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variable en el tiempo y que acopla tanto las condiciones biogeoquímicas como físicas del 
océano. Inicializando aleatoriamente un conjunto de especies caracterizadas según distintos 
grupos funcionales, somos capaces de reproducir dicho patrón y observamos que éste se debe 
a no uno, sino a diversos factores como son: la exclusión competitiva entre especies 
especialistas y oportunistas, la coexistencia de especies con similares requerimientos en zonas 
de estabilidad ambiental, la dispersión oceánica, o la temperatura a través de un thermal mid-
domain effect (TMDE). !
El capítulo 4 de esta tesis se centró en la recopilación y estandarización de datos de 
abundancia microplanctónica, creando una base de datos única en estudios de diversidad de 
fitoplancton marino. Dicha compilación cubre un amplio rango de ecosistemas marinos y consta 
de medidas de abundancia, biomasa y biovolumen para cada especie en cada estación y 
profundidad. Las identificaciones de las especies fueron realizados por el mismo taxónomo, lo 
que proporciona una mayor consistencia a la colección y asegura que las estimaciones de la 
diversidad de especies sean fidedignas. Además, para cada estación se recoge información 
ambiental mediante una compilación de parámetros oceanográficos, lo que aporta una 
caracterización de la zona de estudio y por tanto la idoneidad de la base de datos para el 
estudio de los controles medioambientales y biológicos de la diversidad marina.  !
Por último, en el capítulo 5 hacemos uso de la compilación anterior para demostrar 
empíricamente la existencia de un gradiente latitudinal de diversidad en el fitoplancton marino, 
donde el máximo número de especies aparece nuevamente en los trópicos. En este capítulo 
tratamos de explicar la emergencia de dicho patrón a partir de la temperatura, cuyo efecto 
parece ser clave según predicen varias teorías. A partir de datos empíricos (capítulo 4), 
modelamos las curvas de tolerancia térmica de las especies para entender la relación entre 
temperatura y diversidad y proponemos una nueva hipótesis denominada como thermal niche 
effect (TNE). Ésta resulta de la combinación entre la superposición que tiene lugar entre los 
nichos fisiológicos de las especies, como predice el TMDE, y el aumento exponencial de la tasa 
de crecimiento con la temperatura que predicen las teorías metabólicas. Éste parece verse 
reflejado en los nichos realizados de las especies, donde se observa un incremento de la 
máxima probabilidad de ocurrencia de las especies con la temperatura. El patrón resultante de 
dicha hipótesis es muy similar a la relación entre diversidad y temperatura observada en datos 
empíricos. Esto permite predecir con mayor certeza cuál será la distribución futura de las 
especies en el océano bajo las predicciones de calentamiento global. !!! !

RESUMEN (en Inglés) !
Marine phytoplankton are the largest primary producers of the ocean, being responsible for 
most of the exchange of CO2 with the atmosphere. These unicellular organisms are the base of 
the marine food chain and control the biogeochemical functioning of the ecosystem. Under the  
prediction of climate warming, models forecast from a decline in the overall biomass to changes 
in their distribution. This has consequences for the rest of the food chain, affecting the total 
production, biogeochemical cycles and the global carbon cycle. Understanding what factors and 
how influence growth and distribution of marine phytoplankton is therefore essential to predict 
with certainty the future of the ecosystem and supposes the main objective of this study . !
Recent studies have found a unimodal relationship between mass-specific growth rate and cell 
size of marine phytoplankton when the size range under study includes picophytoplanton. The 
first part of this manuscript (Chapters 1 and 2), focuses on assessing the factors that influence 
the emergence of such curvature. Using different compilations of growth rates and size data for 
a large number of species, we evaluated the influence of both temperature and phylogeny, 
which has been little considered explicitly in allometric studies of marine phytoplankton. Our 
results reveal that the unimodal relationship is due to the lower growth rates of 
picophytoplankton, being this the result of an evolutionary adaptation to warm oligotrophic  !
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environments rather than a size effect. Also as consequence of this adaptation, we observed 
that such curvature depends on the temperature at which the growth rates are measured. We 
also found a strong correlation between cell size and temperature, which implies an additional 
bias to the temperature correction on growth rate, and thus may lead to erroneous conclusions 
in the size-scaling of marine phytoplankton growth rate. !
In Chapter 3 we focus on assessing the factors that control the emergence of a latitudinal 
gradient of diversity for marine phytoplankton (LDG). This pattern explains an increase in the 
number of species from the poles to the equator, showing the highest diversity at the tropical 
areas. Here we used a time-varying 3D ecosystem model where biogeochemical and physical 
ocean conditions are coupled. Using a set of species randomly initialized and characterized 
according to several functional groups, we were able to reproduce the LDG. We also found that 
it emerges as result of not one but several factors including: competitive exclusion between 
opportunists and gleaner species, the coexistence of species with similar fitness in areas of 
environmental stability, dispersion by oceanic currents or temperature through a mid-domain 
thermal effect (TMDE). !
Chapter 4 has focused on the compilation and standardization of microplankton data 
abundance, being an unique database for marine phytoplankton diversity studies. This 
database covers a wide range of marine ecosystems and provides measures of abundance 
(cells/ml), biovolume and biomass for each species at each station and depth. One of the major 
strengths of this database is that species identification was performed by the same taxonomist, 
what provides greater strength to the collection and ensures that estimates of species diversity 
are reliable. Furthermore, environmental information is attached for each station through the 
compilation of different oceanographic parameters. This allows the characterization of the study 
area and therefore the suitability of the database for the study of environmental and biological 
controls of marine diversity.  !
Finally, in Chapter 5 we used the previous compilation to show with empirical data that a 
latitudinal gradient of diversity emerges for the whole community of marine phytoplankton, 
where the maximum number of species is observed, as expected, at the tropics. In this chapter 
we focus on the role of temperature as driver of the LDG, whose relevance has been suggested 
by many theories. Using empirical data (Chapter 4), we fit the thermal tolerance curve of 
species to study the relationship between temperature and diversity and propose a new 
hypothesis to explain the emergence of LDG, the thermal niche effect (TNE). This results from 
the combination of both the overlapping of the species physiological niches, as predicted by the 
TMDE, and the exponential increase of growth rate with temperature predicted by metabolic 
theories. The latter seems to be reflected in the realized niches of species, where an increase in 
the maximum probability of occurrence of species with increasing temperature is observed. The 
resulting pattern of this hypothesis is closer to the relationship between diversity and 
temperature observed in empirical data. This allows to forecast with higher accuracy the future 
distribution of species over the ocean under the predictions of global warming. !!!!!!!!!!!!!!
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General Introduction

The ocean covers more than 70% of the Earth’ surface and is the life support
system for our planet providing roughly half of its primary production (Field et al.,
1998). The main primary producers are phytoplankton, unicellular organisms that
form the base of the marine food chain and drive marine ecosystem function.
Phytoplankton are key participants in the biological pump (Figure 1). Through
the process of photosynthesis, they fix more than a hundred million tons of carbon
in the form of CO2 (Behrenfeld et al., 2006). Therefore, even small changes in their
growth may affect atmospheric CO2, having potential implications for the global
ecosystem.

Functional traits and environmental limitations

Phytoplankton growth rate is limited by the availability of resources such as
light and nutrients and by temperature. Light is essential for the photosynthetic
processes and growth rate describes an unimodal response to irradiance levels.
Whereas at high irradiance levels photoinhibition occurs, low levels result in too
little energy to sustain growth. In the ocean, light decreases exponentially with
increasing depth. In contrast, the deep ocean is rich in nutrients while these are
usually depleted in surface waters, mostly due to uptake by phytoplankton during
the photosynthesis. Phytoplankton is generally limited by inorganic nutrients such
as nitrate, phosphate and silicate. Nutrient limitation can vary over time, by
location and by species and is usually described by a Monod equation (Monod,
1949).
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General Introduction

Figure 1: The Biological Pump. (Adapted from Herndl and Reinthaler (2013))

Metabolic rates are also linked to temperature. Phytoplankton growth rate
shows an unimodal response to temperature where each species has an optimum
temperature at which its growth is maximum (Eppley, 1972). Below this optimum,
growth rate increases at a rate defined by a specific value of Q10. This value
depends on the species and is often parametrized by the Arrhenius function
(Arrhenius, 1915). Above the optimum temperature, growth decreases due to
different factors such as inactivation or denaturation of proteins (Ratkowsky
et al., 1983). This decline is sharper than the increase below the optimum and
hence, thermal tolerance curves are usually negative skewed. In addition, across
species, maximum growth rates increase exponentially with increasing temperature
(Eppley, 1972).

In addition to growth rate, phytoplankton cell size is an essential ecological trait.
It is also correlated to temperature and resource availability, influencing nutrient
acquisition (Kiørboe, 1993; Tilman, 1982) and metabolic rates (Brown et al., 2004;
Gillooly et al., 2001; Moisan et al., 2002). Cell size plays a key role in determining
the abundance and distribution of phytoplankton species. Indeed, size classes are

2
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not equally distributed over the ocean but its distribution is linked to contrasting
environmental regimes (Finkel et al., 2010; Li, 2002; Margalef, 1978; Reynolds,
1984). For instance, small picophytoplankton species dominate oligotrophic areas
whereas larger phytoplankton such as diatoms predominate in nutrient-rich waters
(Falkowski et al., 1998).

Growth rates, temperature, nutrients and cell size are all interrelated. Disentan-
gling this puzzle is essential to understand ecosystem functioning and thus to help
predict its future, but it is complicated when also considering biological interac-
tions or physical processes that occur in nature. The use of ecosystem models is
essential to be able to perform controlled simulation experiments and understand
the relative importance of the different functional traits and environmental limita-
tions.

Global patterns of species richness

The distribution of species over the ocean is heterogeneous. Some areas, such
as upwelling regions, are the most productive on the planet whereas others are
almost devoid of life. The latitudinal diversity gradient (LDG) is probably the most
striking pattern at a global scale. This pattern is common to terrestrial and marine
systems and for many different taxonomic groups. The LDG explains an increase
of diversity from the poles to the equator, where a peak on the number of species
is found at the tropical areas (Bates, 1862; Colwell and Hurtt, 1994; Humboldt and
Bonpland, 1807; Pianka, 1966; Rohde, 1992; Stevens, 1989; Wallace, 1854).

Many different hypotheses have been developed to explain the mechanisms
responsible for the LDG. Some relate the number of species in a region to resource
availability (Arrhenius, 1921; Currie, 1991; Gaston, 2000; Rosenzweig, 1995;
Wright, 1983), through effects on productivity (Gaston, 2000; Irigoien et al., 2004;
Mittelbach et al., 2001; Tilman, 1982) or to temperature through its influence
on metabolic rates (Allen et al., 2002; Rohde, 1992; Turner, 2004). In addition,
hypotheses based on null models have been developed to explain the emergence of
the LDG (Brayard et al., 2005; Colwell and Lees, 2000).

3



General Introduction

Despite several patterns in the distribution of phytoplankton have been detected,
most refer to specific taxonomic groups (Cermeño and Falkowski, 2009; Fuhrman
et al., 2008; Passy, 2008; Rombouts et al., 2009; Wang et al., 2011). However few
studies have studied the LDG for entire communities (Irigoien et al., 2004; Ptacnik
et al., 2010).

Phytoplankton predictions under climate warming

The prediction of the response of Earth’s ecosystems to global climate change
is a major scientific challenge. Recent studies have shown that an increase in
temperature could reduce the global phytoplankton biomass (Boyce et al., 2010).
Current climate models also predict an expansion of oligotrophic regions during
the next century (Sarmiento et al., 2004) and a gradual shift toward smaller
primary producers reducing the energy flow to higher trophic levels (Morán
et al., 2010). Warmer oceans could reduce up to 20% CO2 uptake by pelagic
communities (López-Urrutia et al., 2006). However, the effect of temperature is
often masked by other effects such as the availability of resources. This strong
interaction between resource availability and temperature has been evidenced by
direct measurements of carbon fluxes in terrestrial and aquatic ecosystems (Enquist
et al., 2003; Sobek et al., 2005). For the planktonic community unpredictable
changes in diversity can be expected (Gitay et al., Gitay2002; Hays et al., 2005).
Warming temperatures could also lead to changes on the geographical ranges of
marine species. As phytoplankton growth is directly related to temperature, if the
change in temperature is so abrupt as to not allow adaptation to warming, it will
bring a sharp decline in the diversity of phytoplankton in tropical waters and a
poleward shift in species’ thermal niches (Thomas et al., 2012).

Global models versus empirical data

Understanding the relative importance of diversity theories in natural systems is
hindered by the difficulty to perform experimental work at such broad scales
and by the fact that the driving variables (i.e. temperature, nutrients and PAR)
are correlated latitudinally. Although large datasets with sufficient gradients in
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the proposed explanatory variables exist for terrestrial plants (Gentry, 1988), for
marine phytoplankton data are either inconsistent or lack some key variables
(Buitenhuis et al., 2012; Leblanc et al., 2012). For this reason, computer models
provide one of the most useful tools in order to simulate the real ocean conditions
and experimentally understand its behaviour through in silico simulations. But,
ultimately, results retrieved from model simulations must be tested with empirical
observations or even satellite data in order to make predictions more credible.

5
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Objectives

The main objective of this thesis is to delimit the major factors driving the growth
and the latitudinal distribution of marine phytoplankton. Our aim is also to deal
with the controversy between the different diversity hypotheses, caused by the
scarcity of empirical diversity data of marine phytoplankton and the limitations
of previous models. Therefore, we will use a combination of both empirical
compilations and model simulations to achieve this goal. The specific objectives of
each chapter are:

Chapter1

• To assess the unimodal relationship between weight-specific growth rate and
cell size for marine phytoplankton in a compilation of field measurements.

• To test the validity of the temperature corrections on phytoplankton growth
rate measurements, such as that proposed by the Metabolic Theory of
Ecology (MTE), to evaluate the size scaling of marine phytoplankton.

Chapter 2

• To test the recently observed unimodal relationship between growth rate and
cell size using different compilations of lab measurements.

• To assess the influence of temperature and the shared evolutionary history of
species on the allometric scaling of growth rate.

• To show that the curvature is the result of the specialization of picophy-
toplankton across evolution to the warm conditions usually encountered in
oligotrophic environments.

Chapter 3

• To reproduce the latitudinal diversity gradient (LDG) of marine phytoplank-
ton using a time-varying 3D global ecosystem model where biogeochemical
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and physical ocean conditions are coupled. In addition, phytoplankton types
with stochastically assigned traits are randomly initialized and community
structure and diversity are emergent properties.

• To elucidate what are the main mechanisms that drive the distribution of
oceanic phytoplankton diversity. In particular, we will study the effects of
resource competition and temperature, either combined or individually.

• To evaluate the extent of the thermal mid-domain (TMDE) theory on the
LDG.

Chapter 4

• To compile a dataset of marine microplankton species abundance which
allows to provide a reliable measure of microplankton species diversity and
contribute to a better understanding of the processes of diversification in the
ocean. To this end, the dataset must meet the next requirements:

– A standardized taxonomic identification.

– To provide environmental data in order to characterize the study area.

– To cover a wide range of environmental ecosystems

Chapter 5

• To test the emergence of the LDG for the ′′whole′′ community of marine
phytoplankton using the compilation in the Chapter 4.

• To evaluate the temperature-diversity relationship in order to test the theories
which suggest temperature as the main driver of the LDG for marine
phytoplankton: metabolic theory of ecology (MTE) and thermal mid-domain
effect (TMDE).

• To explore whether the different probability of survival of the species within
its thermal range, i.e. the shape of the physiological niche, may further
explain the observed LDG.

7
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• To analyse the relationship between the breadth of the niche and temperature.

• To evaluate the differences between the fundamental and realized niche of
the species and how this affects the resulting LDG.

8



CHAPTER

1
Temperature, nutrients, and the

size-scaling of phytoplankton
growth in the sea

Sofía Sal & Ángel Lopez-Urrutia
Published in Limnology & Oceanography, Vol. 56(5), pp.1952–1955, (2011) as a

Comment to: Chen and Liu (2011)
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1. Temperature, nutrients, and the size-scaling of phytoplankton growth in
the sea

1.1 Introduction
Chen and Liu (2010) investigated the effects of cell size on phytoplankton mass-
specific growth rate using a compilation of field measurements from surface waters
around the world. After correcting for the effects of temperature, their analysis
indicates that there is a modal size around 2.8-5.8 µm where mass-specific growth
is maximal.

As Chen and Liu (2010) acknowledge, their analysis contrasts with allometric
scaling theories that predict a continuous decrease of mass-specific growth rate
with increasing size (Brown et al., 2004; López-Urrutia et al., 2006). In contrast,
Chen and Liu’s (2010) analysis shows that bellow the modal size, that is in the
pico- to nano-phytoplankton size range, growth rate increases with cell size.

They argue that the unimodal pattern stems from picoplankton having evolved to
have inherently low growth rates, independently of nutrient availability. Here we
argue that the unimodal pattern they obtain might be due to an incorrect temperature
correction and to an internal inconsistency in their database because a large portion
of their picoplankton data contain a correction for photoacclimation effects, while
the rest of their data do not.

1.2 Methods, Results and Discussion
To carry out their study, Chen and Liu (2010) used two data sets, one from 14C
incorporation and a second from dilution experiments. In both data sets, a unimodal
pattern between mass-specific growth rate and cell size emerges. In these two
data sets, however, cell size is correlated with nutrient availability, so it could be
argued that, rather than a direct effect of cell size, the lower growth rates of smaller
phytoplankton could be due to these organisms living under resource limitation
(Raven, 1998), (see Fig.1C in Chen and Liu 2010). Chen and Liu (2010) tried to
resolve these confounding effects due to correlation between nutrient availability
and cell size by using a data set of phytoplankton growth rates measured under
nutrient enrichment. The unimodal pattern still apparent in this nutrient-saturated
dilution data set is probably the most striking result in their analysis. Chen and Liu

10



1.2 Methods, Results and Discussion

(2010) concluded that the lower growth rates in the picoplankton size range are an

adaptive feature rather than a direct consequence of nutrient limitation.

