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ABSTRACT 

In the last decades, the interesting features behind the exotic orderings of 

materials have attracted the attention of many scientists. This new physics can be 

related to the magnetic and charge multipoles defined by a few electrons around 

the atomic core in the valence states.  

The uses of x-rays and neutrons techniques, due to the huge development of 

large facilities as synchrotrons and spallation sources, have revealed many of 

these behaviours. In the case of synchrotron sources, photon beams have high 

brightness, high tunability and good degree of polarization, which together with 

the development of new experimental techniques have been helpful in the 

characterization of new functional materials making valuable observations. 

Resonant Elastic x-ray Scattering (REXS), in particular using polarization 

analysis, has shown to be an extremely sensitive tool for determining the charge 

and magnetic degrees of freedom of multiferroic, superconducting or other kind of 

strongly correlated materials; helping whereas other techniques such as neutron 

probes or non-resonant x-rays scattering are not able to obtain relevant 

information. 

Conventionally, REXS experiments are performed at space group forbidden 

reflections, where high order contributions as Thomson scattering are not allowed. 

The data gathered at these weak Bragg reflections, due to space group symmetry 

rules, can be treated using an atomic model, which has the virtue of being used as 

a common platform for the analysis of x-ray and neutron diffraction experiments. 
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In this PhD work, three different antiferromagnetic materials with magnetic 

ions located in threefold symmetry (3) positions have been investigated in detail 

by means of REXS. 

� Neptunium Dioxide (NpO2), where an enigmatic low-temperature 

ordering state shows interesting physical features, similar to the one 

observed in UO2, that relates its crystal field, the super-exchange 

interactions and electron–phonon coupling. Previous works from different 

groups have not been able to explain the resonant x-ray diffraction data 

collected at the neptunium M4-edge. But new information, related to a 

change in the symmetry of the neptunium sites ( 3�� ) due to the 

delocalization of the oxygen atoms, has helped to analyse and redefine the 

wave function that has successfully confirmed the reorganization of the 

oxygen sites and has estimated the value of hexadecapoles, which can not 

be observed by other techniques, confirming the antiferromagnetic 

ordering. 

� Hematite (α-Fe2O3) in its antiferromagnetic phase and above the 

Morin temperature, due to an anisotropic exchange interaction that force 

the spins of the ions to assume a canted configuration, shows a small 

ferromagnetic contribution also known as Dzyaloshinskii-Moriya 

interaction. Previous studies performed to hematite using REXS near the 

iron K-edge did not explain properly the behaviour under this structure for 

both the collinear and canted antiferromagnetic phases. The application of 

the formalism presented in this work, which incorporate all magnetic 

contributions, successful explains the behaviour by the presence of a 

mixture between two processes electric-dipole (E1)-electric-quadrupole 

(E2) and E2E2, obtaining good estimated values for the different 

multipoles behind these processes. A circular polarized REXS experiment 

was modelled, which showed the possibility of distinguishing between 

these two processes while doing the experiment under this kind of 

polarization. The collected data ratifies the coupling between this kind of 

polarization and the chiral properties of the compound, showing a fully 

characterization of the high-temperature phase by the Magnetoelectric 

multipoles. 
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� Bismuth Ferrite (BiFeO3), the only material from the multiferroic 

family that shows a magnetoelectric coupling above room temperature, is 

also an example of the Dzyaloshinskii-Moriya interaction. The results 

presented in this work supports a new chiral phase above the Néel 

temperature, in the ferroelectric phase, have been obtained by a REXS 

experiment, with the incoming x-ray beam tuned near the iron K-edge. The 

R3c forbidden reflection (0,0,9)H was studied as a function of the rotation 

of the crystal about the Bragg wave-vector in both phases, paramagnetic 

(700 K) and antiferromagnetic (300 K). The data gathered is consistent 

with a chiral structure formed by a circular cycloid propagating along 

(1,1,0)H. Templeton and Templeton (T&T) scattering at 700 K is attributed 

in part to charge-like quadrupoles absent in a standard model of a cycloid 

in which a material vector generates all electronic states of the resonant 

ion. Extensive sets of azimuthal-angle data are used to infer values of three 

atomic multipoles in a satisfactory minimal model of the iron electronic 

structure, with a quadrupole (E1E1 event) and a hexadecapole (E2E2 

event) contributing T&T scattering, plus a magnetic dipole (E1E1) for the 

antiferromagnetic phase. 
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RESUMEN 

En las últimas décadas las interesantes características detrás de los órdenes 

exóticos de materiales han atraído la atención de muchos científicos. Esta nueva 

física puede ser relacionada con los multipolos eléctricos y magnéticos definidos 

por unos pocos electrones alrededor del núcleo atómico en los estados de 

valencia. 

El uso de técnicas de rayos x y neutrones, debidas al gran desarrollo de 

grandes instalaciones como fuentes sincrotrones o espalación, han revelado 

muchas de estos comportamientos. En el caso de las fuentes sincrotrón, los haces 

de fotones han incrementado su brillo, tienen una capacidad de sintonización más 

alta y un buen grado de polarización, que junto con la mejora de las técnicas 

experimentales han sido de gran ayuda en la caracterización de los nuevos 

materiales. 

La dispersión elástica resonante de rayos x  (REXS, su sigla en inglés), en 

particular utilizando análisis de polarización, ha mostrado ser una herramienta de 

extremada sensibilidad para la determinación de los grados de libertad de carga y 

magnéticos en el caso de los materiales multiferroicos, superconductores u otros 

tipos de materiales fuertemente correlacionados; ayudando donde otras técnicas 

como las dispersiones mediante sondas de neutrones o rayos x no resonantes, no 

han podido proporcionar información relevante. 

Convencionalmente, los experimentos REXS son realizados en reflexiones 

prohibidas por el espacio de grupo, donde las contribuciones de alto orden como 

la dispersión Thomson no están permitidas. Los datos experimentales obtenidos 

en estas reflexiones de Bragg débiles, debidas a las reglas de simetría de los 
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grupos de espacios, pueden ser tratados usando un modelo atómico, que tiene la 

virtud de poder explicar tanto los experimentos de difracción de rayos x como de 

neutrones. 

En este trabajo de doctorado, se han estudiado tres materiales 

antiferromagnéticos en los que los iones magnéticos están localizados en 

posiciones de simetría trigonal (3) mediante el uso de REXS. 

� El Dióxido de Neptunio (NpO2), donde un estado de ordenamiento 

a baja temperatura presenta unas propiedades físicas interesantes, similares 

a los observados en UO2, que relacionan su campo cristalino, la 

interacción de súper-cambio y el acoplamiento electrón-fonón. Previos 

trabajos de diferentes grupos no han sido capaces de rendir cuenta de los 

datos experimentales obtenidos mediante difracción resonante de rayos en 

el borde de absorción M4 del neptunio.  Pero nuevos información, 

relacionada con cambio en la simetría en las posiciones de los iones de 

neptunio (3��) debidas a la deslocalización de los átomos de oxígeno, ha 

ayudado a analizar y redefinir la función de onda que ha confirmado la 

reorganización de los átomos de oxígeno, estimado los valores para los 

hexadecapolos no posibles mediante el uso de otras técnicas y confirmado 

el ordenamiento antiferromagnético. 

� La hematita (α-Fe2O3) en su fase antiferromagnética y por encima 

de la temperatura de Morin, debido a una interacción de intercambio 

anisotrópico que fuerza a los espines de los iones a asumir una 

configuración canteada, presenta una pequeña contribución ferromagnética, 

también conocida como interacción Dzyaloshinskii-Moriya. Estudios 

previos realizados usando REXS cerca del borde de absorción K del hierro 

no explicaron adecuadamente el comportamiento detrás de esta estructura 

para las dos fases antiferromagnéticas, colinear y canteada. La aplicación 

del formalismo presentado en el que se incorporan todas las contribuciones 

magnéticas ha sido exitosa explicando el comportamiento con la presencia 

de una mezcla entre dos procesos dipolar-eléctrico (E1)-cuadripolar-

eléctrico (E2) y E2E2, obteniendo buenos valores estimados para los 

diferentes valores de los multipolos detrás de estos procesos. Un 

experimento REXS con rayos x circularmente polarizada fue propuesto 
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para poner de manifiesto la posibilidad de distinguir entre los dos procesos 

cuando se realizaba el experimento bajo este tipo de polarización. Para 

confirmarlo, se recogieron datos experimentales que ratificaron el 

acoplamiento entre este tipo de polarización y las propiedades quirales del 

compuesto, mostrando una completa caracterización de la fase de alta 

temperatura mediante multipolos de tipo magnetoeléctricos. 

� La ferrita de bismuto (BiFeO3), único material de esta familia que 

presenta el acoplamiento magnetoeléctrico por encima de  temperatura 

ambiente, es ejemplo también de la interacción Dzyaloshinskii-Moriya. La 

interpretación de medidas de REXS evidencia la presencia de una nueva 

fase quiral por encima de la temperatura de Néel, cerca del borde de 

absorción K del hierro. La reflexión prohibida del espacio de grupo R3c 

(0,0,9)H fue estudiada en función de la rotación del cristal alrededor del 

vector de onda de Bragg para dos fases, paramagnética (700 K) y 

antiferromagnética (300 K). Los datos obtenidos son consistentes con una 

estructura quiral formada por una cicloide circular propagándose a lo largo 

de la dirección (1,1,0)H. Los barridos angulares acimutales de tipo 

Templeton and Templeton (T&T) a 700 K son atribuidos en parte a cargas 

de tipo cuadripolar no presentes en el modelo estándar de una cicloide en 

la que un vector material genera todas los estados electrónicos del ión 

resonante. Datos obtenidos de barridos acimutales extensos han sido 

utilizados para inferir los valores de tres multipolos atómicos en un 

modelo minimal satisfactorio de la estructura electrónica del hierro, con 

una contribución de tipo cuadripolar (proceso E1E1) y hexadecapolar 

(E2E2) a la dispersión T&T, junto con un dipolo magnético (E1E1) para la 

fase antiferromagnética.   
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CHAPTER 1 

Introduction 

1.1 Overview 

Since the beginning of humanity our ancestors used the Sun as light source. The 

evolution of our specie has been always related to the discovery and govern of 

new irradiation sources as first happened with fire and later on with electricity 

(whose control opens to us the whole spectrum of radiation from the infrared to 

the x-rays regime, through the visible spectrum). These sources have been always 

behind the big steps in human evolution leading us to observe more deeply the 

universe and with this comprehension improve our quality of life by modelling 

the world around us.  

One of these huge discoveries was performed by the German Nobel laureate 

in Physics, Wilhelm Conrad Röntgen. Who in November 1895 detected the first 

electromagnetic radiation with a wavelength in the range of the x-rays. After him, 

in 1912 Max von Laue performed an experiment that first showed how x-rays are 

diffracted by ordered materials, such as crystals, following his steps William and 

Lawrence Bragg in 1913 demonstrated that this diffraction can be used to 

determine the positions of the different atoms in the unit cell of a crystal.  Since 

then, for over a century, thousands of scientists have been cooperating in the 

evolution and understanding of this type of radiation. The new world that has 

been opened to our eyes with the information available due to the different 

techniques based in x-rays, which have expand the knowledge in several scientific 
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fields; such as Biochemistry, Nano-technology, Drug development and other areas 

from the Material Science, among others. 

Information provided by diffraction while doing crystallographic research is 

linked to the structure of the compound under study, which is related at all 

dimensions to the functionalities and properties of materials and molecules, being 

currently used even for the study of non-crystalline materials. This technique 

gives structural information at the molecular level across the different fields of 

science such as physics, biology, chemistry, mineralogy, archaeology and geology.   

As an example, the chiral properties of an enantiomer material, i.e. materials 

which are non-superimposable mirror images of each other, can be related to the 

different degrees of freedom using Neumann’s principle. The action of circular 

polarized x-rays, which present an electric field rotating along the beam giving 

chiral behaviour to this beam, can interact with the chiral properties of the 

different degrees of freedom in particular the spin giving information about the 

self-ordering of the material [1]. As shown in Figure 1.1, It is possible to 

differentiate between chiral structures as in the work presented by C. Zeng and co-

workers [2], where two enantiomers of Au28(SPh-t-Bu)20 were characterized by 

circular dichroism spectroscopy. 

 

Figure 1.1  Representation of the two enantiomers of Au28(SPh-t-Bu)20 from the work presented by 

C. Zeng [2]. 

One of these crystallographic techniques is Resonant Elastic X-ray 

Scattering (REXS). This technique is resultant from the combination of the 

resonant process related to the electrons of each element specie and the process of 

dispersion of x-rays by the matter [3]. REXS was developed thanks to the high 

tunability and stability of the x-rays beams in large synchrotron facilities as 

Diamond Light Source (DLS, UK), PETRA III (Germany), European Synchrotron 
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Radiation Facility (ESRF, France), Advance Photon Source, (APS, USA) or 

Cornell High Energy Synchrotron Source, (CHESS, USA). These new sources not 

only provide a higher brightness (12 orders higher) than the conventional X-rays 

tubes, but also give a huge polarization control (due to the impressive evolution of 

the optics) and a high tunability of the energy beam [4], making possible the study 

of the high orbital degree of freedom of the electrons, i.e., studying the probability 

of an electron to occupy different degenerated orbitals of an ion.  

This thesis describes a mathematical procedure that uses a model of 

localized electrons able to determine the shape of the orbitals by analysing the 

diffraction pattern of spatial order materials when studying the contribution from 

weak reflections due to group symmetry (space-group forbidden reflections). The 

weak signal being observed in these reflections is caused by the existence of 

spatial anisotropy in the charge distribution or  by  a large magnetic order that is 

not possible to describe by crystal space symmetry. The experimental procedure 

use in this type of analysis is known as Templeton-Templeton scans (T&T), 

azimuthal angle,	�, scans performed keeping the Bragg condition fixed [5, 6]. 

This technique, also known as Anomalous X-ray Scattering, has played a 

significant role in the clarification of new properties in materials, as High-Tc 

superconductivity [7], colossal magnetoresistance [8], multiferroic properties [9, 

10, 11, 12] or the well-known Mott gap compound, V2O3 [13].  These discoveries 

of new electronic properties of materials have increased the interest in atomic 

(charge, spin and orbital) degrees of freedom in systems of highly correlated 

electrons [14].  

1.2 X-rays and its Production 

As every electromagnetic wave, the x-rays are defined by its wavelength, λ. For 

the case of the X-rays this value is of the order of the interatomic distances, one 

Åmströng (10-10 m).  The first x-ray detected by W. C. Röntgen use a Lenard tube 

(he was studying the radiations associated with discharge of electrodes along the 

vacuum inside this kind of glass tube) covered with an aluminium foil so no 

visible light was able to exit. This foil became an anode where x-rays were 

generated due to the Bremsstrahlung process (radiation pattern generated by de 
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1 Figure based in a image taken from  
http://photon-science.desy.de/facilities/petra_iii/beamlines/index_eng.html. 

acceleration/deceleration of a charge particle by the action of a electro-magnetic 

field) produced by the interaction between the electrons displacing along the tube 

and the field generated by the electronic cloud around the Al cores. Using a 

cardboard screen painted with barium plantinocyanide, he was able to observe the 

interaction of this radiation with matter (using different materials as paper, wood, 

metal and even his hand, which bones was able to photograph) for first time. 

 

Figure 1.2 Scheme of the ring Petra III in Hamburg, showing the typical features of a third 

generation synchrotron radiation source.1 

In 1912 W.D. Coolidge from General Electric developed the first x-ray 

commercial tube, which allowed the use of x-ray for commercial and research 

projects. But it was not until the middle 70s when the radiation coming from old 

accelerator for high energy physics, as CHESS or DESY, were used for the 

production of x-rays due to the Bremsstrahlung process, in this case, due to the 

application of a magnetic field that change the trajectory of the charge particle 

generating a deceleration and with it a radiation pattern that covers all the 

spectrum of light.  

These first synchrotron sources were followed by the construction of other 

facilities specific for the production x-rays as the cases of DLS, the ESRF or APS, 

also known as third generation sources. This type of facilities present two main 

advantages with respect to the first generation ones; the beam has a lower 
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emittance (the particles are confined to a small distance and have nearly the same 

momentum), resulting an x-ray beam smaller that produces a higher brightness, 

and the incorporation of the so called insertion devices, long arrays of magnets 

that produce a stronger x-rays flux, making use of the straight sections.  

The production of this kind of radiation has jumped many orders in terms of 

brightness from the 106 

������

�	������  of the Aluminium targets via 1020 

������

�	������ 

from third synchrotron generation sources (Figure 1.2) with undulators as 

insertion devices to the 1026 

������

�	������ expected for the European Free-Electron 

Lasers [16, 17].  

1.3 Resonant X-ray Diffraction 

For many years Neutron probes have been used as conventional techniques for 

determining the magnetic moment of different materials, in our days these values 

can be also measured using x-ray due to the interaction between this type of 

electromagnetic waves and the unpaired electrons that define the magnetic 

moment [18, 19]. The big disadvantage for the use of x-rays in contraposition to 

neutrons is related to the big ratio between the amplitude from the magnetic 

moments in comparison with the charge scattering (Thomson scattering), the 

magnetic moment contribution is due to a small number of unpaired electrons 

while in the case of the charge scattering all the electrons from the structure are 

contributing. 

On the other hand, when studying reflections near an absorption edge, as 

done in the case of resonant x-ray diffraction experiments, the intensity will be 

amplified by the excitation of a core electron to an empty orbital in the valence 

state. This energy selection will only affect the elements with a resonance near to 

the one used, lowering the contribution to intensity of the ions from other 

elements in the case that the compound had more than one element in its structure 

(selective technique). Allowing the detection of the magnetic moments of a single 

element not possible to be done with other techniques such as neutron probes [20, 

21]. This magnetic moment detection is performed by Templeton and Templeton 
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scans, rotation around the azimuthal angle, �, fixing the Bragg condition, which 

gives information about the electronic cloud of the ions under study. 

For resonant x-ray diffraction experiments the definition of the wavelength 

of the x-rays is fixed by the energy of the absorption edge we are interested in 

working nearby. These atomic resonances are defined in relation to the core level 

quantum number n = 1, 2, 3, 4, 5 o 6; that are usually denoted by the letters K, L, 

M, N, O or P. And the spin-orbit dependence from the core level states, that is 

written using the total angular momentum 	� = �	 ± 1/2 , where l denotes the 

orbital angular momentum quantum number and ½ is related to the spin 

momentum,	�. It is conventional in the community to denote the values of the	� 
( 	�� � , 	!� � , !" �  and #" � ) by numbers (1, 2, 3 and 4, respectively). The 

nomenclature used for denoting the absorption edges is then defined by a letter 

that correspond to the core level quantum number and a number coming from the 

total angular momentum, as an example, for Fe studies K1 denotes 1�� �  and Np 

studies M4 denotes de core state 3#" � . 

In addition, resonant X-ray scattering allows us to perform polarization 

analysis studies both in the primary and secondary beams. The polarization of the 

beam from a synchrotron source, as previously note, is nearly σ polarized, but 

using some optical features it can be turned to be π-lineal polarized, or other kinds 

of polarization as elliptical or circular polarization. In our days, some insertion 

devices allow also the control of the beam polarization, due to a especial arrange 

of the magnetic poles along it, giving also the possibility of obtaining circular or 

elliptical polarization without optical gadgets along the experimental line. 

Due to what has been describe in previous paragraphs, REXS is an 

appropriate technique for the determination of the orbital ordering of the valence 

electrons, this type of electrons are able to occupy different degenerates orbitals. 

Being able to give us information about the ordering of the different multipolar 

moments: dipoles, quadrupoles, octupoles, hexadecapoles,… when performing 

measurements of the intensity coming from forbidden reflections. 

The formalism presented in this work calculates the amplitudes of the 

different contribution to diffraction for possible resonant processes in terms of a 

model of localized atoms based in irreducible spherical tensors. It is possible to 
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define these electronic transitions as parity-even, if the event do not break the 

spatial symmetry inside the system (dipolar-dipolar charge, E1E1, and 

quadrupolar-quadrupolar charge, E2E2), or parity-odd in the other case (dipolar 

charge-dipolar magnetic, E1M1, and dipolar-quadrupolar charge, E1E2). The 

structure factor, $ , where is included the information of the variables that 

contribute to the intensity, is described as a sum in which one take into account all 

the ions that contribute to the interaction inside the unit cell together with a phase 

that relates to the symmetry between the different ions sites. $ is always different 

from zero for space group allowed reflections, been its value equal to the sum of 

the phase factor if all the ions are identical. On the other hand, in the case of 

forbidden reflections the symmetry of the positions of the ions inside the unit cell 

cancels the intensities of the structure factor. For some of this forbidden 

reflections, and due to an ordering of the charge, magnetic or chiral moments of 

one of the elements inside the compound can be observed a small contribution to 

the intensity. Even this intensity is many orders smaller than an allow reflection, it 

can be well observed in the case of selecting an energy near to an absorption edge 

of this element specie under study where the amplitude is incremented due to a 

resonance process. 

1.4 Application to Materials 

In the recent past, the condensed matter physical community has been focused on 

the comprehension of the magnetoelectric, in particular the one present in 

multiferroic materials, which shows more than one ferroic ordering at the same 

phase. The interest in these materials rise from their possible implementation in 

the field of storage information, using them as future materials for spintronics, 

magnonics,… Bismuth Ferrite is an example of this type of compounds, well 

known because is the only multiferroic material that present both ferric ordering 

(ferroelectric and antiferromagnetic) above room temperature, the magnetoelectric 

effect present in this material is related to the Dzyaloshinskii-Moriya (DM) 

interaction, presented in Appendix A. The selection of the other two compounds 

studied, Neptunium Oxide and Hematite (Iron sesquioxide), during this work was 

done by the similitude that present this compounds with Bismuth Ferrite. Our 
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motivation was to show how REXS technique can infer information that relates 

the three materials, which show the same threefold symmetry around the location 

of the ions that contribute to magnetism.  

1.4.1  Motivation for the study of Neptunium Oxide, NpO2 

The family of the actinide oxides, made up of An4+ and 2O2−, due to the 5f 

electrons from the actinide element, presents conventionally a magnetic ordering 

below a temperature, as the case of the UO2 that present an antiferromagnetic 

behaviour below its Néel temperature (TN ≈	30 K) [22]. Neptunium Dioxide, 

NpO2, shows a phase transition at T0 = 25,5 K that has not been possible to been 

explain as a magnetic transition by neutron probes or Mössbauer spectroscopy 

[23, 24], although appears to be a magnetic signal while  performing muon probes 

experiments [25]. REXS experiments performed to this compound by Paixao et al. 

[26] use to explain the behaviour the fluorite fluorite structure ($�3��, #225) that 

in recent years due to NMR experiments has seen not to be the right one due to a 

change of the Oxygen positions to two non-equivalent positions [27], been the 

symmetry of the Neptunium sites reduced to a local (-3m) from the Pn3�m (#224) 

space group. Nevertheless, the two space groups can be distinguished in a 

diffraction experiment exploiting Templeton–Templeton scans as presented in our 

work re-analysing the data presented by Paixao et al. [28]. The importance of 

understanding these materials is related to the interplay between crystal field, 

super-exchange interactions and electron–phonon coupling that seems to be the 

relation between its physical properties [29].  

1.4.2  Motivation for the study of Hematite, α-Fe2O3 

The next material under study was Hematite, α-Fe2O3. This compound well 

known to be the paradigm of the DM interaction since 1954 [30, 31] is a good 

touchstone for this kind of anisotropic exchange interaction due to the interest that 

presents this behaviour for new functional materials as multiferroics. The DM 

interaction forces a canted response from the moments of the spin from the 
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magnetic ions, producing the so called weak ferromagnetism in the case of 

antiferromagnetic materials as Hematite. Two groups investigated previously this 

compound using azimuthal dependent scans with linear polarized X-rays near the 

iron K-edge for different forbidden reflections from the (0,0, �)H  family with	� 
odd  [32, 33], we followed their work finding that the analysis of the data was not 

complete in the case of K. Finkelstein et al [33] and in the case of J. Kokubun et 

al [32] the approximation used to calculate the amplitudes of scattering were not 

the correct ones for energies below the edge. We reformulated the wavefunctions 

following a formalism based in irreducible spherical tensor, that is presented in 

chapter 2.4, which incorporates all magnetic contributions to Resonant X-ray 

Diffraction allowed by the established chemical and magnetic structures. In this 

point we show that there was an ambiguous contribution of the charge-dipolar 

charge-quadrupolar (E1E2) event together with the pure charge-quadrupolar 

(E2E2) event, that were possible to be distinguish in the case of using circular 

polarized x-rays in the primary beam, which motivated our experimental findings 

in this material  as explained in Chapter 5. The comprehension of the chiral 

structure of the moments of this compound can help in the better understanding of 

the behaviour shown by the magnetoelectric materials. 

1.4.3  Motivation for the study of Bismuth Ferrite, BiFeO3 

Bismuth Ferrite is known to be the only multiferroic material which present both 

ferric phases (ferroelectricity and antiferromagnetism) above room temperature, 

giving to this material key properties for the application of this kind of materials 

in future devices [34, 35, 36, 37].  BiFeO3 presents a polarization of	100	*+/,�� 

under its Curie temperature (TC 	≈ 1100	- ), this ferroelectric property coexist 

below the Néel temperature with a G-type antiferromagnetic ordering (+ − +−) 
together, in the case of bulk material, with a long-period incommensurate 

magnetic cycloid modulation (≈ 	620	Å). The spiral propagates along the vector 

(1,1,0)2  with the dipole moments rotate in the (1�, 1,0)2  plane, defined by the 

spontaneous electric polarization along [0,0,1]2	and the propagation vector [12]. 

This interest motivated us to try to synthesis a good quality crystal to study and 

doped it with other elements that could give interesting properties as the elements 



10  CHAPTER 1: Introduction  

 

 

from the lanthanide family, as Gadolinium, which perovskites also present 

multiferroic behaviour. The use of REXS experiments in this type of chiral 

structure can reveal the interest of the orbital moments around the bismuth and 

iron sites which can help in the future designing of new multiferroic materials. 

1.5 Organization and Structure 

This thesis work is presented on the modality of a compendium of articles already 

published in scientific journals. In Table 1.1is presented relevant information 

related to the journals where the articles have been published: year of 

publications, impact factor and the relevance of the journal on the area(s) where it 

is ascribed. 

The thesis is structured into seven chapters. Chapter 1 was comprised to a 

general introduction to the subject of x-ray and with the Resonant Elastic X-ray 

Scattering, together with the motivation of the different material investigated 

along this PhD Thesis. In Chapter 2 presents the theoretical background for 

scattering and the formalism based in non-reducible tensor used to describe the 

processes of scattering is presented. Chapter 3 is devoted to x-ray synchrotron 

facilities and the experimental fundaments of the technique that has been used, 

REXS.  The following chapters (Chapters 4, 5 and 6) present the results obtained 

from the investigation performed to the three antiferromagnetic compounds. To 

conclude with the final remarks presented in Chapter 7. 

Table 1.1. Details of the scientific journals where the articles have been published (or submitted) 

in this PhD Thesis. Information has been taken from the web site ISI Web of Knowledge/ Journal 

Citation Reports 2012 JCR Science Edition. 

Journal Year Impact 

Index 

Area Nº/area 

(percentile) 

Phys. Rev. B 2011 3.691 Physics, Condensed  Matter 13/69 (Q1) 

2013 3.767 Physics, Condensed  Matter 15/68 (Q1) 

J. Phys.:     

Condens. Mat. 2012 2.355 Physics, Condensed  Matter 20/68 (Q2) 

J. Phys. Soc. Jpn. 2014 2.087 Physics, Multidisciplinary 19/83 (Q1) 
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CHAPTER 2 

Theoretical Fundaments 

2.1 Principles of Scattering 

From a basic point of view, we can consider X-ray scattering by charge particles 

as the generation process of an electromagnetic wave by a series of charge 

particles oscillating in phase due to the action of an electromagnetic field 

produced by an incoming X-ray wave. This process can be divided in elastic 

(diffraction) if the energy of the scattered photon is conserved with respect to the 

photon which excited the particles or inelastic (Compton) if the final energy of the 

photon scattered is changed, for example, due to an absorption process.  

2.1.1 Electron in an electromagnetic field  

Let’s first consider the interaction between an electromagnetic wave and a free 

electron. The total energy of a non-relativistic free particle (in our case an 

electron), in the absence of externals fields, is its kinetic energy, ϰ = !� 2�6⁄ , 

where ! is the momentum of the particle and �6 the mass of the electron.  

If the electron interacts with an electromagnetic field generated by the 

incident wave, 	E9e;(<∙>?@A) , where q  is the incoming wave vector and ω  its 

frequency, the momentum of the electron is change to be ! − 6
D E, denoting E as 

the vector potential [38]. The energy of the particle will be then 

	 	 F = G
?H
IJK

�

��H = 
�
��H +

6�
��HD� E� −

6
��HD L ∙ M,	 (2.1)	
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here, ! and E denote two quantum operators that we have assumed to commute. 

These two terms related to vector potential describe the interaction between the 

electromagnetic field and the electron. In terms of quantum mechanics, the 

potential operator vector, M , can be described in terms of the creation and 

annihilation operators and due to this is the one that has the property of creating 

and destroying the  photons.  

The first order of perturbation is related to the term		E�, this term is able to 

create and destroy a photon in one interaction and due to this is the most 

important contribution for photon scattering (Thomson Scattering). The second 

term ! ·	E (second order of perturbation) is only linear in the photon operators so 

it can destroy or create a photon but not both, been related to photon absorption 

(destruction) and photon emission (creation) causing also a scattering that will 

need two interactions. One example is the case of resonant or anomalous 

scattering, when the photon energy matches an excitation in the target and the 

denominator becomes very small. 

The interaction with the magnetic field is done with the spin of the electron 

been ϰO = −* ∙ P  the energy, where we can define *  as the magnetic moment 

equal to −2	*QR , where S denotes de spin of the electron and *Q  the Bohr 

magneton (Sℏ 2�6⁄ ) . The Magnetic field can be described in terms of the vector 

potential as P = ∇ × E, this term, known as Zeeman term, is in the same order of 

perturbation as ! ∙ E. But it is not the only contribution of the magnetism, also the 

effect between the spin and the magnetic field generated by the electron itself due 

to the classical Ampére’s law (charge particle moving inside a electric field) must 

be taking into account inside the magnetic contribution, so in addition we have to 

include the spin-orbit interaction R ∙ (E × W).  

2.1.2 Diffraction by two electrons  

The scattering process needs of unless two particles to happen [17]. For this 

reason, let’s consider the case of the interaction between two electrons inside an 

electromagnetic wave. Let’s first denote X  as the difference between the 

incoming, Y, and scatter, Y′, wave vector as shown in Figure 2.1,  
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	 	 X = Y − Y′.	 (2.2)	
The scattering power is usually defined in terms of the Thomson scattering 

length also known as the classical radius of the electron, 

r\ = e� mc�	(c. g. s) =⁄ 	2.82	10?bÅ. The scattering amplitude can be writing as 

  $(X) = −c6d1 + Sef∙�g.	 (2.3)	
where term X ∙ c defines the phase difference between the interaction of the two 

electrons in relation to the electromagnetic field, describing $(X)	the possibility 

of finding a constructive signal. The intensity for this two particle system is 

proportional to the square of the absolute value of the amplitude, 

	 	 	h~|$|�.		 (2.4)	

2.1.3 Diffraction by an atom 

For the case of an atom the electromagnetic fields will exert forces on the 

electrons of the atom producing accelerations, vibration affects, in the entire 

valence electrons around the core, which can be described by a charge density of 

the valence electrons, l(c). This changes the scattering radiation field to be a 

superposition of all the contributions from the different volume elements in this 

distribution [38]. To evaluate this scattering amplitude we must take into account 

the contribution of the electrons around the atom by summing over all the space, 

this integration define the atomic form factor 〈∑ Sef∙opq 〉, that is equal to the 

number of electrons in the case of G = 0. The exponential inside the brackets is 

given by 

  Sef∙op = 4s∑ tuvudXwqgxyzudX{g|∗yzudw{qguz , (2.5)	

here, X{ = � G⁄  and w{q = �� wq⁄   are the unit vectors, vudXwqg	is a spherical Bessel 

function of rank - multiply by the radial density of valence function, l(c), and 

yzud�{g are spherical harmonics with 	- its rank and 	� the projection that satisfy 

that - ≥ � ≥ −- and can take 2- + 1 values. 
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Now, it is interesting to introduce the atomic tensor	〈�zu〉, in function of the 

spherical harmonics. The definition of these tensors is related to the separation of 

the angular dependence of X  and wq  in (2.5), extra explanation is given in 

Appendix B. 

	 	 〈∑ Sef∙opq 〉 = (4s)�/�∑ tu〈vu〉(−1)zy?zu dX{g〈�zu〉uz ,	 (2.6)	
where (〈…〉) defines the time-average value. The term 〈jK (G)〉 for the case that 

X = 0 and for - > 0 is equal to 0. 

  〈�zu〉 = (4s)�/�∑ 〈yzudw{qg〉q 	 (2.7)	
The atomic tensor 〈�zu〉 evaluated for - = � = 0 is equal to the number of 

valence electrons. The atomic tensors are also called multipole moments and they 

are named by the Greek word for the number 2K, as present in Table 2.1. 

