Jordan centers and Martindale-like covers

José A. Anquela ${ }^{\mathrm{a}, *, 1,2}$, Teresa Cortés ${ }^{\mathrm{a}, 1,2}$, Esther García ${ }^{\mathrm{b}, 1,2}$, Miguel Gómez-Lozano ${ }^{\text {c,2,3 }}$
${ }^{\text {a }}$ Departamento de Matemáticas, Universidad de Oviedo, C/Calvo Sotelo s/n, 33007 Oviedo, Spain
${ }^{\text {b }}$ Departamento de Matemática Aplicada, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
${ }^{\text {c }}$ Departamento de Álgebra, Geometría y Topología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain

Received 24 August 2004

Communicated by Efim Zelmanov

Abstract

In this paper we show that the scalar center of a nondegenerate quadratic Jordan algebra is contained in the scalar center of any of its Martindale-like covers.

© 2006 Elsevier Inc. All rights reserved.
Keywords: Jordan algebra; Scalar center; Martindale-like cover

Introduction

The notion of (weak) scalar center, introduced by Fulgham in [3], has revealed a central tool in the study of Martindale-like quotients [1,4] of linear Jordan algebras mainly due to two facts:
(i) any nonzero ideal of a nondegenerate PI Jordan algebra contains nonzero central elements [2, 3.6], and

[^0](ii) the scalar center of a nondegenerate linear Jordan algebra is contained in the scalar center of any of its Martindale-like algebras of quotients [1, 4.1].

Our aim in this paper is showing that the general (quadratic) version of (ii) holds. Indeed we will work at the slightly more general setting of what we call "Martindale-like covers," defined in terms of natural "ideal absorption properties." This result is basic in our forthcoming paper on polynomial identities and speciality of quadratic Martindale-like quotients, as well as we expect it to be useful in the description of Martindale-like quotients of strongly prime quadratic Jordan algebras satisfying a polynomial identity.

The proof of our main result is purely combinatorial, based on the fact that $2 J+\operatorname{Ker} 2 \operatorname{Id}_{J}$ is an essential ideal of any nondegenerate Jordan algebra J, which, with the use of annihilators, allows to split the problem into the 2 -torsion free and the characteristic 2 cases.

The paper is divided into four sections. Section 0 is devoted to recalling basic facts and notions, including the essentialness of $2 J+\operatorname{Ker} 2 \operatorname{Id}_{J}$, mentioned above, and the definition of the scalar center. In Section 1 we study characteristic 2 phenomena needed in the sequel, and their natural extensions to arbitrary Jordan algebras in terms of the annihilator $\mathrm{Ann}_{J}\left(\operatorname{Ker} 2 \mathrm{Id}_{J}\right)$ of Ker $2 \mathrm{Id}_{J}$. In the next section we establish the fundamental properties of Martindale-like covers. Finally, in Section 3, we prove our main theorem asserting the inheritance of the scalar center by Martindale-like covers of nondegenerate Jordan algebras. It turns out that for a central element z of J, and a cover Q of J, V_{z} is in the centroid of Q as soon as Q satisfies the natural outer ideal absorption properties, while for the fact that z is indeed central in Q, the inner ideal absorption property must be assumed too.

0. Preliminaries

0.1. We will deal with Jordan algebras over a ring of scalars Φ. The reader is referred to $[5,7,11]$ for definitions and basic properties not explicitly mentioned or proved in this section. Given a Jordan algebra J, its products will be denoted $x^{2}, U_{x} y$, for $x, y \in J$. They are quadratic in x and linear in y and have linearizations denoted $V_{x} y=x \circ y, U_{x, z} y=\{x, y, z\}=V_{x, y} z$, respectively. A Jordan algebra J is said to be unital if there is an element $1 \in J$ satisfying $U_{1}=\mathrm{Id}_{J}$ and $U_{x} 1=x^{2}$, for any $x \in J$ (such an element can be shown to be unique and it is called the unit of J).

Every Jordan algebra J embeds in a unital Jordan algebra $\hat{J}=J \oplus \Phi 1$ called its (free) unitization [11, 0.6].

A Jordan algebra J is said to be nondegenerate if zero is the only absolute zero divisor, i.e., zero is the only $x \in J$ such that $U_{x}=0$.
0.2. We will need the following identities valid for arbitrary Jordan algebras.
(i) $(x \circ y) \circ z=\{x, y, z\}+\{y, x, z\}$,
(ii) $z \circ U_{x} y=\{z, x, y\} \circ x-y \circ U_{x} z$,
(iii) $U_{U_{x} y}=U_{x} U_{y} U_{x}, U_{x^{2}}=\left(U_{x}\right)^{2}$,
(iv) $\left\{x, U_{z} x, y\right\}=\left\{U_{x} z, z, y\right\}$,
(v) $2 U_{x} y=x \circ(x \circ y)-x^{2} \circ y$,
(vi) $\left\{z, x, U_{y_{1}} y_{2}\right\}=\left\{z,\left\{x, y_{1}, y_{2}\right\}, y_{1}\right\}-\left\{z, y_{2}, U_{y_{1}} x\right\}$,
(vii) $U_{x}(y \circ z)=\{x \circ y, z, x\}-y \circ U_{x} z$,
(viii) $U_{z \circ x} y=U_{z} U_{x} y+U_{x} U_{z} y+z \circ U_{x}(y \circ z)-\left\{U_{z} x, y, x\right\}$,
(ix) $\left(U_{x} y\right)^{2}=U_{x} U_{y} x^{2}$,
(x) $(x \circ y)^{2}=U_{x} y^{2}+U_{y} x^{2}+x \circ U_{y} x$,
(xi) $U_{\{a, x, b\}} z=U_{a} U_{x} U_{b} z+U_{b} U_{x} U_{a} z+\left\{a, x, U_{b}\{x, a, z\}\right\}-\left\{U_{a} U_{x} b, z, b\right\}$,
(xii) $\left\{a, z, U_{a} U_{x} a\right\}=\left\{U_{a} z, x, U_{a} x\right\}$,
(xiii) $2 U_{a} U_{x} U_{a} z=\left\{a, x, U_{a}\{x, a, z\}\right\}-\left\{U_{a} x, x, U_{a} z\right\}$,
(xiv) $U_{x}\{a, b, c\}=\{x, a,\{b, c, x\}\}-\left\{U_{x} a, c, b\right\}$.