We consider whether this pattern is due to a bias in the data compilation. In

an effort to get the best data available, Chen and Liu (2010) used phytoplankton

growth rates with a correction for photoacclimation for the two data sources that

had this information available, while the rest of their nutrient-enriched dilution

data are uncorrected. These corrected data happen to correspond to most of the

low values in the picoplankton size range (Figure 1.1A). If we take this nutrient-

enriched dilution data set and replace these photoacclimation-corrected data by the

uncorrected values comparable to the rest of the data set, the unimodal pattern is
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Figure 1.1: Relationship between temperature-corrected growth rate and average
cell size (M) for the nutrient-enriched dilution data set. (A) Chen and Liu (2010)
data. Grey filled symbols correspond to photoacclimation-corrected data. The
solid line correspond to a linear fit (log10(µn) = 0.11log10(M)−0.01; ANOVA: r2

= 0.14, n = 261, p-value < 0.001). The dashed line correspond to a quadratic fit
(log10(µn) = −0.05[log10(M)]2−0.48log10(M)−1.67; ANOVA: r2 = 0.17, n = 261,
p-value < 0.001). (B) Same as (A) but with all data uncorrected for photoacclimation.
The solid line correspond to a linear fit (log10(µn) = 0.08log10(M)−0.15; ANOVA:
r2 = 0.09, n = 258, p-value < 0.001). The dashed line correspond to a quadratic fit
(log10(µn) = −0.02[log10(M)]2−0.18log10(M)−0.91; ANOVA: r2 = 0.10, n = 258,
p-value < 0.001). (C) Same as (B) but using the temperature correction based on MTE.
In this panel, just a linear fit is shown (log10(µn) = 0.02 log10(M)+5.54; ANOVA: r2

= 0.01, n = 258, p-value = 0.203).
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1. Temperature, nutrients, and the size-scaling of phytoplankton growth in
the sea

no longer evident (Figure 1.1B). The quadratic term in the unimodal fit is no longer
significant (t-test, t = -1.255, df = 255, p = 0.211). Although now a linear fit
is more appropriate, the linear relationship obtained is not what the metabolic
theory of ecology (MTE) predicts. MTE predicts that metabolic rates and organism
biovolume (BV) should scale as rate∝BV3/4 (West et al. 1999; López-Urrutia
et al., 2006). Hence, size-specific metabolic rates (rate×BV−1), such as individual
growth rate, should scale as BV3/4×BV−1=BV−1/4. Chen and Liu (2010) defines
cell size as the carbon content. López-Urrutia et al. (2006) have shown that,
when phytoplankton cell size is expressed in units of carbon instead of biovolume,
phytoplankton growth rate scales isometrically with cell size (rate∝ carbon1),
so carbon-specific growth rate (rate×carbon−1) should be independent of cell
carbon. This is due to phytoplankton carbon content and biovolume scaling as
BV∝ carbon4/3 (Strathmann, 1967), so rate∝BV3/4∝ (carbon4/3)3/4∝ carbon.

Hence, following MTE, a plot of carbon-specific growth rate should yield no
significant relationship with cell-carbon, whereas Figure 1.1B shows a positive
relationship. We think that this trend could be due to the temperature correction
used. Chen and Liu (2010) used a Q10 of 1.88 (Eppley 1972; Bissinger et al. 2008)
so that log10(µ)-0.0275×T is the temperature-corrected phytoplankton specific
growth rate, where T is the temperature in Celsius. On the other hand, MTE uses
the Van’t Hoff - Arrhenius equation (Arrhenius, 1915) to describe the effects of
temperature on metabolic rates:

Rate∝ e−E/kTa (1.1)

where k is Boltzmann’s constant (8.62×10−5eVK−1), Ta is the absolute tempe-
rature (in Kelvin) and E is the average activation energy for the metabolic process
under study. For autotrophs the effective activation energy for photosynthetic
reactions should be close to 0.32 eV Allen et al. (2005). In the case of
photosynthesis, the Van’t Hoff-Arrhenius equation is just an approximation to a
more complex process (Farquhar et al., 1980). The activation energy of 0.32
predicted by MTE is based on data from the effects of temperature on several
photosynthetic processes (see appendix in Allen et al. 2005). López-Urrutia et al.
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(2006) obtained effective activation energies for phytoplankton growth rates of 0.29
eV, not significantly different from the predicted value of 0.32 eV.

The Q10 in turn is an approximation to Van’t Hoff - Arrhenius equation,
so both temperature coefficients, E and Q10, are interrelated by equation
Q10=e(−E/(kTo2))×10 where To is 273.15 K (see box 1 in Gillooly et al. 2002).
Hence, the Q10 of 1.88 from Eppley (1972) is equivalent to an activation energy
of approximately 0.405 eV, which is slightly higher than the activation energy
predicted for autotrophs and the empirical value obtained by López-Urrutia et al.
(2006). If growth rates from the nutrient-enriched dilution data set are plotted
against temperature, the resultant activation energy is 0.36 eV (Figure 1.2), which
is not significantly different from the value predicted by MTE (t-test, t = 2.08, df =
256, p = 0.15) but significantly lower than the value used by Chen and Liu (2010)
(t-test, t = 12.522, df = 256, p < 0.001).

This subtle difference between the two temperature corrections might be
responsible for the pattern obtained in Figure 1.1B. If instead of the temperature
correction used by Chen and Liu (2010) based on Eppley’s (1972) Q10 , we use the
temperature correction based on MTE and the theoretical activation energy of 0.32
eV (equivalent to a Q10 of 1.64), we obtain no significant relationship between
carbon-specific growth rate and average cell carbon (Figure 1.1C), in agreement
with MTE. The Q10 used by Chen and Liu (2010), is based on the studies of
Eppley (1972) and Bissinger et al. (2008) that analyze the temperature dependence
of phytoplankton maximal growth rates. It should be noted that the temperature
dependence of this maximally attainable mean growth rate might be different from
the temperature dependence of growth rate under optimal conditions. For example,
in Figure 1.2 we fit a line to the growth rates under nutrient- and light-saturated
conditions, while Eppley (1972) and Bissinger et al. (2008) fits would represent the
upper limit of the recorded growth rates. Our fit therefore attempts to predict the
average growth rate of a population of phytoplankton living at optimum nutrient
and light conditions, while Eppley (1972) and Bissinger et al. (2008) predict the
maximum growth rate of the same population. Maximal and average metabolisms
might have different temperature dependencies but it is the latter, as the one shown
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Figure 1.2: Effect of the temperature function (1/kTa, lower axis) on log-transformed
nutrient-saturated growth rate (log10 (µn) = −0.36(1/kTa)+14; ANOVA: r2 = 0.41, n
= 258). The corresponding temperatures in degrees Celsius are presented in the upper
axis for reference.

in Figure 1.2, that needs to be used to obtain growth rates corrected for the effects
of temperature.

When inferring the effect on metabolic processes of variables that might be
correlated with temperature, like body size or nutrients, it should be borne in
mind that the value used for the temperature correction might introduce some bias.
We believe that the value used for the temperature correction should be derived
theoretically, as the one used in Figure 1.1C, and not empirically, because solely
based on a field data set like the one under analysis, it is impossible to discern the
magnitude of the effects of temperature and of variables correlated with it. For
example, it could be argued that the temperature coefficient we obtain in Figure 1.2
is dependent on the assumption that weight-specific growth rate is independent of
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1.2 Methods, Results and Discussion

cell size, and that if we had corrected growth rate by the cell-size effects obtained in
Figure 1.1B, we would have obtained a temperature coefficient closer to Eppley’s
(1972). To avoid this caveat, the temperature coefficient used should be based on
some theory, like the one we used based on MTE, or corroborated by experimental
work where the effect of the other variables can be controlled.

Such a criticism can be applied also, for example, to the activation energy of 0.29
eV for cell-size corrected phytoplankton growth rate obtained by López-Urrutia
et al. (2006). This value is to some extent dependent on the assumption that
growth rate scales with cell size to the 3/4 power. As cell size and temperature
are correlated, taking a theoretical value for the effects of cell size to evaluate the
effects of temperature, conditions in some way the activation energy obtained. A
similar criticism can be made of field studies of the effects of cell size that do not
take into account the effects of temperature or nutrient availability. For example,
the results of Marañón (2008), who obtains an almost isometric scaling between
phytoplankton production rates and cell volume, are dependent on the unlikely
assumption that rates measured for the smallest cells do not coincide with the
lowest nutrient levels.

Theory and experiments should have a major say in elucidating whether
phytoplankton growth rates scale according to models of resource distribution
networks as proposed by MTE or are constrained by surface diffusion. As
explained above, MTE predicts that rate∝BV3/4, while nutrient uptake area
considerations suggest that the scaling between primary production and BV should
be rate∝BV2/3 (Aksnes and Egge, 1991). In terms of surface area, assuming
S∝BV2/3, MTE predicts that rate∝ S9/8 = S1.12, while surface diffusion theories
predict that rate∝ S1.

Paradoxically, a recent comprehensive study measuring metabolic rates of
protists (Johnson et al., 2009) obtained a size scaling exponent of S1.057, at the
midpoint between resource distribution and surface-area theories. Johnson et al.
(2009) incorrectly argued that, although they obtained a scaling between cell
volume and metabolic rate of 0.72 with a 95% confidence interval of 0.65-0.79
(see their fig. S2), cell volume is not the appropriate metric for metabolic scaling
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and cell carbon should be used instead. And because rate scales as carbon1 they
argue that metabolic scaling theories can’t be applied to protists. This last argument
by Johnson et al. (2009) is not correct; metabolic scaling theories derive the 3/4
scaling exponent on biovolume (West et al., 1999). MTE theories then assume that
mass and biovolume scale isometrically (see assumption 6 in Banavar et al. 2010
and equation 8 in West et al. 1999) to derive the mass scaling exponent. Since
metabolic rates scales as BV3/4, the experimental data in Johnson et al. (2009) are
also agree with MTE. In summary, data to allow a clear decision on which theory
is correct are still lacking. In fact, the two theories might not be independent (Mei
et al., 2009). Maybe organisms have to deal with both constraints, limitations on
diffusion across surfaces and limitations on resource distribution networks, and that
is why the measured scaling exponent is at the midpoint (Banavar et al., 2010).
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2. Thermal adaptation, phylogeny and the unimodal size scaling of marine
phytoplankton growth

2.1 Introduction

Metabolism is the basis of the energetic exchange between organisms and the
environment. According to the metabolic theory of ecology (MTE) (Brown et al.,
2004), metabolic rates (M) scale with cell volume (BV) following a power-law
of the form M∝ aBVb, where a is a taxon-related constant and b is the size-
scaling exponent, which commonly takes a value of approximately 3/4 (Kleiber,
1947). Hence, mass-specific metabolic rates, such as individual growth rate, should
scale as -1/4 of the organism biovolume (Hemmingsen, 1960; López-Urrutia et al.,
2006). In marine phytoplankton, some studies have supported this theoretical
scaling (Banse, 1976; Blasco et al., 1982; Edwards et al., 2012; Niklas and Enquist,
2001), albeit they are usually based on the study of one or two size classes (Banse,
1976; Blasco et al., 1982). Indeed, the inclusion of a wider range of phytoplankton
cell size, covering from picophytoplankton to large diatoms, leads to a weaker
(Banse, 1982; Chisholm, 1992; Sommer, 1989) or almost inexistent relationship
between mass-specific growth rate and cell volume (Huete-Ortega et al., 2012;
Litchman et al., 2007; Marañón, 2008; Marañón et al., 2007). The controversy
around the allometric scaling value has increased recently with the report of an
unimodal (in a log-log scale) relationship between mass-specific growth rate and
size (Chen and Liu, 2011, 2010; Marañón et al., 2013).

According to Chen and Liu (2011), the unimodality in the phytoplankton
allometry can be mainly attributed to the lower growth rates by the smallest
phytoplankton, specially the unicellular Prochlorococcus and Synechococcus
(Chisholm, 1992). These lower growth rates have been related to an increase in
the proportion of essential, non-scalable cellular components (membranes, nucleic
acids) as cell and genome size is reduced, what leads to a reduction in the
fraction of cytoplasm available for other scalable, catalytic components involved
in growth rate (Raven, 1998; Raven et al., 2013). Reduction in genome and cell
size minimizes the resources necessary for live and seems to be the result of
picophytoplankton evolutionary adaptation to oligotrophic regions (Partensky and
Garczarek, 2010). Raven (1998) suggested that the unimodal relationship between
growth rate and cell size might be more a consequence of phylogenetic variations
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in the taxon-related constant a in the allometric equation rather than to changes in
b.

The shared evolutionary history of related species establishes a correlation
between data in allometric scaling studies that, if not accounted for, can result in
biased scaling exponents (Capellini et al., 2010; Ehnes et al., 2011; Kolokotrones
et al., 2010). Phylogenetic approaches are commonly used to deal with intra-
and interspecific trait variability combining evolutionary relationships between
species and correlations between traits (Connolly et al., 2008; Felsenstein, 1985,
2008; Housworth, 2004; Ives et al., 2007). But the inclusion of such phylogenetic
approaches in studies of metabolic scaling has been controversial, with authors
questioning their validity or utility (Björklund, 1994; McNab, 2008; Ricklefs and
Starck, 1996) arguing that phylogenetic correction does not significantly change
the value of the estimated slope (reviewed in Glazier 2005) and others claiming
the necessity to provide these analyses (Blackburn and Gaston, 1998; Garland
et al., 1999). For terrestrial invertebrates, Ehnes et al. (2011) have shown that
the inclusion of phylogeny removes the curvatures in allometric scaling models.
In contrast, very few studies have applied phylogenetic approaches to the study
of phytoplankton allometry (Bruggeman, 2011; Bruggeman et al., 2009; Connolly
et al., 2008).

Failures to detect unimodal allometric scaling have also been attributed to the
lack of homogeneity in the data used. Marañón et al. (2013), in an effort to avoid the
uncertainties associated with the analysis of data measured under different growth
conditions, maintained a series of phytoplankton cultures at the same temperature
(18±0.5○C) and obtained a unimodal size scaling of phytoplankton growth rates.
But each phytoplankton species has an optimum temperature at which its growth is
maximum (Eppley, 1972; Thomas et al., 2012). The selection of the temperature
at which to perform the size scaling experiments might be non-trivial if optimum
temperature and phytoplankton cell size are correlated.

In this work we will assess whether a relationship between cell size and thermal
optimum exists for marine phytoplankton. We will test the influence of temperature
and the shared evolutionary history of species on the allometric scaling of growth
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rate. Our final aim is to show that the curvature is the result of the specialization of

picophytoplankton across evolution to the warm conditions usually encountered in

oligotrophic environments.

2.2 Material and Methods

We used an extensive dataset of phytoplankton growth responses to temperature

compiled by Thomas et al. (2012) for a total of 194 isolates/strains from

estuarine and marine waters. These traits were estimated from >5000 growth rate

measurements, synthesized from 81 studies between 1935 and 2011. This dataset

only includes experiments were resources, such as light or nutrients, were not

limited (details are provided in the supplementary information in Thomas et al.

(2012).

To explore the relationship between cell size, maximum growth rate and

temperature, we compiled cell volumes for each of the phytoplankton species in

Thomas et al. (2012) dataset. Cell volumes were collected from the literature (Table

S2.1). Cell sizes in the dataset ranged from 0.11 to 251184.82 µm3 (0.59 to 78.28

Equivalent Spherical Diameter).

A phylogenetic tree is needed to evaluate whether the shared evolutionary history

of species might influence the emergence of the unimodal pattern in the size scaling

of growth rate. Branch lengths in the tree are essential to estimate the similarity

between species. To build the phylogenetic tree, 18S and 16S (for cyanobacteria)

rRNA sequences were retrieved from the GenBank database. We restricted the

dataset to those phytoplankton species which have been sequenced, what resulted

in a total of 121 isolates/strains. When the compilation in Thomas et al. (2012)

included a species strain that was not sequenced we selected the sequence of

another strain of the same species, assuming that the branch length between strains

of a same species should be similar. When a species had several thermal growth

response curves recorded but the phylogenetic information was restricted to only

one strain we calculated an average thermal response for that species.
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In addition to Thomas et al. (2012), we used a dataset compiled by López-

Urrutia et al. (2006) (and used by Chen and Liu (2011) to demonstrate the

existence of unimodal scaling). Here several measurements of growth rate at

different temperatures are provided for each species together with cell volume. The

difference between Thomas et al. (2012) and López-Urrutia et al. (2006) is that the

latter only considers the exponential part of the growth response to temperature

and includes also the effects of irradiance. Following the same procedure as for

Thomas et al. (2012), we restricted the dataset to only those species that have been

sequenced so the dataset was reduced from 1063 to 49 data points.

2.2.1 Phylogenetic analyses

Alignment of RNA sequences to build the phylogenetic tree was done with

MUSCLE (using default settings) through the muscle package (Edgar, 2004) in

R (R Development Core Team, 2008). The ends of the alignment were manually

trimmed. The tree was calculated using maximum-likelihood (ML) analysis carried

out using PhyML v.3.1 (Guindon and Gascuel, 2003), with the GTR+gamma+I

model selected as the best tree using the Akaike information criterion (AIC)

(Akaike, 1974). Package ape (Paradis et al., 2004) was used to call these external

applications from R, where all analyses were carried out.