Table 2.1 Multipole moments. 
Rank Greek Name 
K = 1 Dipole 
K = 2 Quadrupole 
K = 3 Octupole 
K = 4 Hexadecapole 
K = 5 Triakontadipole 
K = 6 Hexacontatetrapole 

2.1.4 Crystal Structure  

Let’s define a crystal as a solid where all the atoms occupy fixed position inside a 

periodic structure with translational symmetry. The smallest fraction of crystal 

where can be defined all the symmetry is known as unit cell. All the possible 

crystalline structures for 3D were classified by Aguste Bravais in 14 lattices; these 

lattices together with the symmetries of the different sites that can occupy the 

atoms inside the unit cell define the 230 space groups, tabulated in the 

international tables of crystallography [39]. 

The unit cell can be described by the lattice vectors, also known as cell 

parameters (�, �, ,), and a motif. The position of any atom inside the crystal can 

be defined giving the distance to the origin of the cell, as w� = ��� + ��� + �",, 

where ni=1,2,3 are integers values. 
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	 	 X = �(ℎ��)	 (2.8)	
The condition of diffraction or Laue condition (2.8), see Figure 2.1(b), 

inside a crystal is defined as a constructive signal result of the different atoms that 

satisfy the same interaction with the incident X-ray radiation. 	τ(hkl) = ha∗ +
hb∗ + lc∗  describes the group of planes that satisfy the same condition, where 

(�∗, �∗, ,∗)  is base of the reciprocal space, that  is derivate from the base of 

vectors from the real space as (2.9), where (ℎ, �, �) are a series of integers known 

as the Miller indices, 

  �∗ = ��(�×D)
�I ,	�∗ = ��(D×�)

�I  and	,∗ = ��(�×�)
�I , (2.9) 

here, �D is the volume of the unit cell. The Laue condition of diffraction can also 

be described by the use of the Ewald sphere, presented in Figure 2.1(b), when two 

atoms fall in the sphere of radius Y the conditions for scattering are satisfied. 

 

Figure 2.1 Equivalence between Laue and Bragg conditions of X-ray diffraction by a 2D lattice.   

The Miller indices are used to label the possible reflections of the system 

[17]. Usually use to describe the allow reflections due to space symmetry rules, 

they are also employed to define the weak reflections that may arise due ions in 

environments in the unit cell not equivalent on account of a lack of translational 

symmetry. We can now define the distance between the planes that satisfy the 

same diffraction conditions, #���, or lattice spacing as,  

  #��� = �
�� ¡¢

�£�¤¥¢
�£�¦I¢

�.	 (2.10)	

Ones defined #��� it is possible to present the Bragg condition to scattering, 

Figure 2.1(a), that relates the angle of incident of the beam with the lattice spacing 

and the wavelength of the electromagnetic wave, as 
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	 	 	§¨ = 2#����t§(©),		 (2.11)	
where § is a integer. This condition is equivalent by an easy demonstration to the 

Laue condition presented in (2.8). 

2.2 Non Resonant X-ray Diffraction from Crystal 

(Thomson Diffraction) 

Conventionally, while defining the interaction between radiation and matter using 

quantum-electrodynamics, the X-ray scattering length is developed in terms of 

ª	 = 	W �6,�⁄ . The first order of this approximation is related to the spatial 

Fourier transform of the electron charge density and it is responsible for the 

Thomson scattering of X-rays, 	$D(X) [40, 41], the second approximation term 

f¬­®(X) is related to the process of interaction between the spin of the electrons 

and the electromagnetic wave, while the third term of the approximation is a 

complex correction known as resonant or anomalous dispersion term, Δ° = °O +
t°OO 
	 	 $(X,±) = $D(X) + °��²(X) + °O(±) + t°OO(±).	 (2.12)	

The Thomson contribution to the X-ray scattering length (Figure 2.2) by a 

crystal is expressed as −c6(³ ∙ ³O)$D(X), where ³ and ³O denote the polarization of 

the incoming and outgoing beam and they are perpendicular to the wave vector of 

the beam (Y ∙ ³ = Y′ ∙ ³′ = 0 ). $D(X) is sum over every ion in the unit cell that 

contributes to scattering as expressed in (2.13), the subscript c is used to denote 

that for the moment we are just taking into account the charge density 

contribution. 

	 	 $D(X) = ∑ Sef∙´´ 〈∑ Sef∙opq 〉´ ,	 (2.13)	
here, we find the atomic form factor for the electrons associated with the ion 

occupying the d site. The second exponential relates the different positions inside 

the unit cell. Inserting the value of the form factor we can write the Thomson 

contribution in terms of the atomic multipolar moments as 

  $D(X) = ∑ Sef∙´´ (4s)�/�∑ tu〈vu〉(−1)zy?zu dX{guz 〈�zu〉´.	 (2.14)	
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Note that $D(X) is a scalar product of a spherical harmonic related to the X-ray 

and a tensor associated with the electronic cloud around the ions in the d site. 

Grouping the terms that depend of the site d we can define the cell structure 

factor, Ψzu, that will take into account all the symmetry inside the unit cell.  

  ¶zu = ∑ Sef∙´´ 〈�zu〉´ 	 (2.15)	
The atomic tensors encountered in Thomson scattering change to 

(−1)·〈�̧·〉¹ from 〈�̧·〉¹ under inversion of the coordinate system of the electrons, 

which is also referred to as the parity transformation, and a tensor with this 

transformation property is called a true (or polar) tensor. If the parity 

transformation introduces a phase factor (−1)·£� the tensor in question is called a 

pseudotensor, or an axial tensor, an example of this is the helicity of an X-ray 

beam. 

 

Figure 2.2 Laue diffraction pattern from the photo-active yellow protein. Image taken from J. Als-

Nielsen & D. McMorrow [17].  

2.3 Non Resonant Magnetic X-ray Diffraction  

One of the differences between neutron and X-ray scattering is related to the 

difference in the spin-orbit interaction. While neutrons are scattered by the 

magnetization in a material which is created by the spin and orbital moments of 

unpaired electrons giving a contribution of the spin angular momentum (S) and 
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the orbital momentum (L) proportional to the value L+2S [18, 42].  In the case of 

X-ray these two values are not coupled and can be measured separately, using 

techniques for spin definition as Magnetic Compton X-ray Scattering [43, 44, 45]. 

Even the spin interaction for neutron scattering is very similar to the spin 

interaction in X-ray scattering; there is one difference between the two cases 

related to the dependence of neutron scattering with the deflection of the beam in 

a double vector product		º × d�q × ºg ��⁄ . 

The introduction of the spin from the electrons gives the first term 

approximation to scattering,  

  $(X) = −c6[(³ ∙ ³O)$D(X) − t�$»(X) ∙ ¼], (2.16)	
where the spin contribution depends of the reciprocal lattice vector, � = ℏY �,⁄ , 

and the scattering wave vector X. The first term in (2.16) is the familiar charge 

scattering length, while the second is sensitive only to the electron spin orientation 

due to the product with B,  

 ¼ = (³O × ³) − (Y½O × ³O) × (Y½ × ³) + (Y½O ∙ ³)(Y½O × ³O) − (Y½ ∙ ³O)(Y½ × ³).(2.17)	
The most important differences between the spin scattering and the 

Thomson scattering are the following: 

• The spin scattering amplitude is reduced by a factor � compared with 

the charge scattering. 

• The charge and spin scattering amplitudes for a plane polarized 

primary beam are 90º out of phase. 

• Spin scattering causes a partial rotation of the plane of polarization 

unlike charge scattering. 

• The spin scattering amplitude scales with the net spin polarization, 

〈S〉, which is general small, even in magnetic systems. 

The rather complicated polarization dependence of magnetic scattering is a 

very valuable property. Apart from being essential for the circular polarization 

induced interference scattering, the fact that charge scattering does not cause 

polarization mixing allows the possibility of constructing a sensitive filter for 

magnetic diffraction. A quantitative analysis of the secondary beam polarization 
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can give important information about the spin and orbital composition of the 

magnetization density. 

The spin density structure factor, $»(X) , is a vector quantity, which 

describes both the configuration and the orientation of the spin moments in a unit 

cell [38]. This factor is well represented by a sum of individual contributions from 

each ion in the magnetic cell, 

  $»(X) ≃ ∑ °�(X; #)〈R〉´´ Sef∙´, (2.18)	 	 	
where the term °�(X; #) denote the atomic spin form factor, that in the case of 

X = 0  is equal to 1. Similar to the Thomson contribution we can define this 

atomic spin form factor as  

  °�(X; #)〈R〉´ = 〈∑ Sef⋅op�qq 〉´ (2.19)	
here, the subscript j is related to the jth electron associated with the ion in the 

position d of the unit cell. The calculation of these expected values in terms of the 

spherical harmonics is done in Appendix B.  

The absence of an orbital term in the photon amplitude reflects the fact that 

we have so far considered scattering from free, stationary electrons. This is not 

true, because the electrons are in perpetual motion around the atomic nuclei, 

although the fact that most electrons form pairs of time-reversed orbits means that 

the net momentum distribution is often very small and may be neglected. In 

magnetic systems, time-reversal symmetry is broken, and may exist regions where 

the electrons possess a finite net momentum. The scattering amplitude from these 

regions becomes slightly modified by the electron motion, and this is the origin of 

the orbital scattering. 

  $Ã(X) ≃ �
�∑ °Ã(X; #)〈Ä〉´´ Sef∙´ ,	 (2.20)	

where the atomic orbital form factor is,  

	 	 °Ã(X; #)〈Ä〉´ = 〈 �
(ef�)∑ Sef⋅opdX × !qgq 〉´ . (2.21) 

Leading to a final expression for the magnetic first order approximation 

°��²(X)  
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°��²(X) = −t�[FÆ(X) ∙ B + $Ã(X) ∙ B9] 
where B9is defined as 

  ¼9 = (³O × ³) − �ÈÉ�È ∙ (³O × ³)Ê.		 (2.22)	
Using the definition of the spherical tensors 〈�̧·〉  we can write the cell 

structure factor  

  ¶zu(R) = ∑ Sef∙´〈�zu〉»,´´ , (2.23)	
	 	 ¶zu(Ä) = ∑ Sef∙´〈�zu〉Ã,´´ ,	 (2.24)	
and the amplitudes of scattering as, 

  $»(X) = ∑ ∑ (4s)Ë�uOzO yzu(X{)¶zÌuÌ(R)(-�-O�O|1!)uz , (2.25)	
	 	 $Ã(X) = ∑ ∑ (4s)Ë�uz yzuÌ?�(X{)¶zÌuÌ(Ä)(-O − 1�-O�O|1!)z .	 (2.26)	

The reduced matrix elements are defined in the appendix B For the 

calculation of the structure cell factor, ΨzÌuÌ
, the tensors at different sites in the cell 

are related by the application of the symmetry operators in the space group. To 

take into account the magnetism it is necessary to introduce the influence caused 

by reversing the polarity of the local magnetic field apart of the conventional rules 

related to the symmetries described by the magneticspace group. For example, a 

fully compensating antiferromagnetic has equal numbers of ions with opposite 

local fields. The general rule for parity-even tensors is, 

	 	 〈�zu〉2 = (−1)u〈�zu〉?2	 (2.27)	
here, H denotes an applied field on the direction of the spontaneous moment at the 

site in question. These general expressions for the magnetic structure factors can 

include higher–order multipole moments tensors as octupoles. 

2.4 Resonant X-ray Diffraction 

The next contribution to the scattering intensity, following the approximation in 

terms of W �6,�⁄ , is related to the resonant behaviour that is only relevant in the 

approximation to a shell absorption edge of the material under study. It was in 
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1985 when Nanikawa et al. [46] found a small contribution to the magnetic 

scattering from a ferromagnetic nickel at energies very close to the K-edge. Three 

years later Gibbs et al. [47] found a resonance-enhancement magnetic diffraction 

from an antiferromagnet while measuring a holmium sample near the L3-edge, 

giving the first clear demonstration that resonant scattering could make magnetic 

diffraction experiment considerable easier to be performed. 

Differently to both non-resonant scattering and neutron diffraction in the 

case of resonant magnetic scattering does not give direct information about 

magnetization densities. Resonant diffraction is essentially a probe of local 

magnetic phenomena, as happens with dichroism, since the excitation involve a 

highly localized initial core state. This is due to the fact that resonant scattering 

needs to take place in regions of high core level density, regions close to the 

nucleus. One of the most important advantages of resonant magnetic scattering is 

high sensitivity to the directions of the local moments, and from this can be 

determined the magnetic orbital structure. 

 

Figure 2.2 Scheme of the resonant x-ray scattering process. An incoming X-ray photon ª excites 

and electron from the core shell to a valence state generating the state Í  that decays to the 

fundamental state by the generation of a second photon ªO. 

2.4.1 Resonant diffraction length  

The two terms from the approximation in equation (2.12) that will be discussed in 

the following paragraphs are explicitly depended with the X-ray energy [40, 41].  

  °�6�(±) = °O(±) + t°OO(±)		 (2.28)	
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As discussed in 2.1.1 these resonant terms depend linearly on the vector 

potential, ! ∙ E , and arise from the second level of approximation in the 

interaction between radiation and matter. It is necessary to include the definition 

of the current operator, �(Y), in terms of the electron linear momentum d!qg, 

position dwqg  and spin d�qg  operators, 	�(Y) = ∑d!q + t�q × YgSeÎop . These two 

terms together with the Thomson contribution to the scattering length at the limit 

of small energy produce the Rayleigh limit of the cross-section, while the one 

term that admits an energy resonance gives in this condition the Kramers-

Heisenberg dispersion formula. For the case presented in this thesis work, where 

we will just study a purely elastic scattering process, we are only interested in the 

energy resonance and its influence on Bragg diffraction. 

For the description of the resonant X-ray scattering process, it is necessary 

to define intermediate states, |Í >, as done in figure 2.2, these intermediate states 

are not from the equilibrium configuration of the crystal as happens for the initial 

and final states, |� >, and they decay on a timescale ~ℏ Γ⁄ , where		Γ is the total 

width of the resonance, to one of these final fundamental states. The contribution 

to the scattering length from a resonant event can be written as  

  °�6� = −� �H
�H¢∑

〈ÐÌ|ÑÌ∙Òd?ÎÌg|Ó〉〈Ó|Ñ∙Ò(Î)|Ð〉
Ô?Õ£eÖ �⁄Ó(Õ)  (2.29)	

where the limit of the sum Í(Δ)  imposes the contribution only from the 

intermediate states that contribute to the resonance energy, Δ = E× − EÐ. As the 

energy profile dependence is observed usually like a single oscillator, we can 

dismiss the weak dependence from Γ and Δ from the intermediate states. 

The next step in our presentation of the scattering length is defining the 

current operators as a sum over the electrons and ions inside the unit cells that 

participate in the resonant scattering process. The electronic wavefuction is 

defined with and arbitrary phase factor that is different for each ion, being 

necessary to include an average over these phases, and all other degenerate 

variables associated with the equilibrium state of the crystal, inside the mean 

value denoted by 〈… 〉. The average of the individual phase factor is zero and thus 

cross-terms in the product of �(−YO) and �(Y) are zero averaging. Resulting the 
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numerator in (2.29) a sum over the ions in the unit cells, the electrons associated 

with the ions. The spatial phase factor from the current operators are Se´f . 

Now expanding �(Y)in first order in Y [48], we obtain, 

〈Í|³ ∙ �(Y)|*〉 = (t�6Ù)∑ 〈Í Ú³ ∙ wq �1 + e
� Y ∙ wq¢Ú *〉 + � e�¢ 〈Í|(Y × ³) ∙ (Ä + 2R)|*〉q 		 (2.30)	

where the first term of the sum define the charge-dipolar, E1, and charge-

quadrupolar, E2, processes and the second term, which is related to the magnetic 

moment (Ä + 2R) , defines the magnetic-dipolar, M1, process. The order of 

magnitude of the strength of an E1 resonance event is given by an atomic electric 

dipole S�9, where �9 is the Bohr radius, and the strength of an M1 event is given 

by a Bohr magneton *Q 	= 	Û��9, where Û is the fine-structure constant ≈ 1/137. 

Thus, the relative strengths of E1 and M1 are expressed by ratio Ü1/W1	 ≈ 	Û/2. 

The strength of an E2 event depends on the magnitude of the x-ray wavevector 

Y	 ≈ 	0.51	W	(�S�)	Å?�, where E is the x-ray energy, and we achieve an estimate 

W2/Ü1	 ≈ 	W/(27	S�). From this ratio we can assume that the E1 process will be 

dominant. Otherwise, the importance between the E2 and the M1 processes can be 

similar although the experimental evidence is that E2 is more significant for the x-

ray regime. In this same style, the contribution related to an E1E2 event is 

expected to be stronger than the one of a possible E1M1. 

In the formalism that will be present in the following subchapters, there is 

an additional assumption, where the dependence of the numerator in (2.29) with 

the projection Ü�  of the angular momentum of the core state � ̅is neglected [49, 50]. 

This assumption is valid just for the case of the approximation of the energy 

profile to a single oscillator, where there is not interaction between the core state 

and the photo-ejected electron and there is not presence of an exchange coupling 

of the core and valence states. On the other hand, if the shape of the peak is not 

similar to a single Lorentzian it would be necessary to assume the degeneracy 

with respect to Ü�  [26, 51, 52]. 

This assumption, similar to the simplification of fast collision presented by 

Hannon et al. and Luo et al [53, 54, 55], consists in the omission of the energy of 

dispersion for the intermediate states, i.e., only is taken into account the § = 0 

term of the serie, 
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	 	 	(W − Ù + tÞ 2⁄ )?� = (Wß� − W9 − Ù + tÞ 2⁄ )?�∑ Ôà���?Ôà
Ôà���?Ôá?Õ£tÞ 2⁄â�ã9 	 (2.31)	

where W = Wß� − W9 , representing Wß  and W9  the energy of the excited and 

fundamental states, and defining Wß�  as the mean value of the energy of the excited 

states. This expression is valid in the case that the denominator is much smaller 

than the dispersion of the energy of the excited states, ΔWß = �(Wß − Wß� )��������������. This value 

represents also the frequency at which the changes in the valence level will 

happen due to the presence of an electron from the core level that leaves a core 

hole that the electron will try to fill as in Figure 2.2. 

2.4.2 Even transitions under spatial inversion, E1E1 & E2E2  

E1E1event 

The strongest contribution to the cross-section is related to the pure charge-dipolar 

event, (E1E1), this event will be visible in the energy profile at an energy Δ�. We 

can define the scattering length as 

  °Ô�Ô� = −���6ä ¢� å(Ô�Ô�)
Ô?Õ£eÖ �⁄ 	,	 (2.32)	

Here, the pre-factor is obtained by comparing Δ  and the X-ray energy 

E = 2sℏ ¨⁄ . And æ(W1W1)	represents a scalar quantity related to the sum over all 

the d sites of the unit cell that dependent in wç of the first term in (2.30), 

  æ(W1W1) = ∑ Sef∙´´ ∑ 〈∑ x³ ∙ wq|èÍ〉〈Íè|³ ∙ wq|q(´) 〉Ó(Õ) .		 (2.33)	
The scalar quantity æ(W1W1)  can be written in terms of the amplitude, 

$(W1W1), that depends on the atomic tensor 〈�zu〉Ô�and a spherical tensor 

  $(W1W1) = ∑ (−1)zuz é?zu ¶zu,	 (2.34)	
where ézuis 

  ézu = ∑ ³ÎO³ÎÌ(1Y1YO|-�)ÎÎÌ ,		 (2.35)	
and we are defining the cell structure factor, ¶zu, as a sum of all the atomic tensor 

〈�zu〉Ô� , defined in Appendix B, of the resonant ions at d site 
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	 	 ¶zu = ∑ Sef∙´´ 〈�zu〉Ô�,´.	 (2.36)	
As ézu is define from two vector quantities, the triangular condition gives 

K=0,1 and 2. In Table 2.2 are specific the values of ézu that are required for the 

calculation of the amplitudes due to dichroism or Bragg Scattering signals for a 

E1E1 event. 

Table 2.2 Properties of ézu defined in (2.35). The non-zero elements are presented for the 

different initial and final states. 

 é?zu =	 (−1)·£¸dézug∗ 

 X� =	 ;
√� (εO × ε), é£�� = 	 (εO£�ε£�), 

(σ’ σ) é99 = 	?�√", é9� = 	��"¢
� � 

, 

(σ’π) é£�� = 	 �� e;í, é£�� = 	−	�� e;í, 

(π’σ) é£�� = −	�� e?;í, é£�� = 	−	�� e?;í, 

(π’π) é99 = 	?�√" cos	(2θ), é9� = 	 ;
√� sin	(2θ), 

 é9� = 	?�√ò cos	(2θ), é£�� = 	 ��, 

 

Now, let’s look a bite more deeply inside the dependence with Rç,  

  ∑ 〈∑ x³ ∙ wq|èÍ〉〈Íè|³ ∙ wq|q(´) 〉Ó(Õ) = d�‖õ(1)‖�g̅d�‖̅õ(1)‖�g〈�|w|�〉̅� 

  																																																			× ∑ (−1)zuz é?zu 〈�zu〉Ô�,´ ,		 (2.37)	
where we are leaving out the dependence of  〈�zu〉Ô�,ö from the radial integral 

÷wøùú = (�‖õ(1)‖�)̅〈�|w|�〉̅ that may depend on the orbital core and valence states 

that we denoted as � ̅and �, respectively. The reduced matrix element d�‖õ(1)‖�g̅ 
related to the normalized spherical harmonic is [56, 57] 

  d�‖õ(1)‖�g̅ = (−1)�x(2� + 1)d2� ̅ + 1g|� û� ü � ̅
0 0 0ý,	 	(2.38)	

Now we can write æ(W1W1) as 

  æ(W1W1) = ��Õ�á�
ℏ� ¢ �÷oøþ��á ¢� $(W1W1),		 (2.39)	

In order to express various contributions to a resonant signal in the same 

unit, it is necessary to introduce the classical radius of the electron as a 

dimensionless factor ����á�ℏ� ¢ where Δ is the energy of the photon event. 



28  CHAPTER 2: Theoretical Fundaments  

 

 

E2E2 event 

The next term in equation (2.30) is quadratic with wq, defines the energy of a pure 

quadrupolar (E2E2) event and appears usually at a lower energy Δ� in the energy 

profile. It is possible to define the amplitude of the signal in terms of a scalar 

value Z(W2W2) 
  æ(W2W2) = ûÎxo�|þ��á ý

�
��Õ�á�

ℏ� ¢$(W2W2),		 (2.40)	
where ÷w�ø�´ = (�‖õ(2)‖�)̅〈�|w�|�〉̅ , and the structure factor F(W2W2)  can be 

defined in terms of a scalar product of Pzu, which describes the polarization and 

directions of the primary and secondary X-ray beam, and the atomic tensors 

〈�zu〉Ô� inside the cell structure factor ¶zu,	
	 	 $(W2W2) = ∑ (−1)u£zuz P?zu ¶zu.	 (2.41)	

For the pure E2 process we can define the cell structure factor 

	 	 ¶zu = ∑ Sef∙´´ 〈�zu〉Ô�,´,	 (2.42)	
where the mean value 〈�zu〉Ô� is obtained with matrix elements that satisfy the 

Wigner-Eckart theorem and a reduced matrix element as the one specify in 

appendix B. The triangular condition give that K= 0,1,2,3 and 4 in this as P?zu  and 

¶zu are products of tensors of rank 2. The other term in (2.41) is related to the 

polarization and can be written as 

	 	 Pzu = ∑ ℎ(Y)ℎO(YO)(2Y2YO|-�)ÎÎÌ 	 (2.43)	
with ℎ(Y) (ℎO(Y)) as the coupling between ³	(³O) and Y½ (Y½O) for giving a tensor of 

rank 2, 

  ℎ(Y) = ∑ ³
Y½
Ì(1!1!O|2Y)

Ì , (2.44)	
in Table 2.3 is written some of the properties of Pzu. 

The correspondence between the atomic tensors and the magnetic character 

is in the case of pure parity-even events, as E1E1 and E2E2, related to the rank of 

the tensors, i.e., the odd (even) rank tensors are parity-odd (even) processes or 

related to magnetic (charge) scattering. This correspondence is implicit in relation 

(2.27) for parity-even tensors, and it says that even rank tensors do not change 
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sign when the field is reversed, while odd rank tensors change sign when the 

polarity of the local magnetic field is reversed. This property is inserted in the 

future calculation of the structure factors in the way that in the absent of an 

external magnetic field or the presence of a magnetic long-range ordering the odd 

rank tensors for pure E1 and pure E2 channels will be neglected. 

 

Table 2.3 Properties of Pzu defined in (2.43). The non-zero elements are presented for the 

different initial and final states, supposing an elastic Y = YO process.  

P?zu = 	(−1)·£¸dézug∗ H� =	 ;
�√�9 (εO × ε), H� = �

�√b X�, 

(σ’ σ) P99 = 	 �
�√b cos(2θ), P9� = 	 ;

�√�9 sin(2θ), P9� = 	 ?�
�√�� cos(2θ)	, P£�� =	 �� �"�¢

Ë
�, 

  P9" = 	 ?;
√�9 sin(2θ), P9� = 	� �

"b¢
Ë� cos(2θ), 

P£�� =	− �
�√�, 

(π’σ)  P£�� =	− ��√b e?";í, P£�� =	 �� �"�¢
Ë
� e?";í, 

 

 P£�" = � ";
�ò9¢

Ë
� e?";í, 

P£"" =	 ?��√� e?;í, P£�� =	 ��√�� e?";í, P£"� =	 ��√� e?;í, 

(σ’ π) Pzu(σ’	π) = (−1)·dPzu(π’σ)g∗, 

(π’π) P99 = 	 �
�√b cos(4θ), P9� = 	 ;

√�9 sin(4θ), P9� = 	 �
√�� cos(4θ),  

  P9" = 	 ;
√�9 sin(4θ), P9� = 	 �

�√�9 cos(4θ), P£�� =	− ��, 

2.4.3 Odd transitions under spatial inversion, E1E2 & E1M1 

The odd transitions under spatial inversion are introduced in the formalism by the 

presence of the mixed terms charge-dipole charge-quadrupole, E1E2, and charge-

dipole magnetic-dipole, E1M1. These mix processes are allowed in the cases that 

the resonant ion under study is not in a centre of inversion symmetry of the 

system [6]. These kinds of events can be described with a mechanism related to 

the electric crystal-field potential.  

The absence of inversion symmetry in the site of the resonant ion allows the 

presence of odd-rank components to the potential. This requirement on the 

resonant site for non-zero contributions to Bragg diffraction from parity-odd 

events does not mean that the crystal structure must be non-centrosymmetric. 

From the atomic point of view these components are related to a possible mix 

between the electronic valence state of the cation state and the different atomic 
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shell and angular moment [58, 59]. As an example, is the possible overlap (or 

hybridization) of a d-state of a cation and the p-state of an anion, resulting a final 

state of an electron è|ψ〉 = �è|�v�〉 + �è|�OvO�O〉 , where � ≠ �O , v = � ± 1 2⁄  and 

vO = �O ± 1 2⁄ . 

In the final state of the electron è|ψ〉 usually the mix term ��∗  is dismiss, 

even when ab initio calculations are good for pure E1 events, and not so confident 

for pure E2 or mix E1E2 processes. As happen for the case of pure E2 events, the 

E1E2 events are supposed to be several orders of magnitude weaker that the pure 

E1 contribution [60, 61]. 

E1E2 event 

Let’s continue with the definition of the amplitude related to an E1E2 mix event. 

In this case we have to define the scalar quantity æ(W1W2)  that represents a 

mixture between the dependence  wç and the wç� of the first term in (2.30), 

 æ(W1W2) = e
�∑ 〈�| 
(³O ∙ w) � èÍ〉〈Í|è(³ ∙ w)(Y ∙ w)

−(³O ∙ w)(YO ∙ w)è|Í〉〈Íè� (³ ∙ w)� |�〉Ó(Õ) ,	(2.45)	
here the operator for the electrons changes sign under spatial inversion, i.e., 

w�− w, due to this the mean value can be only different from zero for the case 

of non diagonal and parity-odd matrix elements. As previously done in the case of 

pure parity even events, it is possible to write æ(W1W2)	in terms of reduced matrix 

as 

æ(W1W2) = d�‖õ(1)‖�g̅〈�|w|�〉̅Yd�‖̅õ(2)‖�Og〈�|w�|�〉̅ 
  																																																			× ∑ (−1)zuz d��?zu 〈�?zu 〉 + d�zug∗〈�?zu 〉∗g,		(2.46)	
that we can write in terms of the structure form factor as 

  æ(W1W2) = û÷wø�!�0 ý�Y�w2��#�0 � û�Ù�02
ℏ2 ý$(W1W2) (2.47)	

as happen in the case of pure events the quantities ��?zu  and		�zu are related to the 

polarization of the incoming and outgoing beams. Because  ��?zu  , �zu  and the 

tensors �zu are all products of tensors of rank 1 and rank 2 the triangular condition 
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gives as possible ranks K = 1, 2 and 3. The tensors are defined using the relation 

(2.44) between the exchange of the pairs of variables of ³	, Y½  and (³O),  (Y½O), 
  ��?zu = e

√b∑ ℎ(!)³O
Ì(2!1!O|-�)

Ì ,		 (2.48)	
and 

	 	 �zu = e
√b∑ ℎO(!)³
Ì(2!1!O|-�)

Ì .	 (2.49)	

Table 2.4 Properties of �zu  and ��zudefined in (2.47) and (2.48) for a E1-E2 

event, and values of d��?zu + N?¸· g and d��?zu − �?zu g.  

��?zu = 	 (−1)·£¸d��zug∗,  �?zu = 	 (−1)·£¸d�zug∗ 
��� = −	i√310 ÷q½(εO ∙ ε) + (εO × ε) × q½ø,  N� = − ;√"

�9 ÷q½ O(εO ∙ ε) + q½ O × (εO × ε)ø, 

��£�� + �£�� = 	?�b �"�¢
Ë
� cos	(θ), (σ’ σ) ��£�� − �£�� = 	?;b �"�¢

Ë
� sin	(θ), 

��£�� + �£�� = � �
"9¢

Ë
� cos	(θ),  ��£�� − �£�� = i � �

"9¢
Ë
� sin	(θ), 

��£�" + �£�" = 	 �b ��"¢
Ë
� cos(θ),  ��£�" − �£�" = 		 �;b ��"¢

Ë
� sin(θ), ��9� +�9� = ;

�9√3sin	(2θ), (π’σ) ��9� −�9� = ;
�9√3sin	(2θ), ��9� + �9� = �

� ��b¢
Ë
� cos	(2θ),  ��9� − �9� = �

� ��b¢
Ë
� cos	(2θ), 

��£�� + �£�� = � �
"9¢

Ë
� ���− e?�;í¢, 

 ��£�� − �£�� = � �
"9¢

Ë
� ���+ e?�;í¢, 

��9" + �9" = ;
b ���¢

Ë
� sin	(2θ),  ��9" − �9" = ;

b ���¢
Ë
� sin	(2θ), 

��£�" + �£�" = − �
� � �

�b¢
Ë
� d1 + e?�;íg, 

 ��£�" − �£�" = − �
� � �

�b¢
Ë
� d1 − e?�;íg, ��zu(σ’	π) = d�zu(π’σ)g∗, (σ’ π) �zu(σ’	π) = d��zu(π’σ)g∗, 

��£�� + �£�� = 	?�b �"�¢
Ë
� cos(3θ), (π’π) ��£�� − �£�� = 	?;b �"�¢

Ë
� sin(3θ), 

��£�� + �£�� = 	− � �
"9¢

Ë
� cos(3θ),  ��£�� − +�£�� = 	−i � �

"9¢
Ë
� sin(3θ), 

��£�" + �£�" = 	?�b ��ò¢
Ë
� cos(3θ),  ��£�" − �£�" = 	?;b ��ò¢

Ë
� sin(3θ), 

��£"" + �£"" = 	� �
�9¢

Ë
� cos(θ),  ��£"" + �£"" = 	 i � �

�9¢
Ë
� sin(θ), 

 

In Table 2.4 are listed some of the properties of ��?zu  and �zu . And the 

structure form factor is defined as 

  $(W1W2) = ∑ (−1)zuz ∑ d��?zu 〈�?zu 〉´ + d�zug∗〈�?zu 〉´∗gSef∙´´ ,			(2.50)	
where the tensors �zu  can be related to other tensors with symmetric and anti-

symmetric properties. As an E1E2 event is spatially odd for having a symmetric 
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property is necessary to use a time-odd and inversion-odd tensor that we will 

denote by Xzu  (magnetoelectric), this type of tensors is related to the magnetic 

structure of the material and will appear as happen in the case of the odd rank 

tensor in parity even tensors. The anti-symmetric tensor that we will denote by �zu(polar) are in the other hand time-even, the derivation of these tensors in terms 

of the reduced matrix elements is done in appendix C.  

Then the structure factor in terms of these tensors will be written as 

 $(W1 − W2) = ∑ tuu ∑ (−1)zz �−t¶zu,²d��?zu +�?zu g
+¶zu,�d��?zu − �?zu g �,	 (2.51)	

where ¶zu,² and ¶zu,� denote the cell structure factor and depend on Xzuand  �zu, 

  ¶zu,² = ∑ Sef∙´´ 〈Xzu〉´,	 (2.52)	
	 	 ¶zu,� = ∑ Sef∙´´ 〈�zu〉´.	 (2.53)	

One particular property of interest in future structure factor calculations is 

their symmetry to the time inversion, where in the presence of a local magnetic 

field H, the magnetoelectric tensor will change in sign 〈Xzu〉2 = −〈Xzu〉?2 and the 

polar tensors will not change 〈�zu〉2 = 〈�zu〉?2. The rank of these tensors defines 

them as true-tensors or pseudo-tensors if their rank is odd or even, respectively. 