Indeed, (vi) is [7, JP10], (xi) is [7, JP21], (xiv) is [7, JP12], and the rest of them follow from Macdonald's theorem [6].
0.3. We recall that an ideal I of a Jordan algebra J is just a Φ-submodule of J satisfying $U_{I} J+I^{2}+U_{J} I+I \circ J \subseteq I$, equivalently, $U_{I} \hat{J}+U_{\hat{J}} I \subseteq I$, which implies $\{I, J, J\} \subseteq I$ using (0.2)(i). An ideal I of J is said to be essential if it hits every nonzero ideal of J, i.e., $I \cap L \neq 0$ for any nonzero ideal L of J.
0.4. In a Jordan algebra J, the annihilator $\operatorname{Ann}_{J}(I)$ of an ideal I of J is an ideal of J which, when J is nondegenerate, is given by

$$
\operatorname{Ann}_{J}(I)=\left\{x \in J \mid U_{x} I=0\right\}=\left\{x \in J \mid U_{I} x=0\right\}
$$

[8, 1.3, 1.7], [12, 1.3]. An ideal I of J will be said sturdy if $\operatorname{Ann}_{J}(I)=0$. It is easy to prove that essential ideals coincide with sturdy ideals in any semiprime Jordan algebra.
0.5. The centroid $\Gamma(J)$ of a Jordan algebra J is the set of linear maps acting "scalarly" in Jordan products [10]:

$$
\begin{aligned}
\Gamma(J)= & \left\{T \in \operatorname{End}_{\Phi}(J) \mid T U_{x}=U_{x} T, T V_{x}=V_{x} T\right. \\
& \left.T^{2}\left(x^{2}\right)=(T(x))^{2}, T^{2} U_{x}=U_{T(x)}, \text { for any } x \in J\right\} .
\end{aligned}
$$

It is immediate that $T V_{x, y}=V_{x, y} T, T U_{x, y}=U_{x, y} T$ for any $T \in \Gamma(J)$, and any $x, y \in J$. Clearly, $\Phi \operatorname{Id}_{J} \subseteq \Gamma(J)$. By [10, 2.5], when J has no nonzero extreme elements (for example, when J is nondegenerate), $\Gamma(J)$ is a unital associative commutative Φ-algebra and J is a Jordan algebra over $\Gamma(J)$.
0.6. Lemma. If J is a nondegenerate Jordan algebra and $T \in \Gamma(J)$, then
(i) the sum $T(J)+\operatorname{Ker} T$ is direct and, indeed, $\operatorname{Ker} T=\operatorname{Ker} T^{n}$ for any positive integer n,
(ii) $T(J)$ and $\operatorname{Ker} T$ are ideals of J,
(iii) $T(J)+\operatorname{Ker} T$ is an essential ideal of J.

Proof. (i) Let $x \in J$ such that $T^{2}(x)=0$. Then, for any $y \in J$, we have

$$
U_{U_{T(x)} y}=U_{T(x)} U_{y} U_{T(x)}=U_{T(x)} U_{y} T^{2} U_{x}=T^{2} U_{T(x)} U_{y} U_{x}=U_{T^{2}(x)} U_{y} U_{x}=0
$$

hence $U_{T(x)} y=0$ by nondegeneracy. This shows $U_{T(x)}=0$, hence $T(x)=0$ again by nondegeneracy. We have proved $\operatorname{Ker} T=\operatorname{Ker} T^{2}$, which readily implies our assertion.
(ii) By $[10,2.6]$ we already know that $T(J)$ is an ideal of J and $\operatorname{Ker} T$ is an outer ideal of J. But, under nondegeneracy, $\operatorname{Ker} T$ is also an inner ideal of J : for any $x \in \operatorname{Ker} T, y \in \hat{J}$, $T^{2}\left(U_{x} y\right)=U_{T(x)} y=0$, hence $U_{x} y \in \operatorname{Ker} T^{2}=\operatorname{Ker} T$ by (i).
(iii) Given a nonzero ideal L of J, if $T(L)=0$, then $0 \neq L \subseteq L \cap \operatorname{Ker} T \subseteq L \cap(T(J)+\operatorname{Ker} T)$. Otherwise, there exists $x \in L$ such that $T(x) \neq 0$. By nondegeneracy, $0 \neq U_{T(x)} J=T^{2} U_{x} J=$ $U_{x} T^{2}(J) \subseteq U_{L} J \cap T(J) \subseteq L \cap(T(J)+\operatorname{Ker} T)$.
0.7. Following [3], the (weak) center of J is the set $C(J)$ of all elements $z \in J$ such that $U_{z}, V_{z} \in$ $\Gamma(J)$, which is a subalgebra of J when J is nondegenerate [3, Theorems 1, 2]. More explicitly, $z \in J$ lies in $C(J)$ if and only if

$$
c_{i}(z, J, J)=0, \quad \text { for } i=1,2,3,5,6, \quad \text { and } \quad c_{i}(z, J)=0 \quad \text { for } i=4,7
$$

where

$$
\begin{aligned}
& c_{1}(z, x, y)=V_{z} U_{x} y-U_{x} V_{z} y=z \circ U_{x} y-U_{x}(z \circ y), \\
& c_{2}(z, x, y)=V_{z} V_{x} y-V_{x} V_{z} y=z \circ(x \circ y)-x \circ(z \circ y), \\
& c_{3}(z, x, y)=U_{V_{z} x} y-V_{z}^{2} U_{x} y=U_{z \circ x} y-z \circ\left(z \circ U_{x} y\right), \\
& c_{4}(z, x)=\left(V_{z} x\right)^{2}-V_{z}^{2} x^{2}=(z \circ x)^{2}-z \circ\left(z \circ x^{2}\right), \\
& c_{5}(z, x, y)=U_{z} U_{x} y-U_{x} U_{z} y, \\
& c_{6}(z, x, y)=U_{z} V_{x} y-V_{x} U_{z} y=U_{z}(x \circ y)-x \circ U_{z} y, \\
& c_{7}(z, x)=\left(U_{z} x\right)^{2}-U_{z}^{2} x^{2},
\end{aligned}
$$

since $c_{5}(z, J, J)=0$ and (0.2)(iii) imply $U_{U_{z} x}=U_{z} U_{x} U_{z}=U_{z}^{2} U_{x}$, for any $x \in J$.
We claim that $z \in C(J)$ also satisfies $c_{8}(z, J, J)=0$, where $c_{8}(z, x, y)=\left\{U_{z} x, y, x\right\}-$ $2 U_{z} U_{x} y$, which readily follows from the fact that $U_{z} \in \Gamma(J)$. If J is nondegenerate then also $c_{9}(z, J)=0$ for $c_{9}(z, x)=U_{z} x^{2}-U_{x} z^{2}$, since $c_{9}(z, x)=c_{5}(z, x, 1)$ and $C(J) \subseteq C(\hat{J})$ by [3, Corollary 1].

1. Characteristic 2 phenomena

1.1. We remark that, by applying (0.6) to $T=2 \operatorname{Id}_{J}$ in a nondegenerate Jordan algebra $J, 2 x=0$ if and only if $2^{n} x=0$ for a positive integer n.

On the other hand, if $2 x=0$ and $x \in \operatorname{Ann}\left(\operatorname{Ker} 2 \operatorname{Id}_{J}\right)$, then $x=0: x \in \operatorname{Ker} 2 \operatorname{Id}_{J} \cap$ $\operatorname{Ann}\left(\operatorname{Ker} 2 \operatorname{Id}_{J}\right)=0$ since J is semiprime and $\operatorname{Ker} 2 \operatorname{Id}_{J}$ is an ideal of J by (0.6)(ii).
1.2. Remark. In a nondegenerate Jordan algebra $J, U_{y} x=U_{y}(-x)$, i.e., $U_{y} 2 x=0$, for any $x \in J, y \in \operatorname{Ker} 2 \operatorname{Id}_{J}: U_{y} 2 x=2 U_{y} x=0$ since $U_{y} x \in \operatorname{Ker} 2 \operatorname{Id}_{J}$ by (0.6)(ii).
1.3. Lemma. Let J be a nondegenerate Jordan algebra, and let $a, b \in J$. If $\left(U_{a}-U_{b}\right) J \subseteq$ $\operatorname{Ann}_{J}\left(\operatorname{Ker} 2 \operatorname{Id}_{J}\right)$, then $a-b \in \operatorname{Ann}_{J}\left(\operatorname{Ker} 2 \operatorname{Id}_{J}\right)$.