To introduce the information provided by the phylogenetic tree into the allo-

metric scaling analysis, a Phylogenetic General Least Square (PGLS) regression

(Felsenstein, 1985) was applied. Unlike standard linear regression, this accounts

for the fact that data points might be correlated as result of shared evolutionary his-

tory. Following the methodology described in Kolokotrones et al. (2010), we used

Pagel’s covariance structure (Pagel, 1999) for the PGLS. This structure includes an

extra parameter, λ , which assumes a Brownian motion to model the variance and

allows to test for phylogenetic signal in the data. This value is optimized during the

fitting process and takes values from 0 (phylogenetic independence between data)

to 1 (original diffusion model with untransformed branch lengths). The PGLS was

also applied using the ape package.
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2.2.2 Size-scaling of growth rate and species thermal tolerance
curves

Using the compilation of growth responses to temperature provided by Thomas

et al. (2012), the thermal tolerance curve of each species was fit. We followed

the same procedure as Thomas et al. (2012) and applied a maximum likelihood

estimation (MLE) using the bbmle package in R (R Development Core Team,

2008). Using the thermal tolerance curve of each species, the optimum temperature

was selected as the temperature at which growth rate is maximum.

These thermal tolerance curves provide estimates, for each species, of the growth

rate at different temperatures. We calculated the size scaling of growth rate at

1 degree intervals from 2 to 33○C using for each species the predicted growth

rate from the thermal tolerance curve. Linear and quadratic regressions were

then applied to the log-log relationship between growth rate and cell size at each

temperature, both with and without phylogenetic correction.

2.2.3 Temperature normalization

For each species in López-Urrutia et al. (2006), growth rate was corrected for

the effects of photosynthetic active radiation using the parameters given in Table

1 of López-Urrutia et al. (2006). As in Chen and Liu (2011), normalization

for temperature was applied using the Van’t Hoff-Arrhenius equation (Arrhenius,

1915) with the activation energy given by López-Urrutia et al. (2006). Corrected

growth rates were averaged for each species to have one measurement for each

rRNA sequence.

For Thomas et al. (2012) data, we used the maximal growth rates and optimum

temperature of each species as obtained by the MLE fits. To correct the effect of

temperature, we used the slope (S) from the relationship between log of maximum

growth rate and optimum temperature , so that log10(µ)−SxT is the temperature-

corrected growth rate (T;○C).
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2.3 Results

The optimum temperature for growth and cell volume are correlated (r2=0.04,
p<0.05) Figure 2.1A). Species with a cell volume lower than 1 µm3 (i.e.
picophytoplankton species) show maximum growth rates at temperatures higher
than 22○C, while larger species have optimum temperatures for growth between
2 and 33○C. The small species in Thomas et al. (2012) dataset are adapted to
warm conditions whereas large phytoplankton species are more diverse regarding
their optimum temperatures for growth with species with optima along almost the
full ocean thermal range (Figure 2.1A). Regardless of cell-size, the maximum
growth rate of species which have a growth optimum in warm conditions is
higher than that of species with an optimum in colder environments. There
is an exponential relationship between maximum growth rate of each species
and optimum temperature (Figure 2.1B, log10(µ)max = 0.013xT−0.41, r2=0.07,
p<0.01).
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Figure 2.1: Relationship between species optimum temperature and (A) cell size and
(B) maximum growth rate.

When we correct the maximum growth rates obtained from the thermal curve fit
for the effects of temperature using the exponential coefficient in Figure 2.1B, there
is a unimodal relationship between growth rate and cell volume. The quadratic term

23



2. Thermal adaptation, phylogeny and the unimodal size scaling of marine
phytoplankton growth

in the relationship log10(µ)max = log10BV+ log10(BV)2 is significant (r2=0.07,

p<0.01, AIC= 48.57) and the quadratic model is a better predictor than the linear

model (r2=0.01, p=0.383, AIC= 54.08) (Figure 2.2A). This unimodal pattern is

mainly due to the picophytoplankton species having lower than average growth

rates.
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Figure 2.2: Size scaling of growth for: (A) Thomas et al. (2012) data. The black
solid line corresponds to a linear fit (log10(µ) = −0.02log10(BV)−0.36; ANOVA: r2

= 0.01, n = 121, p-value = 0.38). The black dashed line corresponds to a quadratic
fit (log10 (µ) = −0.02 [log10(BV)]2+0.09 log10(BV)−0.42; ANOVA: r2 = 0.07, n
= 121, p-value < 0.01). The grey solid line corresponds to a linear PGLS fit (log10(µ) = −0.04 log10(BV)−0.43, AIC = 21.09, p-value = 0.12, λ=0.96). The grey
dashed line corresponds to a quadratic PGLS fit (log10 (µ) = 0.02 [log10(BV)]2−0.21
log10(BV)−0.26, AIC = 27.25, p-value = 0.16, λ=0.96). (B) López-Urrutia
et al. (2006) data. Same color coding as in (A), black solid line is the linear fit
(log10(µ) = −0.03 log10(BV)+5.10; ANOVA: r2 = 0.04, n = 49, p-value = 0.17), black
dashed line is quadratic fit (log10 (µ) = −0.02 [log10(BV)]2+0.10 log10(BV)+4.97;
ANOVA: r2 = 0.17, n = 49, p-value < 0.01), grey solid line is the linear PGLS
fit (log10(µ) = −0.06 log10(BV)+4.96, AIC = -4.54, p-value < 0.01, λ=0.92) and
grey dashed line is the quadratic PGLS fit (log10 (µ) = −0.02 [log10(BV)]2+0.06
log10(BV)+4.95, AIC = 1.39, p-value =0.06 ,λ=0.91).

24



2.3 Results

A similar pattern is evident in the dataset given by López-Urrutia et al. (2006)
as analysed by Chen and Liu (2011) (Figure 2.2B). Although Chen and Liu (2011)
used cell carbon as an estimate of cell size, the same pattern is obtained using
cell volume. After normalization for temperature and photosynthetically active
radiation, a quadratic model explains a higher amount of variance than a linear one
(Figure 2.2B. Quadratic model:r2=0.2, p<0.01, AIC=-9.65; linear model: r2=0.004,
p=0.173, AIC= -2.23). Again, the unimodal pattern is mainly determined by
the picophytoplankton growth rates, what suggests a phylogenetic origin for the
curvature.

We replicated these analyses applying a PGLS regression to both datasets. The
quadratic term is no longer significant in any of them (λ=0.91, p=0.06, AIC=
1.39 for López-Urrutia et al. (2006); λ=0.96, p=0.157, AIC= 27.24 for Thomas
et al. (2012)). The phylogenetic analyses yielded the lowest AIC values for the
linear fits (λ=0.92, p<0.05, AIC= -4.54 for López-Urrutia et al. (2006); λ=0.956,
p=0.123, AIC= 21.09 for Thomas et al. (2012)). Although for the López-Urrutia
et al. (2006) dataset the PGLS linear fit was significant, the relationship between
temperature corrected growth rate and cell size was not significant for Thomas
et al. (2012) data. In addition, λ values were close to 1 for all analyses revealing a
strong phylogenetic signal in the data. This implies that differences in the species
growth rate are correlated to the phylogenetic distance amongst species. These
results suggest that the observed curvature in the size scaling of growth rate is a
consequence of the shared evolutionary history.

Up to this point, we have evaluated the effect of phylogeny on the allometric
scaling on the basis of temperature-corrected growth rates. This is the common
practice when data are compiled for different species measured at different
temperatures. The alternative way to analyse the size scaling of growth is to
measure the growth rates of a set of species at the same temperature (i.e. Marañón
et al. 2013). With the growth vs temperature growth curves we can simulate
such experiments at different temperatures. For each temperature, we estimate
the growth rate of each species and use that data to analyse the size scaling. For
example, Figure 2.3A represents the growth estimates at 30○C. If we calculate
with the data for all species (grey circles) the size scaling, the quadratic term is
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not significant (Quadratic model: r2=0.03, p=0.18, AIC= 160.51; linear model:
r2=0.001, p=0.78, AIC= 160.36). Similarly, at 10○C we can plot the predicted
growth rates for each species (Figure 2.3B) but here the quadratic term is significant
and better predictor than the linear one (Quadratic model: r2=0.21, p<0.001, AIC=
142.40 ; linear model: r2=0.016, p=0.22, AIC= 161.94).

We can repeat this process at 1○C intervals from 2 to 33○C and calculate
the significance of the quadratic term (column ′′p-value′′ in Figure 2.3C) for
each temperature. The unimodal growth rate scaling does not occur at the
extremes of the thermal range. At the highest temperatures, the growth
rates of picophytoplankton are not significantly lower than those of nano
and microphytoplankton. At the lowest temperatures, the growth rates of
picophytoplankton and nanophytoplankton are lower than those of the larger
phytoplankton, the quadratic term is not significant but there is a positive allometric
scaling. At temperatures from 5 to 25 ○C the unimodal scaling of phytoplankton
growth rate is significant and contributes to explain a significant amount of the
variance (right panel in Figure 2.3C). When a PGLS is applied to the size scaling
of growth rate at each temperature, and hence the shared evolutionary history
of species is taken into account, the curvature is no longer significant at any
temperature, supporting the hypothesis of its evolutionary origin. The colour
matrix plot in Figure 2.3C summarizes these results. For each temperature degree,
we split the cell size range into 7 different classes and calculated the average growth
rate for each cell size bin (see Figures 2.3A & 2.3B for examples). We observe a
clear pattern where as we move toward higher temperatures the curvilinear scaling
disappears. This pattern is the result of picophytoplankton adaptation to high
temperatures. The unimodality on the relationship between cell size and growth
rate depends strongly on temperature and it is not significant from ∼25○C upwards,
i.e., where picophytoplankton grows at their optimum temperatures.
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Figure 2.3: Effect of temperature on the size scaling of growth rate. Panels on the
left show the size scaling of growth (log10 transformed) for predicted growth rates at
(A) 10○ and (B) 30○. Grey dots show all data points whereas colors dots show the
corresponding averaged growth rates for each size bin as used in the colour matrix plot
(C) . The black solid line corresponds to a linear fit. The black dashed line corresponds
to a quadratic fit. Linear fit in (A): log10(µ) = −0.07log10(BV)−0.47; ANOVA: r2 =
0.02, n = 143, p-value = 0.11. Linear fit in (B): log10(µ) = −0.02log10(BV)−0.46;
ANOVA: r2 = 0.0006, n = 109, p-value = 0.8. Quadratic fits are shown in the panels.
(C) The colour matrix shows for each temperature from 2 to 33○C (y axis) the averaged
growth rate at each cell size bin (x axis). The p-value column shows the degree
of significance of the quadratic fit for the log10-log10 relationship between growth
rate and cell size using all data points (no data binning). When the quadratic term is
not significant, i.e. p-value>0.05 the box appears empty. (*) indicates p-value<0.05,
(**) indicates p-value<0.01 and (***) p-value<0.001. The right panel shows the ratio
between the r-squared of the quadratic term and the r-squared of the linear term for the
different fits at each temperature, i.e., the proportional increase in explained variance
of the quadratic fit in relation to the linear fit.
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2.4 Discussion

The role of the evolutionary history of species on the study of the allometric scaling
of marine phytoplankton has been hardly considered explicitly. We have evaluated
the causes of the unimodal relationship between mass-specific growth rate and
cell size (Chen and Liu, 2011; Marañón et al., 2013) using two different datasets.
We have used Phylogenetic General Least Square (PGLS) regression (Felsenstein,
1985) to understand the evolutionary effects on the linear and quadratic fits. Our
results show that, in both datasets, the quadratic/unimodal relationship is not
significant after the phylogenetic correlation in the data is taken into account.

The curvature in the scaling relationship between mass-specific growth rate and
cell size is mainly due to prokaryotic picophytoplankton. When we compare
the growth rate of phytoplankton species at their thermal optimum (Figures 2.2A
& S2.1), picophytoplankton have lower growth rates than larger phytoplankton
but when phylogenetic correction is used, these lower growth rates are not
significant. Chen and Liu (2011) suggested that the unimodal pattern may be the
result of evolutionary adaptation of picophytoplankton to nutrient availability in
oligotrophic environments. This was pointed out originally by Raven (1998), who
suggested that the reduction in size in picophytoplankton increases the availability
of resources at low nutrient levels but at the cost of a reduction in the proportion of
scalable components devoted to cell growth. In addition, marine picocyanobacteria
such as Prochlorococcus or Synechococcus form a phylogenetic branch separated
not only from larger phytoplankton taxa but also from larger species within
the cyanobacteria group (Figures S2.2 & S2.3). Specially, Prochlorococcus has
suffered an extensive genome streamlining that has affected most lineages at
different proportions (Palenik, 1994; Penno et al., 2006; Rocap et al., 2002; Urbach
et al., 1998). Hence, the high variability of growth rates exhibited within the
Prochlorococcus group (Figure 2.1B) seems to correspond to different levels of
genome streamlining rather to be a consequence of its tiny cell size (Partensky
and Garczarek, 2010). Recent studies suggest that both genome and cell size
are mutually correlated (Ting et al., 2007) and therefore they have decreased
concurrently during evolution (Partensky and Garczarek, 2010).
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2.4 Discussion

These conundrum between phylogeny, size and growth rate is evidenced by
the strong phylogenetic signal in our data (λ > 0.9). The growth rate and size
estimates for the different species are not independent but closely related species
have growth rates and sizes more similar than species selected at random. The
independence of data is one of the assumptions of conventional methods for
data analysis and its violation might have various consequences, from biases in
the regression coefficients to severe underestimation of uncertainties related to
these values. Hence, if instead of using a phylogenetic correction as we do, all
observations were treated as independent (Finkel, 2001; Litchman et al., 2007;
Tang, 1995), a biased association may be observed between growth rate and
cell size. But phylogenetic regressions have also been criticized mainly for two
reasons: first because these methods attribute to ecology the remaining variation
in character after phylogenetic correction, given thus priority to the latter over
ecology when, actually, they are not mutually exclusive because of the phylogenetic
niche conservatism (Freckleton et al., 2002; Grime and Hodgson, 1987; Harvey and
Pagel, 1991; Westoby et al., 1995). And second, because they imply the validity of
a ′′Brownian motion′′ to explain the constant rate of variability through the different
branches of the phylogeny, which is not always appropriate. But when a strong
phylogenetic signal is apparent, as is the case here, we argue that accounting for
the shared evolutionary history of species is essential to avoid biased conclusions
due to the non-independence in the data (Bruggeman, 2011; Martins and Garland,
1991). In the literature cases where the curvature in metabolic scaling has been
found to be relevant (e.g. Kolokotrones et al. 2010), the quadratic term was found
significant after phylogenetic correction, what warrants an interpretation of the
curvature independent of the evolutionary history of species.

The relevance of the inclusion of picophytoplankton is evident in previous
studies which only considered larger species and reported linear exponents (Banse,
1982; Finkel, 2001; Litchman et al., 2007; López-Urrutia et al., 2006; Sommer,
1989; Tang, 1995). It has been shown that the value of the linear exponent depends
on the size range considered (see Figure 2 in Chen and Liu 2011). For instance,
the difference in the slope obtained in Figure 2.1B of 0.03 and the -1/4 exponent
observed by López-Urrutia et al. (2006) is that the latter study only considered
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data where both phytoplankton volume and growth rate were measured in the same

experiment. For Figure 2.1B we have also used volume estimates measured for the

same species in other studies, what extends the size range to picophytoplankton

and substantially reduces the size scaling slope. This low slope is apparent using

either cell volume (Figure 2.1B) or carbon biomass (see Figure 1B in Chen and Liu

(2011)). Therefore, the size-scaling of marine phytoplankton departs significantly

from the predicted -1/4 power rule (Marañón et al., 2007) and mass-specific growth

rate scales independent of body volume when a large range size is considered

Marañón et al. (2013).

These conundrum between phylogeny, size and growth rate is further puzzled

when we also consider that temperature affects both growth rates and phytoplank-

ton cell size and complicated by the evolutionary adaptation of picophytoplankton

to warm environments. To correct for the effects of temperature on growth rate

when data are compiled for species growing at different temperatures, an exponen-

tial relationship between temperature and growth is used to standardize the growth

rates of all species to the same temperature. But because both cell volume (Figure

2.1A) and growth rate (Figure 2.1B) are correlated with temperature it is hard to

ascertain that the assumed exponent for the temperature correction is not biased

by the fact that picophytoplankton species (theoretically with lower growth rates)

are predominantly present at the highest temperatures. The estimated exponent for

the optimum growth rates (Figure 2.1B) is lower than the value reported by Eppley

(1972) (0.013 vs 0.0275). The choice of the thermal dependence exponent might

introduce some bias in the size scaling analysis (Sal and Lopez-Urrutia, 2011). A

priori, this caveat might be avoided measuring the growth rate of all species under

study at the same temperature. But, paradoxically, our results show that the size

scaling of phytoplankton growth rates is largely dependent on the temperature at

which growth rates are measured. For instance, the non-phylogenetically corrected

unimodal scaling of phytoplankton growth rate is significant from 5 to 25 ○C, but

not at higher or colder temperatures. Hence, our results support the unimodality at

18ºC reported by Marañón et al. (2013) but we add the perspective that, if growth

rates were measured at different temperatures the size scaling might have differed.
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2.4 Discussion

This is the result of picophytoplankton adaptation to warm conditions while
larger species have a more diverse thermal preference and may have optimum tem-
peratures along the full ocean thermal range (Figure 2.1B). At warm temperatures,
the picophytoplankton species in Thomas et al. (2012) compilation are all at their
thermal optimum. But nano and micro-phytoplankton data consists of both species
that have their optimum at high temperatures and species that have their optimum
at temperate conditions but that nevertheless are able to growth at higher temper-
ature. The inclusion of data of species out of their thermal optimum results in a
different pattern in Figure 2.3A than in Figure S2.1 where only species that have
their thermal optimum at high temperatures are considered. The optimum tem-
perature of the species seems to be the result of evolutionary adaptation to the
environmental conditions they experience locally Thomas et al. (2012). As pico-
phytoplankton, specially Prochlorococcus strains, is usually most abundant in the
warm oligotrophic waters (Flombaum et al., 2013), it is expected to have optimum
growth at high temperatures.