E1M1 event 

As happen between E1 and E2, the parity of M1 is also opposite to the one of E1. 

Thus the E1M1 process result from this type of interaction will be parity-odd and 

capable of revealing atomic polar and magneto-electric multipoles. The term now 

under study is related to a coupling of the dependence with wq from the first term 

in (2.30) and the magnetic approximation where appears the contribution of the 

spin-orbit (2Ä + R). The presence S in the M1 operator allows enhancement at a 

K-edge, which would otherwise be forbidden on account of zero orbital angular 

momentum. To engage the M1 event in diffraction, or dichroism, valence and 

intermediate states have common angular momentum, because matrix element of l 
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and S are diagonal with respect to orbital angular momentum. Thus RXS at a K-

edge can induce E1M1 events when s-like valence states are available [62]. 

As in the case of the event E1E2 we can define the value of Z(E1M1) as 

æ(W1Ü1) = �
�∑ ∑ 〈�| �d³O ∙ wqg � èÍ〉〈Í|è(Y × ³) ∙ *qÌ

+(YO × ³O) ∙ *q è|Í〉〈Íè� d³ ∙ wqOg� |�〉qqÌÓ(Õ) ,	(2.54)	

where 	μq = (Ä + 2R)q and can be written in terms of the structure 

factor	F(E1M1) as follows 

  æ(W1Ü1) = �÷oøþ��á ¢ ÷1ø!!$(W1Ü1),		 (2.55)	
here, the radial integral, denoted by {1}γγ, is an overlap of two orbitals of the same 

angular momentum, γ, with components which may be centred on different ions. 

The magnitude of {1}γγ is essentially a measure of configuration interactions and 

bonding, or covalence, of a cation and ligands. 

Table 2.5 Properties of Üzu and M�zudefined in (2.57) and (2.58), and values of 

dÜ�?zu +M?¸· g and dÜ�?zu −Ü?zu g.  

Ü�?zu = 	 (−1)·£¸dÜ�zug∗  Ü?zu =	 (−1)·£¸dÜzug∗ 
Ü�£�� +Ü£�� = 	−cos	(θ), (σ’ σ) Ü�£�� −Ü£�� = 	−isin	(θ), 

Ü�£�� +Ü£�� = −cos	(θ),  Ü�£�� −Ü£�� = −isin	(θ), 
Ü�99 +M99 = �

√" sin�(2θ), (π’σ) Ü�99 −M99 = −2
√3 cos

�(2θ) 

Ü�9� +M9� = ?;
√� sin(2θ),  Ü�9� −Ü9� = ?;

√� sin	(2θ),, 
Ü�9� +Ü9� = ?�

√ò ÷1 + 2cos�(θ)ø,  Ü�9� −Ü9� = �
√ò ÷1 + 2sin�(θ)ø, 

Ü�£�� +Ü£�� = 1/2,  Ü�£�� −M£�� = 1/2, 

Ü�zu(σ’	π) = dÜzu(π’σ)g∗, (σ’ π) Üzu(σ’	π) = dÜ�zu(π’σ)g∗, 
Ü�£�� +Ü£�� = −cos(θ), (π’π) Ü�£�� −Ü£�� = 	isin(θ)	, 
Ü�£�� +Ü£�� = 	cos(θ),  Ü�£�� − +Ü£�� = −i	sin	(θ), 

 

As done in the case of E1E2, the structure factor is possible to be written in 

terms of the symmetric and asymmetric tensors Xzu  and �zu ; in this case the 

polarization of the beam is described by the terms Üzu and Ü�zu that have similar 

properties as the one of �zu and ��zu for the E1E2 event, 

  $(W1Ü1) = ∑ tuu ∑ (−1)zz �−t¶zu,²dÜ�?zu +Ü?zu g
+¶zu,�dÜ�?zu −Ü?zu g �	,	 (2.56)	
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the cell structure factor are the same as in equations (2.51) and (2.52) and the 

values Ü�?zu  and M?¸·  are 

  Ü�zu = ÷(Y½ × ³)⨂³Oøzu 	,	 (2.57)	
	 	 Üzu = (−1)uÜ�zu.		 (2.58)	

The properties for these tensors are similar to the ones used in the E1E2 

event and are listed in Table 2.5. 

2.4.4 Chiral Structure 

A chiral structure can be defined as a long ordering in a material due to its 

magnetic or electric dipolar moments. The amplitude of this type of structures can 

be described using the formalism base in the tensor		�zu, Xzu and �zu presented in 

the previous sections. This long ordering affect many cells that must be take into 

account in the calculations, being necessary to introduce a super-cell structure 

factor where all the cells will be well described. 

In the work by V. Scagnoly et al. [63] is presented a formalism to reduce the 

structure factor of multiple cells to a single super-cell structure factor, Ä =
(2§ + 1)� where � is the lattice parameter and n an integer. Defining the values 

〈õzu〉 as a combination of the tensors �zu (Xzu	and	�zu) for the unit cell, which will 

be included in the super-cell structure factor for the (2§ + 1) cells. The integer f 

measures the wave-vector in units of the fraction 	(2! Ä⁄ ) = 2! dÄ(2§ + 1)g⁄ , 

while the turn angle is equal to	2! (2§ + 1)⁄ . In general, the complex conjugate 

of õzu do not satisfy the relation		dõzug∗ = (−1)zdõ?zu g. As only rotation proper 

are used the result for all tensors parity-even and parity-odd are equally described 

by the values	õzu. General properties include:  

(a) Multipoles are symmetric under rotation by 180o about the axis normal 

to the plane of the cycloid.  

(b) Using the identity C�$〈õzu〉 = (−	1)%〈õzu〉  one finds the 

relation		〈õ?zu 〉 = (−	1)%(−	1)u〈õzu〉.  
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(c) For given f and K all 〈õzu〉 are proportional to one another. Scaling 

coefficients are complex and depend on both the magnitude and sign of the 

projection Q.  

(d) 〈õzu〉 does not depend on n.  

(e) 〈õzu〉 is not Hermitian.  

(f) 〈õzu〉 = 0 for - < °. 
 The selection of f and n is done trying to minimize them in a way that the 

structure described has similar symmetry properties to the real chiral structure. 

For example, in R3c structure described for BiFeO3 with a wave vector q ̴ 0.0045 

r.l.u, the value of f=1 and n=2 give an enough good approximation. 

Let’s define the rotation angle of the chiral structure as ' = 2s (2§ + 1)⁄ . 

The generic form of our cycloidal structure factor is,  

  õzu = ∑ 6()*+
��£�

���ã9 〈�zu〉� (2.59)	
where 〈�zu〉� stands for 〈�zu〉 rotated in the plane of the cycloid through an angle 

�'. 

The cycloid in the case of BiFeO3 is rotating along the x-z plane, applying 

rotation properties we arrive from Eq. (2.59) to  

dõzu ± õ?zu g = 1
2§ + 1 É〈�zu〉 ± (−1)z〈�zu〉∗Ê +,É〈�Îu〉 ± (−1)z〈�Îu〉∗Ê

Î
 

 × ∑ #zÎu (�')÷	,-�(�'°)[1 + (−1)z£Î] + t	�t§(�'°)[1 − (−1)z£Î]ø� (2.60)	
here #zÎu (�ϕ) is a purely real element of the rotation matrix. The sum on m 

ranges from m=1 to m=n, and −- ≤ Y ≤ -. If the projection Q is restricted to 

either even or odd integer values, (2.60) are purely real or purely imaginary. Such 

conditions on the projection might be imposed by the symmetry of the 

environment in which the reference ion is placed. But in general C·̧ will be a 

complex number. 
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CHAPTER 3 

Resonant Elastic X-ray Scattering 

Experiments 

The advantage of new large synchrotron facilities designed for x-ray production 

has made viable techniques as Resonant Elastic X-ray Scattering (REXS), which 

use every major property of the radiation coming from these types of sources.  

3.1 REXS Beamlines (Synchrotron Sources) 

As commented in the section 1.2 from Chapter 1, in our days x-rays are produced 

by two types of methods; conventional x-rays tubes that use a anode where the x-

rays are extracted by the collision between the charge particles and the ions in the 

material (the wave length of this type of x-rays are strongly related to the material 

used as anode) and synchrotron facilities, where x-rays are produced by the 

application of magnetic fields to charge particles moving along a tube (the wave 

length for this case cover all the electromagnetic range from hard x-rays to the 

infrared). This last radiation pattern has a strong polarization component in the 

plane where the electrons are been moving, being parallel to the trajectory of the 

electrons along the ring and it is denoted as σ while the component perpendicular 

to the orbit of the electron is π. 

� The first step in the production of this type of X-rays was done by 

the implementation of the Bending Magnets (Figure 3.1.a.). Although, 

they are not the most brilliant way of producing X-ray from a 

synchrotron source, they have an intense power of radiation when the 
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electron velocity points directly towards the observer. The typical 

frequency in the spectrum is γ3 times the cyclic frequency of the orbiting 

electron in the storage ring, γ is a relation between the energy of the 

electrons and its rest mass, 0.511 MeV, (Ee/m0c
2).  This power lies faster 

when the angle between the direction to the observer and the electron 

velocity is of order γ -1.The polarization of x-rays due to this kind of 

magnets is linear in the horizontal plane, whereas it becomes circular out 

of the orbit plane, with opposite helicity below and above the plane. The 

radiation is pulsed with a duration related to the length of the bunch of 

particles. 

 

 

Figure 3.1 a) X-ray print from a Bending Magnet, b) X-ray print from a Wiggler type insertion 

device and c) X-ray print of an undulator type insertion device.  

In third generation sources it is possible to introduce straight sections of 

small magnets (insertion devices) that produce a brighter signal. There are two 

types of insertion devices defined by the parameter K = α ⋅ γ, where α is defined 

as the maximum angle of deviation of the straight trajectory: 

� Wigglers (K>>1): inside the magnetic field of this kind of insertion 

device the electrons follow a series of circular arcs as shown in Figure 
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3.1.b. This leads to incoherent sum of the intensities coming from the 

different oscillations along the trajectory that produce an increment in the 

intensity of the radiation observed by a factor of 2N, being N the number 

of periods. For this kind of devices the spectrum is the same as that from 

a bending magnet of the same field strength. 

� Undulators (K ≈ 1): they are based in the possibility of making the 

oscillations of the electrons be in phase along the array of magnets, 

Figure 3.1.c. This implies that the amplitudes of the radiated waves are 

first added, and then the sum is squared to obtain the resulting intensity 

of the order of N2 as shown in figure 1.2 c. This coherent addition of 

amplitudes implies a quasi-monochromatic, just one λu, spectrum (with 

the presence of harmonics) due to the finite number of periods. The print 

of an undulator is defined in the space by a cone with an opening of 

1 dª√�g⁄ . The λu typical from an undulator is defined as in equation 

(3.1). 

	 	 ¨� = äá
�!� �1 + u�

� ¢	 (3.1)	
The high intensity, low divergence, high degree of polarization of the beam 

(mainly linear σ) and the huge control over the energy (tuneability of the beam) 

are requirements of crucial interest for all these experiments based in X-ray 

dichroism and X-ray diffraction in our days, and in particular for the case of 

resonant X-ray diffraction: 

� High intensity: working in forbidden reflections reduces the scattered 

intensities with respect to allowed ones. High-intensity sources provide a 

larger count rate that improves the signal and also reduces the size of the 

sample under study. 

� High collimation: the low divergence of the X-rays coming from a 

synchrotron source (in particular in the vertical direction [15]) improves 

the definition of scattering angles and as a result the reciprocal space 

resolution. 

� Tuneability: as resonant scattering must be done near an edge of an 

element, is a crucial requisite being able to define with the huge precision 
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the energy in which the information is collected. A few hundreds meV 

can change completely the dependence of the signal. 

� The high control in the polarization properties of the beam are interesting 

for the study of new functional materials, being of great interest the 

signals from the linear *O0, where *Odenote the final state of polarization 

(1 or s) and 0 the one from the primary beam (1 or s), channels or the 

circular polarized x-rays and matter. 

 

Figure 3.2. Schem of a resonant X-ray diffraction beamline.  Information taken from ID20 at the 

ESRF [64]. 

The scheme of a Resonant X-ray Scattering beamline is presented in Figure 

3.2. After being generated by the oscillations (bending effect) of the charge 

particle inside the insertion device (bending magnet), usually an undulator, the 
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photons go throw a series of optical instruments to improve the quality of the 

beam properties (collimators, monochromators, slits, mirrors and other optical 

instruments).  

Inside the optical hutch the most important instrument for performing 

resonant X-ray scattering experiments are the monochromator crystals, consisting 

of a set two perfect crystals (or multilayers) that tune and refine the energy of the 

X-ray beam to the order of the 0.1 eV, this set of crystals due to the high 

brightness of the beam in a third generation source coming from an insertion 

device, and in particular in the case of  an undulator, are based in Si cryo-cooled 

(with liquid nitrogen) or diamond water-cooled single crystals. In some beamlines 

there are set of more than one pair of monochromator crystals that help to cut out 

the presence of high harmonic signals (channel cuts). Here, the beam is also 

collimated to improve the divergence of the beam by the use of special gas 

collimators, slits and curve mirrors. Apart from these optical instruments and for 

the control of the beam polarization, initially	1, it is possible to find phase retarder 

crystals that are able to change the properties of the beam to linear s or circular 

right or left polarizations. As happens for the monocromators the phase retarder 

crystals due to the high brightness of the beam are usually based in diamond 

single crystal working in transition.  

After the optical hutch the beam enters in the experimental hutch, where 

there are set slits and beam monitor positions instruments to define the final path 

and collimation of the beam near the sample environment at the diffractometer. 

The position of the sample inside the diffractometer is one of the most important 

steps one has to take into consideration while performing a resonant X-ray 

diffraction experiment based in Templeton and Templeton scans (T&T). In these 

kinds of scans the area of the sample under study must always be in the center of 

rotation of the diffractometer, to avoid the possible effect of different 

contributions coming from the possible domains of the sample. New six axis 

diffractometers as the ones presented in Figure 3.3 help in this kind of aspect 

giving more degrees of freedom. 

The signal coming from the sample is recorded by a detector situated at the 

end of the arm of the diffractometer, which is moving around one of the axis or 

circles of the diffractometer as present in Figures 3.3. In resonant x-ray 



42  CHAPTER 3: REXS Experiments 

 

 

experiments is of important interest the polarization definition of the scatter beam. 

For this reason usually before the detector is situated a single crystal, known as 

crystal analyzer, which will just diffract into the detector one of the polarization 

components of the scatter beam. The selection of the single crystal analyzer is 

done according to the material and the edge under study, in the case of Fe K-edge 

is commonly used Cu (220) as crystal analyzer, but it can be also used other 

crystals as graphite (006) or Al (331), due to the high polarization selection and 

the geometry of this reflection.  

 

Figure 3.3. Six circles X-ray diffractometer from (left) I16 at DLS and (right) P09 at PETRA III. 

Some features one must take into account when getting ready for 

performing a resonant magnetic x-ray scattering experiments are the following. 

This kind of experiments must be done in single-crystals; this technique provides 

the orientation and the magnitude of local moments. The penetration depth of x-

rays, of 100 of microns, gives information of near surface atoms, which help in 

the study of surfaces, thin layers and magnetic multilayer structures definition. 

The possibility of combining magnetic diffraction and high energy spectroscopy 

is unique to resonant X-ray scattering, and has some very important potential 

applications. Most obviously, one can tune to the absorption edges of specific ion 

species to study the magnetic ordering of individual elements. This could prove 

particularly valuable in systems where the ions are very weakly polarized. 

3.2  Azimuthal Scans 

One of the experimental scans used to collect REXS experiments is known as 

T&T scans, due to the first group that reported information gathered with this 
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kind of scans [20]. Also known as Azimuthal scans, consists in the rotation of the 

sample at a fixed reflection	�(ℎ, �, �) that satisfy the Bragg condition of scattering, 

and measure the intensity as a function of the angle of rotation, �. For this the 

reciprocal direction �(ℎ, �, �)is oriented in the – �  direction of the experimental 

diffractometer as shown in Figure 3.4 and the sample is rotated in the y-z plane.  

The information obtained from these experiments is strictly related to the 

angular anisotropy of the electrons in the valence level and provides information 

about the charge, orbital and magnetic degrees of freedom of the ion [21, 42, 55, 

65, 66]. One interesting property, due to the Newman principle, relates the 

superposition of the rotational periodicity to the dependence in		�, this happens if 

the ion is occupying a position in a rotation axis that coincides with the reflection 

under study [33, 67].  

 

Figure 3.4. Schematic representation of the Templeton-Templeton scan configuration. The vector 

�(ℎ, �, �) is oriented in the – � direction. [64]  

This geometry must be taken into account in the definition of the cell 

structure factors¶zu , which conventionally is defined in the basis of vectors 

	(3, �, 4)of the crystal, and must be translated to the experimental geometry 

system (�,5, 6) by performing a series of rotation over the tensors to describe the 

reorientation of the reciprocal direction to experimental – � axis. 

The rotation is described by the Wigner functions	7zzÌu (−ª,−8, −Û), where 

the angles (Û,8, ª) describe the Euler angles that define the different rotations 

necessary to rotate the Bragg reflection to the incoming X-ray direction [68]. The 

first angle, 	Û , is related to a rotation performed keeping the 6  axis fixed, 8 
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describe a rotation over 5’	(the 5 resulting after the first rotation) and finally a 

rotation of ª  degrees over the new  6’’ , defining the principal axis of the 

experiment (Appendix D). 

 

Figure. 3.5 Azimuthal angle dependence of the (1/2,0, –1/2) reflection for a CuO crystal gathered 

at the Cu L2-edge for the low phase (100 K). Two different circular polarization are presented 

(blue open squares) for incident CR and (red solid circles) CL  X-rays. The difference ∆ = CL – CR is 

represented by open triangles. Figure obtained from Scagnoli et al. [7]. 

The rotation over the azimuthal angle is described by the Wigner function 

7zzÌu (�� , −�,− �
�)  that describes a rotation of �  over the reciprocal 

direction	�(ℎ, �, �). Resulting the variation of the diffraction amplitude for a pure 

E1 event equal to  

$(W1) = ∑ (−1)zé?zuuz ∑ 7zÌÌzu �(�� , −�,− �
�)¢7zÌzÌÌu (−ª,−8, −Û)¶zÌuzÌzÌÌ .	(3.2)	

Experimentally, azimuthal scans (Figure 3.5) can be obtained by two 

different procedures. The first one based in straight performing azimuthal scans 

rotating through	� trying to keep the Bragg condition [69], in this case an allowed 

reflection is used as normalization intensity (subtract all imprecision due to the 

beam and the surface under study), it is important also to take into account that in 

the case of allow reflections the effect of dynamical diffraction processes is much 

important affecting the normalization of the � scan for the forbidden reflection, 

where diffraction is mostly kinematical. The second procedure is based in 

performing different “© scans” for different � positions [33]; the information is 

subtracted from the shape and the total area under the curve (Alternatively, one 
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can measure the integrated intensity from a crystal analyzer). For both methods it 

is always important to keep the beam hitting the same region on the surface of the 

sample, for this one must always to focus the beam in the centre of rotation of the 

diffractometer. 

3.3 Polarization Analysis 

In our days the high degree of polarization enjoyed at x-ray synchrotron sources 

can be used to separate two resonant contributions which are quite close in energy 

(about 1 or 2 eV) and that will appear to be a single peak in an energy scan, when 

using X-ray polarization analysis. The use of phase plates to change the incoming 

beam and crystal analyzers to define the final state of polarization of the signal 

measured are important tools in the atomic multipole definition. 

To describe the polarization of a beam are commonly used the Stokes 

parameters [38, 48], 9 = (:�	,:�	,:")  that are related to the Pauli matrix as 

presented in the appendix E. We will define the primary polarization with the 

parameters :e  and the secondary by :eO. A linear polarized primary beam has a 

null value for the circular polarization, defined by stokes parameter	:�, while the 

other two linear parameters :�	 and :" will be defined by the angle Í between the 

polarization and the z axis (defining Í = 0		as 1 polarization) , :� = sin	(2η) and :" = cos	(2η) , respectively. In the case of a completely polarized beam, the 

degree of circular polarization is defined using the relation (3.3) as explained in 

Mazzoli et al. [70].  

  (:�)� = 1 − (:�)� − (:")� (3.3)	
Using the Stokes parameters the intensity 	h9	of the scatter beam can be 

defined as in equation (3.4) using the coefficient	X<O=, where *′ and 0 define the 

polarization channels σ and π for the secondary and primary beam, respectibely.  

These coefficients can be expressed in terms of the structure form factors for the 

different events, described in section 2.4.2 and 2.4.3, as	X<O= = lÔ�Ô�(W)$<O=. 

h9 	= 1
2 (1 + :")(|X>O>|� + |X�O>|�) 

  + �
� (1 − :")(|X�Ì�|� + |X>Ì�|�) 
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+:�h�dX>Ì�∗ X>Ì> + X�Ì�∗ X�Ì>g 
  +:�wS(X>O>∗ X>O� + X�O�∗ X�O>). (3.4) 

In our analysis of the experimental data, we have to consider a model with 

single oscillator amplitudes for the E1E1, E2E2, E1E2 and E1M1 event 

resonances centred at different energies Δe  with different widths 	Γe . The total 

amplitude G is now taken to be 

   X = X(W1W1) + X(W2W2) + X(W1W2) + X(W1Ü1) 
=	lÔ�Ô�$(W1W1) 	+ lÔ�Ô�$(W2W2) + lÔ�Ô�$(W1W2) + lÔ�?�$(W1Ü1).  (3.5) 

here, lÔ�Ô�(W)  are complex numbers given by the resonant denominators 

�
Ô?�£e@ �⁄ . The structure factors are defined using the atomic tensors	〈�zu〉, 〈Xzu〉  
and 〈�zu〉 as presented in section 2.4.2 and 2.4.1.  

From (3.3) we can infer the circular contribution to the total intensity as  

  hD = :�h�dX>Ì�∗ X>Ì> + X�Ì�∗ X�Ì>g (3.6) 

that can be measured in a polarized x-ray beam as a difference between the 

completely circular left and completely circular right intensities at the detector 

ones known the values for :� and :" and the relation (3.3). 

3.4 Multiple Diffraction 

Of vital importance while studying the signal coming from weak reflections is to 

take into account the possibility of multiple scattering, also known as the 

Renninger effect. This contribution to scattering is related to the fulfilment of the 

Laue condition of scattering by second reflections not expected, due to a process 

of multiple scattering or a spread of energy in the primary beam. As presented in 

Figure 3.6, this behaviour that can be used to observe the quality of the crystal as 

done while doing Renninger scans [71], can be also a really tricky problem in the 

case of performing Templeton and Templeton scans, due to the fact that the signal 

coming from multibeam reflections is not related to electron valence band and can 

distort this information. 
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Figure 3.6 Renninger scans of ZnO (003) reflection. The Bragg angle is kept constant for the 

forbidden ZnO(0003) Bragg reflection at 2θ = 52.684°. [71]. 

In addition to the primary reflection, A, the Ewald sphere will be satisfied by 

more reflections that will contribute to scattering. Let’s denote by A′ a second 

reciprocal lattice vector that satisfy the Laue condition for a specific azimuthal 

angle when rotating about	A, as done in an azimuthal scan. This is shown in 

Figure 3.7. Under these circumstances is common to say that we are working in a 

3-beam case system. The contribution of this second reflection (that usually are 

produced by allow reflections) contribute strongly to the amplitude of scattering, 

distorting the signal detected.  

 

Figure 3.7. Ewald sphere representation of the 3-beam condition showing the primary A  and 

secondary A′ reflections. 

The conditions under which double diffraction overlaps with an allowed or 

forbidden single diffraction peak are shown in Figure 3.7 and can be understood 

as follows. In the case of single scattering, as it is described in equation (2.8) the 

difference between the primary and secondary beams must be equal to the 
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reflection	�. For double diffraction, it is useful to pretend that the two processes 

occur consecutively, so after one reflection 

  �OO = Y − �O = Y − (YO − YOO), (3.7)	
where �O and	�OO are reciprocal lattice points. The condition why two reflections, 

one from a single interaction and a second with to interactions, overlap is simply 

described by eq (3.7), where the final direction of � coincide with the sum of the 

two other processes.  

  � = �O + �OO.		 (3.8)	
Finally, writing 	� = ℎ�∗ + ��∗ + �,∗ , where ℎ, �, �  are integers and the 

vectors �∗, �∗, ,∗  define the reciprocal lattice, the single and double diffraction 

indices must be related by	ℎ = ℎ’+ ℎ’’, � = �’+ �’’, � = �’+ �’’. Consequently, a 

forbidden reflection (ℎ, �, �) may be overlapped by a double diffraction peak if 

there exist two allowed reflections (ℎ’, �’, �’)  and (ℎ’’, �’’, �’’)	which satisfy the 

above equations. 

 

Figure 3.8. The wave vectors and momentum transfer for single and double. 

Fortunately, any particular multiple diffraction peak requires a specific 

wavelength and sample alignment in three directions. By rotating the crystal about 

the scattering vector, the multiple diffraction conditions vary rapidly, while single 

diffraction is largely unaffected. 

It is also important to remember that no beam is fully monochromatic, there 

is a small range of wavelengths that produce a widen  effect to the boundary of the 

Ewald sphere, broaden the number reflections that can satisfy the Laue condition 

due to single or multiple beam reflections. 
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CHAPTER 4 

Neptunium Oxide, NpO2 

Article	I	
Article	 in	 press	 in	 Journal	 of	 the	 Physics:	 Condensed	Matter:	 “Neptunium	

multipoles	and	resonant	x-ray	Bragg	diffraction	by	neptunium	dioxide	
(NpO2)”.	

	
	
	
	
Abstract	
Recent experimental findings suggests a new symmetry for the low phase of 

neptunium dioxide (NpO2) below the transition temperature T0 ≈  25,5 K. 

Resonant x-ray scattering data obtained at Np M4,5 edge from a crystal of NpO2 

were re-examining using the crystallographic point group (3�m) from the #224 

space group instead of (m3�m) from the #225. From these results a derivation of 

the possible higher-order multipoles, such as magnetic octupolar moments, was 

done for the M2, M3 and L2, L3 resonant edges via E2E2 events, which might be 

evidenced in future experiments.  
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4.1 Results and Summary 

NpO2 is a member of the Fm3�m (#225) space group, neptunium as an actinide 

atom can carry local multipole moments. These moments can order at low 

temperatures due to intermediate interactions such as exchange interactions. In the 

case of neptunium dioxide, NpO2, when cooling below T0 ≈  25.5 K there is 

possible to observe a single phase transition [72], similar to that of the well known 

antiferromagnet compound UO2 [23]. Previous experiment done with neutron 

diffraction and Mössbauer spectroscopy do not reveal any magnetic order [73, 

24]. This is not congruent with the fact that in NpO2 Np4+ ions are Kramers 

system (5f3). And due to this, and not depending on the crystalline environment, 

in the absence of interactions that break time-reversal symmetry the ground state 

has to carry a magnetic moment. 

 

Figure 4.1. Heat Capacity [72] and magnetic susceptibility [74] of NpO2 as a function of 

temperature. 

The first heat capacity measurements for NpO2 were reported in 1953 [72] 

and showed a large λ-like anomaly at T0 =25 K, very similar to the one observed 

for UO2 at TN = 30.8 K, Figure 4.1. Muon spin relaxation experiments (µsR) 

showed a precession signal below T0 [25], this precession is related to the 

magnetic field generated by the Np4+ ions at the muon stopping site and provides 
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evidence that the order parameter breaks invariance under time reversal. The 

magnetic moment, using muon probes, has been calculated as 0.01µB much 

smaller than the paramagnetic one that is 2.95 µB. The measurement of the 

susceptibility reaches a constant value of 8.4 × 10-3 emu mol-1 at 4 K, figure 4.1 

inset. REXS experiment performed at the Np M4,5 absorption edges for super-

lattice reflections also gave evidence of a long-range ordering in NpO2 below T0. 

These experiments showed some common features with the case of UO2, due to 

the fact that the superstructure Bragg peaks occur at �QR = XR + 〈001〉  positions 

(figure 4.2), the same as in the case of the antiferromagnetic UO2. This increases 

the possibility of describing the behaviour inside NpO2 as a longitudinal tripe-YR 
antiferromagnetic order.  

 

Figure 4.2. Normalized intensity of the (001) and (003) Bragg peals as a function of temperature. 

The inset shows the volume of the cubic unit cell as a function of temperature. Taken from [75]. 

Santini and Amoretti [76] first described the whole experimental evidences 

by the presence of a magnetic-octupolar ordering, this ordering lift a degeneracy 

of the ΓS Np ground state and generates an interstitial magnetic field, which agrees 

with the neutron and µsR experimental results. However, octupolar ordering only 

appears in the case of parity even events in pure E2E2 events (3d3/2,5/2�6g), while 

the resonances observed in the work by Magnani et al. [75] just presented the 

evidence of E1 resonances (3d3/2,5/2�5f) [75]. Paixao et al. performed Templeton 

and Templeton scans near the Np M4,5 absorption edges [26], for this experiment 

they also used a polarization analyser crystal, which helped to do an unambiguous 
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determination of the origin of the resonance [28]. They conclude that the super-

lattice peak is related to an asphericity of the Np 5f electron density leading to an 

anomalous tensor component in the atomic scattering factor, not arise from a 

magnetic ordering as previously supported by Magnani et al. [75], this conclusion 

is incompatible with the particular octupolar model given in Ref. [76], which 

predicts an undistorted density for the 5f ground states. 

Later on, Lovesey and co-workers presented new evidences of the possible 

magnetic contribution to the scattering [52]. The crystalline structure of NpO2 can 

be indexed below T0 using both #225 and #224, Figure 4.3, space groups; this last 

one is a reduction of the symmetry of the one above T0. Assuming this, they were 

able to adjust the azimuthal scans obtained by Paixao et al. [26] using octupoles 

and hexadecapoles, multipoles of rank 3 and 4 respectively, enhanced from a pure 

E1E1 event. 

 
Figure 4.3. Crystal structure of Neptunium Dioxide (NpO2) below 25 K (Pn-3m, #224), red atoms 

denote Oxygen in two inequivalent sites (2a) and (6e), while blue ones define Np in 4(b) Wyckoff  

positions. 

Recent results from Nuclear Magnetic Resonance (NMR) for 17O show that 

below T0 there is a distortion in the crystal related to a shift on the Oxygen 2p 

positions (8e for #225) to a two non-equivalent sites (2a and 6d for #224) [27]. 

The new local symmetry of the Np ions becomes 	3�� , which permit triple-K 

octupoles and also the magnetic nature of the behaviour with the spherical 

electronic cloud around the 5f ions. In the work done during this thesis was re-

derived the calculation taking into account the new point group for the Np and the 

new knowledge about the neptunium wave-functions that has emerged from the 

recent investigations in this material [52, 77, 78]. It is also presented a fully model 

for future dichroic experiments and possible resonant x-ray diffraction at other 

edges. 
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Abstract
The low-temperature ordered state of neptunium dioxide (NpO2) remains enigmatic. After
decades of experimental and theoretical efforts, long-range order of a time-odd (magnetic)
high-order atomic multipole moment is now generally considered to be the fundamental order
parameter, the most likely candidate being a magnetic triakontadipole (rank 5). To date,
however, direct experimental observation of the primary order parameter remains outstanding.
In the light of new experimental findings, we re-examine the effect of crystal symmetry on the
atomic multipoles and the resulting x-ray resonant scattering signature. Our simulations use
the crystallographic point group 3̄m (D3d), because corresponding magnetic groups 3̄m′, 3̄′m′

and 3̄′m are shown by us to be at odds with a wealth of experimental results. In addition to the
previously observed (secondary) quadrupole order, we derive expressions for higher-order
multipoles that might be observed in future experiments. In particular, magnetic octupole
moments are predicted to contribute to Np M2,3 and L2,3 resonant scattering via E2–E2
events. The Lorentzian-squared lineshape observed at the M4 resonance is shown to be the
result of the anisotropy of the 3p3/2 core levels. Quantitative comparison of our calculations to
the measured data yields a core–hole width 0 = 2.60(7) eV and a core-state exchange energy
|ε( 1

2 )| = 0.76(2) eV.

(Some figures may appear in colour only in the online journal)

1. Introduction

Following an experimental investigation using Bragg diffrac-
tion by Paixão et al [1], neptunium dioxide (NpO2) is now
understood to undergo an uncommon form of electronic
phase transition at T ∼ 25.5 K. At the phase transition, the
fluorite structure with space group Fm3̄m (#225) is reduced
in symmetry to Pn3̄m (#224). Extinction rules for these two
space groups are identical and, thus, they are indistinguishable
with conventional Bragg diffraction. Nevertheless, the two
space groups can be distinguished in a diffraction experiment
exploiting Templeton–Templeton scattering. The extinction
rules for Bragg reflections (HKL) with Miller indices H +
K + L odd arise in Fm3̄m from simple translations, whereas
in Pn3̄m they arise from glide planes and screw axes. As
demonstrated in [1], such reflections are visible in x-ray
diffraction enhanced by an atomic resonance. Further work

by Magnani et al [2] and Santini et al [3] elucidates and
reviews the implications and properties of the electronic
phase transition. We explore more thoroughly what electronic
structure of neptunium dioxide is visible in resonant Bragg
diffraction at a class of space-group forbidden reflections.

In an atomic picture of x-ray scattering used here
electronic degrees of freedom are expressed in terms
of multipoles that are ground-state expectation values of
appropriate spherical tensor operators. Properties of a crystal,
such as scattering amplitudes, must be invariant with respect
to all elements of symmetry that are present (Neumann’s
Principle). Enforcement of symmetry generates selection
rules that limit the number of multipole components that can
be observed in an experiment.

