm [200, 201, 202].

For hexagonal and other cross-sections the method put forward in Section
2.2.3 could be employed. Nanowires with low length/width ratios can be
treated in the same way.

Nanowires are also grown along a z-axis in different directions. In that
case the matrix elastic coefficients should be rotated to the new coordinate
system and the new coefficients should be employed in the expressions pre-
sented before. In the case of the [110] direction, for example, it can be found
that for cubic crystals we have C ′11 = (C11 + C12 + 2C44)/2, C ′12 = C12 and
C ′22 = C11 [203]. It is easy to see that in this case the µ index of Section 2.2.2
is not an integer.
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3.4.2.2 Acoustic breathing mode frequencies of Au/Ag and ZnS/SiO2

core-shell nanowires

Coherent acoustic phonons in Au/Ag core-shell nanowires have been studied
recently [204]. Breathing modes were observed for core-shell samples having
an Ag shell of ∼ 11 nm. These modes were not observed for samples having
4-7 nm Ag shells. This was due to the fact that the breathing mode period
was small enough to be close to the electron-phonon relaxation time, ∼ 4
ps for the Au/Ag core-shell nanowires with 4 nm Ag nanoshell (h=2nm).
In Table 3.6 we present our results obtained from eq.(2.80) for the different
samples used by Wang et al. [204].

It can be seen that our theoretical prediction of 10.55 ps for the period
of the thickest nanowire differs greatly of the experimental value ∼ 15 ps
assigned to the breathing mode. The samples had an average length of
49 ± 8 nm and an average width of 30 ± 3 nm. In this case it is clear that
the infinitely long cylinder hypothesis is not a very good one and a poorer
agreement can be expected.

For the other nanowires the length/width ratio is bigger and the approx-
imation would be more justified. We see how the acoustic breathing mode
periods decrease towards the value of 4 ps indicated in Wang et al. [204]
where no experimental values could be obtained.

Very long ZnS/SiO2 core-shell nanowires have been produced quite re-
cently [205]. The nanowires were characterized by using different experi-
mental techniques. By means of transmission electron microscopy (TEM)
and X-ray diffraction (XRD) analysis, it was found that the nanowires were
formed by a single-crystalline ZnS core and an amorphous SiO2 shell. It was
found also that the ZnS core had the wurtzite structure and grew along the
[0001] direction.

The length of the nanowires ranged from 1 mm to 1 cm, the diameter
being approximately 30 nm. It was found that the different samples presented
an average ZnS core radius of 13.84 nm and an average amorphous silica
shell width of 1.59 nm. It is then clear that L/R � 1 in these core-shell
nanowires, and the approximation of infinitely long cylinders employed in
the former theoretical analysis is well justified.

We shall obtain the acoustic breathing mode frequencies of a ZnS/SiO2

core-shell nanowire with core radius and shell width given above. We shall
employ for the wurtzite ZnS core the elastic data of Landolt − Börnstein
[206] and for the amorphous silica shell, being an isotropic material, the
elastic data of Dieulesaint et al. [52], presented in Table 3.4.

In Table 3.7 we give the numerical values of the frequencies for the first five
acoustic breathing modes, obtained from the solution of eq.(2.80). We give
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also in Table 3.7 the variation of the frequency values of these modes when the
width of the shell is decreased, arriving up to the modes of a ZnS nanowire
having a radius of 15.43 nm. Figure 3.31 gives a visual representation of
the variation of the frequencies of these modes against the radius of the
ZnS core and figure 3.32 gives the normalized frequencies of the first five
acoustic breathing modes of ZnS/SiO2 core-shell nanowires, as a function of
the ZnS core radius. The frequencies of each mode are normalized to the
mode frequency value for the first ZnS core radius . The three first modes
show a decreasing behaviour for increasing values of the radius. The fourth
and fifth modes present some deviations at lower values of r, but they follow
the behaviour seen before at higher values.

No experimental values for the frequencies of these modes are available,
so the values presented here must be considered as theoretical first estimates.

The theoretical results present a very good agreement with the experi-
mental results for the different nanowires. We must note that analogous esti-
mates for the acoustic breathing modes of carbon, and other different materi-
als, nanotubes obtained with the formulae of the elasticity theory (eq.(2.73))
compared quite well with experimental data and results of first principles
calculations [30].
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Table 3.5: Theoretical (t) and experimental (e) frequencies (ω, ν) and pe-
riods (T) of the lowest acoustic breathing mode of the different nanowires
considered here.

Material R ωt νt T t ωe νe T e

(nm) (cm−1) (GHz) (ps) (cm−1) (GHz) (ps)
Au 13.0 11.1[195] ∼11.0[66]
Au 14.5 81.01[195] 80.6[186]
Au 52.0 22.6[195] 24.0[187]

CdSe 2.0 21.6[192] 21.9[184]
InAs 49.0 34.5[193] 38.3[188]
InAs 49.0 33.2[194] 38.3[188]
GaAs 157.5 9.7[196] 11.0[189]

Ag 1.2 0.75[197] 0.88[190]
Ag 30.95 19.4[197] 19.1[191]
Bi 100.0 8.5[198] 9.5[70]

Table 3.6: Frequencies, in units of 1011 s−1 and periods in ps of the lowest
breathing acoustic mode of Au/Ag core-shell nanowires, for different values
of the core radius and shell thickness (hshell) corresponding to the widths in
Wang et al.[204].

width rcore(nm) hshell(nm) ω(1011s−1) T (ps)
30.0 9.5 5.5 5.95 10.55
23.0 8.0 3.5 7.52 8.35
19.0 7.0 2.5 8.91 7.05
17.0 6.5 2.0 9.81 6.41

3.5 Molecular dynamics: Bulk

In the next section we will study the characteristics of nanostructures of Si,
Ge and Si-Ge alloys using Molecular Dynamics.

But first we need to identify the conditions necessary to address the nano-
structures. Also, knowing the behavior of more simple cases will allow us to
better understand more complex cases. For this, we will use first the well
known bulk system.

In order to make a good approximation of the physical model of the
vibrational characteristics of a molecular dynamics system, is necessary to
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Table 3.7: Frequencies, in units of 1012 s−1, of the first five breathing acoustic
modes of ZnS/SiO2 core-shell nanowires, for different values of the core radius
and shell thickness.

rcore(nm) hshell(nm) ω1 ω2 ω3 ω4 ω5

13.840 1.590 0.802 2.005 3.156 4.269 5.344
14.230 1.200 0.792 1.987 3.139 4.274 5.389
14.630 0.800 0.782 1.966 3.112 4.249 5.381
15.000 0.430 0.773 1.945 3.081 4.211 5.338
15.130 0.300 0.769 1.937 3.069 4.195 5.320
15.330 0.100 0.764 1.925 3.051 4.171 5.289
15.400 0.030 0.763 1.921 3.044 4.162 5.278
15.425 0.005 0.762 1.920 3.042 4.159 5.274
15.430 0.000 0.7619 1.9196 3.0417 4.158 5.273

have an adequate statistics. Thereof if we want to fit the model correctly, we
need a relatively big number of data points. The need of a good statistics is
translated as a high number of particles and a great number of time steps.

In our case, we finally opted for study a system by taking 8500 steps of 1
femtosecond each. The first 500 steps are let for stabilisation of the system
and thereof not taken into account in the auto-correlation calculus. For the
correlation calculation we take the data points at 5 time steps intervals (in
other words we take steps of 5 femtoseconds) up to a total of 1600 data points
for the auto-correlation of velocities and the later Fourier transform.

3.5.1 Bulk: Statistics

For the “bulk” case we studied initially the influence of the correct statistics
on the vibrational density of states. This is shown in Fig.3.33, for a series
of systems in which the number of atoms in the base cell of calculation is
progressively increased.

The objective of this analysis was to obtain the adequate number of atoms
needed to have an enough accurate model, neither too small to be unrealistic
nor too big to be numerically unaffordable.

As we see from Fig.3.33, the bigger the number of atoms the better the
spectra. On the other hand the number of atoms is related to the calculation
time. Therefore we need to choose a number of atoms big enough to make
statistics and small enough to perform our calculation in a reasonable time.

In Table 3.8 we show the approximate time consumed by the calculation
of different bulk systems.
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Figure 3.31: Frequency values in units of 1012s−1 for the first five acoustic
breathing modes of a ZnS/SiO2 core-shell nanowire as a function of the core
radius.

Table 3.8: Approximate time spent in calculations.

Number of atoms 1000 steps 8500 steps 50000 steps
8000 45 s 6 min 35 min
27000 2.5 min 21 min 118 min
64000 6 min 48.5 min 282.5 min
125000 11 min 94.5 min 545 min
216000 19 min 162 min 954 min
343000 30.5 min 257.5 min 1509 min

We finally opted for systems having 216000 atoms in the calculation cell.
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Figure 3.32: Normalized frequency values Ω (relative to the frequency value
of each mode for the first ZnS core radius) of the first five acoustic breathing
modes of a ZnS/SiO2 core-shell nanowire (given in Table 3.7) as a function
of the core radius. ( 1- •, 2- ◦, 3- H, 4- 4, 5- � ).