Our temperature simulation experiment, combines the estimation of thermal
reaction norms to predict the growth rate of each species at different temperatures
and the analysis of size scaling at each temperature. Ideally, these results should
be confirmed experimentally by making a full experimental design where both
temperature responses and size-scaling experiments are performed in parallel.
But the number of treatments in such a factorial design would make the study
almost impractical. Community wide attempts (Boyd et al., 2013) might be the
solution to fully test our hypothesis. Although the collation of data in Thomas
et al. (2012) that we used to estimate the thermal reaction curves comes from a
wide range of experimental protocols, a recent comparison with the dataset from
such a community-wide study (Boyd et al., 2013) found slight differences on the
maximum growth rate of species, but optimum temperatures and thermal reaction
norms were similar across studies.

Although our results reveal that the unimodal scaling depends on temperature,
the role of phylogeny seems to be much more important. Even at low temperatures,
where picophytoplankton shows very low growth rates, a curvature appears to
be non-significant after phylogenetic correction. In summary, our results state
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that the allometric slope of phytoplankton growth rates are variable and do not
consistently support a specific theoretical value when a large range of cell sizes
are included. The strong phylogenetic signal exhibited in our data reveals that
phylogeny should be borne in mind in allometric studies, since variability on
the species growth rates seems to be consequence of a common evolutionary
history rather than uniquely an effect of their size. This supports Raven’s (1998)
hypothesis that picophytoplankton have lower growth rates in an effort to increase
the efficiency for the resources acquisition at low nutrient levels. Adaptations
such as the latter, have been a common feature along the evolutionary history of
organisms. In addition, this unimodal scaling of phytoplankton growth due to the
different growth rate scaling of prokaryotic picophytoplankton is in accordance
with the shift in metabolic scaling from prokaryotes to eukaryotes as a result
of the dramatic changes in structure and function experienced across this major
evolutionary transition (DeLong et al., 2010).
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Figure S2.1: Size scaling of growth rate for those species with optimum temperatures
between 23 and 28○ in Thomas et al. (2012) data (big grey dots). The black solid
line corresponds to a linear fit (log10 (µ) = −0.005 log10(BV)−0.43; ANOVA: r2 =
0.001, n = 43, p-value = 0.82). The black dashed line correspond to a quadratic fit
(log10 (µ) = −0.04 [log10(BV)]2+0.14 log10(BV)−0.40; ANOVA: r2 = 0.22, n = 43,
p-value < 0.005). Small grey dots on the background show the whole dataset.
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KF559331 Eutreptiella gymnastica
AM396379 Cryptomonas sp. M2807

AF022193 Gymnodinium catenatum
GU362426 Gymnodinium catenatum

AJ415515 Scrippsiella trochoidea
AJ415519 Prorocentrum micans
Y16238 Prorocentrum minimum
JN986577 Karlodinium veneficum
FJ587220 Karenia mikimotoi
FJ587219 Karenia brevis
EF492503 Karenia brevis

EU418971 Cochlodinium polykrikoides
EF492486 Akashiwo sanguinea

AF022202 Peridinium sp.
JF791031 Protodinium simplex

AJ276699 Neoceratium furca
AF022153 Neoceratium fusus

DQ500123 Pyrodinium bahamense var. compressum
AY883005 Alexandrium monilatum
AJ535392 Alexandrium catenella
AY883004 Alexandrium tamarense

AY883006 Alexandrium minutum
U27500 Alexandrium ostenfeldii

FN392226 Gymnodinium aureolum
AJ544116 Calcidiscus leptoporus

AJ246261 Coccolithus pelagicus
FN551237 Prymnesium polylepis
FN551247 Prymnesium polylepis
AJ004866 Prymnesium polylepis
L34670 Prymnesium parvum f. patelliferum
AJ246269 Prymnesium parvum
EU127475 Phaeocystis globosa

JN381495 Phaeocystis antarctica
AJ278036 Phaeocystis pouchetii

M87327 Emiliania huxleyi
HQ877901 Emiliania huxleyi
AJ246276 Gephyrocapsa oceanica
KC404121 Emiliania huxleyi
AB183665 Gephyrocapsa oceanica

KC888111 Isochrysis galbana
AJ246266 Isochrysis galbana

EU924188 Isochrysis sp. 0318
AM901361 Cryptomonas sp. M1634

JF794057 Micromonas pusilla
KF899844 Stichococcus sp. RCC1054

AB080306 Nannochloris sp. SAG 251−2
Y12816 Chlorella sp.

EF473737 Dunaliella tertiolecta
HQ651184 Tetraselmis indica

FN562434 Nephroselmis rotunda
JX316761 Klebsormidium sp. CCAP 335/20

FN562440 Pyramimonas disomata
AY788937 Olisthodiscus luteus

U14384 Apedinella radians
HQ710562 Pseudopedinella sp. HSY−2011

JQ250796 Heterosigma akashiwo
AY788928 Chattonella marina
AY788922 Chattonella marina var. antiqua

JX026950 Fibrocapsa japonica
AY788931 Fibrocapsa japonica

AY485508 Rhizosolenia setigera
KC309527 Corethron sp. 1 MPA−2013

HQ912614 Stellarima microtrias
AY485527 Stephanopyxis palmeriana

AJ535175 Leptocylindrus danicus
AY216904 Asterionellopsis glacialis

AJ535138 Synedra sp. p517
X77702 Thalassionema nitzschioides

AY485468 Amphiprora paludosa
DQ402479 Phaeodactylum tricornutum
AY485459 Phaeodactylum tricornutum
GQ452863 Phaeodactylum tricornutum
GQ452864 Phaeodactylum tricornutum
AJ269501 Phaeodactylum tricornutum

EF140624 Fragilariopsis cylindrus
GU373964 Pseudo−nitzschia multiseries

KC899347 Cylindrotheca closterium
JF794039 Cylindrotheca closterium

JQ582669 Nitzschia frigida
AJ866996 Nitzschia paleacea

EF585584 Eucampia zodiacus
AF145226 Chaetoceros sp.

AB847416 Chaetoceros sp. SS628−11
HQ710553 Chaetoceros didymus

KC309499 Odontella mobiliensis
EF192982 Helicotheca tamesis

AF374478 Thalassiosira guillardii
HQ912555 Thalassiosira pseudonana
EF192998 Thalassiosira nordenskioeldii

HM991695 Thalassiosira nordenskioeldii
EF192991 Detonula confervacea
HM991700 Thalassiosira rotula
AF462058 Thalassiosira rotula
AJ632218 Skeletonema menzellii
AJ632217 Skeletonema menzellii
AJ535168 Skeletonema menzellii

AJ536450 Skeletonema menzellii
JN676163 Skeletonema costatum

DQ011160 Skeletonema japonicum
AY684970 Skeletonema costatum
AY485473 Skeletonema costatum
EF138938 Skeletonema tropicum
EF138941 Skeletonema tropicum
AY684958 Skeletonema pseudocostatum
EF138940 Skeletonema marinoi
EF138932 Skeletonema marinoi
EF433519 Skeletonema costatum
EF138936 Skeletonema marinoi
JF489958 Skeletonema costatum
EF138937 Skeletonema marinoi
EF138934 Skeletonema marinoi

AF013030 Trichodesmium erythraeum
AB075999 Trichodesmium erythraeum IMS101

AF053399 Prochlorococcus marinus str. MIT 9313
NR074172 Prochlorococcus marinus subsp. marinus
AF053398 Prochlorococcus marinus str. MIT 9312
AF115271 Prochlorococcus marinus str. MIT 9215
AF311220 Prochlorococcus marinus str. TAK9803−2
AF001467 Prochlorococcus marinus str. NATL2A

AF311217 Prochlorococcus marinus str. EQPAC1
AF311293 Synechococcus sp. WH 8103

[111 tips]

Figure S2.2: Phylogenetic tree for Thomas et al. (2012) data. Grey edges show the
picophytoplankton branches.
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Synechococcus sp. WH 7803
Prochlorococcus marinus str. MIT 9211
Merismopedia sp. CENA106

Synechococcus sp. PCC 7002
Synechococcus sp. PCC 7943

Prorocentrum panamensis
Amphidinium carterae

Scrippsiella sp. SCKS 0701
Scrippsiella trochoidea

Alexandrium tamarense
Protodinium simplex

Gymnodinium aureolum
Prorocentrum micans
Karlodinium veneficum
Phaeocystis sp. CCMP2710
Emiliania huxleyi
Isochrysis galbana
Isochrysis galbana 8701
Pleurochrysis elongata
Pleurochrysis carterae
Storeatula major
Rhodomonas salina
Pycnococcus provasolii
Brachiomonas sp. MBIC10757
Dunaliella tertiolecta
Dunaliella salina

Olisthodiscus luteus
Pelagomonas calceolata

Leptocylindrus danicus
Chaetoceros calcitrans
Chaetoceros sp.
Chaetoceros gracilis

Asterionella formosa
Phaeodactylum tricornutum
Pseudo−nitzschia pseudodelicatissima
Cylindrotheca fusiformis
Coscinodiscus sp. GGM−2004
Coscinodiscus wailesii

Ditylum brightwellii
Thalassiosira weissflogii
Cyclotella cryptica
Thalassiosira pseudonana
Skeletonema costatum

Thalassiosira oceanica
Thalassiosira nordenskioeldii
Thalassiosira minima
Detonula confervacea
Thalassiosira rotula
Thalassiosira eccentrica

Figure S2.3: Phylogenetic tree for López-Urrutia et al. (2006) data. Grey edges show
the picophytoplankton branches.
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Table S2.1. Cell size references for the species used in the study.

Species Name Source
Akashiwo sanguinea Olenina et al. (2006)
Alexandrium catenella http://species-identification.org
Alexandrium fundyense http://species-identification.org
Alexandrium minutum Marañón et al. (2013)
Alexandrium monilatum http://species-identification.org
Alexandrium ostenfeldii Olenina et al. (2006)
Alexandrium tamarense Marañón et al. (2013)
Amphiprora sp. Olenina et al. (2006)
Apedinella radians Olenina et al. (2006)
Asterionellopsis glacialis Olenina et al. (2006)
Calcidiscus leptoporus Marañón et al. (2013)
Chaetoceros didymus Olenina et al. (2006)
Chaetoceros lorenzianus Bermuda Olenina et al. (2006)
Chaetoceros pseudocurvisetus Leblanc et al. (2012)
Chaetoceros sp. http://www.eos.ubc.ca/research/phytoplankton
Chattonella marina Band-Schmidt et al. (2012)
Chattonella marina var. antiqua Band-Schmidt et al. (2012)
Chlamydomonas Olenina et al. (2006)
Chlorella sp. http://diatom.ansp.org/taxaservice/ShowList.aspx
Chrysochromulina polylepis Olenina et al. (2006)
Coccolithus pelagicus ssp. Braarudii http://nannotax.org
Cochlodinium polykrikoides http://species-identification.org
Conticribra guillardii Olenina et al. (2006)
Corethron pennatum Timmermans et al. (2004)
Cryptomonas sp. Olenina et al. (2006)
Cylindrotheca closterium Olenina et al. (2006)
Dactyliosolen fragilissimus Olenina et al. (2006)
Detonula confervacea Olenina et al. (2006)
Dunaliella tertiolecta http://www.algaebase.org
Emiliania huxleyi Marañón et al. (2013)
Eucampia zodiacus Olenina et al. (2006)
Eutreptiella gymnastica Olenina et al. (2006)
Fibrocapsa japonica http://nordicmicroalgae.org
Fragilariopsis cylindrus http://nordicmicroalgae.org
Fragilariopsis kerguelensis Timmermans (2010)
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Gephyrocapsa oceanica Marañón et al. (2013)
Gephyrocapsa oceanica var. typica Marañón et al. (2013)
Gymnodinium aureolum http://nordicmicroalgae.org
Gymnodinium catenatum http://species-identification.org
Gymnodinium corollarium http://nordicmicroalgae.org
Gymnodinium (probably G. simplex) http://nordicmicroalgae.org
Helicotheca tamesis http://nordicmicroalgae.org
Heterocapsa rotundata http://nordicmicroalgae.org
Heteromastix pyriformis http://www.serc.si.edu/labs/phytoplankton/guide/index.aspx
Heterosigma akashiwo Olenina et al. (2006)
Isochrysis galbana Marañón et al. (2013)
Isochrysis sp. Liu and Lin (2001)
Karenia brevis http://www.sms.si.edu/irlspec
Karenia mikimotoi http://nordicmicroalgae.org
Karlodinium veneficum Galimany et al. (2007)
Klebsormidium Škaloud (2006)
Leptocylindrus danicus http://nordicmicroalgae.org
Micromonas pusilla http://nordicmicroalgae.org
Nannochloris (possibly Stichococcus) sp. https://ncma.bigelow.org
Neoceratium furca http://nordicmicroalgae.org
Neoceratium fusus http://nordicmicroalgae.org
Neoceratium lineatum http://nordicmicroalgae.org
Neoceratium tripos http://nordicmicroalgae.org
Nitzschia frigida Olenina et al. (2006)
Nitzschia paleacea Olenina et al. (2006)
Odontella mobiliensis Olenina et al. (2006)
Olisthodiscus luteus Leadbeater (1969)
Peridinium sp. http://diatom.ansp.org/taxaservice/ShowList.aspx
Phaeocystis antarctica Zingone (1999)
Phaeocystis globosa Olenina et al. (2006)
Phaeocystis pouchetii Olenina et al. (2006)
Phaeodactylum tricornutum Marañón et al. (2013)
Prochlorococcus marinus Marañón et al. (2013)
Prorocentrum gracile Marañón et al. (2013)
Prorocentrum micans Olenina et al. (2006)
Prorocentrum minimum Olenina et al. (2006)
Prymnesium parvum f. patelliferum Green et al. (1982)
Prymnesium parvum Green et al. (1982)
Pseudo-nitzschia multiseries http://diatom.ansp.org/taxaservice/ShowList.aspx
Pseudopedinella pyriformis http://www.smhi.se
Pyramimonas disomata http://www.smhi.se
Pyrodinium bahamense var. compressum http://species-identification.org
Rhizosolenia setigera Olenina et al. (2006)
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Scrippsiella trochoidea Olenina et al. (2006)
Skeletonema ardens https://ncma.bigelow.org
Skeletonema costatum Marañón et al. (2013)
Skeletonema japonicum https://ncma.bigelow.org/
Skeletonema marinoi dohrnii complex https://ncma.bigelow.org
Skeletonema menzelii https://ncma.bigelow.org
Skeletonema pseudocostatum https://ncma.bigelow.org
Skeletonema tropicum https://ncma.bigelow.org/
Stellarima microtrias http://www.smhi.se
Stephanopyxis palmeriana http://www.serc.si.edu/labs/phytoplankton/guide/index.aspx
Stichococcus (possibly S. cylindricus) https://ncma.bigelow.org
Synechococcus Marañón et al. (2013)
Synedra sp. http://diatom.ansp.org/taxaservice/ShowList.aspx
Tetraselmis sp. http://diatom.ansp.org/taxaservice/ShowList.aspx
Thalassionema nitzschioides http://nordicmicroalgae.org
Thalassiosira nordenskioeldii http://nordicmicroalgae.org
Thalassiosira pseudonana http://nordicmicroalgae.org
Thalassiosira rotula Marañón et al. (2013)
Trichodesmium erythraeum Gárate-Lizárraga (2012)
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3. Multiple drivers of the latitudinal diversity gradient in marine
phytoplankton

3.1 Introduction

The increase in species richness towards the equator results in a latitudinal diversity
gradient (LDG) that has puzzled marine and terrestial ecologist for the last two
centuries (Bates, 1862; Colwell and Hurtt, 1994; Humboldt and Bonpland, 1807;
Pianka, 1966; Rohde, 1992; Stevens, 1989; Wallace, 1854). For marine taxa,
Tittensor et al. (2010) found that species richness peaked across broad mid-
latitudinal bands in an extensive compilation of oceanic data. Several modelling
studies have attempted to reproduce this pattern for marine phytoplankton and
have formulated different hypotheses to explain the LDG. Two major factors
have been suggested as the drivers for the LDG: resource competition and
temperature gradients. Although the effects of these drivers are not mutually
exclusive most studies claim that it is either one of these factors what controls
the LDG. For example, Barton et al. (2010a) used a global ocean circulation and
ecosystem model to suggest that the higher diversity at low latitudes is due to the
relatively steady environmental conditions in this area, which enable the prolonged
coexistence of species with similar fitness. They conjectured that there is a balance
between the removal of species through resources competition (Tilman, 1982)
and the replacement of some of them by oceanic currents. Amongst the models
that suggest that it is the temperature gradient what controls the LDG, Brayard
et al. (2005) were the first to find evidence of a potential role of a mid-domain
effect (MDE) that emerges as consequence of the combination between geometric
constraints and sea surface temperature. Beaugrand et al. (2013) used a bioclimatic
global model to suggest that the LDG is the result of a mid-domain effect (Colwell
and Lees, 2000) in the thermal niche space. In short, the thermal mid-domain effect
(TMDE) states that if each species is characterized by a thermal niche range and
these niches are distributed at random along a temperature gradient, there is an
increasing overlap of species ranges toward the centre of the temperature gradient
or domain. This TMDE hypothesis therefore predicts higher species richness at
mid-temperatures as an stochastic realization of a null model.