Proof. (I) $U_{\{a, J, b\}} J \subseteq \operatorname{Ann}_{J}\left(\operatorname{Ker} 2 \operatorname{Id}_{J}\right):$ for any $y \in \operatorname{Ker} 2 \operatorname{Id}_{J}, x, z \in J$, using (0.2)(xi),

$$
\begin{aligned}
U_{y} U_{\{a, x, b\}} z= & U_{y}\left[U_{a} U_{x} U_{b} z+U_{b} U_{x} U_{a} z+\left\{a, x, U_{b}\{x, a, z\}\right\}-\left\{U_{a} U_{x} b, z, b\right\}\right] \\
= & U_{y}\left[U_{a} U_{x} U_{a} z+U_{a} U_{x} U_{a} z+\left\{a, x, U_{a}\{x, a, z\}\right\}-\left\{U_{b} U_{x} b, z, b\right\}\right] \\
& \left(\text { for } t \in J, U_{a} t-U_{b} t \in \operatorname{Ann}_{J}\left(\operatorname{Ker} 2 \operatorname{Id}_{J}\right), \text { which is an ideal of } J\right) \\
= & U_{y}\left[2 U_{a} U_{x} U_{a} z+\left\{a, x, U_{a}\{x, a, z\}\right\}-\left\{U_{b} x, x, U_{b} z\right\}\right] \quad(\text { by }(0.2)(x i i)) \\
= & U_{y}\left[2 U_{a} U_{x} U_{a} z+\left\{a, x, U_{a}\{x, a, z\}\right\}-\left\{U_{a} x, x, U_{a} z\right\}\right] \\
& \left(\text { for } t \in J, U_{a} t-U_{b} t \in \operatorname{Ann}_{J}\left(\operatorname{Ker} 2 \operatorname{Id}_{J}\right), \text { which is an ideal of } J\right) \\
= & U_{y}\left[4 U_{a} U_{x} U_{a} z\right] \quad(\text { by }(0.2)(x i i i)) \\
= & 0
\end{aligned}
$$

by (1.2).
(II) $\{a, J, b\} \subseteq \operatorname{Ann}_{J}\left(\operatorname{Ker} 2 \operatorname{Id}_{J}\right)$: using (0.2)(iii), for any $y \in \operatorname{Ker} 2 \operatorname{Id}_{J}, x \in J, U_{U_{y}\{a, x, b\}}=$ $U_{y} U_{\{a, x, b\}} U_{y}=0$ by (I), hence $U_{y}\{a, x, b\}=0$ by nondegeneracy of J.
(III) $U_{a-b} J \subseteq \operatorname{Ann}_{J}\left(\operatorname{Ker} 2 \operatorname{Id}_{J}\right)$: for any $y \in \operatorname{Ker} 2 \operatorname{Id}_{J}, x \in J$,

$$
\begin{aligned}
U_{y} U_{a-b} x & =U_{y}\left[U_{a} x+U_{b} x-\{a, x, b\}\right]=U_{y}\left[U_{a} x+U_{a} x-\{a, x, b\}\right] \quad \text { (as above) } \\
& =U_{y}\left[2 U_{a} x-\{a, x, b\}\right]=0
\end{aligned}
$$

by (1.2) and (II).
Finally, for any $y \in \operatorname{Ker} 2 \operatorname{Id}_{J}, U_{U_{a-b} y}=U_{a-b} U_{y} U_{a-b}$ (by (0.2)(iii)) $=0$, by (III), hence $U_{a-b} y=0$ by nondegeneracy, and $a-b \in \operatorname{Ann}_{J}\left(\operatorname{Ker} 2 \operatorname{Id}_{J}\right)(0.4)$.

Under the assumption of characteristic 2, (1.3) turns into the following result of independent interest, though it is not explicitly needed in the sequel.
1.4. Corollary. Let J be a nondegenerate Jordan algebra of characteristic two $(2 J=0)$, $a, b \in J$. If $U_{a}=U_{b}$, then $a=b$.

Proof. Use (1.3) and the fact that $\operatorname{Ann}_{J}\left(\operatorname{Ker} 2 \operatorname{Id}_{J}\right)=\operatorname{Ann}_{J}(J)=0$ by nondegeneracy.

2. Martindale-like covers

2.1. When J and Q are Jordan algebras such that J is a subalgebra of Q, we will say that Q is a cover of J. We will consider the following ideal absorption properties for a cover Q of J :
the outer ideal absorption properties:
(IA1) for any $0 \neq q \in Q$ there exists an essential ideal I of J such that $0 \neq U_{I} q \subseteq J$,
(IA2) for any $q \in Q$ there exists an essential ideal I of J such that $I \circ q \subseteq J$,
and the inner ideal absorption property:
(IA3) for any $q \in Q$ there exists an essential ideal I of J such that $U_{q} I \subseteq J$.
A cover Q of J will be said a Martindale-like cover if it satisfies (IA1)-(IA3).
2.2. Remark. Assuming (IA1), condition (IA2) can be replaced by
(IA2') For any $q \in Q$ there exists an essential ideal I of J such that $\{q, I, I\} \subseteq J$.

Indeed, (0.2)(i) implies that $\{q, I, I\} \subseteq(q \circ I) \circ I+\{I, q, I\} \subseteq J$ when I is the intersection of the ideals in (IA1) and (IA2) for the element q. Conversely, if I and L are essential ideals satisfying $U_{I} q+\{q, L, L\} \subseteq J$, then $K:=U_{I \cap L}(I \cap L)$ is an essential ideal of J by [12, 1.2(a)], and (0.2)(ii) yields

$$
\begin{aligned}
q \circ K & =q \circ U_{I \cap L}(I \cap L) \subseteq\{q, I \cap L, I \cap L\} \circ(I \cap L)+(I \cap L) \circ U_{I \cap L} q \\
& \subseteq\{q, L, L\} \circ J+J \circ U_{I} q \subseteq J .
\end{aligned}
$$

2.3. Remark. Notice that any cover Q of J satisfying (IA1) is tight over J, i.e., any nonzero ideal of Q hits J. As a consequence, if J is nondegenerate then Q is also nondegenerate (cf. [9, 2.9 (iii)]). Similarly, J is free of 2-torsion if and only if Q is free of 2-torsion, using tightness, (0.6)(ii), and the obvious fact that $\operatorname{Ker} 2 \operatorname{Id}_{J}=J \cap \operatorname{Ker} 2 \operatorname{Id}_{Q}$.