3.5.2 Bulk: Strain

The strain and composition distribution in Si-Ge dots is closely related to
their optical and electronic properties. Raman scattering of optical modes is
expected to be very useful to characterise Si-Ge nanostructures [207].

In diamond structure crystals, the triple degenerate optical phonon modes
at the centre of the Brillouin zone are infrared inactive, but Raman active.

The application of a static strain can lift the degeneracy of these modes
by lowering the symmetry of the crystal.

The modifications introduced by the strain in the phonon spectra of dia-
mond structure crystals were obtained in Ganesan et al. [208].

It was found that in the case of hydrostatic strain, in which the material is
equally compressed or expanded in all the spatial directions, the degeneracy
is not lifted. There is only a shift in the frequency of the degenerate mode.
This shift is positive for compressive strains and negative for tensile strains
(expansions).
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(a) Si “bulk” with 8000 atoms.
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(b) Si “bulk” with 27000 atoms.
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(c) Si “bulk” with 64000 atoms.
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(d) Si “bulk” with 125000 atoms.
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(e) Si “bulk” with 216000 atoms.
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(f) Si “bulk” with 343000 atoms.

Figure 3.33: Evolution of the VDOS of bulk silicon and the number of atoms
employed in the simulation.
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In the case of uniaxial (plane) strain along the [001] and [111] directions,
the degeneracy is partially lifted, obtaining a nondegenerate mode with eigen-
vectors parallel to the strain and a twofold degenerate mode with eigenvectors
perpendicular to the strain.

For uniaxial strain along the [011] direction, the threefold degeneracy is
completely lifted.

The induced shift of phonon frequencies is clearly seen in Fig.3.34. This
effect on VDOS was observed in previous works [209]. In the case of hydro-
static strain a similar effect can be seen in the region of acoustic phonons.

From the Raman spectrum it is possible to calculate the composition [210]
and the strain of a nanostructure from the positions and intensities of their
Ge-Ge, Ge-Si and Si-Si peaks. But due to the fact that the method used in
this work does not give the correct values of the intensities, it is not possible
to use those methods based on fitting experimental data.

The displacements of the Raman spectra peaks are linear for small strains.
In the plane strain case, their slope depends on the direction of the compres-
sion [211]. Also the uniaxial tensions generally result in the splitting of the
peaks, for example along [011] it produces a triple splitting [212].

(a) Hydrostatic strain. (b) Planar strain.

Figure 3.34: Strain effects on bulk germanium VDOS.

3.6 Molecular dynamics: Surface

The effects of the surfaces are shown in Fig.3.35a, and in Fig.3.35b we com-
pare the VDOS of the surface against that of the “bulk”. In these figures
we see that the effect of the surfaces on the VDOS is to add peaks in the
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(a) Si surface. (b) Si bulk vs. surface (scaled to fit).

Figure 3.35: Surface effects on VDOS.

frequency region around 100 cm−1 in the Si. Also a new peak appears beyond
the primary frequency of 500 cm−1.

In Fig.3.35 there is a peak near zero frequency. This indicates the presence
of atoms with an almost non-oscillatory motion probably due to a poorer
convergence. Also, since the atoms of the surface have different binding
properties due to the absence of neighbours, it is possible the presence of
large amplitude displacements.

In Fig.3.36 we show the effects of the surface in the different spectra.
Fig.3.36a is the already known vibrational density of states of silicon while
Fig.3.36b shows the Raman spectra calculated for silicon bulk and its main
peak ∼ 520cm−1. In Figs.3.36c and 3.36e the surface effects on the VDOS
are shown as in 3.35b. In Figs. 3.36d and 3.36f we show the effect of the
surfaces in the Raman spectra. In Fig.3.36f the effect on the silicon slab is
clear with the adition of a new peak ∼ 575cm−1, but there is also the same
peak in Fig.3.36d which is less visible due to the bulk surface ratio.
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(a) VDOS of silicon bulk. (b) Raman spectra of silicon bulk.

(c) VDOS of Si with a surface. (d) Raman of Si with a surface.

(e) VDOS of a Si sheet (2 surfaces). (f) Raman of a Si Sheet (2 surfaces).

Figure 3.36: Comparatives of VDOS and Raman spectra of Si bulk and
surfaces at T=150K.
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In Fig.3.37 the effects of the double surface of a thick slab of a Si0.65Ge0.35

alloy are shown. Fig.3.37a shows similar characteristics to Figs.3.36. In
Fig.3.37b we show the Raman spectrum of the SiGe alloy using the technique
shown in subsection 2.3.6 on page 89 while in Fig.3.37c the Raman spectrum
is convoluted with a Lorentz function in order to simulate experimental data.
In this case, since experimental data are obtained from a sensor of finite
dimensions, the collected data are mixed and blurred by the sensor.

We see in Figures 3.37b and 3.37c that the germanium-germanium inter-
actions peak (∼ 300cm−1), the silicon-silicon interactions peak (∼ 520cm−1),
and the silicon-germanium interactions (∼ 400cm−1) between those are shifted
toward different frequencies, higher for the germanium and lower for the
silicon, due to the stress associated with their different lattice constants
(∼ 5.43Å for silicon and ∼ 5.64Å for germanium).

3.7 Molecular dynamics: Quantum dot (Dome)

A quantum dot is a portion of matter whose three spatial dimensions are
small enough to show discretization of the energy bands. This discretization
of the quantum dots energy levels make them analogous to individual atoms
and molecules. Besides this, it is possible to change (or control) the energy
bands by changing their size dimensions.

Quantum dots are of great technological interest. They are particularly
significant for optical applications due to their high extinction coefficient. In
electronic applications they have been proven to operate like a single elec-
tron transistor and show the Coulomb blockade effect. Quantum dots have
also been suggested as implementations of qubits for quantum information
processing. In biology, quantum dots have been used in dyes due to their
brightness and stability. Also they are a promising tool for cancer treatment.
When functionalized to selectively bind to tumor cells, they can be used for
detection or chemical delivering. Quantum dots may be able to increase
the efficiency and reduce the cost of today’s typical silicon photovoltaic cells
as they can produce multiple excitons from one photon (multiple exciton
generation).

Moreover, “dome” quantum dots are unique in having diverse and multi-
ple surface crystallographic planes. Because of this, the vibrational properties
of these systems are interesting from both theoretical and experimental point
of view. Due to the characteristics of the vibrational density of states, the
transport and thermal properties of quantum dots are quite different from
the bulk ones.

In this section we are going to discuss the quantum dot under the Molec-
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(a) VDOS of a Si0.65Ge0.35 alloy with a
double surface.

(b) Raman spectrum of a Si0.65Ge0.35 al-
loy with a double surface.

(c) Raman spectrum convoluted with a
Lorentzian function of a Si0.65Ge0.35 al-
loy with a double surface.

Figure 3.37: Surface effects on VDOS and Raman spectra of Si0.65Ge0.35

alloy.

ular Dynamics method. The quantum dot chosen for the simulations is a
“dome” as seen in Fig.2.12.

As defects are important in these systems, we study the differences in the
VDOS and Raman spectra of perfect crystalline “domes” against those with
a structural dislocation defect so that it is possible to find the differences
between those systems. This will allow future analysis of possible defects
from the spectra.
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Figure 3.38: An atomic resolution scanning tunneling microscopy image of a
Ge dome on a Si (001) surface. Source: Williams et al. [213]

3.7.1 Si and Ge domes

The first step in understanding the different spectra of Si-Ge dome alloys is
the analysis of the pure Si and Ge “domes”. In Fig.3.39b the vibrational den-
sity of states obtained coincide in shape with that previously calculated for
the Ge surface in Fig.3.39a. As we see the VDOS does not provide much infor-
mation about the “dome” structure. The Raman spectra in Fig.3.39c shows
differences with the bulk ones (Fig.3.39d). In this case the Raman spectra
were calculated three times with the same initial positions but with different
random initial velocities (although generating the same temperature), in or-
der to differentiate the spurious effects in the spectrum due to the fact that
the molecular dynamics method usually only simulate a few femtoseconds of
time, while experimentally the data acquisition takes longer times. There-
fore recalculation of the system with different random initial velocities is a
quick and poor man approach to longer calculations. In Fig.3.40a the Raman
spectra obtained are convoluted with a Lorentzian and in Fig.3.40b the three
Raman spectra are summed and convoluted with a Lorentz function to show
how the experimental spectra will look like.

3.7.1.1 Displacement defects in the domes

There are two basic ways to reduce tensions between layers in heteroepitaxial
growth. One way of release the elastic energy is the formation of coherent
three-dimensional islands. The other way is by a plastic relaxation with
displacement defects. An intriguing cyclic-growth regime is actually observed
experimentally, involving a periodic flattening of the island shape each time
a new dislocation nucleates in the island [214]. Thus such dislocations deeply
influences the evolution of growing islands at larger volumes.

The displacement defect studied was a 600 misfit dislocation similar to
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(a) VDOS of a Germanium surface. (b) VDOS of a Germanium “Dome”
quantum dot.

(c) Superposition of three Raman spectra
of a Ge dome with different initial ran-
dom velocities.