Our simulations use the point group 3̄m (D3d).
Implications for multipoles of symmetry operations in
magnetic groups 3̄m′, 3̄′m′ and 3̄′m are discussed in an

10953-8984/12/256009+07$33.00 c© 2012 IOP Publishing Ltd Printed in the UK & the USA
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appendix, and the groups are discarded in favour of 3̄m
on the grounds that corresponding multipoles do not match
experimental findings [1, 3].

Appropriate selection rules were not properly imple-
mented in a previous simulation of resonant x-ray Bragg
diffraction by the low-temperature phase of NpO2, based on
an atomic picture [4]. In the present paper, we re-visit the
simulation with a rigorous derivation and enforcement of
selection rules, derived from both the point group and the
space group. Thereby we correct misleading conclusions [4]
and, in addition, provide fresh insight into the electronic
properties of the low-temperature phase. Most importantly,
we take full account of knowledge about the neptunium
wavefunction that has emerged from investigations made after
our previous paper [3, 5, 6]. Moreover, our present work could
well prove a useful example for resonant Bragg diffraction
studies and dichroic signals of other materials.

The next section records implications for atomic
multipoles of local (point group 3̄m,D3d) and global (Pn3̄m)
symmetry in the low-temperature phase of neptunium dioxide.
Thereafter, in section 3, are unit-cell structure factors suitable
for resonant Bragg diffraction enhanced by E1–E1 and
E2–E2 resonant events at reflections (00L) with Miller
index L odd [1], including dependence on the azimuthal
angle. Our atomic theory—using spherical tensors and atomic
multipoles—is sketched in section 4. Section 5 is given over
to a calculation of the energy profile and the Np multipoles
therein (quadrupole and hexadecapole). Calculation of atomic
multipoles makes use of a Np 05 wavefunction that is fixed
by spatial symmetry, D3d, and Np electron configuration,
4I9/2, alone [5]. A discussion of findings and related works
appears in section 6. An appendix is devoted to implications
for multipoles of symmetry operations in the magnetic point
groups.

2. Implications of crystal symmetry

An atomic multipole is denoted by 〈TK
Q 〉 with rank K a

positive integer and projection Q (−K ≤ Q ≤ K). Angular
brackets denote the ground-state expectation value of the
enclosed spherical tensor operator, in this case calculated for
the ground-state configuration 5f3 (Np4+, 4I9/2). We use only
parity-even multipoles because the resonant ion, Np, is at a
centre of inversion symmetry in Pn3̄m (#224). With origin
choice 2 site symmetry 3̄m (D3d) is at the origin. Multipoles
possess a time signature (−1)K and the complex conjugate
〈TK

Q 〉
∗
= (−1)Q〈TK

−Q〉 = 〈T
K
Q 〉
′
−i〈TK

Q 〉
′′ with 〈TK

0 〉 purely real.
We choose the origin as our reference site, with a triad

axis of rotation symmetry along the crystal axis [111] and
a diad axis of rotation symmetry along the diagonal [1,
−1, 0]. To implement a triad axis of symmetry along an
oblique axis it is convenient to use local, principal axes ξ =
[−1,−1, 2]/

√
6,η = [1,−1, 0]/

√
2, and ζ = [1, 1, 1]/

√
3

with corresponding multipoles 〈OK
q 〉 that also possess a time

signature (−1)K . Multipoles 〈TK
Q 〉 are referred to the crystal

unit cell and

〈TK
Q 〉 = exp(−i3πQ/4)

∑
q

dK
q,Q(β)〈O

K
q 〉, (2.1)

and dK
q,Q(β) an element of the Wigner rotation matrix using

cosβ = 1/
√

3 and sinβ =
√
(2/3). The triad axis of rotation

symmetry requires C3ζ 〈OK
q 〉 = 〈O

K
q 〉 = exp(i2πq/3)〈OK

q 〉

which is satisfied by q = ±3m. A diad axis of rotation
symmetry in D3d parallel to the η axis imposes the identity
C2η〈OK

q 〉 = 〈O
K
q 〉 = (−1)K+q

〈OK
−q〉. Using the latter property

of 〈OK
q 〉 and q = ±3m in (2.1) it is easy to confirm that

〈TK
Q 〉 is indeed unchanged by the diad operations C2[11̄0] and

C2[011̄].
Since 〈OK

q 〉 = (−1)K〈OK
q 〉
∗ it follows that 〈OK

0 〉 = 0 for
K odd (magnetic), and 〈OK

q 〉 is purely real (imaginary) for
K even (odd). The result 〈T1

Q〉 = 0 follows from (2.1) and

〈O1
0〉 = 0. Directly from (2.1)

〈TK
Q 〉
∗
= exp(i3πQ/2)(−1)K〈TK

Q 〉, (2.2)

which tells us that 〈TK
0 〉 = 0 for K odd, in keeping with 〈OK

0 〉.
For later use

〈TK
+2〉
∗
= (−1)K+1

〈TK
+2〉, (2.3)

and multipoles 〈TK
+2〉 with K odd purely real and K

even purely imaginary. Taking K = 3 (octupole) and 5
(triakontadipole) in (2.1) leads to the results 〈T3

+2〉 =

−i〈O3
+3〉/
√

3 and 〈T5
+2〉 = i〈O5

+3〉/
√

3, and indeed these
multipoles are purely real given 〈OK

q 〉 is purely imaginary for

K odd. Results d2
0,0(β) = 0 and d5

3,4(β)+ d5
−3,4(β) = 0 yield

〈T2
0 〉 = 0 and 〈T5

±4〉 = 0.
The four Np ions are at sites 4b in the space group

(#224, origin choice 2). Positions in a unit cell are
d = (0, 0, 0), ( 1

2 ,
1
2 , 0), ( 1

2 , 0, 1
2 ), (0,

1
2 ,

1
2 )with environments

related by operations C2[001],C2[010] and C2[100] with
respect to (0, 0, 0). For a super-lattice reflection (00L) with
Miller index L an odd integer, our structure factor is

9K,Q =
∑

d

exp(id · k)〈TK
Q 〉d

= [1+ (−1)Q][〈TK
Q 〉 − (−1)K〈TK

−Q〉], (2.4)

where k ≡ (00L) is the Bragg wavevector. Evidently, 9K,Q
can only be different from zero for Q even. The motif of
magnetic (time-odd) multipoles coincides with the chemical
structure and it is identical to portraits of Np multipoles
displayed by Magnani et al [2] and Santini et al [3] with 05
symmetry. Note that 9K,0 = 0 for all K. The result 9K,0 = 0
for K even is anticipated, because L odd is a space-group
forbidden reflection, while 9K,0 = 0 for K odd follows from
the identity 〈TK

0 〉 = 0 for K odd. Bulk properties of Np ions,
including dichroic signals, are calculated from a structure
factor with k ≡ (000) that can be different from zero for K
even and Q = 0, namely

9K,Q = [1+ (−1)Q][〈TK
Q 〉 + (−1)K〈TK

−Q〉].

Although, like (2.4), only pure rotations, C2, are used in
its construction parity-odd dichroic signals for neptunium—
natural circular and magneto-chiral signals—are forbidden
because the appropriate point group contains a centre of
inversion symmetry, which renders all parity-odd multipoles
zero.

2
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An E1–E1 resonant event contains tensors K =
0, 1 and 2. For these K all 9K,Q are zero other than 92,±2 =

±4i〈T2
+2〉
′′, which creates Templeton–Templeton scattering.

With absorption at M4,5 edges (3d3/2 and 3d5/2) and
an E1–E1 event, multipoles contain electronic degrees of
freedom within p and f states. All experimental data taken at
the actinide M4,5 edges indicate a very strong dominance of
3d3/2, 3d5/2↔ 5f processes [3]. Let us note for completeness
that an E2–E2 event, for which K = 0, . . . , 4, occurring
at M4,5 edges may sample electronic degrees of freedom
within s, d and g states. Larger E2–E2 resonant contributions,
however, are expected at the M2,3 and L2,3 edges where the
quadrupole operator E2 directly couples to 5f states.

3. Unit-cell structure factors for resonant Bragg
diffraction

A unit-cell structure factor is denoted by Fµ′ν , where µ′ and
ν label secondary and primary states of polarization. For an
E1–E1 resonant event and a space-group forbidden reflection
(00L) with L odd only 〈T2

+2〉
′′ contribute, so that

F(E1–E1)µ′ν =
∑

K

XK(µ
′ν) ·ΨK

= X2,2(µ
′ν)92,−2 + X2,−2(µ

′ν)92,2,

(3.1)

and the second equality follows because all 9K,Q are zero
apart from92,±2. Using appropriate values for X2,±2(µ

′ν)we
find [7, 8]

F(E1–E1)σ ′σ = 4〈T2
+2〉
′′ sin(2ψ),

F(E1–E1)π ′σ = 4〈T2
+2〉
′′ sin θ cos(2ψ),

(3.2)

where θ is the Bragg angle and ψ the azimuthal angle,
i.e. the angle of rotation of the crystal about the Bragg
wavevector. For ψ = 0 the crystal a axis is in the plane of
scattering and normal to σ polarization. Dependences on θ
and ψ displayed in (3.2) are the same as in corresponding
expressions used successfully by Paixão et al [1] to analyse
their data. Identification of the strength of observed signals
with a quadrupole, 〈T2

+2〉
′′, was made later [4].

Two features of structure factors for an E2–E2 event
merit comment. First, dependence of structure factors on
ψ in both E1–E1 and E2–E2 are the same. The second
feature is a magnetic (time-odd) contribution, 〈T3

+2〉
′, in

the rotated channel of scattering. As in the calculation of
structure factors for an E1–E1 event, the identity 9K,Q =

−(−1)K9K,−Q derived from (2.4) with Q even is a crucial
factor in determining explicit E2–E2 structure factors. In
general, there are many contributions to E2–E2 structure
factors and there is a good case to exploit universal forms that
include the dependence on azimuthal angle [8]. We go on to
find

F(E2–E2)σ ′σ = (2/
√

7) sin2θ sin(2ψ)

× [
√

3〈T2
+2〉
′′
− 2〈T4

+2〉
′′
],

F(E2–E2)π ′σ = (2/
√

7) sin θ cos(2ψ)

× [−
√

3(1+ 2 cos 2θ)〈T2
+2〉
′′
+ i
√

21 cos2θ〈T3
+2〉
′

− (1+ sin2θ)〈T4
+2〉
′′
].

(3.3)

Note the very different dependences on the Bragg angle in
(3.2) and (3.3). Paixão et al [1] make the remark that their
data shows no evidence of an E2–E2 event, which if present
would likely contribute at a photon energy less than the E1–E1
event.

A magnetic octupole (K = 3) was proposed as the
primary order parameter [3, 5] as K = 3 is the lowest allowed
rank after the (apparently forbidden) dipole. This is contested,
however, by numerical estimates using a first-principles
theory that includes spin–orbit coupling and hybridization
with oxygen ions [6]. Instead, the authors of [6] favour a 05
triakontadipole (K = 5) on the grounds of its relatively large
magnitude in their theory.

4. Multipoles

In this section we outline how atomic multipoles arise in
resonant scattering, without recourse to rigorous proofs of
statements that require extensive (Racah) algebra [9–11]. We
use an E1–E1 event for this purpose.

In the present discussion, the resonant part of the x-ray
scattering length may be taken to be

Gµ′ν =
∑
η

〈Rµ′ |η〉 〈η|Rν〉(1η/[E −1η + i0η]). (4.1)

Here, R is the dipole operator, E the primary photon energy,
1η ≥ 0 the energy of a resonance and h̄/0η the lifetime of a
virtual, intermediate core-state.

The quantum label η in (4.1) includes the total angular
momentum and projection of the intermediate core-state,
Jc, Mc. The expectation value 〈Rµ′ |η〉 〈η|Rν〉 is constructed
with matrix elements of the type 〈Jc, Mc|Rν |J,M〉
proportional to a Clebsch–Gordan coefficient (Jc Mc J M|1ν)
with ν = 0,±1 (Wigner–Eckart theorem). The coefficient
of proportionality, called a reduced matrix element (RME),
is complex and depends on all quantum numbers apart
from projections Mc, M. The Clebsch–Gordan coefficient
(Jc Mc J M |1ν) is the signature of a spherical tensor,
in this case a spherical component of R. Evidently,
the numerator 〈Rµ′ |η〉 〈η|Rν〉 in (4.1) contains products
(Jc Mc J′ M′|1µ′)(Jc Mc J M|1ν). This product can be
shown to be equal to a sum on integer x of Clebsch–Gordan
coefficients (J M J′ M′|xq); see, for example, section 9.6 [12],
i.e. a product of two suitable Clebsch–Gordan coefficients can
be represented by a sum of spherical tensors of rank x, which
we denote by ϒx

q . In the final analysis 〈Rµ′ |η〉 〈η|Rν〉 is a sum
of multipoles 〈ϒx

q〉. These multipoles are equivalent to 〈TK
q 〉

used in section 2, by which we mean that the two types of
multipoles, 〈TK

q 〉 and 〈ϒx
q〉, only differ by virtue of RMEs

that depend on Jc. In particular, (2.1) applies to both types
of multipole.

There are generally many values of x, more than the three
values of K in the tensor product:∑
µ′,ν

〈Rµ′ |η〉 〈η|Rν〉(1µ
′1ν|Kq) =

∑
x
8η(K, x)〈ϒx

q〉, (4.2)

where 8η(K, x) is purely real and it stands for a lengthy
quantity which contains, among other things, Mc and various

3
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RMEs [10, 11]. Hence, the scattering length for resonant
Bragg diffraction, and dichroic signals, may contain atomic
multipoles, 〈ϒx

q〉, with rank x larger than the rank K in
unit-cell structure factors, meaning the scope of resonant
scattering to investigate ground-state electronic structure is
actually greater than meets the eye.

An important property of 8η(K, x) is that the sum∑
Mc8η(K, x) vanishes unless x = K. Such a sum is justified

when angular anisotropy of the core-state is negligible. In
this instance, the scattering length (4.1) reduces to oscillators
labelled by Jc, and the expression is adequate for a successful
analysis of data, in most cases.

We end the section, intentionally bereft of algebraic
detail, with a reminder that foregoing statements can be
proved and that there are explicit expressions for all
quantities [9–11]. For example, in section 5 we give specific
values of 〈ϒx

q〉 which enter E1–E1 structure factors. The
values are obtained using a neptunium wavefunction derived
in independent investigations. In other cases, multipoles can
be estimated by fitting expressions to experimental data.

5. Energy profile

As noted in section 4, structure factors (3.2) are appropriate
if the observed energy profile is adequately represented by
a Lorentzian function of the primary energy—derived from
a simple oscillator. But Paixão et al [1] emphasize that, at
the M4 edge of Np, the observed energy profile is far better
represented by the square of a Lorentzian function. Such an
energy profile is found to be a natural outcome of the angular
anisotropy of a 3d core-state. By which we mean that the
M4 core-state must be labelled by the full set of quantum
labels, Jc =

3
2 and Mc(−Jc ≤ Mc ≤ Jc), and, consequently,

four oscillators.
Following (4.1), the E1–E1 scattering length in the

vicinity of a resonance at energy 1 is

G(E1–E1) =

∑
Mc

[∑
x8η(2, x)〈ϒx

+2〉
′′
]

[E −1− ε(Mc)+ i0]
, (5.1)

and the corresponding energy profile:

I = |G(E1–E1)|2. (5.2)

In (5.1), ε(Mc) = Mc(g − 1)Hs, where g = 4/5 is the Landé
factor and Hs simulates a magnetic exchange field [18].
Independent evidence for the pivotal importance of an
intra-atomic, magnetic exchange interaction between 3d core
and 5f valence shells, in the form of ab initio calculations of
the Np x-ray absorption spectra that include non-zero integrals
G1,G3 and G5, is reported in [4]. Also significant in the
question of a magnetic exchange field is net spin polarization
in the 5f electrons on a Np ion along the [111] axis obtained
in a first-principles theory of magnetic multipolar order in
neptunium dioxide; [6] and figure 3(b) therein. A case for
Zeeman, McgHo, in place of exchange energy is made in
work on dysprosium borocarbide [13, 14]. While it is argued
that an exchange field is correct, actually the two forms
of energy are not distinguishable in an analysis at a single

Figure 1. Intensity I = |G(E1–E1)|2 for Jc =
3
2 as a function of

energy. Parameters in the scattering length G(E1–E1)
equation (5.1), the width in energy and exchange energy, are
inferred from a fit to data [1] with the results 0 = 2.60± 0.07 eV
and |ε( 1

2 )| = 0.76± 0.02 eV. Multipoles in the scattering length,
〈ϒ2
+2〉
′′ and 〈ϒ4

+2〉
′′, are completely determined by a calculated 05

wavefunction [5] that is fixed by the spatial symmetry D3d and Np
electron configuration, 4I9/2, alone.

edge, here M4 (Jc =
3
2 ), although they do lead to different

findings in a comparative study of two edges, say, M4,5 [13,
14]. Returning to (5.1), when the exchange energy ε(Mc) is
set aside the sum on Mc can be accomplished and, using
the aforementioned property of 8η(K, x), the numerator is
proportional to 〈ϒ2

+2〉
′′
≡ 〈T2

+2〉
′′.

The sum of 〈ϒx
+2〉
′′ in (5.1) has the maximum rank x =

2Jc+K = 5. Of these multipoles those with x odd (magnetic)
do not contribute because they are purely real, and x = 0
is excluded because the required projection >0. Thus the
numerator is a simple linear combination of an octupole (x =
2) and a hexadecapole (x = 4) and, also, it is an even function
of Mc. We find, apart from an unimportant scale factor,∑

x
8η(2, x)〈ϒx

+2〉
′′
= [−(9/5)〈ϒ2

+2〉
′′

+ (258/
√

65)〈ϒ4
+2〉
′′
], (5.3)

for Mc = ±
1
2 and∑

x
8η(2, x)〈ϒx

+2〉
′′
= −[〈ϒ2

+2〉
′′
+ (258/

√
65)〈ϒ4

+2〉
′′
],

(5.4)

for Mc = ±
3
2 . Use is made of entries in table 1 of [4] in

arriving at these results, which are valid for Jc =
3
2 . As

promised, the sum of the two numerators, (5.3) and (5.4), does
not contain 〈ϒ4

+2〉
′′.

Opposite signs attached to 〈ϒ4
+2〉
′′ in (5.3) and (5.4)

enable an energy profile that is close to the square of a
Lorentzian and an excellent match to the observed energy pro-
file, as can be seen in figure 1 which displays our calculated
I and published data [1]. To see how this comes about, note
that relative contributions to the amplitude from denominators
[E − 1 ± ε( 1

2 ) + i0]−1 and [E − 1 ± ε( 3
2 ) + i0]−1 are

controlled by R = [1+(258/
√

65)〈ϒ4
+2〉
′′/〈ϒ2

+2〉
′′
]/[(9/5)−

(258/
√

65)〈ϒ4
+2〉
′′/〈ϒ2

+2〉
′′
]. For |(E − 1)| � ε(Mc), 0 the

scattering length (5.1) is proportional to (1+R)/(E−1) and
for R = −1 the energy profile (5.2) departs from a Lorentzian

4
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centred around 1, being a much narrower function of E for
given ε(Mc), 0. This conclusion is independent of the specific
form of ε(Mc) other than ε( 1

2 ) 6= ε(
3
2 ).

Values of 〈ϒ2
+2〉
′′ and 〈ϒ4

+2〉
′′ are calculated using

expressions obtained from (2.1) with 〈OK
q 〉 derived from an

appropriate wavefunction. First

〈ϒ2
+2〉 = (i/

√
6)〈O2

0〉, and

〈ϒ4
+2〉 = (i/9)[

√
10〈O4

0〉 −
√

7〈O4
+3〉].

(5.5)

We make use of the 05 wavefunction provided by Di Matteo
et al [5] to calculate 〈OK

q 〉 (equation (1) in [5]). The precise
form of the normalized wavefunction is determined by
symmetry alone and there are no adjustable parameters. To be
successful in this exercise it is vitally important that we adopt
the same principal axes as these authors [5], and we go on to
find

〈O2
0〉 =

3
2
√
(3/55), 〈O4

0〉 = (5/3)
√
(1/715),

〈O4
+3〉 = −(2/15)

√
(14/143).

(5.6)

With these results (258/
√

65)〈ϒ4
+2〉
′′/〈ϒ2

+2〉
′′
= 172/3 and

R = −1.050.
The energy profile (5.2) evaluated with R = −1.050 has

been successfully confronted with data reported by Paixão
et al [1]. In the fit to data shown in figure 1 we find 0 =
2.60±0.07 eV and |ε( 1

2 )| = 0.76±0.02 eV, and these values
for the width in energy and exchange energy are satisfactorily
close to the values reported by Lovesey et al [4]. Moreover,
Nagao and Igarashi estimate 0 ≈ 2 eV [17].

6. Discussion

We re-visited a previous interpretation of observations, made
with resonant Bragg diffraction of x-rays, of an unusual phase
transition in the actinide compound NpO2 [1]. Shortcomings
in our original work [4] are removed and more recent
knowledge about the neptunium wavefunction included,
which culminates in a successful confrontation between
our simulation and published data on the energy profile
at the Np M4 edge. Whereas previously the wavefunction
was modelled in the current work a 05 wavefunction is
completely specified [5]. As a consequence, all atomic
multipoles are fully determined. Our success in describing
the observed energy profile adds confidence to the merit of
the wavefunction. Two unknowns in the energy dependence,
the width in energy and exchange energy, are inferred
from data and they are found to be entirely reasonable
and satisfactorily close to previous estimates [4, 17]. Our
attention to the departure of the energy profile from a usual
Lorentzian centred on the absorption edge, and identification
of the departure with the Np hexadecapole, contrasts with
the stance of Nagao and Igarashi who deem the departure
unimportant [17].

A ratio of multipoles controls the shape of the energy
profile, in particular its departure from a Lorentzian. This
ratio is a rational number derived from the 05 wavefunction,
while irrational numbers abound at intermediate stages of the

calculations of the controlling multipoles. This finding implies
that all aspects of our calculation, which include fractional
parentage coefficients for f 3 (Np4+) and the 05 wavefunction,
are correct and the ratio is ultimately fixed by underlying
symmetries.

The same basic atomic theory of resonant scattering of
x-rays, used here to interpret diffraction data gathered on
the low-temperature phase of neptunium dioxide at the Np
M4 edge (3846.9 eV), has been applied with equal success
to interpretations of diffraction data gathered on rare-earth
compounds with combined magnetic and orbitally ordered
phases. Mulders and collaborators [13–15] report three studies
of soft x-ray resonant Bragg diffraction at M4,5 edges of Dy
and Ho in borocarbides (DyB2C2 and HoB2C2) and extract
good estimates of high-order rare-earth multipoles, e.g. the
Dy triakontadipole [14]. These studies include intra-atomic
magnetic and also quadrupolar interactions between 3d core
and 4f valence shells. Confirmation of the contribution of
these interactions to absorption spectra of rare-earth ions
is given by Fernández-Rodrı́guez et al [16] using ab initio
calculations.
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Appendix

We examine implications for neptunium multipoles of
symmetry operations in the possible magnetic space groups
of neptunium dioxide. Specific examples of multipoles are
chosen by their relevance to the main text, i.e. the maximum
rank is K = 5. Previous studies of multipoles of a similar
nature include dysprosium borocarbide (DyB2C2) [19] and
strontium iridate (Sr2IrO4) [20].

Three magnetic groups are constructed by the addition
of the time reversal operator, θ , to the non-magnetic,
crystallographic point group 3̄m (D3d), namely 3̄m′, 3̄′m′ and
3̄′m. Principal axes (ξ, η, ζ ) are defined in section 2. Operators
needed here and not found in section 2 are the identity, E,
inversion, I, rotation–inversion (improper rotation), 3̄ ≡ S6,
and a mirror normal to the η axis, mη = IC2η:

3̄m = D3d: {E, 2C3ζ , 3C2η, I, 2S6ζ , 3mη},

3̄m′ = D3d(S6): {E, 2C3ζ , 3θC2η, I, 2S6ζ , 3θmη},

3̄′m′ = D3d(D3): {E, 2C3ζ , 3C2η, θI, 2θS6ζ , 3θmη},

3̄′m = D3d(C3v): {E, 2C3ζ , 3θC2η, θI, 2θS6ζ , 3mη}.

(A.1)

Since the point group can be generated by three symmetry
operations, chosen in (A.1) to be I, C2η and C3ζ , all selection
rules on multipoles can be derived by application of the

5
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chosen operators or the corresponding composite operators
(θ I, θC2η). The generic parity-even multipole is denoted by
〈OK

q 〉, which is prevalent in the text, and it has a time
signature (−1)K . (The corresponding multipole referred to
crystal axes is denoted in the text by 〈TK

Q 〉.) In addition, we

need a magnetoelectric multipole, 〈GK
q 〉, that is defined to be

time-odd and parity-odd, and thus unchanged (even or gerade)
by the composite operator θ I.

3̄m; By definition the multipole 〈OK
q 〉 satisfies the identity

I〈OK
q 〉 = 〈O

K
q 〉. The triad axis of rotation symmetry imposes

an identity

C3ζ 〈O
K
q 〉 = exp(i2πq/3)〈OK

q 〉 = 〈O
K
q 〉, (A.2)

satisfied by q = ±3m with m and integer, i.e. |q| can take even
and odd integer values that are multiples of 3. Lastly, to satisfy
the diad axis of rotation symmetry

C2η〈O
K
q 〉 = (−1)K+q

〈OK
−q〉 = (−1)K〈OK

q 〉
∗
= 〈OK

q 〉, (A.3)

where the second equality uses our definition of the complex
conjugate of a multipole, 〈OK

q 〉
∗
= (−1)q〈OK

−q〉. Evidently
〈OK

0 〉 = 0 for K odd, while 〈OK
q 〉 is purely real (imaginary)

for K even (odd).
In view of the time signature (−1)K the multipole 〈O1

q〉

represents a magnetic dipole. We find 〈O1
0〉 = 0 and the

projection q = 0 is the only allowed value for K = 1.
All possible components of a magnetic dipole are therefore
forbidden, 〈T1

Q〉 = 0 for all Q. Continuing with time-odd

multipoles, allowed octupoles (K = 3) are 〈O3
−3〉 = 〈O

3
3〉

which are purely imaginary; next, triakontadipoles (K =
5) 〈O5

−3〉 = 〈O
5
3〉 also purely imaginary. Regarding time-even

multipoles, K even, a monopole 〈O0
0〉, quadrupole 〈O2

0〉 and
hexadecapoles with components 〈O4

0〉 and 〈O4
3〉 = −〈O

4
−3〉

are all purely real. The triakontadipole shown by Magnani
et al [2] in figure 1 is invariant under C2η and thus clearly
belongs to the magnetic group 3̄m.

3̄m′; All multipoles are parity even, with time signature
(−1)K , and must satisfy (A.2). In place of (A.3), a new
identity arises from time reversal in union with a diad on the
η axis, namely

θC2η〈O
K
q 〉 = (−1)q〈OK

−q〉 = 〈O
K
q 〉
∗
= 〈OK

q 〉, (A.4)

and all allowed multipoles are purely real. In particular, a
magnetic dipole 〈O1

0〉 is allowed in 3̄m′, while it is forbidden
in 3̄m, and similar comments hold for the diagonal, magnetic
multipoles 〈O3

0〉 and 〈O5
0〉, while 〈O3

−3〉 = −〈O
3
3〉 and 〈O5

−3〉 =

−〈O5
3〉.
To date, there is no empirical evidence in favour of

magnetic dipoles in neptunium dioxide. As a consequence,
we reject 3̄m′ as a candidate magnetic space group for the
compound.

The remaining two magnetic point groups, 3̄′m′ and 3̄′m,
are distinguished from previous point groups by the admit-
tance of time reversal in union with the inversion of space
coordinates, θ I, under which magnetoelectric multipoles 〈GK

q 〉

are invariant. Finite magnetoelectric multipoles 〈GK
q 〉 for

neptunium dioxide are non-commonsensical, of course. While

in subsequent working we discover that they are allowed in
magnetic groups 3̄′m′ and 3̄′m all 〈GK

q 〉 are nominally zero
because associated matrix elements are zero. We expand on
this latter statement before proposing a mechanism that may
break the embargo. Our notation is that used in section 4.

Operator equivalents for the magnetoelectric scalar
(magnetic charge) and dipole (anapole) are S · R and S × R,
respectively. Here, S and R are, respectively, commuting spin
and dipole (position) operators. Consider multipoles 〈G0

〉 =

〈S·R〉 and 〈G1
〉 = 〈S×R〉. An expectation value 〈· · ·〉 is made

with matrix elements of respective operator equivalents using
S− L states |s, σ 〉 and |l,m〉, where σ = ± 1

2 and −l ≤ m ≤ l.
Consider a typical matrix element:

(〈s, σ ′|〈l′,m′|)SpRq(|s, σ 〉 |l,m〉) = 〈s, σ ′|Sp|s, σ 〉

× 〈l′,m′|Rq|l,m〉,

where spherical components of the dipole operators are p, q =
0,±1. The matrix element 〈l′,m′|Rq|l,m〉 can be different
from zero for l + l′ odd, since the RME is proportional to a
Clebsch–Gordan coefficient = (l′010|l0). But states with l+ l′

odd are forbidden in a centrosymmetric environment. Such is
the case for the example in hand, D3d.

In conclusion, parity-odd multipoles can be different
from zero in a parity-odd environment that supports an
admixture of states with opposing parities, l 6= l′. Thus, when
the environment is centrosymmetric, e.g. D3d, and some 〈GK

〉

are found non-zero a mechanism is afoot that negates the
selection rule imposed by spatial inversion symmetry.

A scenario is a boot-strap mechanism on the lines of
Trammell’s model of magnetic dipoles in rare-earth ions
possessed of a ground state that is nominally magnetically
inert [21, 22]. Thereby a dipole moment is generated in
a self-consistent theory via intervention of a Heisenberg
exchange interaction in the Hamiltonian, which creates an
admixture of states capable of supporting magnetism. In a
similar situation, should the magnetic group permit 〈GK

〉

then an interaction in the Hamiltonian proportional to GK is
invoked.

For the moment, the nature of a suitable symmetry-
breaking interaction is unknown. Furthermore, breaking
inversion symmetry at the Np site would either break cubic
symmetry or reduce the space group from Pn3̄m to P23
(#195) or P4232 (#208). Such a lowering of symmetry is
not supported by any experimental observations—there are
no signs of any lattice distortion, nor of conventional Bragg
diffraction at reflections (HKL) with Miller indices H+K+L
odd. Therefore, it is reasonable to assume that inversion
symmetry prevails and all magnetoelectric multipoles vanish,
〈GK
〉 = 0. Even so, desire for completeness compels us to list

conditions on 〈GK
〉 in 3̄′m′ and 3̄′m.

3̄′m′; Reference to (A.1) shows that (A.2) remains
in force with q = ±3m. A conventional interpretation of
the group, using parity-even multipoles, yields θ I〈OK

q 〉 =

(−1)K〈OK
q 〉 = 〈O

K
q 〉 which is satisfied by K even (non-

magnetic), and the diad operation (A.3) is satisfied by 〈OK
q 〉

purely real. Turning to an interpretation using magnetoelectric
multipoles 〈GK

q 〉, one has q = ±3m:

θ I〈GK
q 〉 = −I〈GK

q 〉 = 〈G
K
q 〉, (A.5)

6
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that can be regarded as a definition and imposes no additional
conditions, and in place of (A.3)

C2η〈G
K
q 〉 = (−1)K+q

〈GK
−q〉 = (−1)K〈GK

q 〉
∗
= 〈GK

q 〉. (A.6)

The last identity tells us that 〈GK
0 〉 = 0 for K odd and

〈GK
q 〉 is purely real (imaginary) for K even (odd).

3̄′m; Parity-even multipoles, 〈OK
q 〉, must obey (−1)K =

1, and hence conditions for these multipoles are identical to
those in 3̄′m′. For magnetoelectric multipoles, q = ±3m, and
invariance with respect to θC2η results in the identity

θC2η〈G
K
q 〉 = −(−1)K+q

〈GK
−q〉 = −(−1)K〈GK

q 〉
∗
= 〈GK

q 〉.

(A.7)

The identity (A.7) tells us that 〈GK
0 〉 = 0 for K even and

〈GK
q 〉 is purely real (imaginary) for K odd (even). Thus the

anapole parallel to the ζ axis, 〈G1
0〉, can be different from zero

but 〈G1
±1〉 = 0 because of the triad axis of rotation symmetry.