Although, at first glance, such a null model seems to be in stark contrast with
the resource competition hypothesis by Barton et al. (2010a), there is no reason
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why these two mechanism could not operate simultaneously. In fact, although
Beaugrand et al.’s (2013) bioclimatic model does not allow for species coexistence,
Barton et al. (2010a) used a global ecosystem model where species distribution
are constrained, in addition to resource competition, grazing or mortality, by a
randomly selected thermal niche. Barton et al. (2010a) considered the possible
existence of a MDE in their model output but in the geographical domain instead
of in the thermal domain, as Beaugrand et al. (2013) suggested. They found that
species niche breadth do not decrease with latitude, and conclude that a MDE
can not explain the latitudinal pattern. Hence, our first aim is to evaluate the
extent of this thermal mid-domain theory as main driver of the LDG. We use
the same 3D global ecosystem model configuration in Barton et al. (2010a) but
modifying the parameterization of resource competition ability and temperature
sensitivity to study their effects either combined or individually. Our final goal is
to elucidate what are the main mechanisms that drive the patters of diversity of
oceanic phytoplankton.

3.2 Material and Methods

We use a marine ecosystem model that couples a lower trophic foodweb model
of planktonic organisms (phytoplankton and zooplankton) to a global ocean model
of physical processes (advection and diffusion) (Dutkiewicz et al., 2009; Follows
et al., 2007). The three dimensional (3D) global ocean model is based on a coarse
resolution (1○ x 1○ horizontally, 24 levels vertically) of the MIT general circulation
model (MITgcm) constrained to be consistent with large-scale hydrogeography
and altimetry (Wunch and Heimbach, 2007). The model includes four limiting
dissolved inorganic nutrients in several forms: phosphorous (P) as phosphate;
nitrogen (N) as nitrate and ammonium; iron (Fe) as bioavailable soluble Fe2+;
silicon (Si) as silicic acid. The model was initialized with 78 phytoplankton species
belonging to two size-classes and four major phytoplankton functional groups:
analogs of Prochlorococcus, pico-eukariotes, non-diatom eukariotes, and diatoms.
Functional grouping was based on nutrient requirement. All groups use phosphate,
ammonium and iron. Diatoms are the only group requiring silica. Prochlorococcus
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analogs are here limited to ammonium as their sole source of nitrogen. The pico-

eukariotes, non-diatom eukariotes, and diatoms are assumed to take up ammonium

preferentially over nitrate (Vallina and Le Quéré, 2011). The model also resolves

two predator size classes that feed preferentially (although not exclusively) on

small and large phytoplankton, respectively.

Physiological growth rates are a function of dissolved inorganic nutrients

(DIN), photosynthetic active radiation (PAR), and sea surface temperature (SST).

Nutrient co-limitation is computed with Liebig’s law of the minimum (DeBaar,

1994). Phytoplankton losses are due to vertical sinking, background and grazing

mortality, and physical dilution by dispersion. Physiological characteristics are

assigned at random to the 78 phytoplankton species. Competitive interactions

among organisms and environmental filtering will shape the local self-assembly

of the phytoplankton community, ultimately leading to geographically distinct

ecosystems. The community structure and diversity are thus emergent properties

by ecological selection processes.

In this work, we performed several simulations to study the effect of nutrients

and temperature, either combined or in isolation. For each configuration the model

was run 10 times with physiological parameters selected at random. Each model

run was integrated for 10 years after which each species either goes extinct or

undergoes a repetitive seasonal cycle. Phytoplankton biomass distribution for each

species was obtained as monthly outputs from the last year of simulation. The

global maps of species diversity were obtained for the surface layer (0 m) and for

the whole vertically integrated euphotic zone (0 - 260 m). Phytoplankton diversity

was computed as the number of species whose biomass exceeds 0.1% of the total

biomass locally. The global maps show the annual mean of monthly diversity at

each location.
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3.2.1 Model simulations

3.2.1.1 Simulation 1: DIN + SST + PAR niches (full model)

We replicated Barton et al.’s (2010a) model configuration in this first simulation.
Phytoplankton growth rate is limited by nutrients, temperature and solar radiation
(Figures 3.1A-C). The physiological characteristics of the species were assigned
stochastically. Temperature optima values do not depend on phytoplankton size
class but large phytoplankton species have higher solar radiation optima values
than small phytoplankton (see Figure 3.1C). Phytoplankton species will tend
to distribute according to their temperature and solar radiation optima within a
tolerance range, which allows geographical segregation and thus global coexistence
(Barton et al., 2010a). The two traits that define nutrient uptake capabilities
(i.e. intrinsic maximum growth and half-saturation constant) depend on cell size
in a way that can sometimes lead to an allometric competitive trade-off among
species. The maximum growth rates are fixed for each phytoplankton size-class
while the half-saturation constants for nutrient uptake are randomly selected from
a distribution whose lower and upper values do not overlap. Large phytoplankton
have a higher intrinsic maximum growth rate than small phytoplankton but they
draw parameter values from a distribution with higher half-saturation constants
(Follows et al., 2007). Therefore, some large species will be better competitors at
high nutrient concentrations while some small species will be better competitors at
low nutrient concentrations, which allows non-equilibrium coexistence. The rest
of the species will never be a viable competitor for any nutrient concentrations
and thus will be competitively excluded. See Barton et al. (2010a) Supplementary
Material for further details on the model setup.

3.2.1.2 Simulation 2: DIN niches only

In order to test whether the diversity gradient can be driven by resource competition
alone we removed SST and PAR niches. Specifically we removed temperature
limitation and gave the same PAR saturation and inhibition constants to all
phytoplankton. We also removed any size-based differences in grazing or
background mortality and vertical sinking. This means that all species are able
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Figure 3.1: Summary of the parameterizations used in each simulation. Each
coloured curve shows the response for one species. Red scale colors indicate
r strategy phytoplankton types with high maximum growth rates and high half-
saturation constant. Blue scale colors indicate k strategy phytoplankton types with
low half-saturation constants and low maximum growth rates.

to grow over the whole temperature range (Figure 3.1E), have exactly the same

light harvesting capabilities (Figure 3.1F) and suffer the same relative mortality

loses. Therefore, phytoplankton species will only differ in their ability to acquire

nutrients (Figure 3.1D).
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3.2.1.3 Simulation 3: SST niches only

To evaluate the effect of temperature on the LDG, we simulated a scenario where
the species growth only differs in their thermal niches (Figure 3.1H). Here, all
phytoplankton species persisting at the last year of simulation share the same
nutrient and PAR limitation functions, as well as the same relative mortality loses
(i.e. grazing, background and sinking). For this model setup there is no allometric
competitive trade-off between phytoplankton size-classes; i.e. large phytoplankton
are better competitors than small phytoplankton for the whole range of nutrient
concentrations (see Figure 3.1G) and thus all small phytoplankton species will
be competitively excluded. Therefore, all phytoplankton species will distribute
according to their thermal tolerance range exclusively.

3.3 Results

3.3.1 Simulation 1:DIN + SST + PAR niches (full model)

Simulation 1 reproduces the results of Barton et al. (2010a). Minor differences
are due to random selection of physiological parameters. As previously reported,
species richness increases towards the equator and it is maximum at several
diversity "hotspots" (see Figure 3.2). This has been attributed to strong physical
mixing of species with different physiological traits (i.e. SST and PAR optima, DIN
uptake strategy) but similar overall local ecological fitness (Barton et al., 2010a).
However, it is yet unclear whether biophysical constrains (i.e. SST and PAR
niches) or functional grouping with competitive trade-offs (i.e. DIN niches) are the
dominant drivers of the simulated latitudinal pattern of phytoplankton diversity.

3.3.2 Simulation 2: DIN niches only

Simulation 2 shows that a LDG emerges even in the absence of SST and PAR
niches (see Figures 3.3A-B). This suggests that the resource competition among
phytoplankton functional groups combined with the allometric competitive trade-
off between phytoplankton size-classes (plus ocean mixing) leads to species
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Figure 3.2: Simulation 1:DIN + SST + PAR niches (full model) outputs. Global
diversity distribution of marine phytoplankton (A) integrated within the mixed layer
(260m) and (C) only at surface and averaged annually across 10 runs. Species richness
is defined as the number of species whose biomass exceeds 0.1% of the total for each
point of the ocean for each time unit. (B & D) Mean latitudinal marine phytoplankton
diversity gradient for panels A and C, respectively.

coexistence. That is, physical dispersion allows the locally transient non-

equilibrium coexistence of at least one dominant species per functional group.

The latitudinal pattern of species diversity is weaker at surface than the

vertically-integrated one for both Simulation 1 and Simulation 2 (see Figures

3.2 & 3.3). This suggests that vertical integration is capturing environmental

heterogeneity that leads to vertical segregation of phytoplankton species according

to their optimal niches. Therefore, vertically integrated diversity does not

necessarily reflect species coexisting locally but species that may be present at
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different depths of the same geographic location and therefore do not really interact
or they do so weakly.

Figure 3.3: Simulation 2: DIN niches only outputs. Global diversity distribution
of marine phytoplankton (A) integrated within the mixed layer (260m) and (C) only
at surface and averaged annually across 10 runs. Species richness is defined as the
number of species whose biomass exceeds 0.1% of the total for each point of the
ocean for each time unit. (B & D) Mean latitudinal marine phytoplankton diversity
gradient for panels A and C, respectively.

3.3.3 Simulation 3: SST niches only

In simulation 3, species distribute exclusively according to their thermal niches
since all species have the same nutrient and light limitations. Hence, this simulation
approaches a bioclimatic model where a thermal mid-domain effect develops.
Species richness rises at the tropics and drops off at the equator (Figures 3.4B-
D) (Beaugrand et al., 2013). Our simulations are slightly more realistic than
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a pure bioclimatic model because they include nutrient and PAR limitations;
i.e. temperature tolerance alone is a necessary but not sufficient condition for
species occupancy of thermal niches. As occurs in simulations 1 & 2, the
surface pattern is slightly weaker than the vertically integrated diversity because
this metric is capturing the larger environmental variability of SST with depth
at lower latitudes relative to higher latitudes that generally are more vertically
homogeneous. Nevertheless the minimum diversity is clearly at the poles for both
surface-only and vertically integrated diversity, which suggests a significant role of
a thermal MDE on species richness.

Figure 3.4: Simulation 3: SST niches only outputs. Global diversity distribution of
marine phytoplankton (A) integrated within the mixed layer (260m) and (C) only
at surface and averaged annually across 10 runs. Species richness is defined as the
number of species whose biomass exceeds 0.1% of the total for each point of the
ocean for each time unit. (B & D) Mean latitudinal marine phytoplankton diversity
gradient for panels A and C, respectively.
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3.4 Discussion

Our results suggest that the latitudinal pattern of diversity is the result of several
effects. The vertical integration of species occurrence distorts the LDG, magnifying
the pattern. Stronger vertical gradients of resources, SST and PAR at the inter-
tropical area allow more environmental niches and hence more species that seem
to coexist at the same location. However these species are not coexisting locally in
the strict sense because they are vertical segregated and therefore they have weak
or even absent competitive interactions. Therefore we suggest some caution when
interpreting diversity patterns using vertically integrated values as "coexisting"
species and we favor the more robust and also simpler approach of using surface-
only diversity which ensures that the species are locally interacting. Nevertheless
the pattern of a increased diversity towards the equator leading to a latitudinal
diversity gradient can be observed for both vertically-integrated and surface-only
species richness, although it is slightly weaker for the former due to the reasons
outlined above.

To explain the emergence of such latitudinal diversity gradients, most models
focus on one factor, either resource competition (Barton et al., 2010a) or
temperature (Beaugrand et al., 2013; Brayard et al., 2005) and neglect other factors
that may also interact with them, as happens in the field. But our results show
that is actually the combination of several factors what drives the emergence of
the LDG. A priori, local diversity is sustained by a dynamic balance between the
local extinction of species through competition plus environmental filtering and
the replenishment with allochthonous species by ocean physics (Barton et al.,
2010b) (Figure 3.3). However our results suggest that a major driver of this
non-equilibrium coexistence is the functional grouping with competitive trade-offs
imposed in the model (i.e. DIN niches) (see Figure 3.5).

In the model definition, gleaner species are k-strategy phytoplankton types that
dominate from mid to low latitudes, i.e. the more oligotrophic regions in the
ocean (Figure 3.5A). Opportunist species such as the diatom analogs, are r-strategy
phytoplankton who benefit from high nutrient availability and thus dominate the
high latitudes and also in the upwelling systems, from where they can be carried
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to the open ocean by lateral dispersal (Figure 3.5B). This is the reason of the
overlapping between the two growth strategies at mid-latitudes (Figure 3.5C) and
a latitudinal pattern results solely as a consequence of this parameterization of two
main functional groups in the model, as has been previously suggested (Barton
et al., 2010b; Dutkiewicz et al., 2009; Huisman, 2010).
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Figure 3.5: Mean latitudinal average for the surface outputs of simulations 1 & 2
considering (A) only gleaner species, (B) only opportunists or (C) both. Red lines
show the latitudinal average of the winner species for each functional group. Blue
lines consider those coexisting species with similar environmental fitness or R*. Black
line is the equivalent to the blue one but for simulation 1.

In a steady-state model, only the species with the best competitive ability is
expected to survive, i.e. the species which has the lowest R*. The R* is defined as
the lowest environmental nutrient concentration at which growth and mortality are
in balance. If there are multiple limiting resources and several functional groups,
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where each is best competitor for a different nutrient, one species per functional
group would survive (Barton et al., 2010a). In our model, if we assume that
only those species which are best competitors should survive, this would lead
to a maximum survival of 2 gleaners and 2 opportunistic species (red lines in
Figure 3.5). These species would be the gleaner and opportunistic species with
the lowest R* and, in addition, the gleaner which can not utilize nitrate (the
′′Prochlorococcus analogs′′) and the opportunistic type that use silica (the ′′diatom
analogs′′) with the lowest R* (Dutkiewicz et al., 2009). The zonally-averaged
diversity of these 4 dominant species shows an increase towards the equator (red
line in Figure 3.5C). A latitudinally variable diversity of opportunists (3.5B) is
overimposed to a latitudinal diversity gradient of specialists which dominate only at
low-mid latitudes (3.5A), where environmental conditions are less variable. There
are though numerous evidences that support the emergence of opportunists over a
background of specialist in oligotrophic areas either exploiting sporadic pulses of
nutrients (Chavez et al., 1990; Fryxell and Kaczmarska, 1994; Iriarte and Fryxell,
1995; Kaczmarska and Fryxell, 1994) or thanks to transient decoupling between
cell growth and mortality by grazers (Cullen, 1991; Frost, 1991).

However, this zonally-averaged pattern (reconstructed on the basis of the species
that should theoretically dominate in a steady-state model) differs from that in
the DIN-niches only simulation (blue line in Figure 3.5C). This difference is
specially relevant for gleaners in the tropical and subtropical areas (Figure 3.5A)
where, as consequence of the non-steady state conditions in the model, species that
have similarly low R* can coexist (Barton et al., 2010a). This is in accordance
with recent field evidence suggesting that genomic diversity within coexisting
members of Prochlorococcus species leads to small fitness differentials and niche
differentiation, resulting in an increase in diversity (Kashtan et al., 2014).

This ecological distribution between gleaners and opportunists together with
the coexistence of species with similarly low R* determine to a great extent the
general pattern of the LDG (black line in Figure 3.5C), as suggested by Barton
et al. (2010a). But in addition to these factors, our results suggest that temperature
also plays an important role in the emergence of a latitudinal diversity distribution.
Many other authors have found evidences for a link between temperature and
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diversity (Fuhrman et al., 2008; Rombouts et al., 2009; Tittensor et al., 2010).
However, most of these works are based on the metabolic theory of ecology (Brown
et al., 2004). This theory states that metabolic rates increase with temperature
leading to higher speciation and thus higher diversity (Allen and Gillooly, 2006;
Rohde, 1992). Although this theory cannot explain our results because our model
does not have mutations, other theories like the mid-domain effect (MDE) are well
captured by our modelling approach. The MDE states that species ranges randomly
distributed between two geographical boundaries tend to overlap at the midpoint
as consequence of a geometric effect (Colwell and Lees, 2000). Furthermore, in
addition to its geographical effect, the mid-domain effect also occurs within the
thermal domain (Brayard et al., 2005). Barton et al. (2010a) discarded the MDE in
the geographical domain as an important driver of the latitudinal diversity gradient.
However, here we show that the MDE in the thermal domain can be a significant
contributor to the general pattern (see Figure 3.4). Species whose temperature
optimum is in the middle of the domain, have a thermal range that falls within the
oceanic temperature range. On the other hand, species whose optimum temperature
is closer to the thermal boundaries (equatorial and polar regions) have a thermal
range where one of the edges is outside the ocean thermal range. For these species,
the breadth of the thermal niche will thus be narrower. Consequently, there will be
more niches overlapping at mid temperatures, allowing more species to coexist and
increasing diversity at mid-latitudes (see Figure 3.5).

This relationship between the breadth of the niche and temperature has been
shown in recent findings based on empirical data (Irwin et al., 2012). Narrower
niches occur at extreme temperatures. In addition, diatoms are more likely to
be found at lower temperatures and dinoflagellates at warmer ones, while at the
interface, they overlap leading a thermal mid-domain effect. Thomas et al. (2012)
also found a strong link between latitude and optimum temperature for strains
belonging to the major phytoplankton groups.

The observed pattern in the SST-niches only simulation (Figure 3.4) is similar
to what purely bioclimatic models have shown (Beaugrand et al., 2013; Brayard
et al., 2005), even although our model includes the limitation of resources such as
nutrients or PAR. In addition, this pattern where diversity is high at the equator
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but is highest at tropical-latitudes has been reported in studies regarding the effect
of temperature on species richness. Tittensor et al. (2010) show that oceanic
groups on average, show an asymptotic relationship of diversity with the sea surface
temperature (SST), with some taxa showing a decline of diversity at temperatures
higher than 20○C, as occurs for planktonic foraminifera (Tittensor et al., 2010;
Yasuhara et al., 2012).

