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Abstract 

The centipede game is one of the clearest examples of the paradox of backward 

induction. Such paradox happens when, in a sequential game, the unique perfect Nash 

equilibrium prediction implies a very counterintuitive play. Experimental tests of the 

centipede games confirm this contradiction: individuals do not follow the subgame 

perfect equilibrium prediction. 

Previous researchers have used examples of the centipede game to give 

possible explanations to the behavior of people in order to solve the paradox, but they 

only have applied it with very particular variations of the centipede game, and without 

providing an exhaustive analysis of the game. 

This paper revisits the centipede game. First, we propose a definition of the 

game. Second, we show that the payoffs can allow for increasing, decreasing or 

constant pattern over the sequential nodes. Third, we sow the subgame perfect 

equilibrium prediction and other alternative solutions. Fourth, we propose how the 

different payoff patterns can be exploited in order to distinguish between alternative 

models that have been proposed in order to explain the non-equilibrium behavior 

observed in the laboratory.  

 

 

 

 

 

 

 

 

 



3 
 

1    Introduction 

Firstly, we need to understand what a centipede game is and how it is 

represented. The first appearance of a centipede game is given by Rosenthal (1981). 

The extensive/form representation of the game can be found in Figure 1. 

 

[Fig.1. Rosenthal centipede game] 

It is a sequential game, decisions by players are not made simultaneously, but 

one player goes after the other. Each circle with a number is a decision node; the 

number in each node represents which player, 1 or 2, chooses an action out of two 

options, take or pass. The numbers in brackets are the payoffs of each possible end of 

the game. The first/upper number is the payoff of player 1, and the second/lower the 

payoff of player 2. In words, the game goes as follows. The first node is for the player 

1, so he starts playing. If he chooses “take” the game is finished, and both players 

receive 0; if player 1 chooses “pass”, the outcome depends on the decision of player 2, 

who can also “take” and finish the game (where player 2 receives 3 and player 1 

obtains -1) or “pass” and give the player 1 an option to choose again. 

The subgame perfect equilibrium of the game is to play “take” in every decision 

node1. By backward induction, in the last node the second player would choose “take”, 

because 11 is a higher payoff than 10. In the previous node, the first player would also 

“take” for the same reason, comparing 8 with 7. Given the payoff structure of the 

sequential game, this reasoning applies to every node, being “always take” the 

subgame equilibrium strategy, which makes (0,0) the equilibrium payoff. 

This prediction is counterintuitive.  

                                                           
1
 We assume, as it is standard in the literature, that individuals have selfish preferences and that they 

are utility maximizers.  
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First, the predicted outcome is not efficient. In this case, every other payoff 

combination in the game, except for (-1,3), is Pareto dominating, such that both 

players are better off.  

Second, and related to the equilibrium payoffs being non-efficient, a player has 

incentives to continue playing, in order to obtain higher payoffs. But, at the same time, 

he has incentives to finish the game before the opponent does, because the outcome 

will be higher. Basically, a player will prefer moving forward the game, but also being 

the one who stops first. If a race of who stop first starts, it will result in stopping in the 

first node. However, the experimental results show that people rarely stop the game in 

the initial stages (see Section 2 for a review). 

In this paper we review both the theoretical and experimental literature dealing 

with the centipede game. Later we propose a general definition of the game and its 

implications. We will see that only a few variations of the game have been explored, 

(increasing and constant sum), but there exist possibilities not considered by the 

literature so far. Finally, we show the potential these different centipede games 

provide to identify the alternative behavioral models that could explain the observed 

non-equilibrium behavior in the centipede game. 

 

2  Literature Review 

Rosenthal presented the centipede game for the first time in 1981. [Fig. 1. 

Rosenthal centipede game]. This paper is about how we should treat perfect 

information sequential games. He says we should treat them like one-player decision 

problems, giving subject probabilities to the possible outcomes in each node. He 

presents the centipede game just as an example of the difficulty that we do not know 

how the other will behave, even if both have chance to gain more qualitative outcome 

moving along the game.  

Note that this centipede game has 10 nodes and the payoffs sum increases in a 

linear way. Rosenthal gave an approach to the idea of possible reasoning: if you 
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believe that your opponent will deviate from the subgame perfect Nash equilibrium, 

maybe it is not the optimal strategy to stop in your first decision node. 

Megiddo (1986) introduce a shorter centipede game with an exponentially 

increasing sum, called “Share or quit”. 

