UNIVERSIDAD DE OVIEDO

CENTRO INTERNACIONAL DE POSTGRADO

MASTER EN INGENIERIA MECATRONICA

TRABAJO FIN DE MASTER

CONTROL OF BLDC MOTORS FOR A TERRESTRIAL LUNAR ROVER
PROTOTYPE

JULIO 2014

AUTOR: CRISTINA SERRANO GONZALEZ
TUTOR: JUAN CARLOS ALVAREZ ALVAREZ
TUTOR: ARMIN WEDLER

UNIVERSIDAD DE OVIEDO

CENTRO INTERNACIONAL DE POSTGRADO

MASTER EN INGENIERIA MECATRONICA

TRABAJO FIN DE MASTER

CONTROL OF BLDC MOTORS FOR A TERRESTRIAL LUNAR ROVER

PROTOTYPE
JULIO 2014
AUTOR: TUTOR: TUTOR:
CRISTINA JUAN CARLOS ARMIN
SERRANO GONZALEZ ALVAREZ ALVAREZ WEDLER
[FIRMA] [FIRMA] [EYRMA] |,

ulEches ' ..'.,: 1 ,4.

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

Resumen

Los ‘rovers lunares’ han sido un elemento importante en la investigaciéon espacial desde
que los soviéticos lanzaron la sonda ‘Lunokhod I’ en 1970. Para llevar a cabo con éxito
su tarea, un rover debe ser capaz de moverse alrededor de la superficie de la Luna,
sin importar las condiciones del terreno. Por lo tanto, estid claro que motores y otros
actuadores son una parte fundamental de cada rover.

A lo largo de los anos, se han utilizado varios tipos de motores eléctricos. Hoy en dia,
los motores BLDC son cada vez mas importantes en las aplicaciones industriales, en
la investigacién, y exploracién espacial. FEl objetivo de este Proyecto Fin de Master es
el desarrollo de un control de motores BLDC en un microprocesador ARM Cortex-AS,
que se encuentra dentro de la plataforma de desarrollo BeagleBone Black, y el uso de
Matlab/Simulink para crear un regulador Proporcional-Integral que se utilizara para
controlar la velocidad.

El desarrollo del controlador de motores se llevd a cabo en las oficinas del Centro
Aeroespacial Aleman (DLR) en Oberpfaffenhofen y fue terminado en julio de 2014. En
primer lugar, se desarrollé un control de lazo abierto para probar el funcionamiento del
motor. Posteriormente, se afiadié un control de lazo cerrado para mantener la velocidad.
Debido al uso de dos plataformas de desarrollo diferentes, se disefié un circuito intermedio
para interconectarlas. También se instal6 un sistema operativo en tiempo real, no sélo
para proporcionar una plataforma en la que cargar el cédigo, sino también para ayudar
a la integracion de Matlab/Simulink dentro del proyecto.

Los resultados, aun siendo aceptables en términos de control e integracion, muestran
que el uso de un RTOS no tiene apenas ningin impacto importante en la programacion
del microprocesador. Esta tesis pretende servir como punto de partida para el futuro
desarrollo de un control para la placa Phytec disefiada en el DLR.

Palabras clave:
Motores sin escobillas, ARM Cortex-A8, BeagleBone Black, Matlab/Simulink, Teoria de
Control

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

Abstract

Lunar Rovers have been an important element in space research since the soviet’s ‘Lunokhod
I’ was launched in 1970. In order to successfully perform its task, a Lunar Rover should
be able to move around the surface of the Moon, no matter how bad the condition of
the terrain is. Therefore, it is clear that actuators and motors are a fundamental part of
every rover.

Over the years, several types of electric motors have been used. Today, BLDC motors
are becoming more important in industry, research, and space exploration. The aim
of this Master Thesis is to develop a BLDC motor controller for an ARM-Cortex A8
microprocessor, using the BeagleBone Black platform, and Matlab/Simulink to create a
Proportional-Integral controller.

The development of the motor controller was conducted at the German Aerospace Center
(DLR) in Oberpfaffenhofen and was finished in July 2014. First, an open-loop control
was developed to test the operation of the BLDC. Later, the closed-loop speed control
was added. Due to the use of two different boards, additional circuitry that will allow
to interconnect both boards has to be designed and mounted. The BeagleBone Black
board is embedded with a Real-Time Operating System not only to provide a platform
in which code is loaded, but also to help the integration of Matlab/Simulink inside the
board.