In summary, we have found that the LDG emerges from the combination of:
a) the subdivision of phytoplankton in functional groups with different nutrient
uptake strategies and requirements that lead to competitive trade-offs; b) the large
scale dispersion and mixing of phytoplankton species by oceanic currents; c)
the coexistence of species with similar environmental fitness and d) temperature
through a mid-domain effect. Therefore, even in a simplified representation of
nature as in the ecological model presented here, there is not a single exclusive
factor responsible for the LDG in marine phytoplankton but several factors act
simultaneously. This would be further complicated in nature, where additional
factors such as mutations, adaptation to solar radiation, grazing or sinking rates
which affect the growth of species might enhance or modify the LDG.
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4.1 Introduction

The high diversity of phytoplankton has fascinated ecologists since the early works
of Hutchinson (1961). Many theories have been developed to explain the factors
regulating marine phytoplankton diversity patterns. Some suggest that species
coexistence is enhanced at equilibrium conditions when competition for resources
such as nutrients or light is high (Barton et al., 2010a). However, some authors
showed that diversity can even increase when fluctuations take place (Connell
1978; Sommer 1985; Floder and Sommer 1999; Huisman 2010). Other theories
relate phytoplankton diversity to energy availability as photosynthetically active
radiation (PAR) or temperature (Wright, 1983). Phytoplankton diversity is also
correlated to standing stock biomass, with higher diversity found at intermediate
productivity levels (Irigoien et al., 2004; Stomp et al., 2011).

However analyzing the relative importance of these theories in natural systems
is very difficult: experimental work is very complex at such broad scales. To
test these theories there is a need for global databases with sufficient gradients
in the proposed explanatory variables. Such diversity datasets with extensive
geographical coverage exist for terrestrial plants. For example, The Alwyn H.
Gentry Forest Transect Data Set (Gentry, 1988; Phillips and Miller, 2002) has
been successfully used to test several macroecological theories (Clinebell et al.,
1995; Enquist and Niklas, 2001; Simova et al., 2011). For marine ecosystems, such
global databases are starting to be compiled. Most of these datasets are focused
on the compilation of distribution maps like the NMFS-COPEPOD: the global
plankton database (O’Brien, 2007) for marine copepods or the World Modern
Foraminifera Database (Hayward et al., 2011), as part of the World Register of
Marine Species (WoRMS). For marine phytoplankton, the World Ocean Atlas of
Plankton Functional Types is being created from the compilation of datasets for
different functional types. Some examples are the databases for picophytoplankton
(Buitenhuis et al., 2012) or for diatoms (Leblanc et al., 2012). Although these
databases are fairly complete including abundance, biovolume and carbon biomass,
they lack environmental data. Furthermore, they are not suitable for diversity
calculations. To provide a reliable measure of species diversity, the taxonomic
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identification should be carried out by the same taxonomist over the whole dataset,
or at best some standardization protocols need to be applied.

Identification of phytoplankton to the species level is often quite challenging,
even for taxonomic experts. Consequently, many large phytoplankton databases
are not internally consistent, because changes in personnel handling the taxonomic
analyses have led to changes in species identification. In fact, this problem can be
so severe that in several studies the observed changes in phytoplankton community
structure have been attributed to changes in personnel or laboratory (Wiltshire and
Durselen 2004; Peperzak 2010; Straile et al. 2013), rather than to environmental
variation. Such major inconsistencies were avoided here.

In this work we compiled a dataset of marine microplankton species abundances
(cells mL−1), together with estimates of biomass and cell biovolume. These data
were collected at 788 stations on a number of oceanographic cruises between
1992 and 2002. The compilation covers a wide range of marine ecosystems,
ranging from coastal to open ocean. Environmental information has also been
compiled for different oceanographic parameters (chlorophyll, temperature, PAR,
nutrients, mixed layer depth) for each station. These data allow the study area to
be characterized and can be used in studies on the environmental and biological
controls of marine biodiversity. Most importantly, all species identification were
made by the same taxonomist (Derek S. Harbour), which provides greater strength
to the collection and ensures that estimates of species diversity are reliable. To our
knowledge, this dataset is unique in marine phytoplankton diversity studies. We
know of no other study which compiles abundance, biomass and biovolume for
such a great number of species which have been identified by the same taxonomist
and which also includes environmental data.

To date, some data included in this work have been used previously to identify
global patterns of marine phytoplankton biodiversity (Irigoien et al., 2004) and
also in studies relating species richness or phytoplankton abundance to cell size
(Cermeño et al., 2006). In addition, parts of this global dataset have been used to
study temporal variability (Rodríguez et al., 2000), seasonal succession (Marañón
et al., 1996) or species distribution (Tyrrell et al., 2003). It is important to remark
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that species names have not been standardized until now, this means that the same
species could be named differently in each subset of the global database. This
has hindered the use of the database for studies involving distribution patterns at
the species level. The main feature of this new compilation is the inclusion of
environmental data, which were scarce previously. This database aims to complete
these studies and to enhance the development of new ones. In this way we hope it
will contribute to a better understanding of the processes of diversification in the
ocean. Understanding and assessing diversity will be essential to understand and
predict the impact of environmental forcing on this major compartment (Simon
et al., 2009).

4.2 Dataset Descriptors
Dataset title: Database of abundance for 736 microplankton taxa across 788

stations with corresponding environmental variables.

Principal investigators: Sofía Sal, Ángel López-Urrutia, Xabier Irigoien, Derek
S. Harbour and Roger P. Harris

Key words: phytoplankton; microplankton; diversity; abundance; temperature;
nutrients; chlorophyll; photosynthetically active radiation.

Objectives: The main objective of this work is to compile a dataset of
marine microplankton species abundances which have been identified by the same
taxonomist. We provide abundances (cells mL−1) data, together with estimates
of biomass, cell biovolume and environmental data (chlorophyll, temperature,
nutrients, PAR, mixed layer depth) for each site.

Originators: Data contained in this database were originally collected by Dr.
Xabier Irigoien and Dr. Roger P. Harris. Derek S. Harbour. was responsible for all
sample analysis.

Period of Study: October 1992 to May 2002.

Source(s) of funding: Data compilation was supported by project METabolic
OCean Analysis (METOCA) funded by Spanish National Investigation + Deve-
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lopment + Innovation (I+D+I) Plan. S.S. was funded by a Formación de Personal
Universitario (FPU) grant from the Spanish Ministry of Education. AMT sample
collection and analysis was supported by the UK Natural Environment Research
Council through the Atlantic Meridional Transect consortium (this is contribution
number 233 of the AMT programme). The L4 programme is funded under the UK
NERC Oceans 2025 programme as part of Theme 10, Sustained Observations.

4.3 Material and Methods

4.3.1 Study region

Data were compiled for 788 stations during different oceanographic cruises in
temperate, polar and subtropical regions. Stations sampled cover a wide range
of marine ecosystems, ranging from coastal to open ocean. North Atlantic Ocean
samples include the Irminger Sea, Norwegian Sea, North Sea, and Iceland Basin.
Samples were also collected on cruises along the South Atlantic Ocean (mainly
Atlantic Meridional Transect cruises), Benguela current, Indian Ocean, and West
Coast of the North Pacific Ocean. One of the experiments, ′′Bergen′′, took place
in open-air mesocosms at the Espegrend Marine Biological Station (University of
Bergen).

4.3.2 Experimental or sampling design.

Data were obtained from many experiments and observations made in the
oceanographic cruises listed above. Species taxonomic identification and cell
counts were all made by Derek S. Harbour. See Research Methods below.

4.3.3 Sampling methods

Microplankton abundance

Data analysed were collected from 1992 to 2002 at 788 sites. See Figure 4.1 and
Table 4.1 for a detailed site description. Seawater samples were collected from
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Figure 4.1: Map showing the different stations sampled in the study. Each symbol
and color represents a cruise.

different depths (most of them in surface waters) from CTD Niskin bottles. For

later microplankton cell counts, it is very important to handle seawater with care, as

some organisms are very sensitive to turbulence (Gifford and Caron, 2000). Water

samples were taken from the Niskin bottle and immediately preserved with 1-5 %

acid-Lugol′s iodine solution (Throndsen, 1978). Samples were labelled and stored

in cold, dark conditions during transportation to the laboratory.

Nutrients

We only have in-situ nutrients data for AMT cruises. Samples were taken from the

underway pumping system between stations, from vertical profiles at each station,
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4.3 Material and Methods

or both. However, we only included samples obtained during the daily CTD casts
coincident with the microplankton sampling. Water samples from the CTD/Rosette
system (SeaBird) were sub-sampled into clean Nalgene bottles. Sample analysis
was completed within 3 h of sampling, so no samples were stored.

Other variables

For Chlorophyll, between 200 and 300 ml of sea water from each depth in the water
column were sequentially filtered through 0.2 µm, 2 µm and 20 µm polycarbonate
filters. Chl-a was extracted from filters in 90% acetone at 20○C 12 to 24 hours.
Samples were measured on a Turner 10-AU fluorometer calibrated with pure Chl-
a.

Temperature and PAR were obtained either from CTD data or underway records
from the ship. For those stations where it was impossible to obtain data, these were
retrieved from satellite data.

4.3.4 Analysis

Microplankton abundance

Microplankton identification and cell counts was carried out by Derek S. Harbour
at the Plymouth Marine Laboratory using inverted microscopy following the
Utermöhl technique (Utermöhl, 1958). The ′′Water quality - Guidance standard
for routine microscopic surveys of phytoplankton using Utermöhl technique′′ (BS
EN 15204:2006) was followed:

Microplankton samples, preserved in Lugol′s iodine and formalin, were settled
in sedimentation chambers while acclimatised to room temperature, to ensure
a random distribution of cells. After this, sample bottles were rotated to help
re-suspension and separation. Sub-samples with volumes between 10 and 256
mL were later transferred to plankton settling chambers. A variable area of the
chamber bottom was counted under the microscope. The size of that area varies
with species and abundance and under some circumstances different species were
counted in different settled volumes to obtain consistency and reproducibility in
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4. Marine microplankton diversity database

the counts. At least 100 cells of each of the more abundant species were counted.
Settlement duration varied between 4h cm−1 for Lugol ′s iodine and 16 h cm−1 for
formaldehyde samples.

Once the settling process finished, cells were identified, where possible, to
species/genus level and assigned to different functional groups: Flagellates, He-
terotrophic flagellates, Diatoms, Coccolithophores, Dinoflagellates, Heterotrophic
dinoflagellates, and Ciliates. It should be noted that heterotrophic refers to
organisms that do not contain pigments.

Abundance data for each species at each station was calculated in cells
per ml. Dimensions of individual species were measured in µm units using
digital measurements and calibrated against an ocular micrometer. Using the
corresponding geometric shapes, these measurements were converted to volume
using the Kovala and Larrance (1966) methodology. Once this was done, cell
volumes were converted to carbon (pg cell−1) using the formulae of Menden-Deuer
and Lessard (2000).

Since all the plankton counts were obtained by light inverted microscopy
they do not include pico-cyanobacteria, like Prochlorococcus and Synechococcus.
The database adequately samples the microplankton size range and part of the
nanoplankton abundance, small eukaryotes are also too small to be identified to
the species level by light-microscopy. The Utermöhl technique is restricted to cells
larger than 10 µm (within the nanoplankton size range). Smaller cells do not settle
quantitatively even after Lugol′s iodine addition and cells are too small to classify
to the species level.

Nutrients

To analyse nutrients, a Technicon AAII (four-five channel depending on the cruise)
segmented-flow auto-analyser was used. Protocols used were different for each
nutrient: phosphate and silicate were analysed as described by Kirkwood (1989).
Nitrate and nitrite was analysed using a modified version of Grasshoff′s method
(Grasshoff, 1976), as described by Brewer and Riley (1965). These were measured
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4.3 Material and Methods

as nitrate plus nitrite, since the nitrate was determined as nitrite using a copper-
cadmium reduction column to reduce it to nitrite. We later calculated nitrate as
the difference between the nitrite measure and the nitrite plus nitrate measure.
Ammonium was measured only in cruise AMT 6. The chemical methodology used
was the described by (Mantoura and Woodward, 1983). All results are presented
as mmol m−3 (µmol L−1) of the elements nitrogen, phosphorus and silica.

Environmental data

When in-situ environmental data were not available they were extracted from
satellite data or global distribution maps. For Chl, Surface PAR and Diffuse
attenuation coefficient at 490 nm (Kd490), we used SeaWIFS L3 datasets with
9km (1 pixel=9km) spatial resolution. We used SeaDAS (SeaWiFS Data Analysis
System) to locate the closest pixel to the sampled location in the satellite image
(radius of 0). Because sometimes this exact pixel contained a missing value we
used the data of adjacent pixels using different search radius (from high to low
accuracy), starting at 1 (radius of 1 pixel). When satellite data for the same day
was not available we used the satellite image for the corresponding month and,
ultimately, the monthly climatological data from the Ocean Color site (http://
oceandata. sci. gsfc. nasa. gov/ SeaWiFS/ Mapped/ ).

For each variable a vector attached indicates the data quality flag (QF), starting
at 0 when data is in-situ, and decreasing in precision going from data extracted
from daily maps to data extracted from monthly climatologies.

QF are: 0 (real data), 1 (daily satellite data (DS), radius=0), 2 (DS, radius=1),
3 (DS, radius=3), 4 (DS, radius=5), 5 (DS, radius=10), 6 (DS, radius=20), 7
(monthly satellite data (MS), radius=0), 8 (MS, radius=1), 9 (MS, radius=3), 10
(MS, radius=5), 11 (MS, radius=10),12 (MS, radius=20), 13 (monthly climatology
satellite data (CS), radius=0), 14 (CS, radius=1), 15 (CS, radius=3), 16 (CS,
radius=5), 17 (CS, radius=10).

PAR at the sampled depth (PARz) was calculated using the Surface PAR
and the Kd490. Mixed layer depth (MLD) data were extracted from the
Ocean Productivity site (http:// orca. science. oregonstate. edu/ 1080. by.
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2160. monthly. hdf. mld. merge. php ). Data are stored in maps on a monthly basis

at 1080 by 2160 resolution. We used SeaDAS to extract the whole image for each

month. Then we located the MLD value for each coordinate value. For those

points where there were not data, we calculated an annual climatology based on

the monthly dataset: We first interpolated maps to a lower resolution (360 by 180)

and then calculated the mean for each month.

QF are defined as follows: 0 (in-situ data), 1 (monthly satellite data (MS)), 2

(monthly climatology satellite data (CS)). The use of a search radius is not needed

because images are the output of a model and do not have missing values.

To obtain an estimate of temperature for samples collected at depths below the

MLD and for nutrients, we compiled data from the annual climatologies from the

World Ocean Atlas 09 (WOA09) database at one degree resolution and 10 depth

levels (0, 10, 20, 30, 50, 75, 100, 125, 150, 200 meters) (http:// www. nodc.

noaa. gov/ OC5/ WOA09/ woa09data. html ). We extracted the value in the range of

one degree around the specified coordinate.

QF are defined as follows: 0 (in-situ data), 1 (WOA data).

When the sample was collected at a depth shallower than the MLD, temperature

was obtained from the Sea Surface Temperature (SST) data from the AVHRR

satellite. We compiled daily datasets with 4km (1 pixel=4km) resolution

from the NOAA site (ftp:// podaac-ftp. jpl. nasa. gov/ allData/ avhrr/ L3/

pathfinder_ v5/daily/ night/ 04km/ ).

QF are defined as follows: 2 (daily satellite data (DS), radius=0), 3 (DS,

radius=1), 4 (DS,radius=3).

Figure 4.2 shows the relationship between the in-situ data and estimated data

for the different variables. Although for most of them, satellite can be a good

estimation source, this does not occur for Chl and Silicate, where the correlation

coefficient is too low.
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Figure 4.2: Relationship between in-situ data and estimated data for all variables: (A)
Temperature, (B) PAR, (C) Chlorophyll, (D) Nitrate, (E) Silicate and (F) Phosphate.
In each case, plotted points show only stations in which in-situ data is available.
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4.3.5 Taxonomy and systematics

Taxonomic names were checked against the World Register of Marine Species

(WoRMS). Names not matched within WoRMS were checked against various other

taxonomic references (e.g., ITIS, algaebase). A column with author comments is

attached for those species which were not matched to any taxonomic references.

4.4 Dataset status and accessibility

Latest update: 2013

Metadata status: Metadata are complete for this period and are stored with the

data

Storage location and medium: The Ecological Society of America’s Ecologi-

cal Archives. Ecological Archives E094-149-D1. (http:// www. esapubs. org/

archive/ ecol/ E094/ 149/ )

Contact persons:

Xabier Irigoien, Red Sea Research Center, 4700 King Abdullah University of

Science and Technology, Thuwal 23955-6900,Kingdom of Saudi Arabia.

Roger P. Harris, Plymouth Marine Laboratory, Prospect Place, Plymouth, Devon

PL1 3DH, United Kingdom.

Derek S. Harbour, Plymouth Marine Laboratory, Prospect Place, Plymouth,

Devon PL1 3DH, United Kingdom.

Ángel López-Urrutia, Center oceanographic of Gijón, Spanish Institute of

Oceanography, Avda Principe de Asturias 70bis, 33212, Gijón, Asturias, Spain.

Sofía Sal, Center oceanographic of Gijón, Spanish Institute of Oceanography,

Avda Principe de Asturias 70bis, 33212, Gijón, Asturias, Spain.
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4.5 Data Structural Descriptors

4.5.1 Dataset File

Identity: Dataset is downloadable as a single archive, PhytoDataBase.zip (215.5
KB), which contains the following *.csv data files:

• Table 1: Stations and cast description, including date, location and data for
oceanographic variables such as nutrients or temperature.