The name of the game (centipede) is due to Binmore (1987), who designed a 

100-moves version of the game. 

Aumman (1988) showed a “Share or quit” version, with a few modifications.  

There are two mounds of money. In the decision node a player can choose the bigger 

one and give the other to the opponent, or pass the mounds. Every time the mounds 

are passed to the other player, they are multiplied by a fixed number. They start with a 

pot of 10,50$, in two mounds, 10$ and 0,50$. Each time they pass the mounts are 

multiplied by 10. The game has 6 decision nodes, 3 for each player. It is a exponential 

increasing game then. 

Aumann (1992) showed how even with a high grade of common knowledge of 

rationality (but not total) it is possible not to end in the very first node. 

McKelvey and Palfrey (1992) were pioneers in test the centipede game 

experimentally. They used a modest version of Aumann’s game in two versions, 4 

nodes and 6 nodes. The initial Pot was 0,50$, in mounds of 0,10$ and 0,40$. The stacks 

were multiplied by 2 each node.  

 

[Fig. 2. Modest version of Aumann’s in 4 nodes] 
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[Fig. 3. Modest version of Aumann’s in 6 nodes] 

The reason to use this game, is that the paradox is more obvious in an 

exponential increasing centipede game. But they reduce the payoffs because the 

amounts of money needed in the final outcomes in the Aumann’s version were too 

high to make a real experiment.  

They observed that the SPE prediction was, indeed, a bad prediction. People 

behaved more like the intuition suggested. 37 of 662 finished in the subgame perfect 

equilibrium outcome. 23 of 662 reach the final node of the game. Most of the people 

ended in the middle of the game, and more often in the outcomes closer to the end. 

They offer some reasonable explanations to that. First of all, there is a lack of 

information in the sense that the subjects do not know if the other is rational or not. 

Also there could be a reputation effect in the game itself, which gives incentives to 

mimic. This happen because in a sequential game you obtain information of the other 

player in form of previous actions. If you have a proof that the other is not rational, 

maybe you should pass too because probably he will not be rational in the future. 

 

[Fig. 4. Empirical results in the modest version of Aumann’s] 

As we move to the end of the game, the probability of choosing “take” 

increase. When the game is repeated, the players end lightly earlier, but they played 

almost in the same way. 
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Aumann (1995) showed how the rationality of the players and common 

knowledge of this rationality is enough to imply the backward induction results in the 

centipede game. Later, Binmore (1996) and Aumann (1996) discussed how this is true 

in the sense of if the action “pass” can be used as a signal even if both are rational and 

know it. 

Fey, McKelvey and Palfrey (1996) introduce a new version of the game for an 

experimental case, a constant-sum one. In this game, the sum of the payoffs in all 

nodes is the same.  

 

[Fig. 5. Constant sum centipede game, 6 nodes version] 

 

[Fig. 6. Constant sum centipede game, 10 nodes version] 

At the beginning, the sum of 3.20$ is split equally. Each following node, a 

quarter part of the little mound is passed to the bigger one. This game was designed to 

eliminate the altruistic explanation to the previous empirical results: there is no gain in 

efficiency or pareto-efficiency along the game.  

Some empirical results were similar to the increase-sum ones. The probability of 

playing take grows as people move to later nodes. Playing the game repeatedly, 

people play the subgame perfect Nash equilibrium more often. The different results 

were that nearly the half of the cases played the equilibrium in the first time playing, 

and they finish in later nodes with lower probability.   
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The model that explained better these constant-sum results was the quantal 

responses equilibrium model. It is a model where people play in the common 

knowledge of rationality way, but it is possible to make mistakes with some 

probability. 

Nagel and Tang (1998) presented this game: 

 

[Fig. 7. Nagel and Tang centipede game: extensive form] 

It is an increasing 12-node centipede game. They presented the game in the 

normal form way. The strategies represented in columns and rows are the node in 

which the player wants to play “take” and stop the game. 
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1 

Take in 

2 

Take in 

4 
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8 

Take in 

10 

Take in 

12 

Always 

pass 

Take in 

1 
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1 
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1 

4 

1 

4 
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1 

4 

1 

4 
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3 
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8 

2 

8 
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8 
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8 
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8 
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Take in 