The results, being acceptable in terms on control and integration, show that the use of an
embedded RTOS has barely any important impact in programming the microprocessor.
This thesis hopes to serve as a starting point to the future development of a BLDC motor
control for the Phytec board designed at the DLR.

Key words:
BLDC Motors, ARM Cortex-A8, BeagleBone Black, Matlab/Simulink, Control Theory

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

Contents

IT.

RESUMEN

Introduccion
1.1. Motivacidn e
1.2, Objetivos

Motores eléctricos sin escobillas
Plataformas de desarrollo
Desarrollo

Conclusiones

INTRODUCTION

Introduction
6.1. Motivation e
6.2. Objectives L

III. STATE-OF-THE-ART

7.

Brushless DC Motors

7.1. Construction and operating principle oo

7.2. Commutation Methods,
7.2.1. Sensorless commutation
7.2.2. Block commutation
7.2.3. Sinusoidal commutation
7.2.4. Field-oriented control

7.3. Summary of Commutation Methods

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

11

13

15

17
18
18

8

Contents 9

IV. PROTOTYPING PLATFORMS 36
8. Prototyping Platforms 38
8.1. BeagleBone Black 38
8.1.1. AM335x 1GHz ARM®) Cortex-A8 39

8.2. Three Phase BLDC Motor Kit 40
8.2.1. Three Phase Brushless DC Motor Driver - DRV8312 41

9. VxWorks RTOS 44
10. Matlab/Simulink 46
V. DEVELOPMENT 48
11. Hardware and software frameworks 50
11.1. Board interconnection L L 50
11.2. VxWorks IDE o 54
11.3. Matlab L 57

12. Motor Control 60
12.1. Open-loop Control 60
12.1.1. Function Main o 62

12.1.2. Pulse-Width Modulation (PWM) 63

12.1.3. General Purpose Input/Output (GPIO) 72

12.1.4. Space Vector Modulation (SVM) 76

12.2. Closed-Loop Control 80
12.2.1. Pulse-Width Modulation (PWM) 82

12.2.2. General Purpose Input/Output (GPIO) and interrupt 83

12.2.3. Commutation sequence L 87

12.2.4. Matlab Integration and PI Controller 88

VI. CONCLUSIONS 94
VII.REFERENCES 98
VIIIANNEXES 102

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

List of Figures

6.1. Lunokhod I [1] 17
7.1. Construction of a BLDC motor 23
7.2. Winding configurations L L oo 23
7.3. 3-phase BLDC Inverter o 24
7.4. Winding energizing sequence [6] Lo Lo 25
7.5. Waveform of Hall Sensors vs BEMF [12] 27
7.6. BEMF detecting with comparator [12] 28
7.7. Sinusoidal commutation [7] oL 30
7.8. Current sensing [7] 31
7.9. Clarke Transformation [7] L. 32
7.10. Park Transformation [7] Lo 32
8.1. BeagleBone Black [16] L o 38
8.2. DRV8312EVM board [16] 41
83. DRVS3I12IC [16] 42
9.1. A view of VxWorks Workbench environment 45
10.1. A view of Matlab’s environment L. 46
11.1. Block diagram for physical connection, ol
11.2. Final result of circuit and connection 53
11.3. USB to TTL serial cable [15], 54
11.4. Open-loop system overview 55
11.5. Target Server options 56
11.6. Debug and Run buttons oo oo 57
11.7. Matlab Simulation Configuration 58
11.8. Matlab Simulation ‘Interface’ Configuration 99
12.1. Open-loop system overview 60
12.2. Open-loop flow diagram L. 61
12.3. PWM signal with different duty cycles 63