• Table 2: Species identification for the whole dataset, including phylogenetic
classification, author comments and carbon and biovolume for each species.
Each row corresponds to each column in Table 4.3.

• Table 3: Abundance for each species (by columns) at each station (by rows).
Species carbon content can vary from one station to another, for those cases
the species is repeated each column representing a different carbon content
as specified in Table 4.2. For this reason we have more columns than species
total number.

Size:

• Table 1: 237.5 KB, 1043 rows and 30 columns.

• Table 2: 222.6 KB, 1335 rows and 14 columns.

• Table 3: 2.8 MB, 1043 rows and 1335 columns.

Format and storage mode:

CSV text, comma delimited. Special characters/fields: All missing values are
denoted as ′′NA′′.

4.5.2 Variable definitions:
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Column name Variable definition Units Storage Range numeric values Missing
type value codes

SampleID Sample identification code text string N/A NA
Cruise Cruise name text string N/A NA
Date Date date string N/A NA

Original SampleNo Original cruise sample nº count integer 1 to 14084 NA
Original StationNo Original cruise station nº count integer 1 to 35575 NA

Depth Depth meters integer 1 to 160 NA
Lat Latitude degrees integer -51.9314 to 66.0000 NA
Lon Longitude degrees integer -124.167 to 62.000 NA

Daylength Daylength hours integer 8.0366 to 22.2324 NA
Chl Chlorophyll concentration mg m3 integer 0.03 to 27.4966 NA

QFChl Chlorophyll quality flag count integer 0 to 17 NA
Temperature Temperature celsius integer 2.7 to 29.117 NA

QFTemp Temperature quality flag count integer 0 to 4 NA
SurfacePAR Surface photosynthetically mol photons m−2 d−1 integer 3.664 to 64.0054 NA

active radiation
QFPAR Surface photosynthetically count integer 0 to 14 NA

active radiation quality flag
Kd490 Diffuse attenuation m−1 integer 0.0224 to 6.2144 NA

coefficient at 490 nm
QFKd490 Diffuse attenuation count integer 1 to 17 NA

coefficient quality flag
PARz Depth photosynthetically mol photons m−2 day−1 integer 0 to 52.2669 NA

active radiation
Nitrate Nitrate concentration µmol L−1 integer 0 to 37.7919 NA
QFNO3 Nitrate quality flag count integer 0 to 1 NA
Nitrite Nitrite concentration µmol L−1 integer 0 to 0.72 NA

QFNO2 Nitrite quality flag count integer 0 NA
Ammonium Ammonium concentration µmol L−1 integer 0.62 to 3.13 NA

QFNH4 Ammonium quality flag count integer 0 NA
Phosphate Phosphate concentration µmol L−1 integer 0 to 2.1075 NA

QFPO4 Phosphate quality flag count integer 0 to 1 NA
Silicate Silicate concentration µmol L−1 integer 0.04 to 22.5392 NA
QFSil Silicate quality flag count integer 0 to 1 NA
MLD Mixed layer depth m integer 10.7578 to 400 NA

QFMLD Mixed layer depth count integer 1 to 2 NA
quality flag

Table 4.1: Description of contents in the Table 1 of the database
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Column name Variable definition Units Storage Range numeric Missing
type values value codes

Group Functional group text string N/A NA
Kingdom Taxonomic kingdom text string N/A NA
Phylum Taxonomic phylum text string N/A NA
Class Taxonomic class text string N/A NA
Order Taxonomic order text string N/A NA
Family Taxonomic family text string N/A NA
Genus Taxonomic genus text string N/A NA
Species Taxonomic species text string N/A NA
Forma Taxonomic forma text string N/A NA

Author Comments Author specific comments about name, text string N/A NA
size or forma. Most times when the text string N/A NA
species is difficult to identify text string N/A NA

Author Taxonomist name text string N/A NA
SpeciesID Identification code for unique species count integer 1 to 736 NA

Carbon Carbon content pg cell−1 integer 0.0 to 143194.7 NA
Biovolume Cell volume µm3 cell−1 integer 0 to 17671459 NA

Table 4.2: Description of contents in the Table 2 of the database

Column name Variable definition Units Storage Range numeric values Missing value codes
type

N/A Sample identification code text string N/A NA

Species name Species abundance cell ml−1 integer 0.0 to 59763.5 NA

Table 4.3: Description of contents in the Table 3 of the database
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5. The combined effects of thermal mid-domain and growth-temperature
response curves on the latitudinal diversity gradient in marine phytoplankton

5.1 Introduction

Species richness usually decreases from the equator to the poles describing one of
the most studied patterns in the global distribution of biodiversity, the latitudinal
diversity gradient (LDG) (Gaston, 2000; Pianka, 1966; Rohde, 1992). Numerous
evidences for a LDG have been found in nature. Some examples include all
major groups of terrestial (Currie, 1991), freshwater (Oberdorff et al., 1995) and
marine taxa, including specific taxonomic groups like bacteria (Fuhrman et al.,
2008), planktonic foraminifera (Rutherford et al., 1999), copepods (Rombouts
et al., 2009) and marine ciliates such as tintinnids (Dolan et al., 2006). For marine
phytoplankton few studies have evaluated the latitudinal diversity gradient. Global
models (Barton et al., 2010a; Prowe et al., 2012; Sal et al., in prep.; Thomas et al.,
2012) and satellite data estimates (De Monte et al., 2013) have succeeded to find
an increase of diversity from the poles to the equator. Global compilations of
oceanic data (Tittensor et al., 2010) reveal clear latitudinal gradients although some
empirical studies have failed to detect a LDG in marine phytoplankton (Cermeño
et al., 2008).

Although more than 25 different hypothesis for mechanisms generating this
pattern have been proposed (Gaston, 2000), and many of them are non-exclusive
(Sal et al., in prep.), two hypotheses have been widely supported in recent years
relating the emergence of the LDG to temperature. On one hand, many authors
(Fuhrman et al., 2008; Rombouts et al., 2009; Tittensor et al., 2010; Yasuhara et al.,
2012) support a metabolic based hypothesis where temperature enhances diversity
by speeding up the biochemical reactions controlling speciation rates (Allen and
Gillooly, 2006; Rohde, 1992). The other mechanism is based on a null model which
excludes any direct environmental or evolutionary influence on species richness
and suggests that a mid-domain peak in diversity emerges as result of a random
distribution of species ranges between two geographical boundaries (Colwell and
Hurtt, 1994). This phenomenon was first identified by Colwell and Lees (2000) as
a mid-domain effect (MDE). However, some authors have supported the existence
of a thermal mid-domain effect (TMDE) where the mid-domain takes place in the
thermal niche space (Beaugrand et al., 2013; Brayard et al., 2005; Sal et al., in
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prep.) rather than in a geographical space (Colwell and Lees, 2000). The metabolic
and TMDE hypotheses differ on the shape of the predicted response of species
richness to temperature. TMDE predicts a unimodal symmetrical distribution of
diversity, while the metabolic based hypothesis predicts an exponential increase in
diversity with temperature.

The TMDE hypothesis is based on the temperature range over which species
can grow regardless of the shape of the thermal niche within those boundaries.
The definition of such ranges is tightly related to the characterization of the
thermal niche of species on the basis of growth response curves to temperature.
These are usually unimodal and negative skewed curves where the maximum
growth rate is achieved at the optimum temperature (Eppley, 1972). Thomas
et al. (2012) developed an statistical approach to estimate the growth-temperature
curves for a set of phytoplankton species, and evaluated the response of species
richness to changes in temperature on the basis of the thermal range for
each species. These growth-temperature curves characterize the fundamental
niche sensu Hutchinson (1957) as the theoretical environmental space where a
species could live indefinitely only according to how the species respond to the
environment. However, when species interact in the natural environment the
fundamental niche becomes reduced to a subset of it known as realized niche
(Hutchinson, 1957).

In this work we present a new hypothesis to predict the distribution of species
richness, hereinafter referred as the thermal niche effect (TNE), based on the
combination of both metabolic and TMDE theories. Instead of using just the
thermal range, as in the TMDE, we use the thermal niche as a way to account
for the different probability of survival of the species within its thermal range. We
suggest that the response of species richness to temperature results as a combination
of the overlap of niches predicted by the TMDE and the exponential increase of
growth rate with temperature. Hence TNE predicts a response of species richness
to temperature which is halfway between a unimodal (as TMDE predicts) and an
exponential (as MTE predicts) response. To characterize the ecological niches of
species and validate our theory, we take advantage of a global database for marine
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phytoplankton diversity (Sal et al., 2013). This dataset provides environmental and
species abundance data which allows to assess the LDG at global scales.

5.2 Material and Methods

5.2.1 Empirical data

We used the Marine microplankton diversity dataset (Sal et al., 2013) on the
abundance of an extensive number of marine phytoplankton species. Samples
were taken along different cruises between 1992 and 2002 covering a wide range
of ecosystems from subpolar to equatorial regions. This dataset also contains
temperature data for each sample, either measured in-situ or estimated from
satellite. Recorded temperatures range from 2.7 to 29.1○C. Likewise, the dataset
covers a broad range of productivity from oligotrophic to eutrophic areas. As
diversity has been shown to describe an unimodal relationship with productivity
(Irigoien et al., 2004), and since our study is focused in depicting the effects
of temperature independently to those based on productivity, we restricted the
database to those samples belonging to mesotrophic regions (7 to 90 mgC m−3),
where the number of species is not expected to change as function of phytoplankton
biomass. By selecting these mesotrophic regions we also discard the possibility of
undersampling effects in oligotrophic areas (Cermeño et al., 2013). Hence, the
dataset was finally reduced to 603 phytoplankton species in 595 different samples.
However, the same analyses shown here were replicated using the whole dataset
and the results are provided as supplementary information.

These data allowed us to validate the species richness distribution with
temperature but also to assess if a latitudinal diversity gradient is observed in the
Sal et al.’s (2013) database. We divided latitude into 5○ bins and used a boxplot to
characterize the number of species at each latitude.

The species thermal range was defined as the difference between the minimum
and maximum temperature where the abundance of each species was greater
than 0. We used these data to evaluate the random distribution of thermal
ranges along the measured thermal domain and reproduce the TMDE. To further
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analyse the relationship between temperature and species presence, we attempted
to characterize the realized niche of each species. We first divided temperature
into 12 bins. For each temperature bin, we calculated the percentage of samples
where each species was present as an index of probability of species presence.
This index of probability of species presence usually resembles a growth response
curve with an optimum temperature where the probability of presence is highest
and a unimodal and skewed pattern.

5.2.2 Niche modelling

To fit the curve of probability of presence for each species and characterize
each thermal niche we applied a generalized linear model (GLM). The use of
more sophisticated niche modelling algorithms such as MaxEnt (Phillips et al.,
2006) is not appropriate here since sample distribution within our database is not
homogeneous along the temperature gradient.

For each species we fitted a binomial response curve with logistic link using
the glm function in R (R Development Core Team, 2008). First and second-order
polynomials (linear and quadratic terms) were fit for each species in the GLM. An
Akaike information criterion (AIC) (Akaike, 1974) was used to select the best fit
for each case. To avoid bias due to undersampling in some temperature bins we
removed those bins with less than 15 samples. In addition, we only considered
the curve of those species that were found in at least 3 temperature bins to ensure
a reliable fit and excluded those curves showing a minimum within the observed
thermal range. So finally we accounted for a total of 304 species in our analyses.
This reduction in the number of species studied was only considered for the fitted
curves, i.e. for the observed data all species were taken into account, what ensures
that the patterns observed are not biased by this reduction.

Besides Sal et al.’s (2013) database, we used the data compiled by Thomas
et al. (2012) for a total of 194 phytoplankton isolate/strains in order to reproduce
the fundamental niche of species and evaluate whether the difference between
fundamental and realized niches influences the resulting pattern. To fit the growth
vs temperature curves we followed the same statistical analysis as Thomas et al.
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(2012) and applied a maximum likelihood estimation (MLE), using the bbmle
package in R (R Development Core Team, 2008).

5.3 Results
When species richness data are divided in latitudinal bins a diversity gradient
can be perceived (Figure 5.1A). Regardless of some differences between both
hemispheres, diversity increases from high to mid latitudes reaching maximum
species richness in the tropical areas. Then, there is a decline in species richness
across the equator but this decline is less pronounced than the poleward decrease.
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Figure 5.1: (A) Species richness distribution along the latitudinal gradient. The
box plot shows the number of species found in Sal et al.’s (2013) database within
each 5 degrees bins of latitude. Red line shows the predicted average number of
species in each interval (Linear loess fit: n=25, span=0.75, Residual Standard Error:
7.892). Grey line shows the observed mean temperature for each latitude interval. (B)
Species richness relationship with temperature. Grey dots show the observed number
of species whose abundance is higher than 0 at each temperature. Black dots show
the average number of species at each temperature in panel (A). Blue line shows the
quadratic fit for black dots (y = −0.14x2+4.85x−6.7, r2=0.37, p<0.01, AIC=174.67).

When this latitudinal pattern is viewed as a thermal gradient the result is a
curvilinear relationship between species richness and temperature (Figure 5.1B).
Richness increases from cold to temperate waters and saturates at around 20○C
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(corresponding to the subtropical increase in richness), then there is a plateau at
higher temperatures. Both the quadratic and linear fits of the relationship between
species richness and temperature are significant but the quadratic fit was selected as
the most parsimonious by the Akaike criterion (r2=0.37, p<0.01, AIC=174.67 for
the quadratic vs. r2=0.08, p<0.001, AIC=182.041 for the linear fit) (Figure 5.1B).

For each of the 603 species compiled, we plotted its thermal range as a horizontal
line centred at the midpoint (Figure 5.2A). This basically reproduces the pattern
expected in a MDE (Colwell and Lees, 2000) but in a thermal domain. There is
a clear trend where species with wider thermal ranges have their midpoints at the
middle of the temperature domain and species with midpoints near a boundary
necessarily have small ranges (Figure 5.2B). The species with narrow ranges can
appear in any part of the domain as expected in a full stochastic model such as
the MDE (Rober et al., 2004). Hence, using empirical data we obtain a random
distribution of thermal ranges where a clear TMDE is observed. More species are
present at the middle of the domain and the number of species decreases at almost
the same rate as we move towards lower and higher temperatures (Figure 5.2C).
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Figure 5.2: Thermal mid-domain for observed marine phytoplankton abundance data.
(A) Phytoplankton species ranked by thermal range. Each bar shows the species niche
breadth from narrower (at the bottom) to wider (at the top) centred on their mid-
temperature. (B) For each bar in (A) the temperature range size is plotted against
its thermal range midpoint. (C) Species richness along the thermal domain calculated
as the number of species whose range overlap at each temperature (TMDE).

The predicted thermal niches from the GLM fits are shown in the Figure 5.3A as
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the percentage of samples where a species is present at each temperature (a species
was considered as present when the probability is higher than 0.001). Along the
thermal domain these curves overlap allowing for the coexistence of species.
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Figure 5.3: Results of GLM fit for Sal et al.’s (2013) database (left panels) and MLE fit
for Thomas et al. (2012) data (right panels). In the upper panels each curve represents
the thermal niche of each species.

Species richness can be calculated from these thermal niche curves in two
different manners (Figure 5.3B). First we can calculate, for each temperature, the
number of species present at each temperature. This is the equivalent to using the
thermal range of the species and thus reveals the described TMDE where diversity
increases at the middle of the thermal domain (i.e. similar to Figure 5.2C). In
this TMDE a species has the same probability to be present in all parts of its
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thermal domain. But the realized thermal niches show that usually species have
a lower probability to be present at the extremes of their thermal range. We should
account for this lower probability when the expected species richness distribution is
calculated. Hence, an alternative way to estimate species richness from probability
of occurrence data is to weight each species presence by the probability of that
presence. So if at a given temperature there are n species all with low probability
of occurrence, the expected species richness will be lower than at a temperature
where there are n species all with high probability of occurrence. This results in
the pattern predicted by the thermal niche effect theory (TNE) presented in Figure
5.3B which differs from the TMDE in that the decrease at higher temperatures
is less pronounced than at lower temperatures. This less pronounced decrease
at higher temperatures is because, on average, species that have their maximum
probability of occurrence (MPO) at higher temperatures have a higher probability
of occurrence, what is observed for both empirical and fitted data (Figure 5.4).
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Figure 5.4: Relationship between the maximum probability of occurrence (MPO) and
the temperature bin at which the MPO is reached for each species (grey dots). (A)
Observed data for all 603species in the original dataset. (B) Results of GLM fit, i.e.
predicted data. Black line shows the average MPO for each temperature bin.

This increase in MPO is expected from a fundamental niche perspective where
maximum growth increases with temperature following Eppley’s curve (Eppley,
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1972). The MLE fit to the species growth data (Figure 5.3C) clearly evidences

Eppley’s curve. If we calculate species richness from these thermal growth curves

as the number of species whose growth rate is greater than 0 at each temperature

(Figure 5.3D), we reproduce again a TMDE with the highest number of species at

the middle of the thermal domain and a symmetrical drop-off at the boundaries.

Thomas et al. (2012) suggested that this increase of diversity at mid-latitudes is a

result of sampling bias in their species compilation which included more species

with a thermal optimum in temperate waters. To avoid this bias we randomly

selected the same number of species with optimum at each temperature. Here the

pattern predicted by TMDE is still apparent when we calculate species richness

as the number of species with a growth rate greater than 0 at each temperature

(Figure 5.3D). But, similarly to what occurs for presence data, a species does not

grow at the same rate across its thermal niche. Consequently, the possibility of

survival will be different at each temperature and it is expected that higher growth

rates would result in higher probability of survival. Therefore we recalculated the

species richness from these growth response curves weighting at each temperature

the probability of presence of each species by its growth rate. This results in a

diversity-temperature trend (Figure 5.3D) very similar to the presence data (Figure

5.3B). As predicted by TNE the slope of the species richness decline at lower

temperatures is much steeper than at higher ones.