In the next result we go further in the tightness of Martindale-like covers, in fact of covers just satisfying (IA1).
2.4. Proposition. Let J be a nondegenerate Jordan algebra and Q be a cover of J satisfying (IA1). Then, for any $0 \neq q \in Q$, and any essential ideal L of $J, U_{L} q \neq 0$ and $U_{q} L \neq 0$. If J has not 2-torsion, then also $L \circ q \neq 0$.

Proof. Given $0 \neq q \in Q$, let I be an essential ideal of J such that $0 \neq U_{I} q \subseteq J$, so that we can take $x \in I$ such that $0 \neq U_{x} q$. For any essential ideal L of $J, 0 \neq U_{U_{x} q} L$ since $\operatorname{Ann}_{J}(L)=0$. But $U_{U_{x} q} L=U_{x} U_{q} U_{x} L$ (by (0.2)(iii)) $\subseteq U_{x} U_{q} L$, which implies $U_{q} L \neq 0$.

If $U_{L} q=0$, then $U_{L[t]} q=0$ in the algebra $Q[t]$ of polynomials over Q. Notice that Q is nondegenerate by (2.3), which readily implies that $Q[t]$ is also nondegenerate. For any $h \in L[t]$, let $a:=U_{h} U_{q} h \in Q[t]$. By (0.2)(iii),

$$
U_{a} Q[t]=U_{h} U_{q} U_{h} U_{q} U_{h} Q[t]=U_{U_{h} q} U_{q} U_{h} Q[t]=0
$$

since $U_{h} q=0$, hence $a=0$ by nondegeneracy. For $x, y \in L$, the coefficient of t in $U_{x+t y} U_{q}(x+t y)$ is $U_{x} U_{q} y+U_{x, y} U_{q} x$, which is then zero. But, on the other hand, $U_{x, y} U_{q} x=$ $\left\{U_{x} q, q, y\right\}$ (by $\left.(0.2)(\mathrm{iv})\right)=0$, hence we obtain $U_{L} U_{q} L=0$. Fixing any $x \in L$ such that $U_{q} x \neq 0$, we then have $0 \neq U_{U_{q} x} L=U_{q} U_{x} U_{q} L \subseteq U_{q} U_{L} U_{q} L$, which contradicts $U_{L} U_{q} L=0$. This shows $U_{L} q \neq 0$.

Finally, in case J has not 2-torsion, $0 \neq 2 U_{L} q \subseteq L \circ(L \circ q)+L^{2} \circ q$ (by (0.2)(v)) $\subseteq L \circ$ $(L \circ q)+L \circ q$ implies $L \circ q \neq 0$.

As a consequence, we can choose a single ideal to nontrivially absorb any given finite set of elements in the cover.
2.5. Corollary. Let J be a nondegenerate Jordan algebra and Q be a cover of J satisfying (IA1). Given a finite set q_{1}, \ldots, q_{n} of nonzero elements in Q, there exists an essential ideal I of J such that $0 \neq U_{I} q_{i} \subseteq J$, for all $i=1, \ldots, n$.

If Q also satisfies (IA2) and/or (IA3), then the ideal I above can also be assumed to satisfy $I \circ q_{i}+\left\{q_{i}, I, I\right\} \subseteq J$ (with $0 \neq I \circ q_{i}$ in case J has not 2 -torsion), and/or $0 \neq U_{q_{i}} I \subseteq J$, respectively, for all $i=1, \ldots, n$.

Proof. Apply (2.4) and (2.2) together with the fact that the finite intersection of essential ideals is also essential.
2.6. If J is a nondegenerate Jordan algebra without 2-torsion, a cover Q of J is a Martindalelike cover of J if and only if for any $0 \neq q \in Q$ there exists an essential ideal I of J such that $0 \neq I \circ q \subseteq J$ (when $1 / 2 \in \Phi$, this just amounts to saying that Q is a Jordan algebra of Martindale-like quotients of J with respect to the filter of all essential ideals of J in the sense of [4, 5.1]).

Indeed, a Martindale-like cover of J satisfies (IA2) and, moreover, $I \circ q \neq 0$ for any $0 \neq q \in Q$ by (2.4) in the absence of 2-torsion. Conversely, assume that, for any $0 \neq q \in Q$, there exists an essential ideal I of J such that $0 \neq I \circ q \subseteq J$. Clearly, $M:=2 I$ is an essential ideal of J and

$$
\begin{aligned}
U_{M} q & =2\left(2 U_{I} q\right) \subseteq 2\left(I \circ(I \circ q)+I^{2} \circ q\right) \quad(\text { by }(0.2)(\mathrm{v})) \\
& \subseteq I \circ J+I \circ q \subseteq J
\end{aligned}
$$

Moreover, for $x \in I$ such that $x \circ q \neq 0$, we have, by sturdiness of I (cf. (0.4)),

$$
\begin{aligned}
0 & \neq U_{I}(x \circ q) \subseteq\{I \circ x, q, I\}+x \circ U_{I} q \quad(\text { by }(0.2)(v i i)) \\
& \subseteq U_{I} q+x \circ U_{I} q
\end{aligned}
$$

which implies $U_{I} q \neq 0$, hence $0 \neq 4 U_{I} q=U_{M} q$, and we have established (IA1).
Furthermore, $M \circ q \subseteq J$, and $\{q, M, M\} \subseteq J$ as in the proof of (2.2). We now just need to show (IA3). Let L be an essential ideal of J such that $q^{2} \circ L \subseteq J$, and let $K:=U_{M} M \cap L$, which is an essential ideal of J by [12, 1.2(a)], and we will show $U_{q} 2 K \subseteq J$. First, $q \circ U_{M} M \subseteq M$: for any $x, y \in M$,

$$
\begin{aligned}
q \circ U_{x} y & =\{q, x, y\} \circ x-y \circ U_{x} q \quad(\text { by }(0.2)(\mathrm{iii})) \\
& \subseteq\{q, M, M\} \circ M+M \circ U_{M} q \subseteq J \circ M \subseteq M
\end{aligned}
$$

Thus, by $(0.2)(\mathrm{v}), U_{q} 2 K=2 U_{q} K \subseteq q \circ(q \circ K)+q^{2} \circ K \subseteq q \circ\left(q \circ U_{M} M\right)+q^{2} \circ L \subseteq q \circ M+$ $q^{2} \circ L \subseteq J$.

3. Center inheritance in Martindale-like covers

The proof of the next result is just the quadratic version of the proof of [1, 4.1]. In the generalization a factor 2 comes out.
3.1. Lemma. Let J be a nondegenerate Jordan algebra, Q be a cover of J satisfying (IA1) and (IA2), and $z \in C(J)$. Then, $2 z \circ(p \circ q)=2(z \circ p) \circ q$, for any $p, q \in Q$, i.e., $2 V_{z} V_{q}=2 V_{q} V_{z}$, for any $q \in Q$.