References

[1] Paixão J A et al 2002 Phys. Rev. Lett. 89 187202
[2] Magnani N et al 2008 Phys. Rev. B 78 104425

[3] Santini P et al 2009 Rev. Mod. Phys. 81 807
[4] Lovesey S W et al 2003 J. Phys.: Condens. Matter 15 4511
[5] Di Matteo S et al 2007 J. Alloys Compounds 444/445 278
[6] Suzuki M-T et al 2010 Phys. Rev. B 82 241103(R)
[7] Lovesey S W et al 2005 Phys. Rep. 411 233
[8] Scagnoli V and Lovesey S W 2009 Phys. Rev. B 79 035111
[9] Lovesey S W and Balcar E 1997 J. Phys.: Condens. Matter

9 4237
[10] Lovesey S W 1997 J. Phys.: Condens. Matter 9 7501
[11] Lovesey S W and Balcar E 2012 J. Phys. Soc. Japan

81 014710
[12] Balcar E and Lovesey S W 2009 Introduction to the Graphical

Theory of Angular Momentum Springer Tracts in Modern
Physics vol 234 (Berlin: Springer)

[13] Mulders A M et al 2006 J. Phys.: Condens. Matter 18 11195
[14] Princep A J et al 2011 J. Phys.: Condens. Matter 23 266002
[15] Princep A J et al 2012 J. Phys.: Condens. Matter 24 075602
[16] Fernández-Rodrı́guez J et al 2010 J. Phys.: Condens. Matter

22 016001
[17] Nagao T and Igarashi J 2005 Phys. Rev. B 72 174421
[18] van der Laan G 1997 Phys. Rev. B 55 8086
[19] Lovesey S and Knight K S 2001 Phys. Rev. B 64 094401
[20] Chapon L C and Lovesey S W 2011 J. Phys.: Condens. Matter

23 252201
[21] Trammell G T 1963 Phys. Rev. 131 932
[22] Houmann J G et al 1979 Phys. Rev. B 20 1105

7

http://dx.doi.org/10.1103/PhysRevLett.89.187202
http://dx.doi.org/10.1103/PhysRevLett.89.187202
http://dx.doi.org/10.1103/PhysRevB.78.104425
http://dx.doi.org/10.1103/PhysRevB.78.104425
http://dx.doi.org/10.1103/RevModPhys.81.807
http://dx.doi.org/10.1103/RevModPhys.81.807
http://dx.doi.org/10.1088/0953-8984/15/26/301
http://dx.doi.org/10.1088/0953-8984/15/26/301
http://dx.doi.org/10.1016/j.jallcom.2006.11.055
http://dx.doi.org/10.1016/j.jallcom.2006.11.055
http://dx.doi.org/10.1016/j.physrep.2005.01.003
http://dx.doi.org/10.1016/j.physrep.2005.01.003
http://dx.doi.org/10.1103/PhysRevB.79.035111
http://dx.doi.org/10.1103/PhysRevB.79.035111
http://dx.doi.org/10.1088/0953-8984/9/20/020
http://dx.doi.org/10.1088/0953-8984/9/20/020
http://dx.doi.org/10.1088/0953-8984/9/35/023
http://dx.doi.org/10.1088/0953-8984/9/35/023
http://dx.doi.org/10.1143/JPSJ.81.014710
http://dx.doi.org/10.1143/JPSJ.81.014710
http://dx.doi.org/10.1088/0953-8984/18/49/012
http://dx.doi.org/10.1088/0953-8984/18/49/012
http://dx.doi.org/10.1088/0953-8984/23/26/266002
http://dx.doi.org/10.1088/0953-8984/23/26/266002
http://dx.doi.org/10.1088/0953-8984/24/7/075602
http://dx.doi.org/10.1088/0953-8984/24/7/075602
http://dx.doi.org/10.1088/0953-8984/22/1/016001
http://dx.doi.org/10.1088/0953-8984/22/1/016001
http://dx.doi.org/10.1103/PhysRevB.72.174421
http://dx.doi.org/10.1103/PhysRevB.72.174421
http://dx.doi.org/10.1103/PhysRevB.55.8086
http://dx.doi.org/10.1103/PhysRevB.55.8086
http://dx.doi.org/10.1103/PhysRevB.64.094401
http://dx.doi.org/10.1103/PhysRevB.64.094401
http://dx.doi.org/10.1088/0953-8984/23/25/252201
http://dx.doi.org/10.1088/0953-8984/23/25/252201
http://dx.doi.org/10.1103/PhysRev.131.932
http://dx.doi.org/10.1103/PhysRev.131.932
http://dx.doi.org/10.1103/PhysRevB.20.1105
http://dx.doi.org/10.1103/PhysRevB.20.1105


4.1. Article I  67 

 

 

 

  



 

 

 

  



 

 

69 

 

CHAPTER 5 

Hematite, αααα-Fe2O3 

Article	II	
Article	 in	 press	 in	 Physical	 Review	 B:	 “Parity-odd	 multipoles,	 magnetic	

charges	and	chirality	in	haematite	(α−Fe2O3)”.	
				
Article	III	
Article	 in	 press	 in	 Physical	 Review	 B:	 “Chiral	 properties	 of	 haematite	 (α-

Fe2O3)	 inferred	 from	 resonant	 Bragg	 diffraction	 using	 circularly	polarized	x-rays”.	
	
Abstract	
The canted and collinear antiferromagnetic phases of Hematite (α−Fe2O3), were 

studied with linear polarization Resonant X-ray Diffraction near the iron K-edge. 

The experimental data collected at two forbidden reflections from the 	(0,0, �)2 

family in the R3�c space group, with l odd, were used to infer the values of the 

multipoles behind these orderings, showing a coupling between two processes, 

E1E2 and E2E2, for the linear polarization case. This mixture was theoretically 

demonstrated to be distinguishable by the use of circular polarized X-rays in the 

primary beam leading to an experiment that corroborated the values inferred in the 

previous studies together with the demonstration that the helicity from the X-rays 

can couple with the chiral properties of materials. 
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5.1 Results and Summary 

The iron sesquioxide (α−Fe2O3) or Hematite, from the Greek “ÛX*Û�X�ÍY”, has 

been studied since old Greek times. Its structure from the Corundum family (w3�,, 

#167), allows an antiferromagnetic behaviour below a Néel temperature, TN, of 

950 K. It shows two different phases, one of each (above the temperature of 

Morin, TM ≈ 250 K) has the magnetic moments in a canted ordering in the ab-

plane producing a weak ferromagnetic signal along the c-axis, this effect is due to 

the so-called Dzyaloshinskii-Moriya (DM) interaction, introduced in Appendix A. 

This interaction was first described by Dzyaloshinskii in 1958 [30] and Moriya 

[31] and it has been observed in many multiferroic materials as BiFeO3 [12], 

BFeO3 [11] and Ba0.5Sr1.5Zn2Fe12O22  [79]. 

 

Figure 5.1. Azimuthal angle scan near the Fe K-edge at the forbidden reflection	(0,0,3)2. (Red 

dots) Experimental data presented by Finkelstein et al. [33] for the unrotated	(1′1) and rotated 

	(s′1)  polarization channels. (Blue line) Fitting to data obtained using the spherical tensor 

formalism presented in article II [80]. 

The first studies carried out in hematite using Resonant X-ray Scattering 

near the K-edge were performed by Finkelstein and co-workers in 1992 [33], this 

group investigated the forbidden reflection (0,0,3)H at 9 eV below the K-edge 

using a Si(311) polarization analyser to extract the σ and π contributions to 

scattering. The experimental data obtained in this experiment is presented in 

figure 5.1, where the blue line represent the fitting done using the formalism 

presented in section 2.4, in this case the value of the multipoles inferred are the 

same as the ones presented in the Article II [80]. 

Later on, Kokubun and collaborators [32] follow the steps and performed a 

more complete experiment to a single crystal of Hematite together with another 

analysis to a compound of the same space group chromium sesquioxide 
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(presented in Appendix G). Unfortunately, the azimuthal scans where gathered in 

this case without a polarization analyzer crystal for measuring the different 

contributions from the σ and π channels in the secondary beam. They collected the 

data at 7.112 keV just below the K-edge for two forbidden reflections (0,0,3)H and 

(0,0,9)H and treat the data using a theoretical approach based in an abridged 

amplitude by de Bergevin and Brunel [81], which is a sum of the exact expression 

and the high-energy limit of two contributions to scattering that involve 

intermediate states. This approximation is valid near the limit of high energy but 

not for the investigated interval of energy below the K-edge. The spherical 

multipole model presented in section 2.4 and in article II [80], is valid for the 

energy studied in the experiment done by Kokubun et al. [32] and in particular for 

the case were the energy profile can be approached by a single oscillator. 

Kokubun and co-authors introduced a possible contribution of an E1M1 

event to scattering in hematite as explanation of the non-resonant case; this event 

was also used by Scagnoli et al. [7] as the possible mechanism to describe 

superconductivity in the CuO family. In the case of Hematite the contribution of 

the E1M1 was shown not to be necessary for explaining the dependence with the 

azimuthal angle as presented in article II. 

The linear polarized data showed a mixture of the two contributions E1E2 

and E2E2, this lead us to question our self, if it was possible to differentiate 

between them using circular polarized light in the primary beam, as presented in 

GaFeO3 by Collins and co-workers [3]. From this the theoretical calculations of 

the contribution to scattering were done for the two events (E1E2 and E2E2), and 

it was found a different dependence with the azimuthal angle, ψ.  

In collaboration with the group from the beamline P09 at Petra III, Hamburg, 

a circular polarization x-ray resonant experiment for the two forbidden reflections, 

(0,0,3)2 and (0,0,9)2, was carried out in a large single crystal of hematite. Which 

was polished after the data collection, had the family of the (0,0, �)2reflections 

perpendicular to the surface. The control of the beam polarization was done 

defining the Stokes parameters P1 and P3, for a set of diamond crystals that were 

playing a role of phase plates, for pure circular left and circular right primary 

beams (as defined in Appendix F) for both polarizations. 



72  CHAPTER 5: Hematite, α-Fe2O3 

 

 

Figures 4 and 5 of the article III present the azimuthal dependence of the 

dichroic signal (CR-CL) for the two forbidden reflections studied below and above 

TM. The values of the average multipoles fitting coincide with the ones obtained 

from applying the non-reducible tensor formalism described by spherical tensors 

to the data gathered by Kokubun et al. [32] but it is possible to observe how the 

canted phases can be fully described by the parity-even processes (E1E2) 

multipole, the Magnetoelectric contribution being the stronger event. While in the 

phase below TM there is still a mixture between the pure and mixed events 

multipoles, E2E2 and E1E2 respectively. 
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Parity-odd multipoles, magnetic charges, and chirality in hematite α-Fe2O3
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Collinear and canted magnetic motifs in hematite were investigated by J. Kokubun et al. [Phys. Rev. B 78,
115112 (2008)] using x-ray Bragg diffraction magnified at the iron K-edge, and analyses of observations led to
various potentially interesting conclusions. We demonstrate that the reported analyses for both nonresonant
and resonant magnetic diffraction at low energies near the absorption K-edge are not appropriate. In its
place, we apply a radically different formulation, thoroughly tried and tested, that incorporates all magnetic
contributions to resonant x-ray diffraction allowed by the established chemical and magnetic structures.
Essential to a correct formulation of diffraction by a magnetic crystal with resonant ions at sites that
are not centers of inversion symmetry are parity-odd atomic multipoles, time-even (polar) and time-odd
(magneto-electric), that arise from enhancement by the electric-dipole (E1)–electric-quadrupole (E2) event.
Analyses of azimuthal-angle scans on two space-group forbidden reflections, hexagonal (0,0,3)h and (0,0,9)h,
collected by Kokubun et al. [Phys. Rev. B 78, 115112 (2008)] above and below the Morin temperature
(TM = 250 K), allow us to obtain good estimates of contributing polar and magnetoelectric multipoles, including
the iron anapole. We show, beyond reasonable doubt, that available data are inconsistent with parity-even
events only (E1-E1 and E2-E2). For future experiments, we show that chiral states of hematite couple to
circular polarization and differentiate E1-E2 and E2-E2 events, while the collinear motif supports magnetic
charges.

DOI: 10.1103/PhysRevB.83.054427 PACS number(s): 75.50.Ee, 78.70.Ck, 78.20.Ek, 75.47.Lx

I. INTRODUCTION

Enigmas about ichor-like hematite (α-Fe2O3) and famed
lodestone, both true and some embroidered, have been worried
and written about from the time of Greek texts in 315 BC
to William Gilbert of Colchester, the father of magnetism,
in the 16th century, to Dzyaloshinsky in 1958 who gave a
phenomenological theory of weak ferromagnetism. Hematite
is the iron sesquioxide that crystallizes into the corundum
structure (centrosymmetric space group 167, R3̄c) in which
ferric (Fe3+, 3d5) ions occupy sites 4(c) on the trigonal c axis
that are not centers of inversion symmetry. For an extensive
review of the history and properties of hematite see, for
example, Morrish1 and Catti et al.2

At room temperature, the motif of magnetic moments
is canted antiferromagnetism with moments in a (basal)
plane normal to the c axis. Weak ferromagnetism parallel
to a diad axis of rotation symmetry, normal to a mirror
plane of symmetry that contains the c axis, is created by
a Dzyaloshinsky3–Moriya4 antisymetric interaction D · (S1 ×
S2) between spins S1 and S2 and the vector D is parallel to the
c axis. The Morin temperature 250 K, at which moments rotate
out of the the basal plane to the c axis, may be determined
from the temperature dependence of magnetic Bragg peaks
observed by neutron diffraction. Rotation of the moments
takes place in a range of 10 K in pure crystals but the interval
can be much larger, ≈150 K, in mixed materials.5 Ultimately,
moments align with the c axis and create a fully compensating,
collinear antiferromagnet with an iron magnetic moment of
4.9 μB at 77 K. We follow Dzyaloshinsky3 and label collinear
(low-temperature phase) and canted (room-temperature phase)
antiferromagnetism as phases I and II, respectively (see Fig. 1).

In phase I hematite is not magnetoelectric unlike eskolaite
(Cr2O3), which also possesses the corundum structure and
collinear antiferromagnetism.

Finkelstein et al.6 and Kokubun et al.7 studied hematite
by x-ray Bragg diffraction, with Bragg intensities enhanced
by tuning the energy of the primary x-rays to the iron
K-absorption edge. In these experiments, attention is given
to Bragg reflections that are forbidden by extinction rules
for the space group. Often called Templeton and Templeton
reflections,8 the reflections in question are relatively weak and
arise from angular anisotropy of valence states that accept the
photoejected electron. Following rotation of the crystal about
a Bragg wave-vector aligned with the c axis, Finkelstein et al.6

observed a near sixfold periodicity of the intensity that is traced
to a triad axis of rotation symmetry that passes through sites
occupied by resonant, ferric ions. In general by measuring
intensities, collected at space-forbidden reflections, we can
obtain information of high-order multipoles existing in the
materials such as magnetic charge (or magnetic monopole),9

electric dipole,10 anapole,11,12 quadropole,13 octupole,14,15

and hexadecapole.16,17 Therefore, these weak reflections are
extremely sensitive to charge, orbital, and spin electron degrees
of freedom and hematite is no exception.18

We apply an atomic theory of resonant Bragg diffraction
formulated for the corundum structure19 to data gathered
by Kokubun et al.7 at forbidden reflections (0,0,l)h with
l = 3(2n + 1) and infer from available data relative values
of atomic multipoles of the resonant ion. A successful
story emerges with scattering represented by a mixture of
parity-even and parity-odd (even or odd with respect to
the inversion of space) multipoles at sites in the structure
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FIG. 1. (Color online) Magnetic and chemical structure of
hematite, space group R3̄c. The red (large) and the yellow (small)
dots represent oxygen and iron sites, respectively. The left line
denotes the magnetic motif along the c axis below the Morin
temperature (phase I). The right line denotes the motif above the
Morin temperature, where iron moments are contained in the a-b
plane (phase II).

occupied by resonant iron ions, which are not centers of
inversion symmetry. Parity-odd multipoles arise in a resonant
event using the electric dipole (E1) and electric quadrupole
(E2)—corresponding multipoles are labeled polar (time-even)
or magnetoelectric (time-odd)—while parity-even multipoles
arise from E1-E1 and E2-E2 events. A chiral state of hematite
is demonstrated by a predicted coupling of resonant intensity
to circular polarization (helicity) in the primary beam, and
the effect also differentiates between E1-E2 and E2-E2
events. The two parity-odd multipoles of rank zero correspond
to chirality and magnetic charge20,21 and both pseudoscalar
monopoles are present in the electric dipole–magnetic dipole
(E1-M1) amplitude for resonant scattering by hematite in
phase I.

Our article is arranged as follows. Section II contains
essential information and definitions. Unit-cell structure fac-
tors for Bragg diffraction enhanced by E1-E1, E1-E2, and
E2-E2 listed in the Appendix are exploited in Secs. III and
IV, which report the successful analysis of Bragg diffraction
data gathered on hematite at room temperature and at 150 K,
well below the Morin transition. Thereafter, in Sec. V, there
are simulations of resonant intensity induced by circular
polarization in the primary x-ray beam which signals the
existence of a chiral state. Section VI addresses the magnetic
charge found in the E1-M1 structure factor and not visible in a
dichroic signal. A discussion of findings in Sec. VII concludes
the article.

II. BASICS

There are four contributions to the amplitude of photons
scattered by electrons calculated in the first level of approxima-
tion in the small quantity (E/mc2), where E is the energy of the

primary photon, namely, Thomson scattering, spin scattering,
and two contributions with virtual intermediate states, one of
which may become large when E coincides with an atomic
resonance. Of particular interest with magnetic samples is a
celebrated reduction of the amplitude, derived by De Bergevin
and Brunel,22 which occurs at large E. In this limit, all
three contributions excluding Thomson scattering add to give
so-called magnetic, nonresonant scattering made up simply of
spin and orbital magnetic moments. De Bergevin and Brunel’s
result is not valid at low energies, and certainly not below an
atomic resonance, as is at once obvious from the steps in its
derivation.23

In an analysis of x-ray Bragg diffraction data for hematite
collected at space-group forbidden reflections we use the spin
and resonant contributions to the scattering amplitude. The
spin contribution Gs = i(E/mc2)(e × e′) · Fs(k) with k =
q − q′, where e and q (e′ and q′) are, respectively, the polar-
ization vector and the wave vector of the primary (secondary)
photon, and the Bragg angle θ that appears in structure factors
for resonant scattering is defined by q · q′ = q2 cos(2θ ). Fs(k)
is the unit-cell structure factor for spin magnetic moments. The
measured energy profiles of reflections (0,0,3)h and (0,0,9)h
show a single resonance in the pre-edge region, devoid of
secondary structure, which is modeled by a single oscillator
centered at an energy � = 7.105 keV with a width �, to
an excellent approximation.7 In this instance, the resonant
contribution to scattering is represented by d(E)Fμ′ν , where
d(E) = �/[E − � + i�] and Fμ′ν is a unit-cell structure
factor for states of polarization μ′ (secondary) and ν (primary).
We follow the standard convention for orthogonal polarization
labels σ and π : σ normal to the plane of scattering and,
consequently, π in the plane. Unit-cell structure factors listed
in the Appendix are derived following steps for the corundum
structure found in Lovesey et al.19 The generic form of our
Bragg scattering amplitude for hematite at a space-group
forbidden reflection (no Thomson scattering) is

Gμ′ν(E) = Gs
μ′ν + ρ d(E) Fμ′ν, (1)

where ρ is a collection of factors, which include radial integrals
for particular resonance events, which are provided in the
Appendix.

Atomic multipoles 〈T K
Q 〉 in parity-even structure factors,

for E1-E1 and E2-E2 events, have the property that even
rank K are time-even (charge) and odd rank K are time-odd
(magnetic). For enhancement at the K-absorption edge, all
parity-even atomic multipoles relate to orbital degrees of
freedom in the valence shell - spin degrees of freedom are
absent.24 Thus, for enhancement at the K-absorption edge,
multipoles 〈T K

Q 〉 with odd K are zero if the ferric, 3d5 (electron
configuration 6S) of the iron ion is fully preserved in hematite.
The measured iron magnetic moment of 4.9 μB at 77 K
indicates that the orbital magnetic moment is small and likely
no more than ≈2% of the measured moment.2,5

It is worth noting that we have used a single-domain
approach for calculating the intensities, as is mentioned in
the penultimate paragraph in Sec. IV D of Kokubun et al.7

The justification is that the x-ray beam was sufficiently small
to illuminate only one crystal domain of hematite.
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III. PHASE I

We report first our analyses of data gathered by Kokubun
et al.7 on hematite at 150 K. With 100% incident σ polarization
and no analysis of polarization in the secondary beam, the
measured intensity of a Bragg reflection is proportional to

I = |Gσ ′σ (E)|2 + |Gπ ′σ (E)|2. (2)

For a collinear antiferromagnet, in expression (1) for
Gμ′ν(E) one has Gs

σ ′σ = 0 and in the channel with rotated
polarization

Gs
π ′σ = 4 sin(θ ) sin(ϕl)(E/mc2)fs(k) 〈Sz〉, (3)

where ϕ = −37.91◦, the Bragg angle θ = 10.96◦ (34.77◦) for
a Miller index l = 3 (9), 〈Sz〉 � 5/2 is the spin moment,
and fs(k) is the spin form factor with fs(0) = 1. Note that
|Gs

π ′σ |2 ∝ sin2(θ ) above is not the expression in Eq. (20) in
Ref. 7, which is derived by the use of an abridged scattering
amplitude that is not valid in the experiment.22

At resonance, the spin contribution Gs
π ′σ is suppressed

compared to the resonant contribution by a factor �/� ≈ 10−4

and it may safely be neglected.
Confrontations between our theoretical expressions for

the azimuthal-angle dependence of Bragg intensity with the
corresponding experimental data reported in Ref. 7 reveal a
30◦ mismatch of origins in the azimuthal angle. Our origin
ψ = 0 has the a axis normal to the plane of scattering,19

whereas Kokubun et al.7 specify an origin such that the a axis
is parallel to q + q′, giving a nominal mismatch in the origin
of ψ , between theory and experiment, of 90◦. The actual
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FIG. 2. (Color online) Azimuthal-angle dependence of intensity
of Bragg reflections (0,0,l)h with l = 3 and l = 9 for phase I (150 K).
Continuous curves are fits to structure factors for E1-E2 and E2-E2
events with magnetic (time-odd) parity-even multipoles set to zero.
Inferred relative atomic multipoles are listed in Table I. Experimental
data are taken from Kokubun et al.7

mismatch, 30◦, revealed by our analysis of data is likely to
arise in the experiments by mistakenly using for reference
a basal plane Bragg reflection offset by 60◦. In this and the
following section we reproduce data as a function of ψ offset
by 30◦ compared to data reported in Figs. 5 and 10 in Ref. 7.

In light of the established negligible orbital magnetism
in hematite, parity-even, time-odd atomic multipoles (K = 1
and 3) are set equal to zero. Looking in the Appendix
one finds Fμ′ν(E1-E1) = 0. Additionally, Fσ ′σ (E2-E2) = 0
and Fπ ′σ (E2-E2) produce Templeton–Templeton scattering
proportional to [〈T 4

+3〉′ cos(3ψ)], where ψ is the azimuthal
angle. Inspection of data for phase I reproduced in Fig. 2
shows that an E2-E2 event on its own is not an adequate
representation. The missing modulation is produced by the
E1-E2 event that introduces a polar quadrupole 〈U 2

0 〉 in
phase with the parity-even hexadecapole.25 Figure 2 displays
satisfactory fits of {|Fσ ′σ |2 + |Fπ ′σ |2}, using equal measures
of E1-E2 and E2-E2 events, to data from azimuthal-angle
scans performed at reflections (0,0,l)h with l = 3 and 9. The
influence of the polar quadrupole is very notable for l = 9
because for this Miller index the hexadecapole is suppressed,
with the ratio at l = 9 to l = 3 of tan(ϕl) equal to 0.15. Relative
values of multipoles inferred from fits to the low-temperature
data are gathered in Table I. Values of 〈T 4

+3〉′ and 〈U 2
0 〉 in

phase I are found to be of one sign and in the ratio 20 : 1, with
near equal magnitudes of the polar quadrupole and magne-
toelectric octupole, 〈G3

+3〉′. If |ρ(E2-E2)/ρ(E1-E2)| ≈ 1.0,
as suggested by our estimate, magnetoelectric multipoles are
≈5% of the dominant parity-even hexadecapole, 〈T 4

+3〉′.
Without polarization analysis, it does not seem possible

from azimuthal-angle scans to distinguish between E1-E2 and
E2-E2 events.However, as shown in Sec. V, the two events
can be distinguished with circularly polarized x rays.

TABLE I. Relative values of atomic multipoles for collinear
antiferromagnetism in phase I (at ≈100 K below the Morin transition)
and canted antiferromagnetism in phase II (room temperature). Apart
from a scale factor, the magnitude of the dominant hexadecapole,
〈T 4

+3〉′, is set to +10.00. The estimate 〈U 2
0 〉 = +0.50 inferred by

fits to data for phase I is also used in the analysis of data for
phase II. Values for other multipoles are inferred by fitting to data
equal measures of E1-E2 and E2-E2 structure factors listed in the
Appendix, with time-odd figures (magnetic) multipoles in E2-E2 set
to zero. Fits are displayed in Figs. 2 and 4. With our definition, real
〈· · ·〉′ and imaginary 〈· · ·〉′′ parts of a multipole are defined through
〈GK

Q〉 = 〈GK
Q〉′ + i〈GK

Q〉′′ with 〈GK
Q〉∗ = (−1)Q〈GK

−Q〉, and identical
relations for the other two multipoles, 〈T K

Q 〉 and 〈UK
Q 〉. All multipoles

with projection Q = 0 are purely real. Using radial integrals from an
atomic code factors in Eq. (1) are in the ratio ρ(E2-E2)/ρ(E1-E2) ≈
−0.98, which is no more than a guide to the actual value in hematite.
This ratio is not eliminated in the listed values of the multipoles.

Multipole Phase I Phase II

〈G1
+1〉′ 0.50(2)

〈G2
0〉 0.11(2)

〈G2
+1〉′′ −0.38(3)

〈G3
+1〉′ 1.07(6)

〈G3
+3〉′ 0.41(2) 2.45(5)
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FIG. 3. (Color online) Azimuthal-angle dependence of intensity
of the Bragg reflection (0,0,9)h for phases I (150 K) and II (room tem-
perature). Continuous curves are fits to parity-even structure factors
E1-E1 and E2-E2 including all magnetic multipoles. Experimental
data taken from Kokubun et al.7 appear also in Figs. 2 and 4.

The failure of pure parity-even structure factors E1-E1
plus E2-E2 to explain the data is most pronounced for l = 9.
To illustrate the extent of the failure, Fig. 3 displays a fit to
intensity at l = 9 with an amplitude made of equal amounts of
E1-E1 and E2-E2 unit-cell structure factors, and the quality
of the fit is clearly inferior to the one shown in Fig. 2.

IV. PHASE II

In this phase, above the Morin transition, iron magnetic
moments lie in a plane normal to the c axis. We choose
orthonormal principal axes (x, y, z) with the x and z axes
parallel to the crystal a and c axes, respectively. The crystal
a axis is parallel to a diad axis of rotation symmetry, normal
to the mirror plane that contains the trigonal c axis.

The spin contribution Gs
σ ′σ = 0, while the corresponding

π ′σ scattering amplitude can be different from zero and,
notably, it depends on the azimuthal angle. We find that

Gs
π ′σ = 4 cos(ψ) cos(θ ) sin(ϕl) (E/mc2) fs(k) 〈Sy〉, (4)

and |Gs
π ′σ |2 ∝ cos2(θ ) from Eq. (4) is not the same as the

corresponding result, Eq. (19) in Ref. 7 for reasons spelled out
in Sec. III.

Away from a resonance, the result (4) predicts a twofold
periodicity of intensity as a function of the azimuthal angle,
which is in accord with observations in Ref. 7. The spin mo-
ment in the mirror plane 〈Sy〉 is close to 5/2 while spontaneous
magnetization, directed along a diad axis, is ≈0.02% of the
nominal value. From Eqs. (3) and (4) we see that the ratio of
|Gs

π ′σ |2 for phases I and II depends on tan2(θ ) which takes the
value 0.04 (0.48) for l = 3 (l = 9). For l = 3, Kokubun et al.7

report intensity between 150 K (phase I) and 300 K (phase II).

Starting from ≈210 K a large increase of intensity is observed
over an interval of ≈40 K. Rotation of magnetic moments from
the c axis to the basal plane, between phases I and II, takes
place in a range of 10 K in pure crystals but the interval can
be larger in mixed materials as commented above.

Slightly away from the resonance, interference between the
nonresonant, spin contribution (4) and d(E)Fπ ′σ may enhance
intensity in a Bragg peak if (E − �)[Gs

π ′σ /(Fπ ′σ )′] > 0. We
find [Gs

π ′σ /(Fπ ′σ )′] is of one sign for l = 3 and l = 9 provided
that fs(k), the spin form factor, is of one sign. At face value
this finding is not at one with Kokubun et al.7 who discuss
a sighting of slight enhancement of the intensity on the low-
energy side of the resonance for l = 9 that is apparently absent,
or completely negligible, for l = 3.

Figure 4 shows fits of E1-E2 and E2-E2 structure factors
to data gathered at l = 3 and l = 9 in phase II (room
temperature). As before, in our analysis of data gathered on
phase I, parity-even multipoles with odd K are set to zero.
Time-even contributions to structure factors, determined by
chemical structure, are taken to be the same in phases I and II.
Consistency with this assumption, about chemical structure,
implies for phases I and II the same values of 〈T 4

+3〉′ and
〈U 2

0 〉. Inferred relative values of time-odd atomic multipoles
for phase II are listed in Table I, with values of 〈T 4

+3〉′ and 〈U 2
0 〉

in the ratio 20:1. Relative to the magnitude of 〈U 2
0 〉, none of the

magnetoelectric multipoles are negligible in phase II. Figure 3
contains a fit of pure parity-even structure factors, E1-E1 and
E2-E2, to data for the reflection l = 9, and the quality of the
fit is clearly inferior to that reported in Fig. 4 with E1-E2 and
E2-E2 structure factors.
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FIG. 4. (Color online) Azimuthal-angle dependence of the inten-
sity of Bragg reflections (0,0,l)h with l = 3 and l = 9 for phase II
(room temperature). Continuous curves are fits to structure factors
for E1-E2 and E2-E2 events with magnetic (time-odd) parity-even
multipoles set to zero. Inferred relative atomic multipoles are listed
in Table I. Experimental data are taken from Kokubun et al.7
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FIG. 5. (Color online) Simulation of the azimuthal-angle depen-
dence from Eq. (6) for a circular polarized light of Bragg reflections
(0,0,l)h with l = 3 and l = 9 for phase I. Continuous curves are
simulations made with the values of the multipoles from the E1-E2
event gathered in Table I. For the E2-E2 event Ic is zero because our
magnetic (time-odd) parity-even multipoles are zero for a ferric ion.
Zero Ic does not mean zero intensity because Ic is only the circular
polarization contribution to intensity.17

V. CHIRAL STATE

A chiral, or handed, state of a material is permitted to couple
to a probe with a like property, in our case circular polarization
(helicity) in the primary beam of x rays. In our notation,
the pseudoscalar for helicity, P2, is one of three purely real,

time-even Stokes parameters. Intensity induced by helicity in
the primary beam is (Ref. 17)

Ic = P2Im {G∗
σ ′π Gσ ′σ + G∗

π ′π Gπ ′σ }, (5)

where the amplitudes Gμ′ν are given by Eq. (1) and * denotes
complex conjugation. Ic is zero for Thomson scattering since
it is proportional to (e · e′) and diagonal with respect to states
of polarization.

Let us consider the fully compensating collinear antiferro-
magnet (phase I). For both E1-E1 and E1-M1 events there are
no contributions diagonal with respect to states of polarization
and Ic is zero. Using the structure factors listed in the Appendix
for the E1-E2 and E2-E2 events, we find

Ic(E1-E2) = −P2

(
8
√

2

5

)
ρ2(E1-E2) | d(E) |2 sin(3ψ)

× cos3(θ )[1 + sin2(θ )] cos2(ϕl)
〈
G3

+3

〉′〈
U 2

0

〉

(6)
and

Ic(E2-E2) = −P24ρ2(E2-E2) | d(E) |2 sin(6ψ)

× sin(θ ) cos6(θ ) sin2(ϕl)
〈
T 3

+3

〉′′〈
T 4

+3

〉′
, (7)

The predicted intensities are significantly different—
notably in dependence on the azimuthal angle—and offer a
method by which to distinguish contributions from the two
events (see Figs. 5 and 6). Intensities (6) and (7) depend
on long-range magnetic order, with Ic(E2-E2) = 0 if the
ferric ion is pure 6S. The polar quadrupole in Eq. (6) is a
manifestation of local chirality,19,25 whereas the pseudoscalar
〈U 0

0 〉, discussed in the next section, is a conventional measure
of the chirality of a material. While for phase II, we find that
Ic is given

Ic(E1-E2) = P2

(
8
√

2

5

)
ρ2(E1-E2)|d(E)|2 cos2(ϕl) cos2(θ )

〈
U 2

0

〉{ 1√
3

sin(ψ)

[−3√
5

[cos(3θ ) + cos(θ )]
〈
G1

+1

〉′
× [cos(3θ ) − cos(θ )]

〈
G2

+1

〉′′ − 1√
5

[cos3(θ ) + 2 cos(θ )]
〈
G3

+1

〉′] − sin(3ψ) cos(θ )[1 + sin2(θ )]
〈
G3

+3

〉′}
, (8)

Ic(E2-E2) = −P2

(
1√
2

)
ρ2(E2-E2)|d(E)|2 sin2(ϕl)

〈
T 4

+3

〉′{
4 sin(ψ) cos4(θ )

[−1√
5

sin(θ )[8 cos2(θ ) − 5]
〈
T 1

1

〉′′
+

√
3

5
sin(θ ) cos3(θ )

〈
T 3

+1

〉′′] − 4
√

2 sin(θ ) cos6(θ ) sin(6ψ)
〈
T 3

+3

〉′′}
. (9)

VI. MAGNETIC CHARGE AND CHIRALITY

The pseudoscalar monopoles 〈G0
0〉 and 〈U 0

0 〉 have partic-
ularly simple and interesting physical interpretations. Both
monopoles are allowed in hematite structure factors for the

E1-M1 event, as we see by inspection of relevant expressions
in the Appendix. A conventional measure of the chirality of
electrons in a molecule or extended media is 〈S · p〉/|〈p〉|,
where S and p are operators for spin and linear momentum
and, not unsurprisingly, 〈U 0

0 〉 is proportional to 〈S · p〉/|p|. It
is well-known that 〈U 0

0 〉 contributes to natural circular
dichroism.26 On the other hand, 〈G0

0〉, a magnetic charge,
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FIG. 6. (Color online) Simulation of the azimuthal-angle depen-
dence from Eq. (8) for a circular polarized light of Bragg reflections
(0,0,l)h with l = 3 and l = 9 for phase II (room temperature).
Continuous curves are simulations made with the values of the
multipoles from the E1-E2 event gathered in Table I. For the
E2-E2 event the Ic is equal to zero because our magnetic (time-odd)
parity-even multipoles are zero. Zero Ic does not mean zero intensity
since Ic is only the circular polarization contribution.17

does not contribute to dichroic signals but it can contribute
in scattering. Such is the case for gallium ferrate27 and phase I
of hematite. The magnetic charge and the magnetoelectric
quadrupole are present in the amplitude for backscattering
with q = −q′.