(d) Superposition of three Raman spec-
tra of a Ge “Bulk” with different initial
random velocities.

Figure 3.39: VDOS and Raman spectra of a Ge dome at T=150K.

the one shown in Fig.3.41. This defect is located in a point between the
“dome” and the substrate.

In Fig.3.42 we compare the effects of the displacement defect on the Ra-
man spectra. It is evident that the main effect of the dislocation is to shift
and enlarge the main peak of the Raman spectrum. This is easy to un-
derstand because the defect changes the distances between some atoms and
therefore there will be new strain effects. This shift and widening of the spec-
tra main peak is visible in Fig.3.42 as there is only one dislocation defect in
the interface between the dome and the substrate and therefore the number
of atoms directly affected is small. The main Raman Germanium peak will
be wider when more displacement defects are present.
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(a) Superposition of Raman spectra con-
voluted with a Lorentzian function of a
Germanium “Dome” quantum dot.

(b) Summation of the three Raman spec-
tra convoluted with a Lorentzian of a Ge
dome with different initial random veloc-
ities.

Figure 3.40: Raman spectra convoluted with a Lorentzian of a Ge dome at
T=150K.

Figure 3.41: Detailed atomistic configuration of a 600 dislocation. (Source:
Gatti et al. [214])

3.7.2 Si-Ge alloy domes

3.7.2.1 Homogeneous versus non-homogeneous Si-Ge dome alloy

The VDOS and Raman spectra of an homogeneous Si0.65Ge0.35 “dome” are
shown in Fig.3.43. While the VDOS is similar to that of the surface SiGe
alloy (Fig.3.43a vs. Fig.3.37a), the Raman spectra are quite different and
more sensitive to the different crystallographic orientations of the surface.
As we see in Fig.3.38 the “dome” has different face orientations. These face
orientations may have different crystallographic surfaces as we can see in
Fig.3.44. These different surface orientations have different vibrations and
this translates into the spectra having slightly different peak positions.

In Fig.3.43b three Raman spectra are compared: the system always starts
with the same positions but the initial random velocities are different by
changing the seed factor in the random number algorithm. As previously
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(a) Raman spectra convoluted with
a Lorentzian of a perfect Germanium
“Dome” quantum dot.

(b) Raman spectra convoluted with a
Lorentzian of a Germanium “Dome”
quantum dot with displacement defects.

(c) Detail of the Raman spectra convo-
luted with a Lorentzian of a perfect Ger-
manium “Dome” quantum dot.

(d) Detail of the Raman spectra convo-
luted with a Lorentzian of a Germanium
“Dome” quantum dot with displacement
defects.

Figure 3.42: Comparison of the Raman spectra convoluted with a Lorentzian
of a Ge dome at T=150K with and without defects.

seen in the pure domes, we simulate the experiments by making a convolution
of the calculated spectrum with a Lorentz function. This convolution also
smooths the spectra. The differences of the “dome” system and the double
surface in Fig.3.37 are obvious in the Raman spectra.

In Figs.3.45 the “dome” is Si0.56Ge0.44 in the 2
3

upper part and Si0.83Ge0.17

in the 1
3

lower part in contact with the Si substrate. This structure is a simpli-
fication of the data from Scanning-Probe-Microscopy-based nanotomography
obtained by Rastelli et al. [118] for SiGe quantum dots. While the VDOS
in Fig.3.45a is almost identical to the homogeneous case (Fig.3.43a), the Ra-
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(a) VDOS of an homogeneous Si-Ge
“Dome” quantum dot.

(b) Three Raman spectra with different
initial random velocities.

(c) Three Raman spectra convoluted with
a Lorentzian.

(d) Summation of three Raman spectra
convoluted with a Lorentzian.

Figure 3.43: VDOS and Raman spectra of a Si0.65Ge0.35 homogeneous alloy
dome at T=150K.

man spectra are quite different, with Fig.3.45b showing Si peaks while in
Fig.3.43b the Si-Ge peaks are more prominent. This is due to the fact that
in the non-homogeneous dome there is a volume with similar concentrations
of both kinds of atoms. This increases the probability to have a Si − Ge
interaction with respect to the homogeneous case in which the Si atoms al-
most double the Ge atoms. This makes, in this case, the Raman spectra a
good tool to distinguish between homogeneous and non-homogeneous cases.
This means that the Raman spectra help us to distinguish, in a broad way,
the amount of different types of neighbours the atoms have by detecting the
different inter-atomic bonds. This differentiation is observable in the Raman
spectra but not in the VDOS. Raman spectroscopy is able to do this because
it detects the vibrational modes near the centre of the Brillouin zone while
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Figure 3.44: Perspective top view of the GeSi faceted dome-shaped structural
model on a Si (001) surface. Source: Katcho et al. [215]

the VDOS is over all the Brillouin zone.

3.8 Molecular dynamics: Nanowires

We shall complete the study of the nanostructures with the case of Si nanowires
of different cross-sections. These cross-sections are, in particular, square, cir-
cular and hexagonal with different sides or radii and grown along the main
crystallographic directions.

In recent years the synthesis of radially and axially controlled nanowire
systems has allowed the fabrication of novel devices based on nanowires.
It has also allowed to produce single crystalline superlattice nanowires and
complex core-shell nanostructures in IV and III-V semiconductor materials
[216, 217, 218, 219, 220, 221, 222]. The growth of the Ge(Si)/Si(Ge) core-shell
nanowires is of great interest due to their potential applications in advanced
electronic and optoelectronic devices [223, 224]. Therefore we will also study
the case of core-shell nanowires with a Ge core encapsulated/surrounded with
Si.

In order to calculate the properties of the nanowires with the molecu-
lar dynamics method we used nanowires with 100 unit cells length as we
found out that they offered similar spectra as bigger (1000 unit cells) length
nanowires, but requiring less computational time.

As in the “dome” case, the VDOS and Raman spectra are obtained for
different nanowires. We study nanowires with different cross-sections, as
grown by diferent experimental groups.

The nanowires studied by molecular dynamics are composed of silicon
atoms grown in wires of square, circular and hexagonal cross section. These
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(a) VDOS of an non-homogeneous SiGe
“Dome” quantum dot.

(b) Three Raman spectra with different
initial random velocities.

(c) Three Raman spectra convoluted with
a Lorentzian.

(d) Summation of three Raman spectra
convoluted with a Lorentzian.

Figure 3.45: VDOS and Raman spectra of a SiGe non-homogeneous alloy
dome at T=150K.

Figure 3.46: Crystallographic orientations.

nanowires were grown along the [001], [011] and [111] crystallographic direc-
tions. Also we take into account the different possible orientations of the
surface sides in the cases of square and hexagonal cross sections.
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(a) Raman spectra with 3 unit cells cross-
section side.

(b) Raman spectra with 3 unit cells cross-
section and (011) sides.

(c) Raman spectra with 5 unit cells cross-
section side.

(d) Raman spectra with 5 unit cells cross-
section and (011) sides.

(e) Raman spectra with 7 unit cells cross-
section side.

(f) Raman spectra with 7 unit cells cross-
section and (011) sides.

Figure 3.47: Raman spectra of a square cross-section Si nanowire of 100 unit
cells length [001] at T=150K.
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In Fig.3.47 the spectra of a silicon square cross-section nanowire grown
along the [001] crystallographic direction are shown. In Figs. 3.47a, 3.47c and
3.47e all the nanowire faces are (001). The main peak of the Raman spectra
of the square section nanowire moves and converge as the side increases; this
effects are shown in Fig.3.48 and in Table 3.9.

(a) Zoom on the Raman
spectra with 3 unit cells
cross-section side.

(b) Zoom on the Raman
spectra with 5 unit cells
cross-section side.

(c) Zoom on the Raman
spectra with 7 unit cells
cross-section side.

Figure 3.48: Zoom over the main peak of the Raman spectra of a square
cross-section Si nanowire of 100 unit cells length [001] at T=150K.

Table 3.9: Position of the main peak(s) of the square cross-section nanowire
Raman spectra.

3 unit cells 5 unit cells 7 unit cells
558.12 cm−1 566.83 cm−1 567.50 cm−1

564.51 cm−1

560.80 cm−1 564.61 cm−1 567.52 cm−1

563.39 cm−1 567.13 cm−1 567.34 cm−1

Figure 3.49: Top view of a square cross-section Si nanowire of 100 unit cells
length and three unit cell side grown in the [001] direction with (011) sides.

In Figs. 3.47b, 3.47d and 3.47f the spectra correspond to nanowires hav-
ing two (001) crystallographic surfaces and the other two being (011) crys-
tallographic surfaces. As we can see there is a shift of the main Si peak
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that implies compression forces on the (011) faces according to what we saw
in Fig.3.34. This strain may come from surface deformation of the (011)
faces. This deformation can be seen in Fig.3.49 where the sides of the square
cross-section are slightly curved.

(a) Three Raman spectra of a Si nanowire
with square cross-section of 3 unit cells
side.

(b) Three Raman spectra convoluted
with a Lorentzian of a Si nanowire with
square cross-section of 3 unit cells side.