Proof. (I) For any $q \in Q$ and any $x \in J$ such that $x \circ q \in J, z \circ(x \circ q)=(z \circ x) \circ q$:
Use (2.5) to find an essential ideal I of J such that $U_{I} q+\{q, I, I\} \subseteq J$. For any $y_{1}, y_{2} \in I$, and $t \in \hat{J}$,

$$
\begin{align*}
\left\{z \circ t, q, U_{y_{1}} y_{2}\right\} & =\left\{z \circ t,\left\{q, y_{1}, y_{2}\right\}, y_{1}\right\}-\left\{z \circ t, y_{2}, U_{y_{1}} q\right\} \quad(\text { by }(0.2)(\mathrm{vi})) \\
& =z \circ\left\{t,\left\{q, y_{1}, y_{2}\right\}, y_{1}\right\}-z \circ\left\{t, y_{2}, U_{y_{1}} q\right\} \\
& =z \circ\left\{t, q, U_{y_{1}} y_{2}\right\} \quad(\text { by }(0.2)(\mathrm{vi})) \tag{1}
\end{align*}
$$

since $\left\{q, y_{1}, y_{2}\right\}, U_{y_{1}} q \in J, z \in C(J)$, and $C(J) \subseteq C(\hat{J})$ [3, Corollary 1]. Now, if $K:=U_{I} I$ and $y \in K$,

$$
\begin{aligned}
U_{y}((z \circ x) \circ q) & =\{y \circ(z \circ x), q, y\}-(z \circ x) \circ U_{y} q \quad(\text { by }(0.2)(\mathrm{vii})) \\
& =\{z \circ(y \circ x), q, y\}-z \circ\left(x \circ U_{y} q\right) \quad\left(\text { since } x, y, U_{y} q \in J, z \in C(J)\right) \\
& =z \circ\{y \circ x, q, y\}-z \circ\left(x \circ U_{y} q\right) \quad(\text { by }(1)) \\
& =z \circ\left(U_{y}(x \circ q)\right) \quad(\text { by }(0.2)(\text { vii })) \\
& =U_{y}(z \circ(x \circ q))
\end{aligned}
$$

since $y, x \circ q \in J$ and $z \in C(J)$. We have shown that $U_{K}((z \circ x) \circ q-z \circ(x \circ q))=0$, which implies $(z \circ x) \circ q-z \circ(x \circ q)=0$ by (2.4) since K is an essential ideal of J by [12, 1.2(a)].
(II) Let $q \in Q$, and I be an essential ideal of J satisfying $I \circ q+U_{I} q+\{q, I, I\} \subseteq J$, that can be found by (2.5). Then $(z \circ q) \circ x=z \circ(q \circ x)$ for any $x \in U_{I} I$:

$$
\begin{aligned}
(z \circ q) \circ x & =2\{z, q, x\}-z \circ(q \circ x)+(z \circ x) \circ q \quad(\text { by linearized }(0.2)(\mathrm{v})) \\
& =2\{z, q, x\} \quad(\text { by }(\mathrm{I})) \\
& =\{z \circ 1, q, x\} \\
& =z \circ\{1, q, x\} \quad(\text { by }(1)) \\
& =z \circ(q \circ x) .
\end{aligned}
$$

(III) For any $p, q \in Q, 2(z \circ p) \circ q=2 z \circ(p \circ q)$:

By (2.5), we can find an essential ideal I of J such that $I \circ p+U_{I} p+\{p, I, I\}+I \circ q+$ $U_{I} q+\{q, I, I\}+I \circ(p \circ q)+U_{I}(p \circ q)+\{p \circ q, I, I\} \subseteq J$. Let $K:=U_{I} I$ and $L:=U_{K} K$. Notice that

$$
\begin{equation*}
U_{L} q \subseteq K \tag{2}
\end{equation*}
$$

Indeed, $U_{L} q$ is spanned by elements of the form $U_{U_{a} b} q$ and $\left\{U_{a^{\prime}} b^{\prime}, q, U_{a} b\right\}$, where $a, b, a^{\prime}, b^{\prime} \in$ K, and

$$
\begin{aligned}
U_{U_{a} b} q & =U_{a} U_{b} U_{a} q \quad(\text { by }(0.2)(\mathrm{iii})) \\
& \subseteq U_{K} U_{K} U_{I} q \subseteq U_{K} U_{K} J \subseteq K,
\end{aligned}
$$

whereas

$$
\begin{aligned}
\left\{U_{a^{\prime}} b^{\prime}, q, U_{a} b\right\} & \subseteq\left\{K, q, U_{a} b\right\} \subseteq\{K,\{q, a, b\}, a\}+\left\{K, b, U_{a} q\right\} \quad(\text { by }(0.2)(\mathrm{vi})) \\
& \subseteq\{K,\{q, I, I\}, K\}+\left\{K, K, U_{I} q\right\} \subseteq\{K, J, K\}+\{K, K, J\} \subseteq K
\end{aligned}
$$

Now, for any $y \in L$,

$$
\begin{aligned}
U_{y}(2(z \circ p) \circ q) & =2\left[\{y \circ(z \circ p), q, y\}-(z \circ p) \circ U_{y} q\right] \quad(\text { by }(0.2)(\text { vii })) \\
& =2\left[\{z \circ(y \circ p), q, y\}-z \circ\left(p \circ U_{y} q\right)\right] \quad\left(\text { by (II) since } y, U_{y} q \in K\right. \text { by (2)) } \\
& =2\left[z \circ\{y \circ p, q, y\}-z \circ\left(p \circ U_{y} q\right)\right] \quad(\text { by (1) since } y \circ p \in J \text { and } y \in K) \\
& =2 z \circ U_{y}(p \circ q) \quad(\text { by }(0.2)(\mathrm{vii})) \\
& =z \circ\left[(y \circ(p \circ q)) \circ y-y^{2} \circ(p \circ q)\right] \quad(\text { by }(0.2)(\mathrm{v})) \\
& =\left[(y \circ(z \circ(p \circ q))) \circ y-y^{2} \circ(z \circ(p \circ q))\right] \quad(\text { by (II) }) \\
& =2 U_{y}(z \circ(p \circ q)) \quad(\text { by }(0.2)(\mathrm{v})) \\
& =U_{y}(2 z \circ(p \circ q)) .
\end{aligned}
$$

We have shown $U_{L}(2(z \circ p) \circ q-2 z \circ(p \circ q))=0$, which implies $2(z \circ p) \circ q-2 z \circ(p \circ q)=0$ by (2.4), since L is an essential ideal of J by [12, 1.2(a)].
3.2. Theorem. Let J be a nondegenerate Jordan algebra, Q be a cover of J satisfying (IA1) and (IA2), and $z \in C(J)$. Then,

$$
2 c_{i}(z, Q, Q)=0, \quad \text { for } i=1,2,3,5,6,8 \quad \text { and } \quad 2 c_{i}(z, Q)=0, \quad \text { for } i=4,7,9 .
$$

Proof. By (1.1), it is enough to prove $2^{n} c_{i}(z, Q, \ldots)=0$ for some positive integer n. On the other hand, we claim that, for any $c_{i}, i=1, \ldots, 9$, there exists a positive integer n such that $2^{n} c_{i}$ can be expressed in terms of 2 times "o-products." As an example, for $p, q \in Q$, using (0.2)(v) yields

$$
\begin{aligned}
8 c_{3}(z, p, q)= & 8\left[U_{z \circ p} q-z \circ\left(z \circ U_{p} q\right)\right] \\
= & 4\left[(z \circ p) \circ((z \circ p) \circ q)-(z \circ p)^{2} \circ q-z \circ\left(z \circ\left[p \circ(p \circ q)-p^{2} \circ q\right]\right)\right] \\
= & 2[2(z \circ p) \circ((z \circ p) \circ q)-[(z \circ p) \circ(z \circ p)] \circ q \\
& -z \circ(z \circ[2 p \circ(p \circ q)-(p \circ p) \circ q])] .
\end{aligned}
$$

Now, our result follows from (3.1).
The above result is enough to obtain a generalization of [1, 4.1] for 2-torsion free Jordan algebras.
3.3. Corollary. Let J be a nondegenerate Jordan algebra without 2 -torsion, Q be a cover of J satisfying (IA1) and (IA2). Then, $C(J) \subseteq C(Q)$.