5 

2 

5 

3 
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16 

4 

16 

4 

16 

4 

16 

4 

16 

4 

Take in 

7 

2 

5 

3 

11 

6 

22 

32 

8 

32 

8 

32 

8 

32 

8 

Take in 

9 

2 

5 

3 

11 

6 

22 

11 

45 

64 

16 

64 

16 

64 

16 

Take in 

11 

2 

5 

3 

11 

6 

22 

11 

45 

22 

90 

128 

32 

128 

32 

Always 

pass 

2 

5 

3 

11 

6 

22 

11 

45 

22 

90 

44 

180 

256 

64 

[Fig. 8. Nagel and Tang centipede game: normal form] 
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The game was tested empirically in this form. To make it close as possible as 

the extensive form, the subjects had only the feedback of the outcome they get. That 

means, they did not know the strategy chosen by the opponent when they stop the 

game before him. 

They get similar results that McKelvey and Palfrey (1992). Most of the subjects 

stop in middle-late nodes (nodes 7, 8, 9, 10, in a game of 12).  One interesting 

conclusion was in the repeated game: people react different depending on what they 

have done in the previous round. If they finished the game stopping before the 

opponent, they tend to pass more in the next one. The opposite if the opponent was 

who stopped first. 

Nagel and Tang explained the results with the altruistic model, where 5% of the 

subjects are altruistic. The altruistics want to get the efficient node (always pass). The 

other subjects are utility maximizers, but they know there is a 5% of altruistics.  

Rapoport (2003) designed a similar game, with the rules of a centipede game, 

but involving 3 players and a different end. 

 

[Fig. 9. 3-players Rapoport game] 

The subgame perfect Nash equilibrium was played 46% of the times, and when 

the game was repeated 60 times, the percentage increased to 75% in the last 5. 

Palacios-Huerta and Volij (2009) experimented with chess players playing the 

centipede game. Chess players are known by their capacity of inductive reasoning. 

They can have in mind lots of possible future actions of the opponent when they make 

a movement. For the experiment, they used a modest version of Aumann’s game 

without decimals: 
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[Fig. 10. Modest version of Aumann’s game without decimals, 4-node version] 

 

[Fig. 11. Modest version of Aumann’s game without decimals, 6-node version] 

The results supported the hypothesis that there are different levels of 

reasoning. When the chess players played against each other, the subgame perfect 

Nash equilibrium outcome was reached 69% of the times. If the player who started the 

game was a grandmaster, was reached a 100% of the times. From the fifth repetition, 

everybody played the equilibrium. 

They also perform the experiment with students. As usual, just a 3% of the 

students played the equilibrium. But if they were playing against chess players (and 

they knew it), the percentage increased to a 30%, showing that this levels of reasoning 

were intuited by the players too. These results show that the (lack of) common 

knowledge of rationality may be one of the reasons behind the discrepancy between 

the theory and experimental results. This supports some kind of analysis of the game 

like level-k. 

A level-k analysis of the game was made by Kawagoe & Takizawa (2010). They 

made an analysis highlighting the importance of determine which strategy should be 

the level 0 in this kind of games. 
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3 Centipede game definition 

A finite sequential game with perfect information and 2 players with the form: 

 

[Fig. 12. Structure of centipede game] 

 

Where, given an arbitrary pair of payoffs X11 and X21: 

                       
         

         

   

Sequential game implies, as mentioned earlier, that players take decisions 

sequentially, after they have observed what the other player has done. Perfect 

information means that all the players know the payoffs and structure of the game. 

More importantly, they always know in which node they are when playing. R refers to 

the number of nodes or rounds of the game, where r refers to the round. 

The player identifiers are i and j which can be in position of player 1 and 2 or 

vice versa.     represents the payoff of the player i in the round r. “In DN for player i” 

means that this condition occurs in the decision node in which player i moves, being j 

the opponent, and being i playing in the role of any player, 1 or 2.  

In each round r, they share a sum   : 

            

Condition 1 (         ) is what gives the incentives to move forward the 

game. Player i’s payoff is always higher if he plays “take” in a later decision node. 

Condition 2 (         ) is what gives the incentives to be the one who stops the 
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game. If the opponent played “take”, j would regret have passed in the previous 

round, because his payoff there would have been higher. 