(c) Three Raman spectra of a Si nanowire
with square cross-section of 5 unit cells
side.

(d) Three Raman spectra convoluted
with a Lorentzian of a Si nanowire with
square cross-section of 5 unit cells side.

Figure 3.50: Raman spectra of a square cross-section Si nanowire of 100 unit
cells length [011] at T=150K.

In Fig.3.50 the square cross-section nanowires are grown in the [011] di-
rection. Fig.3.50a shows three Raman spectra of the Si nanowire of three
unit cells side. Here the main peak of the Si spectra is not as clear as in
Fig.3.50c but we can see that the peaks are in a position similar to those
of the relaxed “bulk” (∼ 520 cm−1). In Fig.3.50b we convolute the Raman
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spectra of the three unit cells square cross-section side with a Lorentzian
function in order to simulate the experimental data. In Fig.3.50d the same
operation is done to simulate the experimental data of a five unit cells side
square cross-section nanowire.

We note here that the five unit cells side Raman spectrum is more “clear”
and more similar to the bulk spectra than the three unit cells one. This can
be easily explained by considering that as the wire radius grows, its surfaces
effect behaviour is expected to decrease and thus the bulk behaviour becomes
more visible.

In Fig.3.51 the square cross-section nanowires are grown in the [111] di-
rection. In Figs.3.51a and 3.51c three Raman spectra of three unit cells and
five unit cells each are shown. In those spectra the main peak of the Si Ra-
man is as expected, but the same peak has less intensity in Fig.3.51e. In Figs.
3.51b, 3.51d and 3.51f the Raman spectra are convoluted with a Lorentzian
function.

Finally in Fig.3.52 the square cross-section nanowires are also grown in
the [111] direction but with suitable dimension for a better comparison with
the section area of the circular and hexagonal nanowires, since the area of
the hexagon is larger than the area of a square having the same size on its
side, but smaller than the area of a square whose side has twice the side of
the hexagon. Fig.3.52a shows three Raman spectra of six unit cells side [111]
cross-section square nanowire, while in Figs.3.52c and 3.52e the 10 and 14
unit cells are shown. The Raman spectra convoluted with Lorentzian of those
nanowires are shown in Figs. 3.52b, 3.52d and 3.52f. Here we observe that
in Fig.3.52d one of the calculations gives a huge ∼ 400 cm−1 signal while
the other two give signals comparable to the ∼ 550 cm−1 one, although
slightly bigger. The ∼ 400 cm−1 signal is also present but clearly smaller
in Fig.3.52f. When comparing the Raman spectra of Fig.3.52d and Fig.3.51f
we find a very small signal for the Si main peak (∼ 550 cm−1) whereas there
is a bigger signal for the ∼ 400 cm−1 peak. It is interesting that the same
effect happens for those nanowires of “similar” dimensions.
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(a) Raman spectra of a 3 unit cells
cross-section side nanowire.

(b) Three Raman spectra convoluted
with a Lorentzian of a 3 unit cells side
nanowire.

(c) Raman spectra of a 5 unit cells
cross-section side nanowire.

(d) Three Raman spectra convoluted
with a Lorentzian of a 5 unit cells side
nanowire.

(e) Raman spectra of a 7 unit cells
cross-section side nanowire.

(f) Three Raman spectra convoluted
with a Lorentzian of a 7 unit cells side
nanowire.

Figure 3.51: Raman spectra of a square cross-section Si nanowire of 100 unit
cells length [111] at T=150K.
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(a) Raman spectra of a 6 unit cells
cross-section side nanowire.

(b) Three Raman spectra convoluted
with a Lorentzian of a 6 unit cells side
nanowire.

(c) Raman spectra of a 10 unit cells
cross-section side nanowire.

(d) Three Raman spectra convoluted
with a Lorentzian of a 10 unit cells
side nanowire.

(e) Raman spectra of a 14 unit cells
cross-section side nanowire.

(f) Three Raman spectra convoluted
with a Lorentzian of a 14 unit cells
side nanowire.

Figure 3.52: Raman spectra of a square cross-section Si nanowire of 100 unit
cells length [111] and cross-sections sizes comparable to the hexagonal and
circular cases, at T=150K.
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(a) Three Raman spectra of a circular
cross-section 3 unit cells radius nanowire.

(b) Three Raman spectra convoluted
with a Lorentzian of circular cross-section
3 unit cells radius nanowire.

(c) Three Raman spectra of a circular
cross-section 5 unit cells radius nanowire.

(d) Three Raman spectra convoluted
with a Lorentzian of circular cross-section
5 unit cells radius nanowire.

Figure 3.53: Raman spectra of a circular cross-section Si nanowire of 100
unit cells length [001] at T=150K.

In Fig.3.53 the Raman spectra of a cylindrical Si nanowire grown in the
[001] direction are shown. In Fig.3.53a and 3.53c the Raman spectra of three
and five unit cells radius cylindrical nanowire show more “noise1” than in
the square cross-section cases as now the surface cannot be associated to a
single crystallographic direction, so here we have a situation more similar to
the “dome” system. In Figs. 3.53b and 3.53d the convolution of the spectra
with a Lorentzian shows us several main peaks for the cylindrical case. This

1The origin of this “noise” are the different strains that provoke displacements and
splitting (due to the breaking of the degeneracy) of the Raman peaks, as discussed in
Section 3.5.2
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means that there are different strains in the material depending mostly on
the surface orientation. Also in some cases there are important secondary
peaks as shown for the five unit cells radius in figure (3.53d).

In Fig.3.54 the spectra of a cylindrical Si nanowire grown along the [011]
direction are shown. Here, as we see in Figs.3.54a and 3.54c the spectra are
not “noisy” as compared to the [001] cases. This could mean that the [011]
growth direction is more stable than the [001] for cylindrical nanowires.

(a) Three Raman spectra of a Si cylindri-
cal nanowire with 3 unit cells radius.

(b) Raman spectra convoluted with a
Lorentzian of a 3 unit cells radius cylin-
drical nanowire.

(c) Three Raman spectra of a Si nanowire
with circular cross-section of 5 unit cells
radius.

(d) Raman spectra convoluted with a
Lorentzian of a 5 unit cells radius cylin-
drical nanowire.

Figure 3.54: Raman spectra of a circular cross-section Si nanowire of 100
unit cells length [011] at T=150K.

In Fig.3.55 the spectra of a cylindrical Si nanowire grown in the [111]
direction are shown. Fig.3.55a shows more “noise” than the [011] cases but
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less than the [001] cases. The dramatic signal reduction for the Si main peak
seen in the case of the square nanowire with 10 unit cells side grown along
[111] is also present for the circular nanowire grown along [111] with five unit
cells radius.

(a) Three Raman spectra of a Si cylindri-
cal nanowire with 3 unit cells radius.

(b) Raman spectra convoluted with a
Lorentzian of a 3 unit cells radius cylin-
drical nanowire.

(c) Three Raman spectra of a Si cylindri-
cal nanowire with 5 unit cells radius.

(d) Raman spectra convoluted with a
Lorentzian of a 5 unit cells radius cylin-
drical nanowire.

Figure 3.55: Raman spectra of a circular cross-section Si nanowire of 100
unit cells length [111] at T=150K.
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(a) Si nanowire grown in
the [001] direction.

(b) Si nanowire grown in
the [011] direction.

(c) Si nanowire grown in
the [111] direction.

Figure 3.56: Top view of circular cross-sections Si nanowires of 100 unit cells
length and five unit cell radius grown in diferent directions.

In Fig.3.56 we show the top-view of the circular cross-section Si nanowires
studied here. We can see in these top-views the projection of the crystalline
structure on a plane perpendicular to the length of the nanowire.
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(a) Three Raman spectra of an
hexagonal cross-section nanowire of
3 unit cells side.

(b) Raman spectra convoluted with
a Lorentzian of a 3 unit cells side
hexagonal cross-section nanowire.

(c) Three Raman spectra of an
hexagonal cross-section nanowire of
5 unit cells side.

(d) Raman spectra convoluted with
a Lorentzian of a 5 unit cells side
hexagonal cross-section nanowire.

(e) Three Raman spectra of an
hexagonal cross-section nanowire of
7 unit cells side.

(f) Raman spectra convoluted with
a Lorentzian of a 7 unit cells side
hexagonal cross-section nanowire.

Figure 3.57: Raman spectra of a hexagonal cross-section Si nanowire of 100
unit cells length [001] at T=150K.
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In Fig.3.57 the spectra of a hexagonal cross-section nanowire grown along
the [001] direction are shown.

(a) Si nanowire with two
(001) faces.

(b) Si nanowire with two
(011) faces.

Figure 3.58: Top view of hexagonal cross-sections Si nanowires of 100 unit
cells length and five unit cell radius grown in the [001] direction.