Proof. Use (0.7), (3.2), and the fact that Q has not 2-torsion by (2.3).
3.4. Corollary. Let J be a nondegenerate Jordan algebra, Q be a cover of J satisfying (IA1) and (IA2). Then, $2 C(J) \subseteq C(Q)$.

Proof. For any $z \in C(J)$, and any $i=1, \ldots, 7, c_{i}(2 z, Q, \ldots)=2^{k} c_{i}(z, Q, \ldots)$ (for some positive integer k) $=0$ by (3.2), hence $2 z \in C(Q)$ by (0.7).

In order to extend (3.3) to the general quadratic case we will proceed in two steps. In the first one we will study the centrality in Q of the operator V_{z} for a central element of J, and show that only conditions (IA1) and (IA2) are needed. Our first result is the natural generalization of [3, Corollary 2].
3.5. Lemma. In a nondegenerate Jordan algebra $J, C(J) \circ \operatorname{Ker} 2 \operatorname{Id}_{J}=0$.

Proof. Let $z \in C(J), x \in \operatorname{Ker} 2 \operatorname{Id}_{J}$, and $y \in J$. By (0.2)(viii),

$$
\begin{aligned}
U_{z \circ x} y & =U_{z} U_{x} y+U_{x} U_{z} y+z \circ U_{x}(y \circ z)-\left\{U_{z} x, y, x\right\} \\
& =2 U_{z} U_{x} y+(z \circ z) \circ U_{x} y-2 U_{z} U_{x} y=2 z^{2} \circ U_{x} y \in 2 J .
\end{aligned}
$$

But $4 U_{z \circ x} y=U_{z \circ 2 x} y=0$, hence $U_{z \circ x} y=0$ by (1.1). We have shown $U_{z \circ x} J=0$, hence $z \circ x=0$ by nondegeneracy.

The next two results are meant to "lift" (3.5) to covers satisfying (IA1).
3.6. Lemma. If J is a nondegenerate Jordan algebra and Q is a cover of J satisfying (IA1), then $C(J) \circ \operatorname{Ker} 2 \operatorname{Id}_{Q}=0$.

Proof. Let $z \in C(J), q \in \operatorname{Ker} 2 \operatorname{Id}_{Q}$, and let I be an essential ideal of J such that $U_{I} q \subseteq J$. Notice that $L:=I \cap\left(2 J+\operatorname{Ker} 2 \operatorname{Id}_{J}\right)$ is an essential ideal of J by (0.6)(iii). For any $y \in L$, using (0.2)(vii),

$$
U_{y}(z \circ q)=\{y \circ z, q, y\}-z \circ U_{y} q .
$$

But writing $y=2 a+b$ for $a \in J, b \in \operatorname{Ker} 2 \operatorname{Id}_{J},\{y \circ z, q, y\}=\{2 a \circ z, q, y\}+\{b \circ z, q, y\}=$ $\{a \circ z, 2 q, y\}$ (since $b \circ z=0$ by (3.5)) $=0$ since $q \in \operatorname{Ker} 2 \operatorname{Id}_{Q}$. On the other hand, $2 U_{y} q=$ $U_{y} 2 q=0$, hence $U_{y} q \in J \cap \operatorname{Ker} 2 \operatorname{Id}_{Q}=\operatorname{Ker} 2 \operatorname{Id}_{J}$, so that $z \circ U_{y} q=0$ by (3.5). We have shown $U_{L}(z \circ q)=0$, which implies $z \circ q=0$ by (2.4).
3.7. Lemma. If J is a nondegenerate Jordan algebra and Q is a cover of J satisfying (IA1), then $C(J) \circ Q \subseteq \mathrm{Ann}_{Q}\left(\operatorname{Ker} 2 \mathrm{Id}_{Q}\right)$.

Proof. Let $z \in C(J), p \in \operatorname{Ker} 2 \operatorname{Id}_{Q}$, and $q \in Q$. By (0.2)(vii),

$$
U_{p}(z \circ q)=\{p \circ z, q, p\}-z \circ U_{p} q=0
$$

by (3.6) since $p, U_{p} q \in \operatorname{Ker} 2 \operatorname{Id}_{Q}$. This shows $z \circ q \in \operatorname{Ann}_{Q}\left(\operatorname{Ker} 2 \operatorname{Id}_{Q}\right)$ (cf. (0.4) since Q is nondegenerate by (2.3)).
3.8. Theorem. If J is a nondegenerate Jordan algebra and Q is a cover of J satisfying (IA1) and (IA2), then $V_{z} \in \Gamma(Q)$ for any $z \in C(J)$, equivalently,

$$
c_{1}(z, Q, Q)=c_{2}(z, Q, Q)=c_{3}(z, Q, Q)=c_{4}(z, Q)=0 .
$$

Proof. Notice that, $c_{1}(z, Q, Q), c_{2}(z, Q, Q), c_{3}(z, Q, Q), c_{4}(z, Q)$ are contained in $\operatorname{Ann}_{Q}\left(\operatorname{Ker} 2 \mathrm{Id}_{Q}\right)$ by (3.7), since they lie in the ideal of Q generated by $z \circ Q$. Now, the result follows by using (3.2) and (1.1).
3.9. Theorem. Let J be a nondegenerate Jordan algebra, Q be a cover of J satisfying (IA1) and (IA2), and $z \in C(J)$. Then
(i) $\{z, p, q\}=\{z, q, p\}=\{p, z, q\}$, for any $p, q \in Q$,
(ii) $c_{6}(z, Q, Q)=c_{7}(z, Q)=c_{9}(z, Q)=0$.