VII. DISCUSSION

We report successful analyses of resonant Bragg diffraction
data gathered by Kokubun et al.7 on hematite in the collinear
(phase I) and canted (phase II) antiferromagnetic phases, with
no analysis of diffraction according to polarization of the
x rays. We infer good estimates of iron atomic multipoles
and find large amounts of parity-odd multipoles. Of particular
importance to a successful analysis is a polar quadrupole, a
measure of local chirality,25 and, in phase II, magnetoelectric
multipoles that include the anapole. Slight departures between
our theory and experiment could be due to a less than ideal
crystal, as witnessed in the extended interval of temperature
for rotation of magnetic moments between phases I and II.7

Future experiments might employ polarization analysis that
will allow closer scrutiny of the unit-cell structure factors for
hematite that we list in the Appendix, which are derived from
the established chemical and magnetic structures of hematite.
We predict for phase I that scattering enhanced by the E1-M1
event contains monopoles that represent chirality and magnetic
charge.

Our analyses of data are based on an atomic theory of
x-ray Bragg diffraction19 with unit-cell structure factors that

are fundamentally different from the corresponding structure
factors employed by Kokubun et al.7 One difference arises in
the treatment of nonresonant magnetic scattering. We use the
exact expression, due solely to spin moments, while Kokubun
et al.7 mistakenly—because it is not valid in the investigated
interval of energy—use an abridged amplitude by de Bergevin
and Brunel22 that is a sum of the exact expression and the
high-energy limit of two contributions to scattering that involve
intermediate states (one of the two is capable of showing a
resonance). Treating the resonance as a single oscillator, in
accord with the reported energy profile, our structure factors
for resonant diffraction are completely determined with no
arbitrary phase factors, unlike the analysis in Ref. 7. This dif-
ference in the analyses is a likely explanation of our evidence
that published data for azimuthal-angle scans are miss-set by
30◦. Our treatment of magnetic (time-odd) contributions to
scattering is another major difference in the analyses. Whereas
Kokubun et al.7 allow only the dipole in the E1-E1 event we
consider all permitted time-odd contributions in both parity-
even and parity-odd events. Time-odd multipoles from parity-
even events, 〈T K

Q 〉 with odd K , are related to orbital magnetism
when the intermediate state in resonance is an s state, as is the
case in the experiments in question with absorption at the
iron K-edge. The available evidence is that orbital magnetism
of the ferric ion in hematite is negligible, as expected for
an s-state ion, and the same can be said of the parity-even,
time-odd multipoles, including the dipole which at resonance
is the only source of magnetic scattering considered in Ref. 7.
From our analysis, we conclude that magnetic scattering at
resonance is provided by magnetoelectric multipoles in an
E1-E2 event. We demonstrate beyond reasonable doubt that
allowing magnetic 〈T K

Q 〉 different from zero the available
data are not consistent with diffraction enhanced by purely
parity-even events, E1-E1 and E2-E2.

In summary, we have derived information on the relative
magnitude of multipoles for the antiferromagnetic phases of
hematite (above and below the Morin temperature). These
estimates are obtained from analyses of experimental
azimuthal dependence gathered in resonant x-ray Bragg
diffraction at space-group forbidden reflections (0,0,3)h and
(0,0,9)h. A chiral electron state is proposed from a predicted
coupling of resonant intensity to circular polarization in the
primary beam. This effect allows differentiating between
contributions of the E1-E2 and E2-E2 events. In addition,
pseudoscalar monopoles (chirality and magnetic charge) are
present in the E1-M1 amplitude for resonant scattering by
hematite below the Morin temperature.
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APPENDIX: UNIT-CELL STRUCTURE FACTORS

Some factors in Eq. (1) contain a dimensionless quantity
ℵ = m�a2

0/h̄
2 = 260.93, where a0 is the Bohr radius and

� = 7.105 keV. Radial integrals for the E1 and E2 processes
at the K-absorption edge are denoted by {R}sp and {R2}sd .
Estimates from an atomic code are {R}1s4p/a0 = −0.0035
and {R2}1s3d/a

2
0 = 0.00095, and it is interesting that the

magnitudes are smaller than hydrogenic values with Z = 26
by a factor of about 3. More appropriate values of the radial
integrals will be influenced by ligand ions. The M1 process
between stationary states of an isolated nonrelativistic ion is
forbidden because the radial overlap of initial and final states
in the process is zero, on account of orthogonality. For an
M1 process in a compound the radial integral, denoted here
by {1}γ γ , is an overlap of two orbitals with common orbital
angular momentum, �, which may be centered on different
ions. The magnitude of {1}γ γ is essentially a measure of
configuration interactions and bonding, or covalancy, of a
cation and ligands. Factors appearing in Eq. (1) are

ρ(E1-E1) = [{R}sp/a0]2ℵ, (A1)

ρ(E1-M1) = q{R}sp{1}γ γ , (A2)

ρ(E1-E2) = [
q{R2}sdRsp/a2

0

]ℵ, (A3)

ρ(E2-E2) = [q{R2}sd/a0]2ℵ. (A4)

Hematite structure factors Fμ′ν for forbidden reflections
(0,0,l)h with l = 3(2n + 1) and enhancements by E1-E1, E1-
M1, E1-E2, and E2-E2 events are listed below. In these ex-
pressions, the angle ϕ = −πu, where u = 2z − 1/2 = 0.2104
for α-Fe2O3, the angle θ is the Bragg angle, and 〈T K

Q 〉, 〈GK
Q〉,

and 〈UK
Q 〉 are the mean values of the atomic tensors involved.

1. Collinear antiferromagnet, phase I

(E1-E1)

Fσ ′σ (E1-E1) = 0 (A5)

Fπ ′σ (E1-E1) = −2
√

2 sin(ϕl) sin(θ )
〈
T 1

0

〉
(A6)

Fπ ′π (E1-E1) = 0 (A7)

(E1-M1)

Fσ ′σ (E1-M1) = 0 (A8)
Fπ ′σ (E1-M1)

= 2
√

2√
3

cos(ϕl)
{
2
√

2
[ − sin2(θ )

〈
G0

0

〉 + i cos2(θ )
〈
U 0

0

〉]
+[2 + cos2(θ )]

〈
G2

0

〉 + i cos2(θ )
〈
U 2

0

〉}
(A9)

Fπ ′π (E1-M1) = 0 (A10)

(E1-E2)

Fσ ′σ (E1-E2) = −4
√

2√
5

sin(3ψ) cos(ϕl) cos(θ )
〈
G3

+3

〉′
(A11)

Fπ ′σ (E1-E2)

= 2√
5

cos(ϕl)
{− [3 cos2(θ ) − 2]

〈
G2

0

〉 + i cos2(θ )
〈
U 2

0

〉
−

√
2 sin(2θ ) cos(3ψ)

〈
G3

+3

〉′}
(A12)

Fπ ′π (E1-E2)

= −4
√

2√
5

sin(3ψ) cos(ϕl) cos(θ ) sin2(θ )
〈
G3

+3

〉′
(A13)

(E2-E2)

Fσ ′σ (E2-E2) = −
√

2 sin(3ψ) sin(ϕl)
〈
T 3

+3

〉′′
(A14)

Fπ ′σ (E2-E2)

=
√

2

5
sin(ϕl)

{
sin(3θ )

〈
T 1

0

〉 − sin(θ )[3 cos2(θ ) − 2]
〈
T 3

0

〉

−
√

5

4
cos(3ψ)

[
[3 cos(3θ ) + cos(θ )]

〈
T 3

+3

〉′′
− i[cos(3θ ) + 3 cos(θ )]

〈
T 4

+3

〉′]}
(A15)

Fπ ′π (E2-E2) = − 1√
2

sin(3ψ) sin(ϕl) sin(4θ )
〈
T 3

+3

〉′′
(A16)

2. Canted antiferromagnet, phase II

Time-even contributions to structure factors, determined
by chemical structure, are the same in phases I and II.
Thus the structure factor with polar multipoles, Fμ′ν(u),
for phase II is identical to the foregoing expression for
phase I. For the convenience of the reader, structure factors
for parity-even multipoles, Fμ′ν(t), are given in full, although
only contributions with K = 1 and 3 differ from foregoing
expressions.

(E1-E1)

Fσ ′σ (E1-E1) = 0 (A17)

Fπ ′σ (E1-E1) = 4 cos(ψ) sin(ϕl) cos(θ )
〈
T 1

+1

〉′′
(A18)

Fπ ′π (E1-E1) = 4 sin(ψ) sin(ϕl) sin(2θ )
〈
T 1

+1

〉′′
(A19)

(E1-M1)

Fσ ′σ (E1-M1)

= 8 sin(ψ) cos(ϕl) cos(θ )
[−〈

G1
+1

〉′ + 〈
G2

+1

〉′′]
(A20)

Fπ ′σ (E1-M1) = 4 cos(ψ) cos(ϕl) sin(2θ )
[〈
G1

+1

〉]
(A21)

Fπ ′π (E1-M1)

= −8 sin(ψ) cos(ϕl) cos(θ )
[〈
G1

+1

〉′ + 〈
G2

+1

〉′′]
(A22)

(E1-E2)

Fσ ′σ (E1-E2)

= 4
√

2√
5

cos(ϕl) cos(θ )

{
1√
3

sin(ψ)

[−3√
5

〈
G1

+1

〉′
− 〈

G2
+1

〉′′ + 1√
5

〈
G3

+1

〉′] − sin(3ψ)
〈
G3

+3

〉′}
(A23)

Fπ ′σ (E1-E2)

= 2

√
2

5
cos(ϕl) sin(2θ )

{
cos(ψ)√

3

[
3√
5

〈
G1

+1

〉′

− 2
〈
G2

+1

〉′′ − 1√
5

〈
G3

+1

〉′] − cos(3ψ)
〈
G3

+3

〉′}
(A24)
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Fπ ′π (E1-E2)

= −4
√

6

5
cos(ϕl)

{√
5

3
cos(θ ) sin2(θ ) sin(3ψ)

〈
G3

+3

〉′
+ sin(ψ)

[
cos(3θ )

(〈
G1

+1

〉′ −
√

5

3

〈
G2

+1

〉′′)

+ 1

3
cos(θ )[cos2(θ ) + 3]

〈
G3

+1

〉′]}
(A25)

(E2-E2)

Fσ ′σ (E2-E2)

= sin(2θ ) sin(ϕl)

{
sin(ψ)

[−2√
5

〈
T 1

+1

〉′′ −
√

6

5

〈
T 3

+1

〉′′]

+
√

2 sin(3ψ)
〈
T 3

+3

〉′′}
(A26)

Fπ ′σ (E2-E2)

= − sin(ϕl)

{
cos(ψ)

[
2√
5

cos(3θ )
〈
T 1

+1

〉′′ +
√

6

5
cos(θ )

× [1 + sin2(θ )]
〈
T 3

+1

〉′′] + 1

2
√

2
cos(3ψ)

× [
cos(θ )[3 cos(3θ ) + cos(θ )]

〈
T 3

+3

〉′′]}
(A27)

Fπ ′π (E2-E2)

= 1√
2

sin(ϕl) sin(4θ )

{
sin(ψ)

[
− 4

√
2√
5

〈
T 1

+1

〉′′
+

√
3

5

〈
T 3

+1

〉′′] − sin(3ψ)
〈
T 3

+3

〉′′}
(A28)
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Chiral properties of hematite α-Fe2O3 inferred from resonant Bragg diffraction using circularly
polarized x rays
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Chiral properties of the two phases—collinear motif (below Morin transition temperature, TM ≈ 250 K)
and canted motif (above TM )—of magnetically ordered hematite (α-Fe2O3) have been identified in single-
crystal resonant x-ray Bragg diffraction using circular polarized incident x rays tuned near the iron K edge.
Magnetoelectric multipoles, including an anapole, fully characterize the high-temperature canted phase, whereas
the low-temperature collinear phase supports both parity-odd and parity-even multipoles that are time odd.
Orbital angular momentum accompanies the collinear motif, whereas it is conspicuously absent with the canted
motif. Intensities have been successfully confronted with analytic expressions derived from an atomic model
fully compliant with chemical and magnetic structures. Values of Fe atomic multipoles previously derived from
independent experimental data are shown to be completely trustworthy.

DOI: 10.1103/PhysRevB.88.094437 PACS number(s): 78.70.Ck, 78.20.Ek, 75.50.Ee, 75.47.Lx

I. INTRODUCTION

Alpha ferric oxide (α-Fe2O3), also known as hematite,
a name deriving from the Greek “αιματιτης” due to its
bloodlike shade in powder form, is still today revealing
its mysteries.1,2 Hematite has been present in the scientific
literature since the studies performed by the Greek philosopher
Theophrastus around 315 B.C. and later was studied by
the father of magnetism, William Gilbert of Colchester, in
the 16th century. Its magnetic behavior was first studied
in the early 20th century by Honda and Soné (1914), but it
was not until Dzyaloshinsky in 1958 when it was defined
as a canted antiferromagnet, becoming the prototype of the
Dzyaloshinsky-Moriya interaction.3,4

Hematite is a member of the corundum-structure family
(centrosymmetric space group 167, R3̄c). The ferric (Fe3+,
3d5) ions present in α-Fe2O3 are arranged along the c axis
occupying 4(c) sites, and they occupy sites deprived of
spatial inversion symmetry. The resonant x-ray diffraction
data we present in this paper are witness to the absence
of local inversion symmetry in the presence of global in-
version symmetry. The antiferromagnetic behavior present
in this compound below its Néel temperature (TN ≈ 948 K)
shows two different magnetic orders separated by the Morin
transition temperature, TM ≈ 250 K. Below this temperature
the magnetic moments are all parallel to the hexagonal c

axis in a collinear antiferromagnetic G-type configuration
(that is, the nearest neighbors have opposite spins while
the next-nearest neighbors have parallel spins) with an iron
magnetic moment of 4.9μB at 77 K, while above TM the
material shows a magnetic motif where the moments are in
a (basal) plane normal to the c axis showing a canted antifer-
romagnetic order, depicted in Fig. 1. As previously, we follow
Dzyaloshinsky and label the collinear (low-temperature phase)
and canted (room-temperature phase) magnetic motifs as I and
II, respectively.5 The Dzyaloshinsky-Moriya antisymmetric
interaction is responsible for the behavior known as weak

ferromagnetism that in the case of hematite is parallel to the
dyad axis of rotational symmetry.1,3

Chiral order in electronic structure is unambiguously
detected by a probe with a matching characteristic, as discussed
by Rodrı́guez-Fernándezet al.,6 and we have used circularly
polarized x rays to verify the existence of such order in a single
crystal of hematite. With respect to the chirality, neutrons
have perhaps given the clearest indication of such states in the
past. However, the method of determining this also involves
measuring the polarization of the scattered neutrons,7 and in
this case, where there is a net ferromagnetic contribution in
the high-temperature phase of α-Fe2O3, the neutron method
cannot be used because the ferromagnetic component will
depolarize the incident neutrons. In contrast, tuning the x-ray
energy to an atomic resonance of a ferric ion, the Fe K

edge, means these ions and no others participate in the chiral
order observed. In addition, the resonant process enhances the
sensitivity of the scattering process to the local environments
and angular anisotropy in the electron distribution that appears
due to the spin, charge, or multipolar order.5,6,8–13

Previous experiments on hematite, using Bragg diffraction
of linearly polarized x rays with the primary energy tuned near
the iron K absorption edge, were performed by Finkelstein
et al. and Kokubun et al.14,15 Owing to the important contribu-
tion of the Thomson scattering in these types of experiments,
attention is given to Bragg reflections that are space-group
forbidden by extinction rules. Integer Miller indices obey the
extinction rule l odd and −h + k + l = 3n in the case of
hematite.

Finkelstein et al. observed,14 while rotating a single crystal
about the Bragg wave vector (003)H in a so-called azimuthal-
angle scan, a sixfold periodicity of the intensity that is
traced to a triad axis of rotational symmetry that passes
through sites occupied by resonant, ferric ions. At a later
date, Kokubun et al. reported azimuthal-angle scans for l = 3
and 9.15 Unlike these two groups, we exploit the polarization
analysis of the diffracted beam to unveil contributions to the
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A. RODRÍGUEZ-FERNÁNDEZ et al. PHYSICAL REVIEW B 88, 094437 (2013)

FIG. 1. (Color online) Crystal and magnetic structure of hematite.
The small orange dots represent ferric ions while the large blue dots
present the oxygen atoms’ positions. The vertical line at left denotes
the magnetic motif along the c axis below the Morin temperature
(phase I). The vertical line at right denotes the motif above the Morin
temperature, where iron moments are contained in the a-b plane
(phase II).

magnetization with different spatial symmetries. On the way,
we confirm our prediction that hematite supports chiral order5

and gain confidence in our previously reported values of Fe
atomic multipoles, because they provide a totally satisfactory
description of new azimuthal-angle data for l = 3 and 9
gathered in phase I and phase II. A potential uncertainty in our
analysis5 of data reported in Ref. 15 is set to rest. Previously,
we were forced to the conclusion that there is an error in Ref. 15
on the reported setting of the crystal in azimuthal-angle scans,
and the error is confirmed here by use of our own data.

In this paper, we present data from a circular polarized x-ray
diffraction experiment performed at the Fe K edge. Section II
contains the description of the crystal and experiment. This
is followed by the discussion of the results in Sec. III, where
we report a detailed analysis of our azimuthal-angle scans for
l = 3 and 9, for the hematite sample at 150 K (collinear motif,
phase I) and 300 K (canted motif, phase II). In Sec. IV we
present our final remarks and conclusions.

II. CRYSTAL AND EXPERIMENTAL METHOD

The synthetic hematite single crystal studied in this ex-
periment was purchased from the Mateck Company. The size
of the sample was about 10 × 10 mm2 with a thickness of
0.5 mm, showing a polished surface near the [00l]H direction.
In Cartesian coordinates our hexagonal crystal coordinates are
aH = a(1,0,0), bH = a(−1/2,

√
3/2,0), and cH = c(0,0,1),

with a = 5.038 Å and c = 13.712 Å.
The experimental data presented in this work were obtained

at the Beamline P09, located in the synchrotron source PETRA

FIG. 2. Cartesian coordinates (x,y,z) and x-ray polarization and
wave vectors. The plane of scattering spanned by primary (q) and
secondary (q′) wave vectors coincides with the x-y plane. Polarization
labeled σ and σ ′ is normal to the plane and parallel to the z axis, while
polarization labeled π and π ′ lies in the plane of scattering. The beam
is deflected through an angle of 2θ .

III (Germany).16 This beam line covers the energy range
from 2.7 to 24 keV. A double-phase-retarder setup is used
to obtain the circular and rotated linear polarization for the
incident beam. The double-phase-retarder setup corrects for
some depolarizing effects and accomplishes a better rotated
polarization rate.17–19 Details of the incident polarization
manipulation using diamond phase plates at P09 are described
elsewhere.16,17 The phase plates are followed by a focusing
and higher-harmonic rejection system consisting of vertically
reflecting mirrors. The plate-shaped crystal, attached to the
cold finger of a closed-cycle cryostat, was mounted on a Psi
diffractometer such that the [00l]H direction of the crystal is
parallel to the scattering vector, q − q′, as shown in Fig. 2.
Polarization analysis was performed using a Cu(220) analyzer
crystal. The states of polarization labeled π (π ′) and σ (σ ′)
are defined in Fig. 2.

In the case of R3̄c, the reflections (003)H and (009)H are
space-group forbidden, but weak Bragg diffraction occurs near
an atomic resonance, as demonstrated by data displayed in
Fig. 3. In the experiment performed at Beamline P09, the
energy at which the primary x-ray beam was tuned, 7115 eV,
is close to the iron K edge. At this energy the forbidden (003)H
and (009)H reflections were investigated with the sample
maintained at two different temperatures, below (150 K) and
above (300 K) the Morin temperature.

During the experiment the incident polarization was
switched between almost perfect right and left circular polar-
ization. A measure of the high quality of circular polarization
of the primary beam is demonstrated by small values of the
parameters for linear polarization (following the convention
of Pauli matrices as done by Lovesey et al.), namely, P1 =
0.010 ± 0.002 and P3 = 0.026 ± 0.002 for right handed,
and P1 = −0.016 ± 0.002 and P3 = 0.036 ± 0.002 for left
handed. (Properties of Stokes parameters are mentioned again
in Sec. III.20,21)

We have found an extensive contribution from Renninger
reflections, also known as multibeam reflections. The sub-
traction of this kind of background intensity was done using
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FIG. 3. (Color online) X-ray energy dependence below TM T =
150 K for both reflections (003)H and (009)H in the vicinity of
the iron K edge. The open blue circles (triangles) show the linear
polarized π ′σ (σ ′σ ) data for the (003)H reflection, while the red
circles (triangles) define the data from the π ′σ (σ ′σ ) polarized
channel for the (009)H reflection. The solid lines present the fitting
to a model of a single oscillator.

a MATLAB program developed by Nisbet as previously done
for the extraction of the data presented in Ref. 6. Attention
was focused on azimuthal angles either only lightly or not
contaminated by Renninger reflections (therefore, measured
points in the azimuth dependence are not equidistant).

Circular left (CL) and circular right (CR) polarized az-
imuthal scans were performed at room temperature; the
difference between these two polarizations is presented in
Fig. 4. Fitting to data above TM was performed using Eqs. (3)
and (4) presented in Sec. III. The multipole values used for
these fittings are shown in Table I (phase II) and they agree
with the ones derived by Lovesey et al.5

FIG. 4. (Color online) Azimuthal-angle scans for phase II (canted
motif) at 300 K. Difference between circular left (CL) and circular
right (CR) polarization for the (003)H reflection (top) and the (009)H
reflection (bottom). The red circles represent the experimental data
while the blue line shows expression (5) for pure E1-E2 resonance
evaluated with multipoles taken from Ref. 5 and reproduced in Table I.

TABLE I. Numerical values of multipoles reported in Ref. 5 and
used here for intensities generated from expressions (3)–(6). As in
Ref. 5, 〈T 4

3 〉′ and 〈U 2
0 〉, multipoles which contribute in both phases,

are fixed to 10 and 0.5, respectively.

Multipole Phase I Phase II

〈G1
+1〉′ 5.0(2) × 10−1

〈G2
+1〉′′ −3.8(3) × 10−1

〈G3
+1〉′ 10.7(6) × 10−1

〈G3
+3〉′ 4.1(2) × 10−1 24.5(5) × 10−1

〈T 3
3 〉′′ 1.0(1) × 10−4

The azimuthal scan dependence of the (003)H reflection
below TM is presented in Fig. 5, whereas that for the (009)H
reflection is shown in Fig. 6. As in the case of room
temperature, multipole values used in the fitting are those
derived by Lovesey et al., collected in Table I (phase I).5

III. RESULTS AND DISCUSSION

For an interpretation of the experimental data, shown in
Figs. 4, 5, and 6, we proceed as in Ref. 5. The contribution
of Thomson scattering is absent at space-group-forbidden
reflections, leaving a sum of nonresonant spin and a resonant
contribution as ingredients for the appropriate scattering
amplitude.21,22

The spin contribution, Gs , is explicitly first order in the
small quantity E/mc2, where E is the primary energy and
mc2 the electron rest mass energy. Using notation displayed
in Fig. 2, Gs = i(E/mc2)(e × e′) · Fs(k), where k = q − q′
= (h,k,l) and e and q (e′ and q′) are, respectively, the
polarization vector and wave vector of the primary (secondary)
photon, while Fs(k) is the unit-cell structure factor for spin
dipoles.23,24

The measured energy profiles, displayed in Fig. 3 for the
reflections (003)H and (009)H , show a single resonance in the
pre-edge region that can be adequately modeled by a single

FIG. 5. (Color online) Azimuthal-angle scan for phase I (collinear
motif) at 150 K. Difference between circular left (CL) and circular
right (CR) polarization for (003)H reflection. The red circles represent
the experimental data while the blue line shows expressions (3) and
(4) for a mixture of E1-E2 and E2-E2 resonances evaluated with
multipoles taken from Ref. 5 and reproduced in Table I. In Eq. (4) the
parity-even and time-odd octupole 〈T 3

3 〉′′ is given a nominal value of
1(±0.1) × 10−4.
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FIG. 6. (Color online) Azimuthal-angle scan for phase I (collinear
motif) at 150 K. Difference between circular left (CL) and circular
right (CR) polarization for the (009)H reflection. As in Fig. 5, the
red circles represent the experimental data while the blue line shows
a mixture of E1-E2 and E2-E2 resonances. Data are compared to
pure E1-E2 [Eq. (3)] (dashed line) and pure E2-E2 [Eq. (4)] (dotted
line) resonances, with multipoles taken from Ref. 5 and reproduced
in Table I. In Eq. (4) the octupole 〈T 3

3 〉′′ is given a nominal value of
0.0001.

oscillator centered at an energy 
 = 7115 eV.5 The resonant
contribution to scattering is represented by d(E)Fμ′ν , where
d(E) = 
/[E − 
 + i�] with � the width in energy and
Fμ′ν a unit-cell structure factor for states of polarization μ′
(secondary) and ν (primary), as in Fig. 2.

The generic form of our Bragg scattering amplitude for
hematite at a space-group-forbidden reflection (no Thomson
scattering) is

Gμ′ν(E) = Gs
μ′ν + ρd(E)Fμ′ν . (1)

In this expression, ρ is a collection of factors, which
includes radial integrals for particular resonance
events, namely, ρ(E1-E1) = [{R}sp/ao]2ℵ, ρ(E1-E2) =
[q{R2}sd{R}sp/a2

o]ℵ, and ρ(E2-E2) = [q{R2}sd/ao]2ℵ.
Here, ℵ is a dimensionless quantity related to the Bohr
radius a0 and the resonant energy 
 = 7115 eV, with
ℵ = m
a2

o/h̄
2 = 260.93. The sizes of radial integrals for the

E1 and E2 processes at the K absorption edge, {R}sp and
{R2}sd , are discussed in Ref. 5.

The polarization state of the photons, already briefly
discussed in Sec. II, is defined by Stokes parameters that are
purely real and time even, namely, ordinary scalars P1 and P3

for linear polarization, and a pseudoscalar P2 that represents
the helicity of the beam. The contribution to the total intensity
induced by circular polarization (helicity), Ic, is20

Ic = P2 Im {G∗
σ ′π Gσ ′σ + G∗

π ′π Gπ ′σ }, (2)

where the amplitudes Gμ′ν are given by Eq. (1) and * denotes
complex conjugation. Ic is zero for Thomson scattering since
it is proportional to (e · e′) and diagonal with respect to the
polarization states.

We make use of unit-cell structure factors reported in our
previous publication.5 Full use is made of the established
chemical and magnetic structures in their construction. De-
grees of freedom in the electronic ground state of a ferric ion
are captured in atomic multipoles labeled by their rank, K , and
projection, Q(−K � Q � K).21,22 Two types of multipoles

are required, parity even, 〈T K
Q 〉, and two flavors of parity-odd

multipoles, 〈GK
Q〉 and 〈UK

Q 〉, distinguished by their time
signatures. Magnetoelectric multipoles, 〈GK

Q〉, are time odd
and absent in the paramagnetic phase, and polar multipoles,
〈UK

Q 〉, are time even, while (−1)K is the time signature of
〈T K

Q 〉. Parity-even multipoles arise in E1-E1 and E2-E2
resonant events, and parity-odd multipoles are required for
E1-E2 events, where E1 denotes an electric-dipole operator
and E2 denotes an electric-quadrupole operator. All multipoles
have the complex conjugate 〈OK

Q 〉* = (−1)Q 〈OK
−Q〉, with

〈OK
0 〉 purely real, and the relative phase of real and imaginary

components is set by 〈OK
Q 〉 = 〈OK

Q 〉′ + i〈OK
Q 〉′′.

Expressions for Ic given in Ref. 5 are repeated here for the
convenience of the reader.

Below TM (phase I, collinear motif). There is no contri-
bution to Ic from E1-E1 reflection, due to crystal symmetry,
and

Ic(E1-E2) = −P2

(
8
√

2

5

)
ρ2(E1-E2)|d(E)|2 sin(3ψ)

× cos3(θ ) [1 + sin2(θ )] cos2(ϕl)
〈
G3

+3

〉′〈
U 2

0

〉
,

(3)

Ic(E2-E2) = −P2 4ρ2(E2-E2)|d(E)|2 sin(6ψ)

× sin(θ ) cos6(θ ) sin2(ϕl)
〈
T 3

+3

〉′′〈
T 4

+3

〉′
. (4)

In these expressions, the angle ϕ = −πu, where u = 2z −
1/2 = 0.2104 for α-Fe2O3.

At the K edge, when the spin degrees of freedom associated
with the resonant ion are absent in the electronic ground state,
the parity even multipoles with K odd are function only of
the orbital angular momentum.25 In this case, 〈T 3

3 〉′′ in Eq.
(4) is zero for the pure ferric ion, because it has a shell
that is half filled and spherically symmetric (6S, 3d5). In
our previous study, where we interpreted data published by
Kokubun et al.,15 we took 〈T 3

3 〉′′ = 0 on this basis. Our superior
data displayed in Figs. 5 and 6, collected with the benefit of
polarization analysis, shows that 〈T 3

3 〉′′ is different from zero in
Eq. (4). As a consequence, the ferric ion possesses unquenched
orbital angular momentum.

Dashed and dotted lines in Fig. 6 show our data for the
(009)H reflection compared separately to E1-E2 and E2-E2
reflections. Evidently, a single event is not responsible for
our observed intensities. However, a combination of the two
events, E1-E2 and E2-E2, provides a satisfactory account;
the fit represented by the continuous line in Fig. 6 confirms
that this is so.

Concerning the contribution to the intensity from parity-odd
multipoles [Eq. (3)], the requirement to have a value different
from zero tells us that (〈G3

3〉′,〈U 2
0 〉) is not zero. Notably,

〈U 2
0 〉 is a manifestation of local chirality.21,22,25,26 The polar

quadrupole is the same in the two phases, because it is related
to chemical structure, whereas 〈G3

3〉′ has a similar, small value
in phase I and a much larger value in phase II.

Above TM (phase II, canted motif). Our data for this
phase and two reflections are displayed in Fig. 4. Appropriate
expressions for intensities induced by circular polarization in
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the primary beam are5

Ic(E1-E2) = P2

(
8
√

2

5

)
ρ2(E1-E2) |d(E)|2 cos2(ϕl) cos2(θ )

〈
U 2

0

〉{ 1√
3

sin(ψ)

[−3√
5

[cos(3θ ) + cos(θ )]
〈
G1

+1

〉′ + [cos(3θ )

− cos(θ )]
〈
G2

+1

〉′′ − 1√
5

[cos3(θ ) + 2 cos(θ )]
〈
G3

+1

〉′] − sin(3ψ) cos(θ ) [1 + sin2(θ )]
〈
G3

+3

〉′}
, (5)

Ic(E2-E2) = −P2

(
1√
2

)
ρ2(E2-E2)|d(E)|2 sin2(ϕl)

〈
T 4

+3

〉′{
4 sin(ψ) cos4(θ )

[
−1√

5
sin(θ ) [8 cos2(θ ) − 5]

〈
T 1

1

〉′′

+
√

3

5
sin(θ ) cos3(θ )

〈
T 3

+1

〉′′] − 4
√

2 sin(θ ) cos6(θ ) sin(6ψ)
〈
T 3

+3

〉′′}
. (6)

Our data in Fig. 4 agree with the prediction of an E1-E2
event [Eq. (5)] evaluated with multipoles carried over from our
previous work.5 Correspondingly, magnetoelectric multipoles
are large compared to their values in phase I, with an octupole
dominant. Treating 〈T K

Q 〉 with K odd in Eq. (6) as unknowns,
it is not possible to find a satisfactory fit to a pure E2-E2
event, and it has no role in an interpretation of phase II. As the
hexadecapole 〈T 4

3 〉′ is the same in the two phases, because
it is determined by chemical structure, and likewise local
chirality 〈U 2

0 〉, we conclude that orbital angular momentum,
manifest through 〈T K

Q 〉 with K odd, is insignificant in the
high-temperature magnetic phase.

IV. CONCLUSION

We report extensive data on magnetically ordered hematite
gathered with the experimental technique of x-ray Bragg
diffraction augmented by an atomic resonance. The primary
energy was tuned close to the iron K edge, and intensities
were measured at space-group-forbidden reflections, (003)H
and (009)H , that are exceptionally sensitive to magnetic
degrees of freedom in the electronic ground state. The use
of polarization analysis improved the quality of our data
significantly. We chose circular polarization and reported
differences in intensities gathered with left- and right-handed
primary polarization.