The hexagonal nanowires of Fig.3.57 are constructed with two (001)
faces2. In Fig.3.59 we put those two faces with the [011] crystallographic
directions3. The top view of this kind of nanowires are shown in Fig.3.58.
We put these faces in this crystallographic orientation by rotating the crystal
along the growth axis before “cutting” the faces of the nanowire. The 450

rotation on the long axis that we applied changes two of the sides from the
crystallographic orientation [001] to [011]. In this way we can look for differ-
ences in the spectra as the faces of an hexagon are at 600 while a (011) face
is at 450 from a (001). The Raman spectra of the “(011) faces” nanowires
show an important decrease in the intensity of the ∼ 500 cm−1 peaks. This
effect is independent of the cross-section size, thus we cannot assume that
the origin of this effect is the finite dimensionality but that it is related to
the faces orientation.

2The other faces are (0, 2521
2911 ,

1
2 ) ' (0, 5, 3).

3The other faces are (0, 2911
7953 ,

7953
5822 ) ' (0, 3, 10).
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(a) Three Raman spectra of an
hexagonal cross-section nanowire of
3 unit cells side.

(b) Raman spectra convoluted with
a Lorentzian of a 3 unit cells side
hexagonal cross-section nanowire.

(c) Three Raman spectra of an
hexagonal cross-section nanowire of
5 unit cells side.

(d) Raman spectra convoluted with
a Lorentzian of a 5 unit cells side
hexagonal cross-section nanowire.

(e) Three Raman spectra of an
hexagonal cross-section nanowire of
7 unit cells side.

(f) Raman spectra convoluted with
a Lorentzian of a 7 unit cells side
hexagonal cross-section nanowire.

Figure 3.59: Raman spectra of a hexagonal cross-section Si nanowire of 100
unit cells length [001] at T=150K and made with two (011) faces.
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(a) Si nanowire with two
(001) faces.

(b) Si nanowire with two
(011) faces.

Figure 3.60: Top view of hexagonal cross-sections Si nanowires of 100 unit
cells length and five unit cell radius grown in the [011] direction.

In Fig.3.61 the spectra of a hexagonal cross-section nanowire grown in the
[011] direction are shown. The top view of this kind of nanowire is shown
in Fig.3.60a. These Raman spectra are quite similar to the bulk, with the
exception of the 200-250 cm−1 peaks that exhibit most of the nanowires.

As in the previous situation, we calculate in Fig.3.61 the [011] case with
two (001) faces, and now we study the case with two (011) faces. This
configuration has a top view configuration shown in Fig.3.60b. In Figs.3.62
the Raman spectra are similar to the previous case (Fig.3.61). The 900

rotation on the long axis that we applied changes two of the sides from the
crystallographic orientation [001] to [011] as we can see in Fig.3.46.

In Fig.3.64 the spectra of the hexagonal nanowire grown in the [111]
direction are shown. As we can see in Fig.3.63 where the top view of this
kind of nanowire is shown, this configuration fits with the regular hexagon
for several units cells of the diamond structure as the sides of the hexagon
and the crystallographic faces orientation are very similar.
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(a) Three Raman spectra of an
hexagonal cross-section nanowire of
3 unit cells side.

(b) Raman spectra convoluted with
a Lorentzian of a 3 unit cells side
hexagonal cross-section nanowire.

(c) Three Raman spectra of an
hexagonal cross-section nanowire of
5 unit cells side.

(d) Raman spectra convoluted with
a Lorentzian of a 5 unit cells side
hexagonal cross-section nanowire.

(e) Three Raman spectra of an
hexagonal cross-section nanowire of
7 unit cells side.

(f) Raman spectra convoluted with
a Lorentzian of a 7 unit cells side
hexagonal cross-section nanowire.

Figure 3.61: Raman spectra of a hexagonal cross-section Si nanowire of 100
unit cells length [011] at T=150K.
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(a) Three Raman spectra of an
hexagonal cross-section nanowire of
3 unit cells side.

(b) Raman spectra convoluted with
a Lorentzian of a 3 unit cells side
hexagonal cross-section nanowire.

(c) Three Raman spectra of an
hexagonal cross-section nanowire of
5 unit cells side.

(d) Raman spectra convoluted with
a Lorentzian of a 5 unit cells side
hexagonal cross-section nanowire.

(e) Three Raman spectra of an
hexagonal cross-section nanowire of
7 unit cells side.

(f) Raman spectra convoluted with
a Lorentzian of a 7 unit cells side
hexagonal cross-section nanowire.

Figure 3.62: Raman spectra of a hexagonal cross-section Si nanowire of 100
unit cells length [011] at T=150K and rotated 450 on the long axis.
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Figure 3.63: Top view of hexagonal cross-sections Si nanowires of 100 unit
cells length and five unit cell radius grown in the [111] direction.

In these Raman spectra there is a visible ∼ 400 cm−1 (LO) peak as in
the cases of square cross-sections nanowires grown in the same crystallo-
graphic direction. This peak is related to the (longitudinal) optical phonons
in other points of the Brillouin zone. In general the spectra of the hexagonal
nanowire are qualitatively similar to those of the cylindrical nanowire. On the
other hand, the attenuation effect on the ∼ 550 cm−1 peak of the nanowires
with diameters of 10 unit cells seen in the cases of the square and circu-
lar cross-sections is not evident in the five unit cell hexagonal cross-section
side nanowires. As we see in Fig.3.63 the hexagonal cross-section nanowires
grown in the [111] direction have quite regular (011) faces. Thus probably
the attenuation of the ∼ 550 cm−1 peak may be linked to the non-(011) faces.
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(a) Three Raman spectra of an
hexagonal cross-section nanowire of
3 unit cells side.

(b) Raman spectra convoluted with
a Lorentzian of a 3 unit cells side
hexagonal cross-section nanowire.

(c) Three Raman spectra of an
hexagonal cross-section nanowire of
5 unit cells side.

(d) Raman spectra convoluted with
a Lorentzian of a 5 unit cells side
hexagonal cross-section nanowire.

(e) Three Raman spectra of an
hexagonal cross-section nanowire of
7 unit cells side.

(f) Raman spectra convoluted with
a Lorentzian of a 7 unit cells side
hexagonal cross-section nanowire.

Figure 3.64: Raman spectra of a hexagonal cross-section Si nanowire of 100
unit cells length [111] at T=150K.
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(a) Raman spectra of a [001] core-
shell.

(b) Three Raman spectra convoluted
with a Lorentzian of a [001] core-shell
nanowire.

(c) Raman spectra of a [011] core-
shell nanowire.

(d) Three Raman spectra convoluted
with a Lorentzian of a [011] core-shell
nanowire.

(e) VDOS of a [001] core-shell
nanowire.

(f) VDOS of a [011] core-shell
nanowire.

Figure 3.65: Raman spectra and VDOS of a cylindrical cross-section core-
shell nanowire of 100 unit cells length at T=150K.

Finally, core-shell cylindrical nanowires with a Ge core of three unit cells
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radius and a Si shell of four unit cells radius (one unit cell thickness) are
shown in Fig.3.65. In Fig.3.65a the core-shell nanowire is grown in the [001]
direction while in Fig.3.65c the wire is grown in the [011] direction.

As we see in Figs. 3.65e and 3.65f it is difficult to distinguish the crys-
tallographic orientation of the nanowires by means of the VDOS but it is
easy with the Raman spectra (Fig.3.65b for the [001] case and Fig.3.65d for
the [011] case). Figs.3.65a and 3.65b show a strong influence of the Si shell
on the Raman spectra while in Figs. 3.65c and 3.65d the main signal comes
from the Ge core. This strong dependence of the Raman spectra on the
crystallographic orientation can be explained through the Raman spectra of
the cylindrical Si nanowires. Previously, in the Si nanowire of circular cross-
section, the main peak (∼ 500 cm−1) was stronger in the nanowire grown in
the [011] crystallographic direction than in the [001] case. Thus we have here
that in Fig.3.65d the Ge peak is masking the rest of the signal.

The VDOS (Figs.3.65e and 3.65f ) of the core-shell systems compared to
the VDOS of the Ge surface and “dome” (Figs. 3.39a and 3.39b ) and the
VDOS of the Si bulk and surface (Fig. 3.35 ) show that the acoustic intensity
maxima is at the same level as the Ge-Ge and Si-Si peaks. Due to the fact
that in the Si-Ge homogeneous “dome”, the Ge is always mixed with Si, then
it is not possible to see the Ge-Ge peak. On the other hand, in the core-shell
nanowire the Ge-Si interactions are restricted to the neighbourhood of the
core-shell interface region. This translates in the presence of a visible Ge-Ge
peak in the VDOS. The Si shell is also under strain, and this shows mainly
in the region close to the Si peak at high frequency.

We have obtained a way to identify a variety of nanowires by means
of the Raman spectra. The VDOS of different nanowires showed the same
structure regardless of the cross-section shape, therefore it was not useful for
the identification or characterisation of the nanowires. On the other hand,
the Raman spectra are sensitive to the cross-section shape. They are sensitive
also to the different crystallographic surfaces present in the nanowire. We
have found a drastic reduction of the ∼ 550cm−1 peak in some cases (square
and circular nanowires with 10 unit cells side). More work is needed to
explain why this effect is not observed in the hexagonal equivalent nanowire.