Proof. (i) By (0.2)(i) and (3.8),

$$
\begin{aligned}
& \{z, p, q\}=-\{p, z, q\}+(p \circ z) \circ q=-\{p, z, q\}+p \circ(z \circ q)=\{z, q, p\}, \quad \text { and } \\
& \{z, p, q\}=-\{z, q, p\}+(p \circ q) \circ z=-\{z, q, p\}+p \circ(q \circ z)=\{p, z, q\} .
\end{aligned}
$$

(ii) If $c_{9}(z, Q)=0$ then, for any $p \in Q$,

$$
c_{7}(z, p)=\left(U_{z} p\right)^{2}-U_{z}^{2} p^{2}=\left(U_{z} p\right)^{2}-U_{z} U_{p} z^{2}=0
$$

by (0.2)(ix). Thus we will show $c_{6}(z, Q, Q)=c_{9}(z, Q)=0$, and we just need to prove that $c_{6}(z, Q, Q), c_{9}(z, Q) \subseteq \operatorname{Ann}_{Q}\left(\operatorname{Ker} 2 \operatorname{Id}_{Q}\right)$ by (3.2) and (1.1). For any $p, q \in Q, y \in \operatorname{Ker} 2 \operatorname{Id}_{Q}$,

$$
\begin{aligned}
U_{y} c_{6}(z, p, q) & =U_{y}\left(U_{z}(p \circ q)-p \circ U_{z} q\right) \\
& =U_{y}\left(U_{z}(p \circ q)+p \circ U_{z} q\right) \quad(\text { by }(1.2) \text { since } Q \text { is nondegenerate by }(2.3)) \\
& =U_{y}(\{z \circ p, q, z\}) \quad(\text { by }(0.2)(\text { vii })) \\
& =0
\end{aligned}
$$

since $z \circ p \in \operatorname{Ann}_{Q}(\operatorname{Ker} 2 \operatorname{Id} Q)\left(\right.$ by (3.7)) implies $\{z \circ p, q, z\} \in \operatorname{Ann}_{Q}\left(\operatorname{Ker} 2 \operatorname{Id}_{Q}\right)$. Also

$$
\begin{aligned}
U_{y} c_{9}(z, p) & =U_{y}\left(U_{z} p^{2}-U_{p} z^{2}\right) \\
& =U_{y}\left(U_{z} p^{2}+U_{p} z^{2}\right) \quad(\text { by }(1.2) \text { since } Q \text { is nondegenerate by }(2.3)) \\
& =U_{y}\left((z \circ p)^{2}-z \circ U_{p} z\right) \quad(\text { by }(0.2)(\mathrm{x})) \\
& =0
\end{aligned}
$$

since $z \circ Q \subseteq \operatorname{Ann}_{Q}\left(\operatorname{Ker} 2 \operatorname{Id}_{Q}\right)$ by (3.7).
3.10. Lemma. Let J be a nondegenerate Jordan algebra, Q be a cover of J satisfying (IA1) and (IA2), and $z \in C(J)$. Then

$$
U_{z} U_{p} q=-U_{p} U_{z} q+\left\{U_{z} p, q, p\right\}, \quad \text { for any } p, q \in Q
$$

Proof. Notice that $c_{10}(z, p, q):=U_{z} U_{p} q+U_{p} U_{z} q-\left\{U_{z} p, q, p\right\}=-c_{5}(z, p, q)-c_{8}(z, p, q)$, hence $2 c_{10}(z, p, q)=0$ by (3.2). Using (1.1), we just need to prove $c_{10}(z, Q, Q) \subseteq$ $\operatorname{Ann}_{Q}\left(\operatorname{Ker} 2 \operatorname{Id}_{Q}\right)$. But using (0.2)(viii) yields $c_{10}(z, p, q)=U_{z \circ p} q-z \circ U_{p}(q \circ z) \in$ $\operatorname{Ann}_{Q}\left(\operatorname{Ker} 2 \mathrm{Id}_{Q}\right)$ by (3.7).

Notice that, up to now, only the outer ideal absorption properties have been needed. The next results, aimed at studying the centrality of U_{z}, will make explicit use of inner ideal absorption.
3.11. Lemma. Let J be a nondegenerate Jordan algebra, Q be a Martindale-like cover of J, and $z \in C(J)$. Then $c_{5}(z, J, Q)=0$.

Proof. Let $x \in J, q \in Q$, and I be an essential ideal of J such that $U_{q} I \subseteq J, U_{I}\left(U_{z} U_{x} q\right) \subseteq J$, and $U_{I}\left(U_{x} U_{z} q\right) \subseteq J$, which exists by (2.5). For any $y \in I, a \in J$,

$$
\begin{aligned}
U_{U_{y} U_{z} U_{x} q} a & =U_{y} U_{z} U_{x} U_{q} U_{x} U_{z} U_{y} a \quad \text { (by (0.2)(iii)) } \\
& \left.=U_{y} U_{x} U_{z} U_{q} U_{x} U_{z} U_{y} a \quad \text { (since } U_{q} U_{x} U_{z} U_{y} a \subseteq U_{q} I \subseteq J, \text { and } U_{z} \in \Gamma(J)\right) \\
& \left.=U_{y} U_{x} U_{z} U_{q} U_{z} U_{x} U_{y} a \quad \text { (since } U_{y} a \in J, \text { and } U_{z} \in \Gamma(J)\right) \\
& =U_{U_{y} U_{x} U_{z} q} a \quad(\text { by }(0.2)(\text { iii) }) .
\end{aligned}
$$

By (1.3), we have $U_{y} c_{5}(z, x, q)=U_{y} U_{z} U_{x} q-U_{y} U_{x} U_{z} q \in \operatorname{Ann}_{J}\left(\operatorname{Ker}_{2} \operatorname{Id}_{J}\right)$. But $2 U_{y} c_{5}(z, x$, $q)=U_{y} 2 c_{5}(z, x, q)=0$ by (3.2), hence $U_{y} c_{5}(z, x, q)=0$ by (1.1).

We have shown that $U_{I} c_{5}(z, x, q)=0$, which implies $c_{5}(z, x, q)=0$ by (2.4).
3.12. Lemma. Let J be a nondegenerate Jordan algebra, Q be a Martindale-like cover of J, and $z \in C(J)$. Then, for any $x, y \in J, q \in Q$,
(i) $\left\{U_{z} x, q, x\right\}=2 U_{z} U_{x} q \in 2 Q$, so that $\left\{U_{z} x, q, x\right\} \in \operatorname{Ann}_{Q}\left(\operatorname{Ker} 2 \operatorname{Id}_{Q}\right)$,
(ii) $\left\{U_{z} x, q, y\right\}+\left\{x, q, U_{z} y\right\} \in \operatorname{Ann}_{Q}\left(\operatorname{Ker} 2 \operatorname{Id}_{Q}\right)$.

Proof. By (3.10), $U_{z} U_{x} q=-U_{x} U_{z} q+\left\{U_{z} x, q, x\right\}$, which implies (i) using (3.11), (2.3), and (1.2), whereas (ii) follows by linearizing (i).
3.13. Lemma. Let J be a nondegenerate Jordan algebra, Q be a Martindale-like cover of J, $z \in C(J), q \in Q$, and I be an essential ideal of J such that $U_{q} I+U_{I} q \subseteq J$. Then,

$$
\left\{U_{z} q, y, q\right\}=2 U_{z} U_{q} y \in 2 Q, \quad \text { so that }\left\{U_{z} q, y, q\right\} \in \operatorname{Ann}_{Q}\left(\operatorname{Ker} 2 \operatorname{Id}_{Q}\right)
$$

for any $y \in I$.
Proof. For any $x \in I, u \in \operatorname{Ker} 2 \operatorname{Id}_{Q}$,

$$
\begin{aligned}
U_{u} U_{x}\left\{U_{z} q, y, q\right\} & =U_{u}\left[\left\{x, U_{z} q,\{y, q, x\}\right\}-\left\{U_{x} U_{z} q, q, y\right\}\right] \quad(\text { by }(0.2)(\text { xiv })) \\
& =U_{u}\left[U_{z}\{x, q,\{y, q, x\}\}-\left\{U_{z} U_{x} q, q, y\right\}\right]
\end{aligned}
$$