The existence of intensity induced by circular polarization
confirms that magnetically ordered hematite is chiral, as we
predicted.5 Moreover, we confirm that our previous estimates
of parity-odd multipoles, using data published by Kokubun

et al.,15 are completely trustworthy. Below the Morin transi-
tion, the collinear motif contains orbital angular momentum
and the ferric ion is not spherically symmetric (e.g., 6S, 3d5).
However, we find no evidence of orbital angular momentum
in the canted motif that exists above the Morin transition.
In this phase, diffraction can be interpreted with parity-odd
multipoles only, with magnetoelectric octupoles making the
dominant contribution. The existence of an orbital magnetic
moment is a consequence of the spin-orbit coupling, which is a
necessary ingredient of the Dzyaloshinsky-Moriya interaction
that is responsible for the noncollinear magnetic structure
above TM . However, the magnitude of the orbital magnetic
moment at room temperature is almost negligible compared
to that found at 150 K, owing to entropic effects where the
orientation of the orbital moment is almost randomized by
its thermal energy. Additional experiments at intermediate
temperatures could confirm this issue.
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CHAPTER 6 

Bismuth Ferrite, BiFeO3 

Article	IV	
Article	in	press	in	Journal	of	the	Physical	Society	of	Japan:	“Chiral	Properties	

of	 Bismuth	 Ferrite	 (BiFeO3)	 Inferred	 from	 Resonant	 x-ray	 Bragg	Diffraction”.	
	
Abstract	
Resonant X-ray diffraction data gathered near the Fe K-edge (7.1135 keV) for a 

single crystal of bismuth ferrite support a new chiral phase, in the only 

multiferroic material known above room temperature, formed by a circular 

cycloid propagating along (1,1,0)2. The R3c forbidden reflection (0,0,9)2  was 

studied as a function of the rotation of the crystal about the Bragg wave-vector in 

both phases, paramagnetic (700 K) and antiferromagnetic (300 K). Templeton and 

Templeton (T&T) scattering at 700 K is attributed in part to charge-like 

quadrupoles absent in a standard model of a cycloid in which a material vector 

generates all electronic states of the resonant ion. Extensive sets of azimuthal-

angle data are used to infer values of three atomic multipoles in a satisfactory 

minimal model of the iron electronic structure, with a quadrupole (E1E1 event) 

and a hexadecapole (E2E2 event) contributing T&T scattering, plus a magnetic 

dipole (E1E1).  
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6.1 Results and Summary  

When in a material appear to types of ordering (magnetic, electric or elastic) at the 

same phases this material is denominated multiferroic. These materials are of 

interest for application in devices, being more attractive the ones that  present a 

coupling between the different degrees of freedom as the case of piezoelectric 

materials (elastic and electric orderings)) or magnetoelectric materials (magnetic 

and electric orderings), being these last ones of special interest for the field of 

storage information and spintronics [35]. A paradigmatic or special case of these 

materials is Bismuth Ferrite (BiFeO3); this compound is the only one that presents 

both orderings, antiferromagnetism (�\ 	≈ 	640	- ) and ferroelectricity (�+ 	≈
	1100	-) above room temperature, being a key material for the future application 

of multiferroics in future devices.  

In the beginning of the PhD work a large effort was devoted to the syntheses 

of bismuth ferrite from Bi(NO3)35H2O and Fe(NO3)39H2O powders using two 

different techniques,2 hydrothermal synthesis [82, 83] and Microwave Oven 

synthesis [84]. The chemical relation used is presented in equation (6.1) and (6.2), 

respectively. 

¼t(�]")"5P�](�) + $S(�]")"9P�](�) + P�](�) + -]P(#t�) + ��]"(�) 
  �¼t$S]"(�) + �tY^t#�		 (6.1)	

The hydrothermal synthesis was performed in a oven with a constant 

temperature of 200 ºC obtaining the best quality BiFeO3 powder for the following 

proportions ¼t(N]")"5P�](�)  4.85 g, $S(�]")"9P�](�)  4.05g, P�](�)  15ml, 

2ml ��]"(�)	and -]P(#t�) 20ml, over 72 hours. This powder was not as good 

as the one produced with the microwave oven system, as presented in Figure 6.1, 

where the amount of powder was reduced due to the small recipient for this kind 

of systems ( ¼t(N]")"5P�](�)  1.25 g, $S(�]")"9P�](�)  1.05g, 1ml ��]"(�)	and -]P(#t�) 10ml for 12 cycles of 30 minutes under 180ºC.  

¼t(�]")"5P�](�) + $S(�]")"9P�](�) + -]P(#t�) + ��]"(�)	
	 	 �¼t$S]"(�) + �tY^t#�		 (6.2)	
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Figure  6.1. Powder diffraction data obtained from (a) BiFeO3 synthesized by hydrothermal 

technique and (b) BiFeO3 synthesized with a microwave oven. 

The structure of the powder obtained by both techniques was obtained by 

powder X-ray diffraction using the Rietveld method confirmed the presence of 

Bismuth ferrite, which is a member of the R3c space group family (Figure 1 

article IV).  Scanning Electron Microscope  characterization of the samples was 

also performed,  Figure 6.2, as it is shown in the imagines a nano and micro 

crystal formation with the right proportions (1:1:3) between the elements. For the 

hydrothermal synthesis case the percentage is 13.78 for Bi, 14.95 for Fe and 71.27 

for O, while for the microwave synthesis the  powder was formed by 14.65 of Bi, 

14.13 of Fe and 71.22 of O. 

 

Figure  6.2. Scanning Electronic Microoscope (SEM) images and element characterization of two 

powder samples synthesis by (a) hydrothermal thecnique and (b) Microwave oven. 

BiFeO3 calcium doped powder, synthesis by G. Catalan, was studied under 

pressure at the Institute Laue-Lagevin (Grenoble).3 The experiment was done at 
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the beamlines D1B and D20. The powder of BiFeO3 without any doping goes 

through three different structures in the range of 10 GPa of a Paris-Edinburgh cell 

[85], below 6.2 GPa the structure coincide with a R3c, being at this pressure a 

phase transition to monoclinic C2/m followed by a Orthorhombic Pnma phase 

above 14 GPa. The presence of Ca2+ as a doping in this compound increase the 

chemical pressure, with it the Monoclinic phases do not appear in the 

characterization of the scattering data using Rietveld method, as presented in 

Figure 6.3. 

 
Figure 6.3. (a) Rietveld fitting for Bi1-XCaXFeO3 at Room pressure and (b) at 10 GPa. 

But the low quality of the crystals obtained by the hydrothermal technique 

and the difficulties to grow single crystals from the powder obtained by the 

microwave technique, lead us to contact G. Catalan, who provide us a single 

crystal of BiFeO3 to perform the REXS experiments we were interested in. 

Figure 6.4. Single crystal of BiFeO3 studied under REXS at Diamond Light Source, the direction  

(0,0, �)P is specular to the surface. 

The high-quality single crystal used for the experiment (sizes 5 × 5��� 

and a thickness of 0.5	��) had a face perpendicular to the (0,0, �)P direction the 

experiment was performed with a specular geometry (Figure 6.4). While it is 
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possible that the sample supports different domains, the very small size of the 

primary beam gives some confidence that a single domain is illuminated in our 

experiments. Indeed, we go on to show that, a chiral motif and a single domain 

are implied by our findings for the magnetically-ordered state. 

The experiment took place at beamline I16 of Diamond light source, which 

works at the energy of 3	XS� in the "top-up" mode; this beamline is equipped 

with a 6-circle kappa diffractometer and a focusing optical system that gives a 

photon flux on the sample position of 1013	!ℎ-ü-§/� and a beam size of	180 ×
20	*��. The horizontally polarized beam,	1, delivered by a linear undulator was 

tuned near the Fe K-edge (7.1135	�S�).  

The reflection studied was the forbidden (0,0,9)P in the space group	#161. 

As is possible to observe from Figure 3 in article IV, the weak contribution to the 

intensity by Bragg diffraction due to angular anisotropy is strongly enhanced by 

an atomic resonance. Two different temperatures were studied for the (0,0,9)P 

reflection, below (300	-) and above (700	-) the Néel Temperature. Following 

the scheme from Figure 3.3, all data collected were obtained in the rotated 

channel of polarization π'σ.  

The symmetry related to these sites does not allow intensity by pure electric 

dipole (E1E1) events in the case of forbidden reflections of the type	(0,0, �)2 , 

with � odd. However, diffraction enhanced by pure electric quadrupole (E2E2) 

event is allowed and can be produced by an atomic electric, time-even, 

hexadecapole. 

The w3, space group symmetry allows diffraction enhanced by pure electric 

quadrupole (E2E2) events for forbidden reflections of the type (0,0, �)2, with � 
odd. This contribution is described by the real part of the hexadecapole 〈�£"� 〉, 
denoted by 〈�£"� 〉O. For the Fe ions in sites 6� in w3, structure, diffraction with 

wavevector (0,0, �)2 is described by an electronic structure factor, 

  ¶zu = 3É〈�zu〉� + (−1)�〈�zu〉�Ê, (6.3) 

where the relation between sites 1 and 2 is given by a rotation about the diagonal `a 	+ 	ba by 1809 plus an inversion. Using the formalism for the calculation of 
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the amplitude of scattering presented in section 2.4.2 for the pure E2 events, it is 

obtained the contribution for the  s′1 channel as, 

  æ�Ì>(W2W2) = ûÎxo�|þ��á ý
�
��Õ�á�

ℏ� ¢ "
√� ,-�"©	,-�(3�)〈�£"� 〉′, (6.4) 

And the contribution from the parity-odd E1E2 events in the π'σ channel of 

immediate interest comes from a purely real polar quadrupole,  

  æ�Ì>(W1W2) = ��Õ�á�
ℏ� ¢ û÷oøþ�Îxo�|þ��á� ý t(3 √5⁄ )	,-�(2©)〈�9�〉	. (6.5)	

The Templeton-Templeton (T&T) scattering reported in Figure 4 from 

article IV, (red dots) 700	-  and (white dots) 300	-  ( �� 	≈ 	640	- ), were 

obtained in the polarization channel π’σ. From the data presented it is possible to 

observe that E2E2 events together with a contribution from the parity-odd E1E2 

resonance due to the fact that the two contributions are in phase quadrature and 

they cannot interfere to give the pure six-fold periodicity that is lacking in Figure 

4 (red dots).  

Table 6.1. Values of the parameters used for the fitting for the two temperatures 
studied. In the case of 700K the parameter c was set to 0, see text for more details. 

Parameter 700K 300K 

ü 1.19 ± 0.07 1.19 ± 0.07 ^ - 6.20 ± 0.16 - 6.20 ± 0.16 c - 0.673 ± 0.014 

 

The presence of long range ordering due to a circular cycloid structure is 

responsible for a break of the symmetry inside the material that will allow charge-

like quadrupoles contribution (K=2) to be observed through an E1E1 event. This 

motif related to the DM interaction has been showed in many multiferroic 

materials as presented in the work by Przeniosło et al; see Model 1 in Figure 1 

[86]. While electric dipole (E1E1) transitions are normally appreciably stronger 

than electric quadrupole (E2E2) events, in this case as the diffraction from the 

quadrupoles is restricted due to crystal symmetry [53] and are expected to be 

vastly reduced in intensity. 
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Figure 6.5 Simulation of the dichroic signal from Templeton-Templeton scattering under circular 

polarized x-rays for the reflection (0,0,9)2  forbidden in w3, at the Fe K-edge. (Red line) Above 

and (blue line) below �\ 	(640-).  

With the rotated channel contribution sO1 form equation (6) in article IV the 

data was fitted obtaining the values displayed in Table 6.1 for the different 

multipoles present in the calculations. Due to its dependence with the K odd range 

multipoles the value of c was fixed to zero for the paramagnetic phase. The chiral 

property of the model that is presented in this work can be confirmed by a 

predicted contribution to intensity induced by circular polarization in the primary 

beam; the intensity in question is an outcome of matching chirality (helicity) in 

electronic structure and photons used in diffraction. The relevant intensity can be 

expressed in terms of unit-cell structure factors [87],  

 h�[($>Ì�)∗$>Ì> + ($�Ì�)∗$�Ì>] = 2	,-�©	,-��	(c	�t§© − ,-�©	�t§�) 
  × (ü	,-�©	�t§� + ^	,-�"©	,-�(3�) − c	�t§©) (6.6)	
where the coefficients ^, ü and c are relations between the different tensors in the 

calculations [^ = 3wS〈�£"� 〉/(¶£�� √2), ü	 = 	t	¶£�� /¶£��   and c	 = 	¶£�� /(2¶£�� )]. Note 

that the expression (6.6) does not vanish for c	 = 	0, so resonant reflections have 

circular polarization dependence above TN. A simulation of a possible Templeton-

Templeton scattering using circular polarized light is shown in Figure 6.5 for both 

temperatures, above and below, �\ . In a future stage this experiment will be 

performed at DLS using a single crystal of biFeO3 previously saturated to define a 

single ferroelectric domain.4 The values used to simulate these scans are the 

refined multipoles from Table 6.1. 
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A new chiral phase of ferric ions in bismuth ferrite (BiFeO3), the only material known to support multiferroic
behaviour at room temperature, is inferred from extensive sets of data gathered by resonant x-ray diffraction. Values of
all ferric multipoles participating in a minimal model of Fe electronic structure are deduced from azimuthal-angle scans.
Paramagnetic (700K) and magnetically ordered (300K) phases of a single crystal of BiFeO3 have been studied with
x-rays tuned near to the iron K-edge (7.1135 keV). At both temperatures, intensities at a Bragg spot forbidden in the
nominal space-group, R3c, are consistent with a chiral motif of ferric ions in a circular cycloid propagating along
(1, 1, 0)H. Templeton and Templeton scattering at 700K is attributed in part to charge-like quadrupoles in a cycloid. The
contribution is not present in a standard, simplified model of electronic states of the resonant ion with trivial cylindrical
symmetry.

An electronic state in which charge and magnetic polar-
izations coexist has been at the centre of materials science in
the past decade. Such a state exists in bismuth ferrite
(BiFeO3) at room temperature, while in all other known cases
a multiferroic state emerges upon cooling. This makes
bismuth ferrite a unique candidate for potential application
in electronic devices, such as sensors or multi-state memory
storage-units.1–4) We have detected a new chiral phase of
BiFeO3 in the paramagnetic phase using resonant x-ray
Bragg diffraction and, by way of a test for the chirality
property, we demonstrate that our proposed electronic
structure allows coupling to radiation with a like property,
namely, x-rays with circular polarization (helicity). More-
over, our extensive sets of diffraction data enable us to infer
values of ferric multipoles in both the paramagnetic and
magnetically ordered phases.

Bismuth ferrite forms in a rhombohedrally distorted
perovskite crystal structure of R3c-type (#161). Weak
ferroelectricity develops below a Curie temperature Tc �
1100K, and G-type antiferromagnetic order of ferric (Fe3+)
dipole moments is observed below a Néel temperature
TN � 640K. The antiferromagnetism coexists with a long-
period modulation (�620Å) in the hexagonal plane, as
shown in Fig. 1.5,6) This coexistence is a curious property of
a quite simple compound, created by the tension between two
interactions that favor parallel and orthogonal spin arrange-
ment, respectively.

For studies of electronic magnetism, the experimental
technique of resonant x-ray Bragg diffraction we use has
advantages over non-resonant diffraction that is difficult to
exploit quantitatively, because uncertainty surrounds the
deployment of a scattering length asymptotically valid in
the Compton region of scattering.7–11) Resonant x-ray
diffraction has proved its worth in many studies, particularly
those that focus on one or more of the raft of electronic
properties driven by angular anisotropy in valence states.12,13)

Intensities collected at weak, space-group forbidden reflec-
tions access directly information about complex electronic
structure manifest in atomic multipoles, including, magnetic
charge (or magnetic monopole),14) electric dipole,15) ana-
pole,16,17) quadrupole,18) octupoles,19,20) and hexadeca-

poles.21,22) In consequence, weak reflections are extremely
sensitive to charge, orbital and spin electron degrees of
freedom and BiFeO3, with a chemical structure similar to
haematite, is no exception.23)

Crystal growth was performed in platinum crucibles with
content of about 90 g, using the accelerated rotation
technique, and a platinum cover welded tightly to the
crucible, leaving only a central hole of 0.1mm diameter, as
explained in reference.24) The size of the sample was about
5� 5mm2 and a thickness of 0.5mm, showing a polished
surface in the ½0; 0; l�H direction.

Our hexagonal crystal coordinates are ah ¼ að1; 0; 0Þ,
bh ¼ að�1=2;

ffiffiffi
3

p
=2; 0Þ and ch ¼ cð0; 0; 1Þ, with a ¼ 5:58Å

and c ¼ 13:88Å.25) Basis vectors, or principal crystal axes,
are � ¼ ð1; 0; 0Þ, � ¼ ð0; 1; 0Þ, and � ¼ ð0; 0; 1Þ, and they
coincide with ðx; y; zÞ in Fig. 2 at the nominal setting of the
crystal. The Bragg wavevector ð0; 0; lÞH is aligned with ¹x,
as shown in Fig. 2. Intensities are measured as a function of
rotation of the crystal about the Bragg wavevector through an
angle ¼.

The ð0; 0; 9ÞH reflection is forbidden in the nominal space
group R3c. Bragg diffraction due to angular anisotropy in
available valence states is weak but, none the less, visible in
diffraction enhanced by an atomic resonance, as evident in
data displayed in Fig. 3. Resonant x-ray diffraction experi-
ments were performed at the Diamond Light Source (UK), on
beamline I16. The horizontally polarized beam, ·, was tuned
near the iron K-edge (7.1135 keV). We observed intensity at
the ð0; 0; 9ÞH reflection in two studies with the sample held
at a temperature below (300K) and above (700K) the Néel
temperature. The change in intensity that we observed with
cooling, between the two temperatures, confirmed the
magnetic origin of the difference signal; relevant data are
displayed in Fig. 5. All data were collected in the rotated
channel of polarization �0�, where states of polarization
labelled �0 and · are defined in Fig. 2. During the experiment
we scanned the surface of the sample to determine the size of
domains, and selected the appropriate region of the sample
where a likely single domain could be involved in the
scattering process. While it is possible that the sample
supports different domains, the present results were consis-
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tent with a single domain illuminated by the very small size
of the primary beam (180� 40µm2).

The azimuthal scans presented in Fig. 4 were obtained
performing “ª scans” with the detector around the Bragg
condition for different azimuthal angles. This method was
used previously by Finkelstein et al.19) and by Kokubun
et al.,26) among others. The experimental values displayed in
Figs. 4 and 5 are the integrated intensity of each of the curves
normalized to intensity in the primary x-ray beam. Due to the

small penetration depth of an allowed Bragg spot ð0; 0; 6ÞH,
where the diffraction is mostly following a dynamical
process, we have not considered to use this kind of reflection
to normalize a forbidden Bragg spot ð0; 0; 9ÞH that, due to its
weakness has a kinematical behaviour a larger penetration
depth and less affected by possible defects from the surface.

Fig. 2. Cartesian coordinates ðx; y; zÞ and x-ray polarization and wave-
vectors. The plane of scattering spanned by primary (q) and secondary (q0)
wavevectors coincides with the x–y plane. Polarization labelled · and �0 is
normal to the plane and parallel to the z-axis, and polarization labelled ³ and
�0 lies in the plane of scattering. The beam is deflected through an angle 2�.
Nominal setting of the crystal is indicated with ah antiparallel to ·-
polarization, together with the sense of rotation in an azimuthal-angle scan.

Fig. 3. (Color online) X-ray spectrum in the vicinity of the Fe K-edge for
the ð0; 0; 9ÞH reflection. Diffraction data reported in Figs. 4 and 5 were
collected tuning the primary energy to E ¼ 7:1135 keV. Inset: (red dots)
Energy scan data and (blue line) approximation to a harmonic oscillator.

Fig. 4. (Color online) (Full dots) Intensity of the Bragg spot ð0; 0; 9ÞH as
a function of azimuthal angle, ¼, with a sample temperature of 700K,
forbidden in the R3c-type structure and called Templeton and Templeton
(TT) scattering. Rotation of the crystal is counter clockwise about the Bragg
wavevector, and the origin  ¼ 0 is ah antiparallel to ·-polarization, Fig. 2.
(Empty dots) Intensity as a function of azimuthal angle obtained at room
temperature, 300K. Corrections to raw data are described in the text. Solid
(dashed) line is a fit to our model of diffraction by a motif of charge-like
quadrupoles and hexadecapoles, namely, jF�0� j2 and expression (6) with
v ¼ 0 (v 6¼ 0).

Fig. 1. (Color online) Scheme of the crystal and magnetic structures of bismuth ferrite (BiFeO3), with hexagonal setting. The ½0; 0; 1�H axis is vertical.
Directions of magnetic dipoles of the Fe ions at room temperature are indicated by arrows.

Fig. 5. (Color online) Difference of two sets of data displayed in Fig. 4,
IðvÞ � Iðv ¼ 0Þ, together with expression (7) derived from our model of
electronic structure in bismuth ferrite. Multipoles t, u, and v in (7) are set to
values derived from fits to data in Fig. 4, namely, t ¼ þ1:19� 0:07, u ¼
�6:20� 0:16, and v ¼ 0:673� 0:014. Inset: Temperature dependence of the
Bragg spot ð0; 0; 9ÞH at an azimuthal angle  ¼ 73°.
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All reasonable steps have been taken to arrive at sound
data. Subtraction of the background intensity due to
Renninger reflections (multi-beam peaks), observed in an
azimuthal scan, was done using a Matlab program available
at the instrument. For the case of room temperature, an
azimuthal scan was done to select optimum, flat positions
between peaks and avoid the Renninger effect (therefore
measured points in the azimuth dependence are not equi-
distant). Due to the fact that we have collected resonant x-ray
data for a certain selected reflection at different parts of the
single crystal, we consider that the experimental data shown
in Figs. 4 and 5 are related to the resonant event rather than
to the tail of the Renninger effect. The high-quality crystal
used for the experiment has a face perpendicular to the
ð0; 0; 1ÞH direction, so the experiment was performed with a
specular geometry.

We address, first, Templeton and Templeton (TT) scatter-
ing reported in Fig. 4 (filled dots) measured with the sample
at 700K (TN � 640K).27) Resonant x-ray diffraction en-
hanced by an electric dipole–electric dipole (E1–E1) event is
forbidden at the ð0; 0; 9ÞH Bragg spot of a R3c-type chemical
structure. Diffraction enhanced by an electric quadrupole–
electric quadrupole (E2–E2) event is allowed, however, and
it is produced by an electric, time-even hexadecapole. This
diffraction is part of what we have observed, as we now
explain.

Our notation for parity-even atomic multipoles is hTKQ i,
with a complex conjugate hTKQ i� ¼ ð�1ÞQhTK�Qi, where the
positive integer K is the rank and Q the projection, with
�K � Q � K. Angular brackets h	 	 	i denote the time average
of the enclosed spherical tensor operator, i.e., multipoles are
properties of the electronic ground-state, and the time-
signature of hTKQ i is ð�1ÞK .12,13) The hexadecapole (K ¼ 4)
in question is the real part of hT4

þ3i, denoted by hT4
þ3i0. A triad

axis of symmetry, C3z, passes through the iron sites, 6a in
R3c. Diffraction by these ions using a Bragg wavevector
ð0; 0; lÞH is described by an electronic structure factor,

�K
Q ¼ 1þ 2 cos

2�l

3

� �� �
½hTKQ i þ ð�1Þlð�1ÞKhTK�Qi�: ð1Þ

Space-group allowed reflection are defined by diagonal
elements �K

0 with K even, and �K
0 6¼ 0 is allowed for l ¼ 6n.

The identity C3zhTKQ i ¼ hTKQ i requires Q ¼ �3m. As antici-
pated, E1–E1 is forbidden for l odd, because, of course,
�K

0 ¼ 0 for a space-group forbidden reflection, while
Q ¼ �3 does not contribute to a dipole–dipole event where
K does not exceed 2. Using (1) for an E2–E2 event, we find
the corresponding unit-cell structure factor is a three-fold
periodic function of the azimuthal angle, ¼,28)

F�0� ¼ 3ffiffiffi
2

p
� �

cos3 � cosð3 ÞhT4
þ3i0: ð2Þ

In this expression, ª is the Bragg angle, and ah is antiparallel
to ·-polarization, normal to the plane of scattering in Fig. 2,
at the origin of an azimuthal-angle scan,  ¼ 0. Intensity
corresponding to (2), jF�0�j2 / cos2ð3 Þ, is symmetric about
 ¼ 90°, which does not agree with our data for TT
scattering displayed in Fig. 4 (filled dots).

Missing in what has been described thus far, we propose, is
TT scattering caused by charge-like quadrupoles (K ¼ 2) in a
circular cycloid, using an E1–E1 event. An electric dipole

(E1) is expected to be appreciably stronger than an electric
quadrupole (E2) event. But diffraction from the quadrupoles
is weak, being the responsibility of components absent in a
standard stick-model, in which the electronic state of the
resonant ion is restricted to cylindrical symmetry.29) Whence,
the minimal model that explains measurements in Fig. 4
(700K, filled dots) is a sum of two forms of weak TT
scattering. Adding the corresponding magnetic scattering, we
achieve a model that explains data displayed in Fig. 4 (300K,
empty dots).

We invoke a (circular) cycloid with the plane of the cycloid
parallel to the plane spanned by ch and ah þ bh. This
motif is one candidate considered by Przeniosło et al.; see
Model 1 in Fig. 1.30) We will assume that the cycloid,
composed of charge-like multipoles, is constant, independent
of temperature, to a good approximation. This is a sound
assumption for the paramagnetic phase, and not unreasonable
at lower temperatures for multipoles not induced by magnetic
order.

Starting with an explanation of TT scattering in Fig. 4, we
utilize quadrupoles for a circular cycloid, hC2

Qi, introduced by
Scagnoli and Lovesey28) and recently reviewed by Lovesey
et al.31) These quadrupoles, in common with all cycloid
multipoles, are not subject to the symmetry operations in the
point group for sites 6a in the R3c group. In the general case,
one finds hC2

0i ¼ 0 for the first harmonic of the cycloid,
which is the one of interest. Using orthonormal coordinates
ðx0; y0; z0Þ with x0 parallel to ah þ bh and z0 parallel to ch,

hC2
þ1i ¼

1

4

� �
½hT2

þ1 þ T2
�1i þ ihT2

þ2 � T2
�2i�


 � 1ffiffiffi
6

p
� �

½iðy0z0Þ þ ðx0y0Þ�; ð3Þ
where (�	) is a standard, traceless second-rank Cartesian
tensor. A representation of the quadrupole, hT2i, in terms of
standard operators is available.32)

By way of an orientation to the result (3) we consider its
value for a standard stick-model.29) In this case, all electronic
properties of the resonant ion are manufactured from one
material vector. If ¡ and ¢ represent Cartesian coordinates, a
general second-rank tensor (�	) is to be replaced by a simple
product h�ih	i, leading to ðy0z0Þ ¼ ðx0y0Þ ¼ 0 for a material
vector confined to the x0–z0 plane with hy0i ¼ 0.

Guided by R3c, we need the quadrupole (3) and the
quadrupole derived from it by rotation about (ah þ bh) by
180°. The sum of the two correctly related quadrupoles is
transformed to principal crystal-axes with the result,

�2
þ1 ¼

ffiffiffi
3

2

r ffiffiffi
3

p

4

� �
fð�2 � �2Þ þ 3ð��Þg þ ð��Þ

� �
: ð4Þ

Note that �2
þ1 is purely real. Turning to data obtained with a

sample temperature of 300K and displayed in Fig. 4 (empty
dots), magnetic diffraction by the cycloid is created by a
time-odd dipole,

hC1
0i ¼

1

2

� � hT1
0 i þ ihT1

þ1 � T1
�1iffiffiffi

2
p

� �
: ð5Þ

For a reflection ð0; 0; lÞH with l odd, it actually contributes a
magnetic dipole parallel to (ah þ bh), namely, hT1

�1 � T1
þ1i=ffiffiffi

2
p

calculated with principal crystal axes. At the K-edge, a
dipole hT1i is simply orbital angular momentum.33)
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We use the purely real quadrupole (4), with projections
Q ¼ �1, as a common factor in the final expression for the
unit-cell structure factor. The remaining charge-like quadru-
pole, Q ¼ �2, is accounted for in a ratio �2

þ2=�
2
þ1 ¼ �it.

Calculations using an ideal cycloid show that t is purely real
and t ¼ þ1 (Scagnoli and Lovesey28)). The contribution from
the hexadecapole in (2) is captured by u ¼ 3hT4

þ3i0=ð�2
þ1

ffiffiffi
2

p Þ.
In the absorption profile we invoke overlap of the two events,
E1–E1 and E2–E2, which occur at different energies with
different widths. Lastly, the magnetic contribution to the
structure factor is v ¼ 3hT1

�1 � T1
þ1i=ð2�2

þ1Þ. Note that t, u,
and v are all treated as purely real quantities to be inferred from
our data. Since t and v both relate to an E1–E1 event they are
nothing more than ratios of the appropriate multipoles that we
have shown. On the other hand, u has to include a ratio of radial
integrals for E2 and E1 events, namely, (f½qfR2gsd�2=½fRgsp�2)
where fRgsp and fR2gsd, respectively, are radial integrals for E1
and E2 events at the K-edge of iron. A multiplicative factor in
u, denoted here by f, measures the admixture of E1–E1 and
E1–E2 events. While f might depend on energy it can be
taken purely real without influencing conclusions, because it
accompanies the principal harmonic (2).

Incorporating the two types of TT scattering, expressions
(2) and (4), and scattering by magnetic dipoles, we arrive at a
unit-cell structure factor that gives an adequate account of all
our data,

F�0� ¼ t cos � sin þ u cos3 � cosð3 Þ
� i sin � cosð2 Þ � vðsin � � i cos � sin Þ: ð6Þ

Writing IðvÞ ¼ jF�0�ðvÞj2 the difference in intensity at the two
temperatures is,

IðvÞ � Iðv ¼ 0Þ
¼ v½vð1� cos2 � cos2  Þ � sin 2�ðt sin 
þ u cos2 � cosð3 Þ þ cosð2 Þ sin Þ�: ð7Þ

Fits of Ið0Þ to data for TT scattering displayed in Fig. 4
(700K, filled dots) yield values t ¼ þ1:19� 0:07, which
is close enough to the ideal value to give great confidence,
and u ¼ �6:20� 0:16. A fit of IðvÞ to data gathered at
300K, Fig. 4 (empty dots), yields v ¼ 0:673� 0:014 for the
magnetic dipole, with t and u set to aforementioned values.
For completeness, we show in Fig. 5 difference data, taken
from Fig. 4, together with the appropriate expression for
intensity (7) evaluated with our estimates of the three
multipoles.

We bring our Letter to a close with a survey of our
observations and the interpretation we construct. Above the
Néel temperature, TN � 640K, our azimuthal-angle data are
adequately explained by a model with minimal complexity.
It includes TT scattering from charge-like quadrupoles and
hexadecapoles. A contribution by quadrupoles heralds a new
chiral phase, in which quadrupoles participate in a circular
cycloid. A test of chirality in electronic structure is to see
whether or not it couples to circular polarization (helicity) in
the x-ray beam. An expression for intensity associated with
circular polarization (helicity) in the primary beam, Ic, is
derived from our unit-cell structure factors22) and we arrive at,

Ic ¼ Im½ðF�0�Þ � ðF�0�Þ þ ðF�0�Þ � ðF�0�Þ�
¼ 2 cos � cos ½v sin � � cos � sin �
� ðt cos � sin þ u cos3 � cosð3 Þ � v sin �Þ: ð8Þ

In expression (8), t and u are charge-like multipoles, which
generate TT scattering, and v is a magnetic dipole absent
above TN. Values of the three multipoles, t, u, and v, are
inferred from data displayed in Fig. 4, collected above and
below the Néel temperature, that are adequately described by
jF�0�j2 derived from (6). Note that expression (8) does not
vanish for v ¼ 0, meaning resonant reflections are affected by
circular polarization above TN with a hitherto unknown phase
of the material.

Existence of TT scattering by quadrupoles in a cycloid
implies that the actual chemical structure belongs to an
enantiomorphic crystal class lacking a centre of symmetry.
Space-group R3 (#146), one of 65 members of the Sohncke
sub-group of crystal structures, is a maximal non-isomorphic
subgroup of the nominal R3c-group, and thus a likely
candidate for a commensurate chiral motif in bismuth ferrite.
In which case, a chiral motif and a single domain are implied
for the magnetically-ordered state, and this does appear to be
the case.34) A high-quality crystal, from which satellite peaks
can be resolved, should show satellite intensity above TN.
The domain pattern of propagation vectors should be
reproduced on temperature cycling above and below TN
since they are driven by the pre-aligned quadrupoles. This
issue could be checked using circular polarized x-rays, due to
the helicity properties of this kind of x-rays.