 

4 Implications 

If Conditions 1 and 2 hold then: 

(a) implication 4.1 

                              

Proof: 

The payoff at the decision node is higher than at the previous one. This is easily 

proven with a transitive relation between the two conditions of the definition: 

                    
         

           

                            

 

(b) implication 4.2 

                                   

Proof: 

By definition: 

           

             
         

         

  

In consequence: 
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The sum of the payoffs of both players in one round is lower than the payoff 

incentive to keep playing of the decider player and the payoff that the opponent 

has sacrificed in the previous round. 

 

(c) Implication 4.3 

The limitation of    does not imply any specific progression of the Sum along 

the game. 

Proof: 

You can always add a new end node with any Sum of your preference. In the 

end node,       does not exist yet. In consequence, if later you continue writing 

the game and reach      , you can make this payoff as high as you want to 

compensate       .  

So, the progression of the Sum along the game is not restricted. We can classify 

the centipede game in types, depending on this progression. 

Increasing Sum: 

        

It is the most common centipede type observed in the literature. Depending on 

the speed of the progression it can be also divided in subcategories: 

 

[Fig. 13. Example of linear increasing sum centipede game] 
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[Fig. 14. Example of exponential increasing sum centipede game] 

 

Constant Sum: 

        

 

[Fig. 15. Example of constant sum centipede game] 

 

Decreasing Sum: 

        

It can also be subdivided depending on the speed of the progression: 

 

[Fig. 16. Example of linear decreasing sum centipede game] 
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[Fig. 17. Example of exponential decreasing sum centipede game] 

 

 Variable sum: 

 

[Fig. 18. Example of exponential decreasing sum centipede game] 

 Note that off among all these possibilities only the increasing and constant 

have been treated in the literature. 

 

5 Predictions 

5.1 Subgame perfect Nash equilibrium 

This is the standard equilibrium solution in sequential games. The Nash 

equilibrium is the set of strategies that satisfy that each payer is best-responding to 

the other. The subgame perfect means that this condition must be satisfied not only in 

the general game, but also in all the subgames of it. The reason of this is to avoid 

incredible threats. The subgame perfect Nash equilibrium in the centipede game is to 

play “take” in every node. Let me show an example with 4 nodes: 
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[Fig. 19. 4-node centipede game] 

Remembering the conditions: 

                       
         

         

  

We obtain the relation between the payoffs: 

 

[Fig. 20. Relations between the payoffs of a 4-node centipede game] 

 

We can solve the game by backward induction: 
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[Fig. 21. Backward induction solving] 

In the last node, the second player must choose between obtain     or    . 

Since the player is utility maximizer and        , he will play “take” in this node. In 

the previous one, player 1 has to choose to take and have     or pass. There is 

common knowledge of rationality, so he knows what player 2 would do if he pass: play 

take. Then he would obtain    . Since        , player 1 will also “take”. We can 

apply this logic to all the nodes and get the subgame perfect Nash equilibrium, where 

the players obtain     and    respectively. 

We can also reach the same conclusion solving the game in normal form. 

 

[Fig. 22. Nash equilibriums in normal form] 
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Each column and row represents the different possible strategies of the 

players. The payoffs are related to each other by the relation signs to make easier spot 

the best response strategies. In circles are marked the best response given the strategy 

played by the opponent. For example, if player 1 plays “Pass in node 1, Pass in node 

3”, the best response of the player 2 is to play “Pass in node 2, Take in node 4”, 

because playing this strategy he obtain    , which is the figher payoff possible. 

We can see that there are 4 spots where both players are playing best response 

strategies at the same time. These are pure strategies Nash equilibriums. Of this four, 

those strategies that imply to play pass in any moment do not satisfy the subgame 

perfect condition. Those that include “pass in node 4” are violating the subgame: 

 

[Fig. 23. Round 4 subgame] 

Because it is not credible that player 2 will behave passing if he reaches this 

node. Those strategies that include player 1 passing in node 3 are also not credible: 

 

[Fig. 24. Round 3 subgame] 
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So, the only subgame perfect equilibrium is both players playing take in every 

round, with the outcome          . This is the result no matter how many nodes the 

centipede game has, and what type is it. 

In fact, there is no need of the SPE concept to reach this result. Aumann (1998) 

proved that common knowledge of rationality, that is, if it is commonly known that the 

players will choose rationally at every decision node that are actually reached, then the 

backward induction outcome results.   