Chapter 4

Concluding remarks and
expectatives

In this work we have studied the vibrational properties of nanostructures
by means of theoretical simulation techniques. The vibrational properties
of these systems play an important role in many phenomena, but they have
been less studied than their electronic and optical counterparts.

The nanostructures studied here such as nanowires, domes (quantum
dots) and superlattices are of current interest and they are being grown
in different laboratories in increasing number and for different materials.
These systems are of great interest because of their potential technological
applications in various fields. Due to the different experimental techniques
employed to produce these nanostructures, there is a wide dispersion in the
quality of the samples. The simulation techniques employed in our studies
are well adapted to obtain characteristics of the vibrational properties of
these systems with a reasonable computing cost.

We have considered two different approaches to study the vibrational
properties: the continuum approach based on the linear elasticity theory,
and the discrete medium approach based on molecular dynamics methods.
In our studies we have worked on various systems with different sizes to see
the dimensional behaviour of these effects. In the case of quantum dots we
have studied different systems with and without structural dislocation defects
to ascertain their effects on the vibrational properties. The use of techniques
based in the continuum model and the discrete one allows for complementary
approaches to the study of these phenomena.

Within the continuum model, based on the linear theory of elasticity, we
obtained a general expression for the frequencies of the acoustic radial modes
of nanowires, nanotubes and the secular determinants for the “core-shell”
systems and circular cross-section “composites”, having a general cylindrical
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anisotropy, as they are a characteristic signature in the spectra. The results
obtained for this kind of Si, ZnO, GaN , Au, Ag and CdSe nanosystems
gave excellent agreement when compared to the experimental results [226].

In the case of nanostructures based on elastically anisotropic materials
and having non-circular cross-section no closed form solution is possible. In
this case a flexible technique based on the methods employed for the study
of resonant ultrasonic scattering [34] (method “XYZ”) can be employed.
We have expanded this technique in order to study hexagonal cross-sections
prisms [227]. This shape is presented by many nanowires of different materi-
als grown experimentaly. In this way we have obtained the dispersion curves
and the displacement vectors for many nanowires of materials belonging to
the hexagonal and cubic systems.

Multilayer systems constitute another area of interest. III–nitrides and
MgO/ZnO superlattices are very interesting systems because of their poten-
tial applications in different areas of micro and nano-electronics. To study
their vibrational properties we have employed the “Surface Green Function
Matching” (SGFM) method [40]. This method is specially well adapted
to study multilayer systems of materials with elastic anisotropy. We stud-
ied the properties of periodic and aperiodic superlattices of these materials
for different relative thicknesses of the constituent materials. Because these
materials belong to the hexagonal crystal, there is a decoupling of the trans-
verse and sagittal vibrations, when grown along the C-axis. The existence
of two transverse thresholds in this case, opens interesting possibilities not
present in isotropic materials with only a transverse wave threshold or more
anisotropic materials where all the polarisations mix [228]. Structures includ-
ing aperiodic blocks show localised modes with selective spatial localisation.
Therefore they could be used as frequency filters [229].

The discrete media model based on the Molecular Dynamics technique
generally provides more accurate results and a higher range of validity than
those based on the continuum model, albeit with a higher computational cost.
The method used in this thesis is the Molecular Dynamics based on empirical
potentials, and specifically the Tersoff potential for silicon and germanium,
using Verlet algorithm for time integration. From the molecular dynamics
simulation it was obtained the vibrational density of states by the velocity
autocorrelation, and the Raman spectrum, which was calculated by the linear
response theory from the bond-polarisation approximation.
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Expectatives

In the case of continuum models, finite-element methods could be employed
to study some of the nanostructures considered, in particular core-shell and
functionally graded systems, formed by general anisotropic materials. These
methods can also be used in different civil engineering problems.

The Molecular Dynamics could be used to study thermal properties of
nanostructures. It would allow also the study of the effects of stress and
strain on the nanostructures.

In order to extend the study to other materials, the design of new poten-
tials would be needed.
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Chapter 5

Resumen y conclusiones

En este trabajo se han estudiado las propiedades vibracionales de nanoestruc-
turas mediante técnicas teóricas de simulación. Las propiedades vibracionales
de estos sistemas juegan un papel importante en muchos fenómenos, pero han
sido menos estudiadas que sus homólogas electrónicas y ópticas.

Las nanoestructuras estudiadas aqúı, como los nanohilos, los domos (pun-
tos cuánticos) y superredes son de interés actual y están siendo crecidas en
diferentes laboratorios en número creciente y en diferentes materiales. Es-
tos sistemas son de gran interés por sus posibles aplicaciones tecnológicas en
diversos ámbitos. Debido a las diferentes técnicas experimentales emplea-
dos para producir estas nanoestructuras, hay una amplia gama en la calidad
de las muestras. Las técnicas de simulación empleadas en nuestros estu-
dios están bien adaptadas para obtener las caracteŕısticas de las propiedades
vibracionales de estos sistemas a un coste computacional razonable.

Hemos empleado dos enfoques diferentes para estudiar las propiedades
vibracionales de los nanosistemas: el enfoque continuo en base a la teoŕıa
lineal de la elasticidad, y el enfoque de medio discreto basado en métodos
de dinámica molecular. En nuestros estudios hemos trabajado en diferentes
sistemas y con diferentes tamaños para ver el comportamiento dimensional
de estos efectos. En el caso de puntos cuánticos hemos estudiado diferentes
sistemas con o sin defectos estructurales de dislocación para determinar sus
efectos sobre las propiedades vibracionales. El uso de técnicas basadas en el
modelo del medio continuo y del medio discreto permite enfoques comple-
mentarios para el estudio de estos fenómenos.

En el modelo de medio continuo, basado en la teoŕıa lineal de la elas-
ticidad, se ha obtenido una expresión general para las frecuencias de los
modos acústicos radiales de nanohilos, nanotubos y los determinantes sec-
ulares para los sistemas “núcleo-envoltura” (“core-shell”) y compuestos de
sección circular que tengan anisotroṕıa general ciĺındrica dado que son una
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señal caracteŕıstica en el espectro. Los resultados obtenidos para este tipo de
nanosistemas de Si, ZnO, GaN , Au, Ag y CdSe presentaron un excelente
acuerdo con los resultados experimentales [226].

En el caso de nanoestructuras basadas en materiales con anisotroṕıa
elástica y sección transversal no circular no es posible hallar una solución
en forma cerrada. En este caso se puede utilizar una técnica basada en los
métodos empleados para el estudio de la dispersión ultrasónica resonante
[34] (método “XYZ”). Hemos extendido esta técnica al estudio de nanohilos
con sección transversal hexagonal [227]. Esta forma se presenta en muchos
nanohilos de diferentes materiales obtenidos experimentalmente. De esta
manera hemos obtenido las curvas de dispersión y los vectores de desplaza-
miento para muchos nanohilos que pertenecen a los sistemas hexagonal y
cúbico.

Los sistemas multicapa constituyen otro área de interés. Las superredes
basadas en III–nitruros y MgO/ZnO son sistemas muy interesantes debido a
su potencial aplicacion en diferentes áreas de micro y nano-electrónica. Para
estudiar sus propiedades vibracionales hemos empleado el método “Surface
Green Function Matching” (SGFM) [40]. Este método está especialmente
bien adaptado para estudiar los sistemas de múltiples capas de materiales
con anisotroṕıa elástica. Se estudiaron las propiedades de las superredes
periódicas y aperiódicas de estos materiales para diferentes espesores relativos
de los materiales constituyentes. Debido a que estos materiales pertenecen
a la estructura cristalina hexagonal, existe un desacoplo de las vibraciones
transversales y sagitales, cuando estas superredes se crecen a lo largo del
eje-C. En estos casos, la existencia de dos umbrales transversales abre intere-
santes posibilidades no presentes en materiales isótropos con sólo un umbral
de onda transversal o materiales anisótropos de menor simetŕıa donde todas
las polarizaciones se mezclan [228]. Las estructuras que incluyen bloques
aperiódicos poseen modos localizados con localización espacial en diferentes
partes de la estructura. Por lo tanto pueden ser candidatos para filtros de
frecuencia [229].

El modelo de medio discreto basado en la técnica de dinámica molecu-
lar proporciona resultados en general más precisos y con un mayor rango de
validez que los métodos basados en el modelo de medio continuo, aunque
con un mayor costo computacional. El método usado en esta tesis es el de
dinámica molecular basado en potenciales emṕıricos y en concreto el poten-
cial para silicio y germanio de Tersoff, usando el algoritmo de Verlet para la
integración en el tiempo. A partir de la simulación de dinámica molecular
se obtuvo tanto la densidad de estados vibracionales a partir de la autocor-
relación de las velocidades, como el espectro Raman, el cual fue calculado
mediante la teoŕıa de respuesta lineal a partir de la aproximación de polar-
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ización de enlace.

Desarrollos futuros

En el caso de los modelos continuos, se podria emplear el método de elementos
finitos para estudiar algunas de las nanoestructuras consideradas en este tra-
bajo, especialmente los sistemas ”núcleo-estructura” y los funcionales grada-
dos, formados por materiales anisótropos. Estos métodos también pueden
ser aplicados a diversos problemas de ingenieŕıa.