(by applying (3.11) to both terms since $\{y, q, x\} \in U_{I} q \subseteq J$)

$$
\begin{aligned}
= & U_{u}\left[U_{z}\{x, q,\{y, q, x\}\}-\left\{U_{x} q, q, U_{z} y\right\}\right] \\
& \left(\text { by } (3 . 1 2) \left(\text { ii) since } U_{x} q \in U_{I} q \subseteq J,\right.\right. \text { and (1.2)) } \\
= & \left.U_{u}\left[U_{z}\{x, q,\{y, q, x\}\}-\left\{x, U_{q} x, U_{z} y\right\}\right] \quad \text { (by (0.2)(iv) }\right) \\
= & U_{u}\left[U_{z}\{x, q,\{y, q, x\}\}-U_{z}\left\{x, U_{q} x, y\right\}\right] \\
& \left(\text { since } U_{q} x \in U_{q} I \subseteq J \text { and } U_{z} \in \Gamma(J)\right) \\
= & U_{u}\left[U_{z}\{x, q,\{y, q, x\}\}-U_{z}\left\{U_{x} q, q, y\right\}\right] \quad(\text { by }(0.2)(\text { iv })) \\
= & U_{u} U_{z} U_{x}\{q, y, q\} \quad(\text { by }(0.2)(\text { xiv })) \\
= & U_{u} 2 U_{z} U_{x} U_{q} y=0
\end{aligned}
$$

by (1.2). Also $U_{u} U_{x} 2 U_{z} U_{q} y=0$ by (1.2), hence we have shown

$$
U_{I} c_{8}(z, q, y)=U_{I}\left[\left\{U_{z} q, y, q\right\}-2 U_{z} U_{q} y\right] \subseteq \operatorname{Ann}_{Q}\left(\operatorname{Ker} 2 \operatorname{Id}_{Q}\right) .
$$

But $2 U_{I} c_{8}(z, q, y)=U_{I} 2 c_{8}(z, q, y)=0$ by (3.2), so that $U_{I} c_{8}(z, q, y)=0$ by (1.1). Therefore $c_{8}(z, q, y)=0$ by (2.4), i.e., $\left\{U_{z} q, y, q\right\}=2 U_{z} U_{q} y$.
3.14. Lemma. Let J be a nondegenerate Jordan algebra, Q be a Martindale-like cover of J, $z \in C(J), q \in Q$, and I be an essential ideal of J such that $U_{q} I+U_{I} q \subseteq J$. Then, for any $y \in I, c_{5}(z, q, y)=0$.

Proof. By (3.10), $U_{q} U_{z} y=-U_{z} U_{q} y+\left\{U_{z} q, y, q\right\}=U_{z} U_{q} y$ using (3.13).
3.15. Proposition. Let J be a nondegenerate Jordan algebra, Q be a Martindale-like cover of J, and $z \in C(J)$. Then $c_{5}(z, Q, Q)=0$.

Proof. Let $p, q \in Q$ and I be an essential ideal of J such that $U_{I} q+\{q, I, I\}+U_{I} p+U_{p} I \subseteq J$, which exists by (2.5). If we take $K:=U_{I} I$, we also have that K is an essential ideal of J [12, 1.2(a)], and $U_{K} q \subseteq I$, as in (III)(2) of the proof of (3.1).

For any $x \in K$,

$$
\begin{aligned}
U_{x} U_{z} U_{p} q= & U_{\{p, z, x\}} q-U_{p} U_{z} U_{x} q-\left\{p, z, U_{x}\{z, p, q\}\right\}+\left\{U_{p} U_{z} x, q, x\right\} \\
= & U_{\{z, p, x\}} q-U_{z} U_{p} U_{x} q-\left\{z, p, U_{x}\{p, z, q\}\right\}+\left\{U_{z} U_{p} x, q, x\right\} \\
& \left(\text { by (3.9)(i) and (3.14) since } U_{x} q \in I\right) \\
= & U_{x} U_{p} U_{z} q
\end{aligned}
$$

using again (0.2)(xi). We have shown that $U_{K} c_{5}(z, p, q)=0$, which implies that $c_{5}(z, p, q)=0$ by (2.4).
3.16. Theorem. Let J be a nondegenerate Jordan algebra, Q be a Martindale-like cover of J. Then $C(J) \subseteq C(Q)$.

Proof. Put together (3.8), (3.9)(ii), and (3.15), and use (0.7).

References

[1] J.A. Anquela, E. García, M. Gómez-Lozano, Maximal algebras of Martindale-like quotients of strongly prime linear Jordan algebras, J. Algebra 280 (2004) 367-383.
[2] A. Fernández-López, E. García-Rus, F. Montaner, Goldie theory for Jordan algebras, J. Algebra 248 (2002) 397471.
[3] B. Fulgham, The scalar center for quadratic Jordan algebras, Comm. Algebra 32 (2004) 879-893.
[4] E. García, M. Gómez-Lozano, Jordan systems of Martindale-like quotients, J. Pure Appl. Algebra 194 (1-2) (2004) 127-145.
[5] N. Jacobson, Structure Theory of Jordan Algebras, Lecture Notes in Math., University of Arkansas, Fayetteville, 1981.
[6] R. Lewand, K. McCrimmon, Macdonald's theorem for quadratic Jordan algebras, Pacific J. Math. 35 (1970) 681707.
[7] O. Loos, Jordan Pairs, Lecture Notes in Math., vol. 460, Springer-Verlag, Berlin, 1975.
[8] K. McCrimmon, Strong prime inheritance in Jordan systems, Algebras Groups Geom. 1 (1984) 217-234.
[9] K. McCrimmon, A characterization of the nondegenerate radical in quadratic Jordan triple systems, Algebras Groups Geom. 4 (1987) 145-164.
[10] K. McCrimmon, Jordan centroids, Comm. Algebra 27 (1999) 933-954.
[11] K. McCrimmon, E. Zelmanov, The structure of strongly prime quadratic Jordan algebras, Adv. Math. 69 (1988) 133-222.
[12] F. Montaner, Local PI-theory of Jordan systems II, J. Algebra 241 (2001) 473-514.

[^0]: * Corresponding author.

 E-mail addresses: anque@orion.ciencias.uniovi.es (J.A. Anquela), cortes@orion.ciencias.uniovi.es (T. Cortés), esther.garcia@urjc.es (E. García), magomez@agt.cie.uma.es (M. Gómez-Lozano).
 ${ }^{1}$ Partly supported by the Ministerio de Educación y Ciencia and Fondos FEDER, MTM2004-06580-C02-01.
 2 Partly supported by the Plan de Investigación del Principado de Asturias, FICYT IB05-017.
 ${ }^{3}$ Partly supported by the Ministerio de Educación y Ciencia and Fondos FEDER, MTM2004-03845, and the Junta de Andalucía, FQM-264.