 

5.2 Welfare maximization 

In sharp contrast with the standard selfish preferences assumptions, individuals 

might care about maximizing social welfare. Assume for simplicity that individuals 

weight in the same way their payoff and the other player’s payoffs, such that they are 

maximizing the sum of payoffs (Charness and Rabin, 1999). In our game, this means 

that players will care about the sum,   , independent of how this sum will be split.  

This prediction will critically depend on the pattern along the game of the sum 

of the payoffs (Implication 4.3). In an increasing sum game, by definition, the biggest 

sum is located in the final round of the game. Then, the welfare maximization result is 

the last outcome where everybody has decided to “pass”. In the decreasing sum 

centipede games, the sum will become lower with the rounds: the welfare 

maximization will predict to stop in the very first round, coinciding with the subgame 

perfect equilibrium. The same logic is applied to the constant sum games, where every 

sum is equal and in consequence every round is welfare maximizing, such that 

efficiency will predict any outcome is possible. Finally, in a variable sum centipede 

game, the prediction will be the round where the sum is biggest, which will be unique 

but it could potentially be in any decision node. 
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5.3 Pareto efficiency 

Pareto optimality is a measure of efficiency. An outcome is Pareto optimal if is 

not possible to find other outcome where at least one player is better off, and the rest 

of the players are not worse off.  

Again, Pareto optimality predictions will depend on the type of game, based on 

the increasing/constant/decreasing/variable pattern of the sum.  

First, for any types of the payoff pattern, we can say for sure that the two last 

rounds are Pareto efficient. This is because, by definition, the payoffs of the last two 

rounds have the maximum payoff for one player. In consequence, it is impossible to 

get better payoffs for both players since one is the best for one of them.  

Second, for increasing sum games, we can say nothing about the other rounds. 

It is possible that no other round is Pareto efficient, or just some, or even all of them. 

 

 [Fig. 25. Increasing sum centipede game with only two Pareto efficient rounds] 

  

 

[Fig. 26. Increasing sum centipede game with all rounds Pareto efficient] 
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 If you want to make every round Pareto efficient, you just have to make sure 

that the payoff of the non-decider player is the lower payoff comparing it with the 

previous ones. By definition, the payoff of the decider player is bigger than the 

previous ones. These two things will make all rounds Pareto efficient. It will be 

impossible to have any Pareto improvement because when you have a round with a 

better payoff for one, is worst for the other. 

 Third, with this idea in mind is easy to understand why all rounds are Pareto 

efficient in constant and decreasing sum games. In a constant sum game, the sum does 

not change. In consequence, when we give a higher payoff to the decider player is at 

the expense of lowering the payoff of the opponent. The same logic but even stronger 

is applied to the decreasing sum games. 

 Finally, in the variable sum ones, it depends on the concrete sums that we are 

using. 

 

5.4 Maximin 

 Maximin is a decision rule that maximizes the minimum possible gain at the 

worst case. The result is the same as the Nash equilibrium: “take” in every node. This 

results in ending the game in the first round, independent of the pattern of the sum of 

the payoffs along the sequential nodes.  

 It is easy to see this result in the extensive form. We can use the example of the 

6-node centipede game, represented in Figure 27.  

 

[Fig. 27. 6-node centipede game] 
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[Fig. 28. Relations between the payoffs of a 6-node centipede game] 

Having in mind the payoffs relations of the Figure 28: 

 

[Fig. 29. Maximin prediction of the 6-node centipede game in extensive form] 

Being the player 1: In the last node, the worst for him that the opponent can 

choose is minimize his payoffs. That happen when he plays “take”, and player 1 would 

obtain    . In the previous node, player 1 maximize his payoffs, guessing that his 

opponent would play “take” as we said. That result in play take, because     is higher 

than    . Then, the worst that the opponent can do in the second node is “take” 

because     is lower than    . If we continue this process, in the first node the player 

1 will maximize his own payoff playing “take”. The same logic can be applied to player 

2, with the same result of playing “take” in every node. 

 We can reach the same result in the normal form: 
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[Fig. 30. Maximin prediction of the 6-node centipede game in normal form] 

In the rows and columns are the set of strategies of player 1 and 2. “Take in 

node 3” means all the strategies that content taking in the third node.  The payoffs are 

related to each other by the relation signs to be easier to spot the minimums. The 

question mark means that we do not know the relation between those two payoffs. 

The column and row “MIN” shows the minimum payoff that one player could get, 

given that set of strategies.  

To solve maximin in normal form, we need to detect the minimum payoff of 

each set of strategies. Then, spot the maximum payoff of all those minimum payoffs. 