Las propiedades térmicas de nanoestructuras podŕıan estudiarse con los
métodos de dinámica molecular. Seŕıa también posible realizar estudios sobre
efectos de tensión y deformación en las propiedades de nanoestructuras.

Para poder extender el estudio a otros materiales seŕıa necesaria la ob-
tención de nuevos potenciales.
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Appendix A: Nanostructures

A nanostructure is defined as any system with at least one dimension mea-
sured on the scale of nanometres.This definition is quite wide and cover
structures with confined dimensions ranging from hundreds of nanometres to
structures with only one atom thickness. Here we will show the most com-
mon structures studied which are considered the most appealing for future
developments or the most fundamental.

General basic nanostructures

Nanowires

Nanowires are systems having two dimensions of nanometer size while the
third one is some order of magnitude bigger or unrestricted. Nanowires can
be stand-alone, suspended or placed on a substrate. These structures can be
as thin as a single chain of atoms [230].Usually these chains are attached to
an atomic force microscope on one extreme and to a substrate on the other
one.

In general, as electrons in a nanowire are constricted in two directions,
the conductance shows quantum confinement and the energy levels are dif-
ferent from the traditional continuum of energy levels or bands found in bulk
materials. This quantum confinement manifest in some nanowires under the
form of discrete values in the electrical conductance. In fact, the energy of
the electrons going through a thin nanowire can assume only discrete values
[230], which are multiples of the Von Klitzing constant σ = νe2

h
, with e the

electron charge, ν the filling factor and h the Planck constant. There is also
scattering from the wire constrict boundaries, whose effect will be very sig-
nificant whenever the wire width is below the free electron mean free path of
the bulk material. Finally, nanowire conductivity may be strongly influenced
by edge reconstruction effects.

Typically grown Si nanowires have diameters ranging from 10 nm to hun-
dreds of nanometres and they show the same internal structure as the bulk.
Thinner nanowires that have been grown or placed on a substrate show a dif-
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ferent structure usually determined by the interaction between the nanowire
and the substrate. As the nanowire becomes thinner, the surface reconstruc-
tion effects become more important and change the nanowire properties.

Nanodots

Nanodots are structures constricted to the nanoscale in all the tree dimen-
sions. These structures are usually experimentally grown not as stand-alone
systems but also suspended in a medium (or embedded) or on a surface in
order to have their properties measured. Thus these systems are not true
zero-dimensional from the physical point of view because they are influenced
by their interaction with either the embedding material or the substrate.

Carbon based nanostructures

Figure 5.1: Carbon based nanostructures (Source: Geim and Novoselov
[231]).

Nanotubes

Carbon nanotubes are the sp2 allotropes of carbon which show a cylindrical
structure. These structures have been obtained with very high ratios of
length versus diameter.

There exist single walled and multiple walled carbon nanotubes. The
second kind consists of several tubes within each other as a Matrioska (the
Russian doll), or a single continuous sheet rolled up several times.

Singled-walled carbon nanotubes are made from a single sheet of graphite
(also known as graphene) rolled up into a tube. The combination of the radius
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Figure 5.2: Carbon nanotubes.

and the angle of the rolled graphene sheet dictates the properties of the
nanotube. There are two kinds of nanotubes: chiral and achiral. The achiral
nanotube is symmorphic and has a mirror image that is identical to the
original structure. On the other hand the mirror image of the chiral nanotube
is not identical, but it shows spiral symmetry. The way the graphene sheet
is wrapped is represented by a pair of indices (n,m), where n and m are
integers and indicate the number of unit vectors needed in order to construct
the carbon tube. With the two primitive lattice vectors of graphene:

~a1 =

(√
3a

2
,
a

2
, 0

)
(5.1)

~a2 =

(√
3a

2
,−a

2
, 0

)

where a =
√

3 ac−c, being ac−c = 0.142 nm the nearest neighbour bond
length. Therefore the chirality vector is defined as:

Ch = n · ~a1 +m · ~a2 → (n,m) (5.2)

This chiral vector is perpendicular to the nanotube axis and represents the
two points which would join when the sheet of graphene is rolled up to form
the nanotube.

There are two types of achiral carbon nanotubes: the armchair whose
indices are (m,m) and the zig-zag with (n,0) indices. The other possible
combinations of indices correspond to chiral carbon nanotubes.

The diameter of the carbon nanotube can be obtained from their indices
as:

D =
a

π

√
n2 +m2 + nm (5.3)
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Figure 5.3: Carbon nanotubes indices and nomenclature.

Since their discovery, the carbon nanotubes have earned reputation due
to the novel properties they show. Those properties make them potentially
very useful in many technological aspects.

Fullerenes

The Buckminsterfullerene is a molecule of C60 and is the first and smallest
of the Fullerene family.

Figure 5.4: Fullerenes.

Fullerenes are hollow carbon nanoballs one atom thick. Those atoms are
arranged into series of connecting hexagons and pentagons. For the C60 the
patterns of pentagons and hexagons are arranged so the pentagons do not
touch each other and the hexagons are surrounded by three pentagons and
three hexagons.

The most interesting properties of fullerenes are their thermal resistivity
and the superconductivity.
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Graphene

The graphene is the sp2 allotrope of carbon which is known as a true 2D
structure. It is also the base structure for fullerenes (0D), carbon nanotubes
(1D) and graphite (3D).

Figure 5.5: Graphene.

The graphene structure is an hexagonal lattice of carbon atoms with
ripples (when suspended) that may be intrinsic to graphene as a result of the
instability of two-dimensional crystals.

The electronic properties of graphene are different of most materials due
to the 2D structure. Graphene in its pure form is a gapless semi-metal with
electronic dispersion relations that shows, at energies near the Fermi level, a
linear relation in the two kind of corners1 of the two-dimensional hexagonal
Brillouin zone. This linear dispersion is responsible of the behaviour of the
electrons in graphene. These electrons and holes near the Fermi level have a
zero effective mass with gives them a relativistic particle behaviour, but with
the Fermi velocity in graphene taking the role of the speed of light, described
by the Dirac equation for spin-half particles. The electrons in graphene are
not relativistic particles but the equations that govern their motion are very
similar to those of massless relativistic particles and then the electrons and
holes are called Dirac fermions, and the six corners of the Brillouin zone are
called the Dirac points. Graphene exhibits unique electronic properties such
as high electron mobility and anomalous Quantum Hall effect, among others.

Ab initio calculations show that a graphene sheet is thermodynamically
unstable with respect to other fullerene structures if its size is less than about
20 nm and becomes the most stable one (as in graphite) only for sizes larger

1These two points are called the Dirac points.
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than 24,000 carbon atoms. The flat graphene sheet is also known to be
unstable with respect to scrolling i.e. rolling up to form nanotubes which
have a lower-energy state.



Appendix B: Nanowires

Nanowires are usually defined as structures with two sides constrained to
the nanoscale and one side with much greater dimension or with a relatively
“infinite” size. The nanowires grown or experimentally obtained nowadays
show an aspect ratio ranging from 10 to 100 between the length and the
side/diameter. With those sizes, the nanowires exhibit both surface and
quantum mechanical size effects. Therefore they are also known as quantum
wires.

Semiconductor nanowires have unique properties that make them excel-
lent candidates for the next generation of nano-electronic devices. As those
wires show a limited cross-section, they have quantum confinement effects
that increase their electronic band gap.

There are two approaches to the fabrication of nanostructures: top-down
and bottom-up. The top-down approach begins with a large piece of material
with is cut or milled down to make the nanosystems with very well known
techniques such as lithography, etching or electrophoresis. In the bottom-up
approach the nanostructure is built from the constituent elements in a similar
way as does the nature in living organisms.

Top-down fabrication

This approach seeks to fabricate nanostructures from larger structures.

Ion-beam, scanning-prove or electron -beam are quite flexible techniques
for this purpose.

Also the technologies that came from conventional solid-state silicon meth-
ods in microelectronics are now able to fabricate elements having dimensions
smaller than 100 nm, thus falling under the definition of nanotechnology.

Focused ion beams: This technique is similar to a scanning electron mi-
croscope but using focused ions instead of electrons and can directly
remove material, or even deposit material when suitable precursor gases
are applied at the same time. For example, this technique is routinely
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used to create sub-100 nm sections of material for analysis in Trans-
mission Electron Microscopy. This method uses the sputtering effect
of the focused ions to etch or machine surfaces.

Laser Ablation: This is a simple method where the sample material is
heated by a high power laser in order to evaporate the material at
the focusing point of the laser beam. The evaporated material is then
gathered and mixed into an inert gas which is pumped out the system.
The disadvantage of this technique is that the internal structure of the
nanowire consists of a serie of grains, which could reduce the mean-
free-path of phonons and electrons due to boundary scattering.

Suspended nanowires: A suspended nanowire is a wire produced in a
high-vacuum chamber held at the longitudinal extremities. Suspended
nanowires can be produced by:

− The chemical etching of a larger wire.

− The bombardment of a larger wire, typically with highly energetic
ions.

− Indenting the tip of a STM in the surface of a metal near its
melting point, and then retracting it.