For those species that match between Thomas et al. (2012) compilation and ours,

we compared the fundamental niche characterized by Thomas et al. (2012) and the

realized niche found within our database (Figure 5.5). As expected, in most cases

the realized niche appears reduced to a small space within the fundamental niche.

However, some species were found at temperatures outside its thermal tolerance

range, what might be the result of interactions such as dispersal or even to the fact

of comparing different strains of a same species (Kashtan et al., 2014; Partensky

and Garczarek, 2010). We also represent the probability of occurrence from which

we fitted the thermal niche, which shows the high accuracy accomplished by the

GLM approach.
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Figure 5.5: Comparison of fundamental and realized niches along the observed
thermal domain for those species that match between our database and Thomas et al.
(2012) data. The vertical grey bars show the observed probabilities of occurrence for
each species in the Sal et al.’s (2013) database, which were used to fit the realized
niches using a GLM fit. Fundamental niches correspond to the MLE fits for Thomas
et al. (2012) data.
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5. The combined effects of thermal mid-domain and growth-temperature
response curves on the latitudinal diversity gradient in marine phytoplankton

5.4 Discussion

Our results reveal that marine phytoplankton species richness increases with
temperature up to ∼20○C and that richness declines at the highest temperatures
(Figure 5.1B). This pattern departs from the exponential increase predicted by
MTE (Brown et al., 2004). Although when relationships between species richness
and temperature have been encountered they have been usually attributed to MTE,
many times this relationship is not exponential but asymptotic or lineal. This is
the case of global compilations of oceanic data (Tittensor et al., 2010) but also for
specific taxa such as marine bacteria (Fuhrman et al., 2008), copepods (Rombouts
et al., 2009) or planktonic foraminifera (Tittensor et al., 2010; Yasuhara et al.,
2012).

On the other hand, the thermal mid-domain theory (TMDE) predicts a hump-
shaped relationship between temperature and species richness. It suggests that
the ranges of species randomly distributed between two thermal boundaries tend
to overlap at mid-temperatures, allowing the coexistence of a higher number of
species in the middle of the thermal domain (Beaugrand et al., 2013; Brayard et al.,
2005; Sal et al., in prep.). This overlap is observed in our empirical data analysis
(Figure 5.2) and it is caused by 2 main constrains: on one hand wider niches have
their midpoints at the middle of the thermal domain and, secondly, smaller thermal
ranges occur in any part of the domain. As consequence, the number of overlapping
niches is larger in the middle of the thermal domain (Figure 5.2C & Figure5.3B).

Nevertheless, this symmetrical pattern predicted by the TMDE is at odds with the
observed relationship between species richness and temperature (Figures 5.1A &
5.1B), where the decline of species at the highest temperatures is less pronounced
than at the coldest temperatures. We suggest that this difference between predicted
and observed patterns is due to the assumption in TMDE that species have the
same probability of survival within all their thermal range (Beaugrand et al., 2013).
Our results reveal that this probability of survival, and hence of presence at a
given temperature, is not uniform within the thermal range. Each species has a
temperature within its thermal range where the probability of occurrence is highest,
i.e. where it reaches its MPO. In addition, species that have their optimum at higher
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5.4 Discussion

temperatures usually have a higher MPO (Figure 5.4). This increase in MPO across
species with increasing temperature (Figure 5.4) is probably a consequence of
the increase in the maximum growth rate of species with increasing temperature
(Eppley, 1972). The exponential increase of growth rates with temperature is
apparent in the fundamental niches compiled by Thomas et al. (2012) (Figure 5.3C)
and reflected in the realized niches (Figure 5.3 A) through an overall tendency to
have a higher MPO at the highest temperatures (Figure 5.4). Our explanation for
the relationship between temperature and species richness is a combination of a
TMDE and a metabolic effect through the increase in growth rate with temperature
as in Eppley’s curve (Eppley, 1972).

Differences between both fundamental and realized niches for those species that
match between Thomas et al.’s (2012) dataset and ours (Figure 5.5) show that for
most cases the thermal space where a species occurs is restricted to a small part
of the fundamental niche. This supports the theory of Hutchinson (1957), who
attribute this fact to competitive exclusion. A few species are present outside of its
physiological niche. Pulliam (2000) found that species might occur outside their
fundamental niche as a consequence of dispersal. Indeed, dispersal is another effect
that can contribute to the generation of a LDG (Barton et al., 2010a; Brayard et al.,
2005; Sal et al., in prep.; Thomas et al., 2012). Hence, although temperature seems
to play an essential role to explain the emergence of a LDG (Figure 5.1A) this
does not rule out the possibility of other factors that contribute to the LDG. Species
richness also describes a unimodal relationship with productivity (Irigoien et al.,
2004; Smith, 2007). We restricted our database to mid-productivity levels to show
that, independent of the productivity - diversity relationship, the TNE results in a
LDG. In any case, when both temperature and productivity effects are considered
using the whole dataset (Figure S5.1), the relationship between species richness
and temperature remains very similar to that predicted by TNE.

Based on the TNE predictions to explain the relationship between species
richness and temperature, we analysed the implications of this new hypothesis on
the distribution of species richness over the oceans. Thomas et al. (2012) based
their results on temperature predictions for historical (1991-2000) and future ther-
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Figure 5.6: Species richness distribution under historical (1991-2000) and future
(2091-2100) temperature regimes based in both hypotheses: TMDE (left panels) and
TNE (right panels). (A & D) Historical species richness prediction. (B & E) Future
species richness prediction. (C & F) Percentage of change in species richness between
historical and future temperature regimes.

mal regimes (2091-2100). Combining these predictions with the thermal response

curves compiled by Thomas et al. (2012), we estimated species distributions under

both hypotheses: TMDE (similar to Thomas et al. (2012) but using the same

number of species with optimum values at each temperature, as in Figure 5.3D
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5.4 Discussion

(Figures 5.6A-C) and TNE, where unlike the TMDE, the species presence is
weighted by the possibility of survival at each temperature (Figures 5.6D-F).

The major difference between both hypotheses relies on the predictions for
historical thermal regimes. Whereas the TNE is able to predict the slight decline
of species that it has been shown to occur at the equator, Thomas et al. (2012)
predict a symmetrical decline at both sides of the tropical areas that is at odds with
the observed pattern (Figure 5.1A). However, the percentage of change in species
richness when comparing historical and future regimes remains similar under both
predictions. In fact, TNE and TMDE predictions agree in that tropical communities
are the most vulnerable since a shift of species towards the poles is expected to
occur for the last decade of this century under the predicted scenario of global
warming.
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5.5 Supplementary figure
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Figure S5.1: Results using the whole database in (Sal et al., 2013) where the
productivity restriction is not applied. (A) Species richness distribution along the
latitudinal gradient. The boxplot shows the number of species found within each 5
degrees bins of latitude. Red line shows the predicted average number of species
within each interval (Linear loess fit: n=25, span=0.75, Residual Standard Error:
7.755). Grey line shows the observed mean temperature within each latitude interval.
(B) Species richness distribution along the thermal domain. Grey dots show the
number of species which total abundance is higher than 0 at each temperature. Black
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5.5 Supplementary figure

dots show the average number of species at each temperature in panel (A). Blue line
shows the quadratic fit for black dots (y = −0.11x2+3.84x+0.73, r2=0.28, p<0.05,
AIC=172.92). (C & D) Results of GLM fit. Each curve in (C) represents the thermal
niche of each species as a probability of occurrence index (realized niche). (D)
Phytoplankton species richness calculated as result of both: TMDE (number of species
whose probability of occurrence is higher than 0 at each temperature) and TNE (sum
of probabilities of presence at each temperature).
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General Discussion

Throughout this thesis we have tried to disentangle and understand the factors
that influence the growth and distribution of marine phytoplankton. The main
problems to achieve this goal are on one hand that many of these factors are
interrelated, what makes difficult to separate their effects. On the other hand,
the scarcity or inconsistency within datasets may lead to confounding results.
Combining empirical datasets with theoretical simulations and the use of global
ecological models, we have been able to answer our main objectives and, hopefully,
contributed to the understanding of the ecosystem functioning. There are however
some points that it is worth to discuss in this last section.

The trade-off between intrinsic maximum growth and half-saturation cons-
tant

A relevant point in our results suggests that the allometric slopes of phytoplankton
growth rates are variable and do not consistently support a specific theoretical value
when a large range of cell size is included. When this includes picophytoplankton,
we have found that the resulting unimodal relationship between growth rate and
cell size is a consequence of the shared evolutionary history of species rather than
a size effect.

This seems to be in contrast with the parameterization followed in Darwin model
(Chapter 3). Here, phytoplankton species are grouped into two size-classes and the
two traits that define nutrient uptake capabilities (i.e. intrinsic maximum growth
and half-saturation constant) depend on cell size in a way that can sometimes
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lead to an allometric competitive trade-off among species. The maximum growth
rates are fixed for each phytoplankton size-class where large phytoplankton have
a higher intrinsic maximum growth rate than small phytoplankton (Follows et al.,
2007). But according to Chapter 2, there is no reason to impose that small species
have lower growth rates than the larger ones and thus considering a trade-off such
as this might not be a true representation of nature. Phytoplankton types in the
model are initialized according to four functional groups: (1) diatom analogs, (2)
other large phytoplankton, (3) other small phytoplankton, and (4) Prochlorococcus
analogs (Follows et al., 2007). Although for instance Prochlorococcus have lower
growth rates that some larger species, they may also have similar growth rates than
some species of the largest groups such as diatoms (see Figure 2.2 in Chapter 2).
Therefore, although this trade-off between cell size and growth rate could occur for
some specific phytoplankton types, recent studies have shown that it should not be
considered as a general fact as it is imposed in the model (Edwards et al., 2012;
Fiksen et al., 2013).

Although we acknowledge this controversy, we justify the use of this parame-
terization to reproduce the results found by Barton et al. (2010a) and to be able
to evaluate whether their results are not mutually exclusive with a thermal mid-
domain effect for driving the latitudinal diversity gradient of marine phytoplankton.
Our results in Chapter 3 reveal that a major driver of the non-equilibrium coexis-
tence between species is indeed the functional grouping with competitive trade-offs
imposed in the model (i.e. DIN niches) (Figure 3.5). In fact, besides dispersal e-
ffects, the resulting LDG in Simulation 2 (DIN niches only) is mainly driven by
this allometric competitive trade-off while the TMDE leads to a LDG without ac-
counting for this imposition. This might suggest that the role of temperature on the
LDG could be greater than is usually thought, but further investigation would be
needed to assert the extent of this suggestion.

The scope of the thermal niche effect

In an effort to evaluate the relevance of the TNE hypothesis to explain the species
richness relationship with temperature (Chapter 5), we used the Simulation 1 in
Darwin (Chapter 3). In the model, the thermal tolerance curves of species are
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characterized following the exponential increase of growth rate with increasing
temperature as described by Eppley (1972). In addition, for each phytoplankton
species a temperature optimum is assigned at random. Following the initial setup
conditions, we reproduced the species fundamental niche, which only accounts
for the effect of temperature on the species growth rate. We also characterized
the realized niche for the 78 species in the model using the surface outputs of
Simulation 1 after 10 years integration. For both niche types, we calculated the
species richness along the thermal domain according to both the TMDE and TNE
hypotheses (Figures 6 A-B) in the same way as we did for the Figure 5.3 (see
Results section in Chapter 5).

When comparing the resulting patterns with the observed relationship between
species richness and temperature obtained in Simulation 1 (Figure 6C), the TNE
pattern seems to be closer to the model outputs. Both reflect that the decline of
species is much less pronounced at higher than at lower temperatures (Figure 6C),
what was also observed in the empirical data (Figure 5.1B).

Unlike the TMDE hypothesis, the TNE accounts for the probability of
presence/growth of each species at each temperature. As we explained in Chapter
5, when considering this effect to calculate the number of species present at each
temperature, the effect of Eppley’s curve is reflected across both fundamental and
realized niches. This means that the exponential increase of maximum growth
rate with increasing temperature seems to condition the maximum probability of
presence of the species at each temperature. For instance, species with an optimum
value at higher temperatures, have a greater maximum growth rate and thus a
greater maximum probability of presence that species with lower optimums. As
result, as temperature increases, the number of species at each temperature for both
fundamental and realized niches increases. The combination of this effect with the
the lower overlapping of niches at high temperatures, as suggested by the TMDE,
results in the slight decline of the number of species under warm conditions.
Although this was already shown in Chapter 5, the model allows the possibility
of reproducing both fundamental and realized niches for the same species and thus
give further support to our hypothesis.
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Figure 6: Species richness prediction based on (A) fundamental and (B) realized
niches for TNE and TMDE hypotheses. (C) Observed species richness distribution
along the thermal domain for the surface outputs of Simulation 1.
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Conclusiones

1. Las pendientes alométricas de las tasas de crecimiento de fitoplancton son
variables y no apoyan consistentemente un único valor teórico cuando se
considera un espectro de tamaños grande, es decir que incluya desde pico hasta
microfitoplancton.

2. La aparente relación unimodal entre la tasa de crecimiento específica y el
tamaño celular del fitoplancton es el resultado de la historia evolutiva común
de las especies, en concreto de la adaptación del picofitoplancton a ambientes
oligotróficos, y por tanto la curvatura desaparece cuando dicho efecto es
corregido. Esta especialización del picofitoplancton a zonas cálidas implica que
la curvatura sea significativa o no en función de la temperatura a la que las tasas
de crecimiento son medidas.

3. El cálculo del exponente a la hora de corregir la tasa de crecimiento por el efecto
de la temperatura, puede estar influenciada por la correlación entre la temperatura
y el tamaño. Para evitar sesgos en el estudio de las relaciones alométricas,
dicha elección debe hacerse utilizando valores determinados teóricamente, o
bien corroborados con trabajos experimentales, siempre y cuando el efecto de
terceras variables, como el tamaño o los nutrientes, puedan ser controlados.
Una alternativa a estas tradicionales correcciones es utilizar las curvas de
tolerancia térmica para predecir la tasa de crecimiento de cada especie a diferentes
temperaturas y analizar así el escalamiento a cada temperatura.

4. El uso de modelos globales permite no sólo reproducir el gradiente latitudinal de
diversidad (GLD), sino poder estudiar en conjunto y por separado los factores que
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contribuyen a su mantenimiento, y que con datos empíricos resulta casi imposible
estimar. Así observamos que el GLD es el resultado de no uno sino varios
factores: la exclusión competitiva entre especies especialistas y oportunistas, la
coexistencia de especies con similares requerimientos en zonas de estabilidad
ambiental (R* similar), la dispersión oceánica y la temperatura a través de un
thermal mid-domain effect (TMDE). No descartamos sin embargo que otros
factores como pueden ser la radiación solar o la predación puedan contribuir a
su mantenimiento.

5. La base de datos de diversidad de microplancton recopilada en el capítulo 4 aporta
datos ambientales y abundancia de especies, proporcionando oportunidades
únicas para el estudio de la distribución de fitoplancton marino a escalas amplias.
Además, es la única base de datos donde la identificación de las especies ha sido
llevada a cabo por el mismo taxonomista. Junto con los datos de abundancia,
biomasa y volumen, aporta datos ambientales para cada estación.

6. Dicha base de datos ha permitido demostrar con datos empíricos la existencia
de un gradiente latitudinal de diversidad (GLD) para la comunidad completa de
fitoplancton marino. Dicho patrón se distribuye latitudinalmente incrementando el
número de especies desde los polos hacia el ecuador. Se trata de una distribución
bimodal donde el mayor riqueza específica se sitúa en los trópicos.

7. El thermal niche-effect (TNE) parece explicar con mayor certeza la relación entre
el número de especies y la temperatura, donde nuestra recopilación de datos
empíricos sugiere que la riqueza específica aumenta con la temperatura hasta ∼20○
y disminuye lentamente hacia temperaturas más altas. Esta hipótesis resulta de la
combinación de dos hipótesis: la predicción del TMDE que explica un mayor
solapamiento de los nichos a temperaturas intermedias y por tanto una mayor
coexistencia de especies que a temperaturas altas o bajas; y en segundo lugar, el
aumento exponencial de la tasa máxima de crecimiento con la temperatura que
predice la curva de Eppley.

8. El aumento exponencial de las tasas máximas de crecimiento con la temperatura
observado en los nichos fundamentales de las especies parece verse reflejado
también en los nichos realizados. Esto sugiere que las especies que tienen su
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óptimo a temperaturas elevadas, tienen no sólo una tasa máxima de crecimiento
mayor sino también una probabilidad máxima de ocurrencia mayor que especies
con óptimos a temperaturas más bajas.

9. Las estimaciones de la distribución global del fitoplancton en el océano en función
de la temperatura predichas por la hipótesis del TNE parecen reproducir mejor
los patrones observados en datos empíricos. Por tanto, esta hipótesis permite
mejorar las predicciones sobre cómo el calentamiento global podría afectar a estas
distribuciones en el futuro. Nuestra hipótesis apoya recientes estudios que estiman
que durante la última década de este siglo se podría producir un desplazamiento
en los nichos de las especies hacia los polos.

10. Datos empíricos y modelizados muestran resultados similares, lo que determina la
validez de la base de datos compilada en el capítulo 4, así como del modelo global
Darwin empleado en el capítulo 3. Dichos resultados demuestran la importancia
de testar resultados con ambos tipos de estudios para justificar cualquier hipótesis.
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