Doing this, we maximize the minimum payoff, in case that the opponent plays in the 

worst possible way. 

The “MIN” column shows us the minimum payoffs for each player 1 set of 

strategies. In the last two set of strategies there are more than one payoff. That is 

because we do not know which of these is lower, it can be anyone. So, ¿how is possible 

to know that    is the highest?. Well, let us look for some cases. 
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 In case that            , the minimum in “Take in node 5” is     and 

the minimum in “Always pass” is    . The bigger of the three is     and since 

       , the maximin is    .  

In case that            , the minimum in “Take in node 5” and “Always 

pass” is      Since        , the maximin is    .  

It is always the same for every combination, and no matter how many nodes 

are. The same logic applies for the player 2. 

 

6 Conclusion 

 In this paper we have first reviewed the literature, both theoretical and 

experimental, of the centipede game. Second, we have defined the game, proposing a 

characterization of the payoff structure that defines the centipede game. Despite the 

game being an object of study in several papers, only a limited number of possible 

versions of the centipede game have been studied, in particular, those with increasing 

and constant sums. Third, and more importantly, we have identified not only subgame 

perfect equilibrium predictions but also other alternative solutions, such as welfare 

maximizing equilibrium predictions, which crucially depend on the evolution of the 

sum along the sequential games. We now finish this critical review pointing out how 

different types of centipede games, in particular 

increasing/constant/decreasing/variable sum centipede games, could be potentially 

used to identify alternative hypothesis about the non-equilibrium behavior in the 

centipede game.  

As an example, we could propose the following three alternative centipede 

games:  
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[Fig. 31. Different types of centipede game with same payoffs for player 1] 

Giving equal payoffs to the player 1, we can modify other aspects of the game 

in order to see the change in his behavior. In the case of figure 31, just the payoffs of 

the opponent and the sum structure of the game are changed. These three centipede 

games offer the opportunity to sharply distinguish between subgame perfect 

equilibrium and welfare maximizing (efficiency) predictions. The former does not 

depend on whether the sum of the payoffs is increasing/constant/decreasing, while 

the latter does.  

Another example: Kawagoe and Takizawa (2010) made a level-k analysis of the 

centipede game. Level-k model is a non-equilibrium theory of initial responses of players 

that takes into account other players’ strategic thinking. It has been applied mostly to 

normal-form games. The lowest level is level-0, representing people who do not 

reason at all, and play random. Level-1 is best-response to level-0, level-2 is best 

response to level-1, and so on. Kawagoe and Takizawa (2010) point out that the key in 

this analysis is to know what a level-0 would do in a sequential game. One possibility is 

randomizing in the sequential-form of the game, having 50% of chances of stop or take 

in each node. This gives much more possibilities to stop in the first node (50%) than in 
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the last ones (6,25% in the 4º node). The other possibility is randomizing in the normal-

form, giving the same probability to each set of strategies containing stop in each 

node. That means, deciding in which node he is going to stop, giving each one the 

same probability. This way, the chances of stopping in each decision node are the 

same for all nodes. 

Kawagoe and Takizawa (2010) tried to explain the non-equilibrium behavior 

applying level-k model. Even they admitted that the key of the analysis is knowing 

what a level-0 would do, they compare the two possibilities in the traditional games of 

the literature (increasing and constant types). In those games, the analysis of the two 

possible level-0 gives similar results: The most common behavior of players in 

experiments have been level-1 and level-2 predictions. Those two in increasing and 

constant games are very close to each other (or even the same) in alternative 

definitions of level-0. In consequence, it is hard to know if the observation matches 

with one or the other. 

If the tools of our analysis are used, a specific centipede game can be designed 

to solve this problem. 

 

[Fig. 32. Centipede game design to test which is better level-0] 
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[Fig. 33. Centipede game design to test which is better level-0 in normal form] 

In this variable sum game, the predictions of the level-k analysis are different. 

For player 1, the different L1 are in opposite sides of the game. To figure out which 

level-0 is better, we could just test it with an experiment. 

 These two examples show that there is room for further exploration of the 

centipede game in order to identify the non-equilibrium play behind the centipede 

game. In summary, the different possibilities of the payoff-structure could be a 

powerful tool to design specific centipede games in the laboratory to discriminate 

between alternative explanations. This line of research should be pursued in future 

work.  
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