Parallel scenarios merit a mention, e.g., the weak itinerant
ferromagnet MnSi, and related materials.35–37) The com-
pounds use a cubic group P213 (#198), and exist in both
right- and left-handed enantiomorphs. A single-valued
handedness persists in the ferromagnetic and paramagnetic
phases,38) with chiral fluctuations in MnSi above the Curie
temperature observed by inelastic neutron scattering.39)

Notably, a standard example for spontaneous homochirality,
sodium chlorate (NaClO3), forms in the chemical structure
described by P213.40)

MnSi has a Curie temperature Tc � 29:5K, and deep in the
paramagnetic phase spin fluctuations are isotropic. Perhaps
more relevant to the present discussion of bismuth ferrite is
another iron-based chiral magnet. FeGe, iso-structural with
MnSi, has a high Curie temperature, Tc � 278:2K, and
precursor activity is well-established.37,41) Ferromagnetic
spirals have a period µ180Å (MnSi) and µ700Å (FeGe),
to be compared with a period µ620Å in bismuth ferrite.
On its own, an antisymmetric exchange-interaction
(Dzialoshinskii–Moriya) will promote an orthogonal arrange-
ment of spins that can disturb an arrangement of parallel
spins, supported by an isotropic Heisenberg exchange plus
relatively weak magnetic anisotropy.

Quadrupoles (also higher-order multipoles) as a primary
order-parameter is not unusual. However, again, order is
achieved at low temperatures, because the underlying
mechanism is weak.21,42–44)

The origin of the charge-like quadrupoles that contribute
TT scattering could be related to bismuth 6s–6p lone pairs,
known to drive certain structural distortions. Apart from
expected direct hybridization of lone pairs, there is scope for
admixture through the agency of oxygen 2p states that
contribute to angular anisotropy in valence states observed at
iron sites.

Lastly, we examine the possibility that our azimuthal-angle
scan at 700K can be explained by the parity-odd event E1–
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E2 using the R3c-group, in addition to E2–E2.12,28) We find
polar multipoles, hUKQ i, do not contribute intensity to the
ð0; 0; 9ÞH Bragg spot in channels with unrotated polarization,
�0� and �0�. The contribution from E1–E2 in the �0� channel
of immediate interest comes from a purely real polar
quadrupole, namely, ið3= ffiffiffi

5
p Þ cos2 �hU2

0i that is added to the
hexadecapole contribution (2). The two contributions to the
unit-cell structure factor, E1–E2 plus E2–E2, are in phase
quadrature, so there can be no interference between them to
lift the pure six-fold periodicity in the E2–E2 contribution to
intensity that is lacking in Fig. 4 (filled dots).

In summary, Bragg diffraction intensities at the nominally
forbidden reflection ð0; 0; 9ÞH of bismuth ferrite, observed
below and above the Néel temperature, are consistent with a
chiral structure formed by a circular cycloid propagating
along ½1; 1; 0�H not previously detected in the paramagnetic
phase. The new chiral phase is responsible for some
Templeton and Templeton (TT) scattering at 700K due to
charge fluctuations not contained in the plane of the cycloid.
Our extensive sets of azimuthal-angle diffraction data have
been used to infer good values of three atomic multipoles
involved in the scattering process. A satisfactory minimal
model of Fe electronic structure includes a quadrupole (E1–
E1 event) and a hexadecapole (E2–E2 event) contributing TT
scattering, plus a magnetic dipole (E1–E1).
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Chapter 7  

Conclusions 

As presented along this thesis work, Resonant X-ray Diffraction has been shown 

as a magnificent tool in the study of complex electron correlated systems. 

� In the case of Neptunium Dioxide, NpO2, the technique has evidence 

existence of an antiferromagnetic phase, similar to the one presented 

in UO2, below the transition temperature T0 = 25 K. REXS is 

capable of observing small distortions in the ordering of the Np ions, 

predicted by Nuclear Magnetic Resonance (NMR) produced by the 

displacement of the oxygen atoms to two non-equivalent positions. 

Proving the power of this technique in these types of cases where 

other techniques as neutron probes or Mössbauer experiments were 

not able to observe the magnetic ordering.  

� In Hematite, α-Fe2O3, it was observed how the non-reducible tensor 

formalism helps to analyzed the azimuthal dependence of the 

experimental data gathered near the iron K-edge for both forbidden 

reflections from the (0,0, �)2  family; together with the 

demonstration of the coupling between the chiral properties of the 

material and the circular polarized x-rays in the primary beam, as 

predicted in the theory due to the Newmann’s principle.  

�  For multiferroic Bismuth Ferrite, BiFeO3, a possible change in the 

symmetry of the iron ions has been inferred in the paramagnetic 

phase by performing T&T scans. This new phase related to the 

action of the charge quadrupoles in a cycloid implies a chemical 
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structure that belongs to an enantiomorphic crystal class lacking a 

centre of symmetry. Space-group R3 (#146), one of 65 members of 

the Sohncke sub-group, is a maximal non-isomorphic subgroup of 

the nominal R3c-group, and thus a likely candidate for a 

commensurate chiral motif in bismuth ferrite.  

It is clear from the results shown in this thesis that Resonant Elastic X-ray 

Scattering has much to offer in the investigation of exotic order parameters and 

particularly in distinguishing different contributions to the scattered intensity as 

illustrated in α-Fe2O3. Although no definitive conclusions may be drawn in some 

cases, the information provided by resonant X-ray diffraction offers a unique 

element, site and valence probe to study electronic ordering phenomena in 

complex materials and furthermore delivers information on the electronic 

structure of condensed matter.  
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Conclusiones 

Como se ha mostrado a lo largo de este trabajo de tesis, la Dispersión Resonante 

de rayos X se presenta como una herramienta magnifica para el estudio de 

sistemas complejos electrónicamente correlacionados. 

� En el caso del dióxido de neptunio, NpO2, la técnica ha confirmado 

la existencia de una fase antiferromagnética, similar a la presentada 

por el compuesto UO2 por debajo de la temperatura de 25 K.  

Información de esta fase no había sido posible ser inferida por otras 

técnicas como las sondas de neutrones u otros experimentos 

convencionales de rayos x. Siendo capaz de observar pequeñas 

distorsiones  en el ordenamiento de los iones de Np, predichas por 

Resonancia Magnética Nuclear, producidas por desplazamientos de 

los átomos de oxígenos a dos posiciones no equivalentes. 

� En la hematita, α-Fe2O3, se observó como el formalismo basado en 

tensores no reducibles, definido en la sección 2.4,  ayuda a mejorar 

la extracción de la información  de los datos experimentales 

obtenidos cerca del borde K del hierro para ambas reflexiones 

prohibidas de la familia (0,0, �)2 . Además de demostrar  el 

acoplamiento entre las propiedades quirales de los materiales y los 

rayos x circularmente polarizados en el haz primario, como se 

predecía en la teoría debido al principio de Newmann.  

� En la multiferroica ferrita de bismuto, BiFeO3, se ha detectado un 

posible cambio en la simetría de los iones de hierro en la fase 

paramagnética mediante los barridos Templeton & Templeton. Esta 

nueva fase relacionada con la acción de los quadrupoles debidos a la 

carga en la cicloide implica una estructura química que pertenece a 

una clase de cristal enantiomórfico que carece de un centro de 

simetría. El grupo de espacio R3 (#146), uno de los 65 miembros del 

subgrupo de Sohncke, es un subgrupo máximo no-isomórfico del 
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grupo de espacio nominal R3c, y que es un buen candidato para 

producir este motivo quiral conmensurable en la ferrita de bismuto. 

De los resultados mostrado en esta tesis es claro que la dispersión resonante 

de rayos X tiene mucho que ofrecer en la investigación de parámetros de orden 

exóticos  y en particular en la distinción de diferentes contribuciones a la 

intensidad de dispersión  como se demostró en α-Fe2O3. Aunque no se pueden 

extraer conclusiones definitivas en algunos casos, la información proporcionada 

por la dispersión resonante de rayos X ofrece una sonda única para estudiar 

elementos, sitios y valencias de fenómenos de ordenamiento electrónico en 

compuestos complejos y mas allá dando información de la estructura electrónica 

de la materia condensada.  
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Appendix A 

Dzyaloshinskii-Moriya interaction 

In the last decade one of the focuses in condensed matter physics has been the 

study of materials that presents magnetoelectric effect or skyrmion states [88, 89]. 

These materials show a twist in their magnetic moments or spins (see Figure A.1) 

that can be described using the anisotropic exchange interaction also known as 

Dzyaloshinskii-Moriya  (DM) interaction. 

 

Figure A.1 Atomic and magnetic structure of FeBO3, (a) hexagonal unit cell with magnetic motif, 

two sublattices of iron are presented in different colors (blue and grey). (b) Top view of the same 

structure, presenting the two sublattice separated by the oxygen triangles. The figure was taken 

from Dmitrieko et al. [11]. 

Dzyaloshinskii and Moriya presented in their works [30, 31] a formalism for 

describing the interaction between atomic magnetic moments. The coupling 

between the spin moments, according to Neumann’s principle and because is a 

property of the material, must possess all the symmetries of the material. This 

coupling can be reduced by shielding [90] or improved due to the action of other 

ions as oxygen atoms [91].  
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  ÙW = Re�Rq�Üeq = �Re�Rq�deq + Re�Rq�Üeq» + Re�Rq�ÜeqJ.	 (A.1)	
The coupling between two spins can be described, with Cartesian tensors 

components, using a second rank tensor Üeq  in the classical Hamiltonian as in 

(A.1). This tensor can be divided in three contributions (A.2), an isotropic (scalar) 

exchange term, an anisotropic exchange term and an antisymmetric term. This last 

term describes the DM interaction and can be described with a vector 7 = ÜeqJ 

together with the vector product of the two spins. 

  ÙW = �Re�Rq�deq + Re�Rq�Üeq» + Re�Rq�ÜeqJ.	 (A.2)	
In equation (A.3) the two important contributions for the spin coupling are 

presented, the isotropic term, �R�R� , is the dominant term in the coupling 

interaction, the one that prefers being a parallel or antiparallel coupling of the 

spins, while the second term produce a small tilting of the moments creating the 

canted phases common in the weak ferromagnets or other materials that show the 

DM  interaction. 

	  ÙW = �R�R� + 7[R� × R�]. (A.3)	
This DM interaction appears in the case of 3d transition metal oxides 

because in the case of these compounds the strong interaction between first 

neighbours, which dominates the exchange interactions. The DM interaction in 

these cases is around the 1% of the isotropic coupling. Producing a large electric 

polarization in magnetoelectric materials [92, 93] in the case of spontaneous 

ordering of the DM ions, leading to a weak ferromagnetic signal that easily 

couples to an external magnetic field [94]. 

As previously said, the presence of oxygen atoms can be essential for the 

DM interaction to take place. In R3�c structures, as Fe2O3 or FeBO3 (presented in 

Figure A.1), the Oxygen atoms break the R3�m symmetry, which do not allow this 

kind of coupling interaction, so in the case of the absence of this atom or their 

delocalization to the positions in the middle of the magnetic ions the DM 

interaction won’t be strong to appear. Dmitrienko and co-workers presented a new 

procedure to define the sign of this interaction [11]. 
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Appendix B 

Parity-even Tensors, T
K
Q 

Parity even tensors, 	�zu , are used to described parity even events as pure E1 

(charge-dipole) and E2 (charge-quadrupole) processes. The time average value of 

this tensors,	〈�zu〉 = 〈Ψe�zueΨ〉, is a linear combination of elements of the matrix 

〈JMe�zueJMO〉 . Like d�zug  is a spherical tensor its matrix elements satisfy the 

Wigner-Eckart theorem, as in [56, 57] 

	 	 〈�Üe�zue�ÜO〉 = (−1)Ò?? û � - �O
−Ü � ÜOý d�f�zuf�Og,	 (B.1)	

where we can substitute d�f�zuf�Og, the reduced matrix element for equivalent 

electrons in an atomic shell with angular momentum �, for the equivalent electrons 

as √8s(�‖yu‖�)g(9u)u. This term can be written using a 3j-symbol as 

  (�‖yu‖�) = (−1)�(2� + 1) G�u£��� K�/� �� - �
0 0 0¢,		 (B.2)	

where the unit tensor g(9u)u depends on the quantum numbers SLJ, S’L’J’ and it 

is tabulated for large number of 3d ions, g(9u)u are introduced in more detail in 

work by Judd et al [57]. The properties from the 3j-symbol only permit even K for 

allowing the matrix to be different to zero, as presented by Lovesey et al. [95].  

The reduced matrix elements have the form (ü�v̅‖�u‖üO�v̅O)  that using 

Edmonds’s book relation (7.1.7) is proportional with(ü‖�u‖üO) with coefficients 

depending of �,̅ v and vO [56]. This dependence can be written as 
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  (�v‖�u‖�OvO) = �bò¢
Ë
� (2� ̅ + 1) 
v ü � ̅

� ̅ � �� 
vO üO � ̅
� ̅ �O �O� (ü�v̅‖�u‖üO�v̅O)	(B.3)	

where the spin � (�O) of the electron is ½ and the value for ü(üO) is 1 (2). It is 

possible to write the tensor �zu as a linear combination of atomic quantities that 

depend on both the spin (that are absent in the reduced matrix element near the K-

edge) and orbital variables associated with the resonant ion. As the materials were 

studied near the K-edge, I will just focus on the orbital part. Marri and Carra 

develop both the spin and the orbital properties [96]. 

The general expression for the reduced matrix element for even transitions 

E1E1 and E2E2 following ref [97] is  

  (�‖�u‖�′) = ∓(2� ̅ + 1)∑ (−1)��� (2� + 1)(2� + 1)g(��)u 

  × i�� � ̅ � ̅
� ̅ �

� �j �
ü � ̅ �
ü � ̅ �
- � �

�.	 (B.4)	

The reduced element from (B.1) is obtained from (B.4) selecting t to be 

equal to 1. The sign ∓ is related to the total angular momentum from the core 

label � ̅ = � ̅ ± 1 2⁄  as(−1)� �⁄ £�£̅	Ò̅	. The value of the 9j-symbol, as has 2 lines 

equals is zero if - + � + � is an odd integer [56, 57], and a just can be 0 or 1. The 

dependence with the quantum numbers from the valence states è|�Üè〉 and è|�′Üè′〉 
appears through the unit tensor	g(��)u. 

The expressions for the sum rules of the dichroic signal presented in chapter 

2.4 can be derived from (B.4) taking � ̅ = � ̅ − 1 2⁄  and � ̅ = � ̅ + 1 2⁄  taking t=1 or 

t=2 for the parity even events E1 or E2, respectively. 

For specific values of a,b and K the unit tensor g(��)u can be written in 

terms of R, S and L. As 〈R〉~g(�9)�, 〈Ä〉~g(9�)�, 〈3w(w ∙ R) − R〉~g(��)� and 

〈3Äk� − Ä(Ä + 1)〉~g(9�)� . 

When in (B.4) it is sum tow absorption edges  � ̅ = � ̅ − 1 2⁄  and � ̅ = � ̅ + 1 2⁄  

the value for � is restricted to 0, due to this it is not possible to obtain information 

of the spin angular momentum in a resonant ion. The resulting state as presented 

by Thole et al [98] is  
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	 	 ∑ (�‖�u‖�O)Ò̅ = [2(2- + 1)]� �⁄ g(9u)u �ü - ü
� � ̅ ��	 (B.5)	

An important application to the Bragg scattering from (b.5) is obtained 

when � ̅ = 0, this represents the K edge of the resonant ion. When � ̅ = 0 the total 

angular momentum is � ̅ = 1 2⁄  and ü = � giving as a result 

  (�‖�u‖�′) = (−1)u ÷�(�u£�)øË �⁄
(��£�) g(9u)u.		 (B.6)	

This can be applied to the 3d transition elements ions when taking into 

account non-coupling states, è	|RÜ»ÄÜÃ è〉 = ∑ (RÜ»ÄÜÃ|JM è)lm |èJM〉è	. In this case 

the Wigner-Eckart theorem is applied to the spin and orbital states separately. For 

the K edge, as it is only observed the orbital angular moment for the valence states, 

the elements of Ţ· are diagonal with the spin quantum numbers. For � ̅ = 0 and 

ü = � 
  〈RÜ»ÄÜÃe�zueRO?oOÄO?pO〉 = d?o?oOd»»Ì 
  × (?�)q

(��£�) � �
�»£��� �⁄ g(9u)(−1)Ã??p û Ä - Ä

−ÜÃ � ÜÃOý (B.7)	
This result define the expression of the expected values for the parity even 

tensors 〈Ţ·〉  in terms of 	〈Ä〉 , 〈�〉  and 〈Λ〉  (dipole, quadrupole and octupoles), 

where the quadrupole is defined in terms of ÷3�9� − �(� − 1)ø 2⁄  and the octupoles 

operator is defined as Λ = 1 2⁄ 	∑ ÷�9(5�9� − 3�(� + 1) + 1)øqq .  

  〈�Î�〉 = ?√"
(��£�)(�|�|�) 〈ÄÎ〉,		 (B.8)	

	 	 〈�Î�〉 = �√b
(��£�)(�|�|�)÷(��?�)(��£")øË �⁄ 〈�Î〉	 (B.9) 

  〈�Î"〉 = ?�√�
(��£�)(�|�|�)÷(�?�)(��?�)(�£�)(��£")øË �⁄ 〈sÎ〉	 (B.10)	

It is important to note that for a K-edge absorption from a resonant ion	ü = � 
and in the case of an ion 3d must be an E2 type. 

  



 

 

 

 

 
 



 

 

129 

 

Appendix C 

Parity-odd Tensors, G
K
Q and U

K
Q 

For the case of parity-odd events as dipolar-charge quadrupolar-charge (E1E2) 

and dipolar-charge dipolar-magnetic (E1M1) the reduced matrix elements 

presented in chapter 2.4,  Υzu can be written as happen in the case of the parity-

even case in term of the reduced matrix element dü�v̅‖�u‖tOÒq̅Ìg where �u only 

affect the ü  being possible to write the reduced matrix as (ü‖�u‖tO)  and a 

coefficient proportional to �,̅ v and  v′. With these we obtain the same result as in 

(B.3) 

 (�v‖�u‖�OvO) = �bò¢
Ë
� (2� ̅ + 1) 
v ü � ̅

� ̅ � �� 
vO üO � ̅
� ̅ �′ �O� (ü�v̅‖�u‖üO�v̅O)(C.1)	

where ü = 1 and ü’ = 2. Using the algebra methods is possible to develop the 

reduced matrix element as a linear combination of atomic quantities that depend 

on both the spin and orbital variables associated with the resonant ions [97]. As in 

the parity-even processes, the spin variables are absent in the reduced matrix 

element at the K-edge where � ̅ = 0. Marri and Carra develop both spin and the 

orbital properties, but in this case will be only interesting the orbital properties of 

�u. 

The magnetoelectric tensors, Xzu, and polar tensors, �zu, used for describing 

parity odd events as the dipolar-charge quadrupolar-charge (E1E2) and dipolar-

charge dipolar-magnetic (E1M1) processes are constructed in terms of the angular 

momentum operator, u, the polar unit vector v, and the orbital anapole,  

  w = t	(u�v− vu�).	 (C.2)	
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Table C.1 Representation of Xzuand	�zu . The numerical factors are calculated from  (ü‖�u‖tO) =
−i·(ü‖Gu‖tO) = −i·(ü‖Uu‖tO) = (2K + 1)� �⁄  with 	ü = 1,	ü’ = 2. 

K Xzu , �zu , 

1 �� �	"�¢
� �⁄ Ωz , −�	"�¢

� �⁄ nz , 

2 −�	b�¢
� �⁄ dLz⨂nzg�, − �� �	b�¢

� �⁄ dLz⨂Ωzg�, 

3 − �� �	b�¢
� �⁄ �Lz⨂dLz⨂nzg�¢", �	b�¢

� �⁄ �Lz⨂dLz⨂nzg�¢", 

 

In this point, it is important remember some of the properties of this 

operators. The angular momentum, u , is diagonal with respect to the angular 

momentum states and 〈��|Ä||�O�O〉, while 〈��|§||�O�O〉 is different from zero for 

�O = � ± 1 . The basic commutation relations are ÉÄ|, w}Ê = t~|}!w!  where w} 

denotes the one of the operators (u,	 v	or	�) and ~|}! is the antisymmetric unit 

tensor of rank three. Commutation relations for spherical components of u, v	and �  are readily constructed, e.g. [Ä9,u�] = 0 , [Ä9, §±�] = ±§±�  and [Ä9,Ω±�] =
±Ω±� . One finds that 	u ∙ v = u ∙ � = 0 , while 	–� ∙ v = v ∙ � = 2t . The 

operators Ä| , §|  and Ω|  are all Hermitian. With relation with the time-reversal, 

Ä|  and Ω|  are odd (i.e., Ä�| = −Ä|  and Ω�| = −Ω| ) and §|  is even (i.e., §�| =
−§|). 

In table C.1 is presented the relations between the	Xzu and �zu tensors with 

this operators. Concerning the influence on operator equivalents of the inversion, 

or parity, operator let us note first that all components of a given tensor operator 

have the same parity if the parity operator commutes with rotations. Secondly, the 

parity of a tensor operator built from tensor products, as is the case for Xzu amd 

�zu with K>1, is the product of the parities of the constituent tensor operators. 

Odd-rank tensors are true tensors and even-rank tensors are axial tensors. Some 

og the properties of the parity-odd tensor are listed in Table C.2. 

Table C.2 Properties of Xzuand �zu . 

Time-reversal:  

X̅zu = (−1)�£¸X?zu , ��zu = (−1)¸�?zu , 

Hermitian conjugation:  

dXzug£ = (−1)¸X?zu , d�zug£ = (−1)¸�?zu , 
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The anapole operator, 	Ω , is inversion-odd and time-odd.  An anapole 

moment characterizes a system that does not transform into itself under space 

inversions [99]. A system like this generates a distribution of magnetic fields 

which is quite different from parity-even multipoles, such as dipole or quadrupole 

moments. The magnetic field distribution of an anapole looks like the magnetic 

field created by a current flowing in a toroidal winding, and the field is 

completely confined inside the winding. 
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Appendix D 

Principal Axes 

When doing calculations, sometimes is more convenient in physics to work in a 

set of Cartesian axes different to the crystal axes or the diffraction geometry axes.  

It is possible to label another set of Cartesian axes with coordinates (3, Í, 4) where 

the symmetry properties will be easier to handle. This set of coordinates is related 

to the reference frame (Crystal or Diffraction geometry) by the Euler angles Û,8 

and ª by the Wigner D-functions, [56, 68] 

  〈�zu〉 = ∑ 〈�Îu〉(�,Ó,�)Î 7z,Îu (−ª,−8, −Û)  (C.1)	
where 〈�Îu〉(�,Ó,�) is the value of the spherical tensor in the set of axes defined by 

(3, Í, 4)  and 7z,Îu (−γ, −β, −α)  denotes the rotation matrix. The set of axes 

(3, Í, 4) that makes 〈�Îu〉	is diagonal is known as principal axes for	〈�Îu〉. This set 

of axis has the property of vanishing for 〈�Îu〉 unless q = 0. 

The Wigner D-functions have the orthogonality property that can be 

expressed as 7z,Îu (−γ, −β, −α) = �7Î,zu (Û,8, ª)¢∗and can be written in terms of 

the 	#Î,zu (−β) , the Wigner d-functions as 	7z,Îu (−γ, −β, −α) = SeÎ�#z,Îu (β)Sez� . 

With this we can write again (C.1) as  

  〈�zu〉 = Sez! ∑ SeÎ|#z,Îu (8)〈�Îu〉(�,Ó,�)Î   (C.2)	
The definition of this D-functions can been well followed in the book by 

Varshalovich et al. [68].  
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Appendix E 

Stokes Parameters 

In the case of partial polarized radiation the variations and correlations between 

components of the electric field can only be described statistically using a 

coherency matrix 

  ¶ = 〈³ ∙ ³∗〉 (E.1)	
where angular brackets denote averaging over many wave cycles.  

The coherency matrix contains all second order statistical information about 

the polarization. This matrix can be decomposed into the sum of two idempotent 

matrices, corresponding to the eigenvectors of the coherency matrix, each 

representing a polarization state that is orthogonal to the other. An alternative 

decomposition is into completely polarized (zero determinant) and unpolarized 

(scaled identity matrix) components. In either case, the operation of summing the 

components corresponds to the incoherent superposition of waves from the two 

components. The latter case gives rise to the concept of the "degree of 

polarization"; i.e., the fraction of the total intensity contributed by the completely 

polarized component. 

  :9 = h		
	 	 :� = !h�t§(2�),-�	(2�)	 
  :� = !h�t§	(2�)		 
  :" = !h,-�(2�),-�	(2�)			 (E.2) 
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The Stokes parameters are a set of values, first defined by George G. Stokes 

in 1852 [100], which describe the degree of polarization of a radiation wave. This 

parameters are a mathematical representation of the intensity (I), the degree of 

polarization (p) and the shape parameters of the polarization ellipse described by 

�  (which described that any polarization ellipse is indistinguishable from one 

rotated by 180º) and � (which is related to the indistinguishablility between two 

polarizations with the semi-axis lengths swapped accompanied by a 90º rotation. 

Note that the notation for the Stokes parameters used in this work follow the 

definition of the Pauli matrix as presented in (E.2) [38, 48] and our parameters :�, :�, and :" correspond to :�, :", and :�, respectively, in the work of Mazzoli et al. 

[70]. 

Figure E.1 represent the Poncaré sphere, which is the spherical surface 

occupied by completely polarized states in the space of the Poincaré vector.  

 

 

Figure E.1 Poncaré sphere. 

The Stokes parameters contain all of the information of the coherency 

matrix, 

  ¶ = �
�∑ :q1qq 		 (E.3)	

where 1q denote the Pauli matrices, 

  19 = G1 0
0 1K ,1� = G0 1

1 0K ,1� = G0 −t
t 0 K and 1" = G1 0

0 −1K		 (E.4)	
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Appendix F 

Cr2O3, Magnetoelectricity in R
�c 
Compounds 

Chromium sesquioxide, Cr2O3, presents its antiferromagnetic properties below 

310 K, its Néel temperature [101], showing a magnetoelectric behaviour where a 

magnetic polarization can be induced by a electric field or a electric polarization 

generated by the application of a magnetic field [102, 103].  Cr2O3 is a member of 

the corundum family (R3� c space group) with cell parameters a=4,96Å and 

c=13,599Å; and the Cr ions occupying 12c Wyckoff positions while the oxygen 

ions are located in 18e, as present in Figure F.1. 

  
Figure F.1 Atomic structure of the chromium sesquioxide, Cr2O3, in the hexagonal setting.. Figure 

obtained from [102].  

In this appendix I will apply the formalism presented in section 2.4 to the 

case of this magnetoelectric compound that was studied with Resonant X-ray 

Diffraction by Kokubun and co-workers in their work [32]. As it is explained in 
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this work they performed Templeton and Templeton scans near the K-edge of the 

Cr (5.9890 keV) for two forbidden reflections (003)H and (009)H. 

	 	 ¶zu = (Se�� + (−1)u£�S?e��)É〈�zu〉 + (−1)�〈�?zu 〉Ê	.	
	 	 ¶zu,² = (Se�� + (−1)�S?e��)É〈Xzu〉 + (−1)u£�〈X?zu 〉Ê		
	 	 ¶zu,² = (Se�� − (−1)�S?e��)É〈�zu〉 − (−1)u£�〈�?zu 〉Ê		 (F.1)	

 

As previously was presented in the case of a Germanium crystal (section 

2.4.5). It is possible to define the amplitudes to scattering for a forbidden 

reflection as the (003)H and (009)H  for the corundum family taking into account 

the location of the Cr ions in the unit cell, as present in Figure F.1 there are four 

Cr ions laying along the c-axis. Positions A1 and B1 (A2 and B2) are related by a 

spatial inversion while the relations between locations A1 and B2 are related by 

the presence of a rotation of π at the position denoted as y. Using Table 2.6, it is 

easy to arrive to the cell structure factor presented in (F.1) for the different tensors.  

  
Figure F.2 Azimuthal dependence of two forbidden reflections (top) (003)H and (bottom) (009)H. 

The red dots represent the experimental data obtained by Kokubun et al. [32] while the blue line 

presents the fitting using the formalism presented in the previous sections.  

We can then obtain the amplitudes to scattering for the different processes 

as present in (F.2) for E2E2 and (F.3) for mixed event E1E2. And with it fit the 

azimuthal dependence Figure F.2 getting the values for the tensors presented in 

Table F.1. 

  $>Ì>(W2W2) = t√2 ,-�(3�) �t§(2©) ,-�(��) wS(〈�""〉)		 	

$�Ì>(W2W2) = t
2√2 ÷[3 ,-�(3©) + ,-�(©)] �t§(3�) ,-�(��) wS(〈�""〉)	
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	 	 + [,-�(3©) + 3 ,-�(©)] �t§(��) ,-�(3�) wS(〈�"�〉)ø	 	
	 	 $�O�(W2W2) = − e

√� ,-�(3�) �t§(4©) ,-�(��) wS(〈�""〉)		 (F.2)	
  $>Ì>(W1W2) = −t �√�√b ,-�(3�) ,-�(©) �t§(��) h�(〈X""〉)		 	

	 $�O>(W1W2) = t �√�√b �t§(3�) �t§(2©) �t§(��) h�(〈X""〉) + �e
√b ,-�(��),-��	(©)〈�9�〉		

	 	 $�O�(W1W2) = e
�√�9 ,-�(3�) [,-�(3©) − ,-�(©)] �t§(��) h�(〈X""〉)		 (F.3)	

	
 

 

 

 

 

 

 

  

Table F.1 Values for the tensors obtain from 

the fitting perform to Kokubun et al. [32] data 

using the formalism of spherical tensors. The 

value of the tensor 	h�〈X""〉 was set to 1. 

Tensor Value 
〈�9�〉 -0.01 
wS〈�""〉 1.13 
wS〈�"�〉 -0.01 
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Appendix G 

Intermediate States 

The amplitudes of the channels for resonant X-ray scattering and absorption 

consist of products of many electron matrix elements. This is related to the two 

steps process we are considering, where the electron in the fundamental state è|*è� 
is first excited to the valence shell and immediately decay to the fundamental core 

state è|*è′� by the re-emission of the x-ray photon. These initial and final states are 

described by the quantum numbers RÄ�Ü and	R′Ä′�′Ü′, respectively. 

The intermediate state è|Íè� (with quantum numbers	RÓÄÓ�ÓÜÓ) contains two 

active shells, where is host the ejected photoelectron that has to be coupled to the 

SL of the electrons of the initial valence shell. One can define the new spin and 

orbital quantum numbers for the valence state 	R� , Ä�  assuming a implicitly 

coupling as �	⨁	R� ⇒ RÓ and �⨁	Ä� ⇒ ÄÓ. 

The sum over intermediate states denoted by ∑ 	Ó(�)  introduced in the 

formalism for the calculation of the different events, can be calculated leaving 

intact the dependence of the products of matrix elements on selected quantum 

numbers as in [49, 50, 104]. To perform this calculation properly, one would have 

to resort to the graphical methods for nj-symbols as presented in [95]. Due to the 

Wigner-Eckart theorem the product of matrix elements for the E1 transition will 

contain a product of two 3j-symbols, 

  (−1)Ò?? û � 1 �Ó
−Ü Y ÜÓý (−1)Ò�??� û �Ó 1 �′

−ÜÓ Y Ü′ý	 (H.1)	
and a product of reduced matrix elements [105], 

  dRÄ�Üf∑wÎ�fRÓÄÓ�ÓÜÓgdRÓÄÓ�ÓÜÓf∑wÎ�fR′Ä′�′Ü′g	 (H.2)	
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In (H.2) it is necessary to remember that for the values of RÓ and ÄÓ need 

the fact that the core hole, with quantum number � and �,̅ must be coupled with the 

valence electrons, with quantum number RÓ  and ÄÓ . The nj-symbols from the 

products in (H.1) and (H.2) can be rewritten to perform the summations over RÓ, 

ÄÓ and �Ó  introducing a new additional quantum label K resulting a product of 

two 3j-symbols 

  (−1)Ò?? û � 1 �′
−Ü Y Ü′ý (−1)u?z û

- 1 1
−� Y′ Y′ý,	 (H.3)	

and a product of three 6j-symbols, 

  
 � - �′
Ä′ R Ä� �Ä - Ä′

� Ä� � � � � - �
1 � ̅ 1�.	 (H.4)	

The first 3j-symbol in (H.3) is the Wigner-Eckart signature of a matrix 

element for a tensor of rank K. The first 6j-symbol in (H.4) is the signature of a 

reduced matrix element for a tensor of rank k that acts only on the orbital part of 

the wave function. The second 6j-symbol in (H.4) is an important ingredient in the 

definition of 	dRÄfV(·)fS′J′g , as defined by Judd [57], which represents the 

corresponding unit tensor. 

For the introduction of the total angular momentum, � ̅, is necessary to 

describe a re-coupling between the core hole and the valence electrons. This 

introduces two 9 j-symbols 

  dRÄ�Üf∑wÎ�f	��̅×�ÓÜÓgd	��̅×�ÓÜÓf∑wÎ�fR′Ä′�′Ü′g,	 (H.5)	
This nj-symbols can be summed over �×and �Ó. For simplifying this sum we 

can introduce the quantum numbers a, b and K. The 3j-symbols obtained in this 

way are the same as the ones in (H.3) and three 6j-symbols together with two 9j-

symbols 

  �R R′ �
Ä Ä′ �
� �′ -

� �R � R′
� R× � � �Ä - Ä′

� Ä� � � �1 � ̅ �
1 � ̅ �
- � �

� 
� ̅ - � ̅
� � ̅ ��.	 (H.6)	

The first 9j-symbol represents the signature of a coupled tensor operator of 

rank K acting on both spin and orbital b components. The following two 6j-

symbols are related to the construction of the unit tensor g(��), if summed over 

RÓ and ÄÓ. 
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