Bottom-up fabrication

This approach seeks to fabricate nanostructures from smaller components,
molecules or even individual atoms. This is done by many chemical-mechanical
methods, from classic chemistry to atomic force microscopes manipulation.

DNA: Biology demonstrate the molecular fabrication possibilities of DNA.
For example, ribosomes, found in every cell, read the genetic informa-
tion and use it to direct the assembly of sequences of amino acids. This
amino acids together with DNA form the working parts of a wide range
of molecular machines, including the ribosomes themselves.

Scanning probe lithography: The tips of the atomic force microscope
(AFM) can be used as a nanoscale ”write head” to deposit a chem-
ical upon a surface in a desired pattern in a process called dip pen
nanolithography. Also individual atoms may be manipulated using the
tip of a scanning tunneling microscope (STM).

Vapor-liquid-solid: This is a common technique for nanowire fabrication.
This technique uses an evaporated source material or a gas which are
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exposed to a catalyst. In order to fabricate nanowires the best cata-
lysts are liquid metal nanoclusters like for example gold. The catalyst
nanoclusters are deposited on a substrate or directly self-assembled
from a thin film by dewetting. The evaporated or gas source enters the
nanoclusters wich then begin to saturate until they reach the supersatu-
ration state and then the source solidifies on the substrate which works
as a nucleation seed and grows from the nanocluster. With this tech-
nique, physical characteristics of the grown nanowires may be tuned
in a controllable way, depending on the size and physical properties of
the liquid nanoclusters. Also the nanowire length can be adjusted by
timing the exposure to the gas source and compound nanowires with
super-lattices of different materials can be grown by switching the gas
sources..

Solution-phase synthesis: Solution-phase synthesis consists in the chem-
ical grow of free nanowires in a solution. It can produce nanowires of
many types of materials. Solution-phase synthesis has the advantage
that it can produce very large quantities of nanowires, compared to
methods that produce nanowires on a surface. In one technique, the
polyol synthesis, ethylene glycol is both solvent and reducing agent.
This technique is particularly versatile at producing nanowires of lead,
platinum, and silver.

Template synthetic method: The template synthesis method uses an-
other nanostructured material as a mold to cast the nanowires.

In template-assisted synthesis of nanostructures, the chemical stability
and mechanical properties of the template, as well as the diameter,
uniformity and density of the pores are important characteristics to
consider.Templates frequently used for nanowire synthesis include an-
odic alumina, nanochannel glass, ion track-etched polymers and mica.

Porous anodic alumina templates are produced by anodization of pure
Al films in selected acids. Under carefully chosen anodization con-
ditions, the resulting oxide film possesses a regular hexagonal array
of parallel and nearly cylindrical channels. The self-organization of
the pore structure in an anodic alumina template involves two cou-
pled processes: pore formation with uniform diameters and pore or-
dering. The pores form with uniform diameters because of a delicate
balance between electric field-enhanced diffusion which determines the
growth rate of the alumina, and dissolution of the alumina into the
acidic electrolyte. The pores are believed to self-order because of me-
chanical stress at the aluminum–alumina interface due to expansion
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during the anodization. This stress produces a repulsive force between
the pores, causing them to arrange in a hexagonal lattice. Depending
on the anodization conditions, the pore diameter can be systemati-
cally varied from ≤ 10 nm up to 200 nm with a pore density in the
range of 109 → 1011 pores

cm2 [232]. It has been shown by many groups
that the pore size distribution and the pore ordering of the anodic alu-
mina templates can be significantly improved by a two-step anodization
technique, where the aluminum oxide layer is dissolved after the first
anodization in an acidic solution followed by a second anodization un-
der the same conditions. Another type of porous template commonly
used for nanowire synthesis is the template type fabricated by chem-
ically etching particle tracks originating from ion bombardment, such
as track-etched polycarbonate membranes, and also mica films.



Appendix C: Statistical
ensembles used in Molecular
Dynamics

Micro-canonical ensemble (NV E)

The scheme of Molecular Dynamics implies the calculation of the new po-
sitions at each time step. This means that without modifications, the sys-
tem does not change the number of particles and the total energy (within
the computer accuracy). Adding the standard periodic boundary conditions
(Chapter 2.3.3), then the system volume of each cell is constant. So it nat-
urally comes that the typical MD system is under the micro-canonical en-
semble. However, it is often more interesting to simulate other ensembles
as the canonical ensemble (constant temperature) or the isotermal-isobaric
ensemble (constant pressure). In order to sample these ensembles, some
modifications to the standard scheme must be introduced.

(a) Micro-canonical. (b) Canonical.

Figure 5.6: Microcanonical vs. Canonical, “Big” system.
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Canonical ensemble (NV T )

The canonical ensemble is defined as a system where the number of particles
N , the volume V and the temperature T are constants.

The canonical ensemble is important for the study of the behaviour of
systems at different temperatures.

The temperature of a system is related to the average kinetic energy
of the particles. For example, in an ideal gas PV = NkBT where kB is
the Boltzmann constant, and T the absolute temperature, the total kinetic
energy can be calculated, by the definition of pressure:

P =
F

L2
=
Nm < v2 >

3V
(5.4)

where F is the force, V = L3 is the volume, m is the mass of the particles
and < v > is the mean velocity of the particles. So:

NkBT = PV =
Nm < v2 >

3
(5.5)

and < v2 >=
∑

(v2x+v2y+v2z)

N
, thus:

1

2
m
∑

(v2
x + v2

y + v2
z) =

3

2
NkBT (5.6)

Therefore a simple way to control the temperature is by scaling the ve-
locities, i.e. at each time step the velocities are scaled according to v′ = χv.
One of such scaling methods for controlling the temperature is the Berendsen
thermostat [233] where the velocity rescaling parameter is given by:

χ =

√
1 +

∆t

τ

(
T0

T
− 1

)
, (5.7)

where ∆t is the time step, T is the current temperature, T0 is the desired
temperature and τ is a time constant that determines the “speed” of the
adjustment.

Another method, similar to velocity rescaling is to constrain the velocities
by a Gaussian constraint method [234]. Alternatively, the temperature can
be held constant by a heat bath. In this method, originally due to Andersen
[235], the velocity of a randomly selected particle is replaced by one chosen
from the Maxwell-Boltzmann distribution. This is equivalent to a collision
with a particle in an imaginary heat bath.

A final possibility is the extended system method. Similarly to the An-
dersen thermostat, the system is assumed to be in contact with a heat bath.
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However, in this case the interaction between the simulated system and the
heat bath is modelled by an interchange of energy between them. In the
original formulation of this method due to Nosé [236], this was handled by
an extended Hamiltonian, with an extra degree of freedom s, which acts as
a time scaling parameter. Hoover then reformulated this without the extra
degree of freedom [237]. The equations of motion for this thermostat are:

~̇r =
~p

m

~̇p = ~F − ζ~p (5.8)

ζ̇ =
NfkBT0

Q

(
T

T0

− 1

)
,

where ζ is a friction coefficient, Nf is the number of degrees of freedom,
and Q is the thermal inertia coefficient, which describes the rate of energy
exchange between the system and the heat bath, ~F is the force, ~r are the
positions, ~p are the momenta, and T and T0 are the current and the desired
temperatures respectively.

Isothermal-isobaric ensemble (NPT )

Many experiments are performed at constant temperature and pressure, so
the isothermal-isobaric (NPT ) ensemble is commonly used for MD simula-
tions. Many of the methods used for controlling the temperature of a simula-
tion can be adapted to control the pressure, with the pressure being modified
by changing the size of the simulation cell. The change in the simulation cell
can be isotropic where the cell shape remains unchanged or anisotropic where
the cell shape changes. One simple method due to Berendsen et al. [233]
involves coupling the system to a pressure bath. At each step the volume
of the box is scaled by a factor of a parameter η and so the centre of mass
coordinates are scaled by a factor of η

1
3 , i.e. ~r′ = η

1
3~r. The system is then

made to obey the equation

Ṗ =
P0 − P
τP

(5.9)

where P is the current pressure, P0 is the desired pressure, and τP is a
time constant that determines the “speed” of the adjustment equivalent to
τ in the Berendsen thermostat.

Barostats in the spirit of the Nosé-Hoover thermostat have also been
proposed. One such barostat that generates proper NPT ensemble averages
has been proposed by Melchionna et al [238]. Here the equations of motion
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are given by:

~̇r =
~p

m
+ η(~r − ~rcm)

~̇p = ~F − (η + ζ)~p

ζ̇ =
1

τ 2
T

(
T

T0

− 1

)
(5.10)

η̇ =
1

NkBT0τ 2
P

V (P − P0)

V̇ = 3ηV,

where ~r are the positions, ~p are the momenta (do not mistake with the
pressures P and P0) , ~rcm are the system centre of mass coordinates, N is
the number of particles, and τT and τP are the thermostat and barostat time
constants. These constants are typically set to τT ∼ 1ps and τP ∼ 0.1ps
[238, 239]. In this set of equations of motion, η is the volume scaling factor
and ζ is the friction coefficient, which regulates the system’s temperature.
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[123] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan,
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