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype 10

DLR

List of Figures 11

12.4. ePWMOA Mode [18] o o o 64
12.5.ePWMOB Mode [18] 64
12.6. ePWM2A Mode [18] o 64
12.7. PWM Periods based on Count Mode [19] 68
12.8. PWM Counter Compare AQ configuration example 70
12.9. GPIO1 5 Mode [18] o o 73
12.10GPIO1 4 Mode [18] o o o 73
12.11GPIO1 1 Mode [18] o o o 74
12.12SVM possible sectorso 76
12.135ectors oL o 79
12.14Closed-loop diagram L. 81
12.15Closed-loop flow diagram Lo 81
12.16PWM normal duty and inverted duty 83
12.17Hall 1 Mode [18] 84
12.18Hall 2 Mode [18] o 84
12.19Hall 3 Mode [18] o o 84
12.20DRV8312 Hall sensor sequence [13] 87
12.21Hall Sensor Control with 6 Steps [13] 89
12.22Block diagram in Simulink showing S functions 90
12.23Speed calculation L 91
12.24PT controller parameters L 93

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

List of Tables

7.1. Switching sequence 24
7.2. Characteristics of the motor 25
7.3. Switching sequence including hall sensors 29
7.4. Comparison of sensored commutation methods [10] 33
12.1. Switching sequence and output voltage for SVM 76
12.2. Sectors according to angle value L. 78
12.3. Switching sequence and output voltage for Block Commutation 88

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype 12

DLR

List of Tables

Acronyms
AC Alternate Current
A/D Analog to Digital
AQ Action Qualifier
BBB BeagleBone Board
BLDC Brushless DC
DC Direct Current
DRV Driver Board
EC Electronically Commutated
FOC Field-oriented Control
GPIO General Purpose Input-Output
1C Integrated Circuit
IDE Integrated Development Environment
1GBT Insulated Gate Bipolar Transistor
ISR Interrupt Service Routine
MOSFET Metal-oxide-semiconductor Field-effect transistor
MPU Microprocessor Unit
PMSM Permanent Magnet Synchronous Motor
PI Proportional-Integral
RTOS Real Time Operating System
SVM Space Vector Modulation

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

Part 1.

RESUMEN

ﬁ DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype 1

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

1. Introduccion

La humanidad tiene el afan de descubrir el mundo a su alrededor desde el principio de los
tiempos y, durante los tltimos cincuenta anos, también explorar lo que hay en el espacio
exterior. El primer objeto hecho por el hombre en alcanzar el espacio fue el satélite de la
soviética ‘Sputnik 17 | en 1957, seguido por el cosmonauta Yuri Gagarin, quien en 1961
se convirtié en el primer ser humano en completar una érbita alrededor de la Tierra en el
espacio exterior. Tras el éxito de Gagarin ocho afios antes, en 1969 la misiéon americana
‘Apollo 117 aterrizé en la Luna.

En 1970, sélo un afio después de que el primer ser humano pisara la luna, la URSS lanz6 la
nave espacial ‘Luna 17’ que contenia al primer robot no tripulado, el ‘Lunokhod I (Figura
6.1). Ese objeto en concreto, el primero controlado a distancia desde la Tierra a través
de una superficie astronémica, marco el inicio de la exploraciéon espacial auténoma.

Hasta 2014, solo tres paises han desarrollo un rover lunar: la Union Soviética (Proyecto
Lunokhod), los Estados Unidos de Ameérica (Apollo Lunar Roving Vehicle) y China
(Yutu). Actualmente se encuentran en curso varios proyectos se encuentran en curso
como son el ‘Luna-Glob ruso’ [2], el chino ‘Chang’e’ [3] y el ‘Chandrayaan’ indio [4].

1.1. Motivacion

Debido a la creciente importancia de los motores eléctricos sin escobillas en aplicaciones
industriales, es necesario conocer a fondo la construcciéon y sus principios con el fin de
desarrollar un software capaz de mantenerlos operativos.

Los motores eléctricos sin escobillas, a diferencia de los tipos tradicionales de motores,
carece de las escobillas utilizadas para la conmutacién de la polaridad del motor. Esto
proporciona varias ventajas en el uso de estos motores, pero también anade la necesidad
de una conmutacién externa, lo cual anade dificultad en el proceso de control. La

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype 3

DLR

1. Introduccién 4

conmutacién se realiza mediante un programa creado para realizar una secuencia de
conmutacién, programa que estd basado en las lecturas de un sensor o sin sensores.

Debido a las razones anteriormente expuestas, el proyecto contiene nuevos retos que
pueden ser resueltos a través de los principios y herramientas de la ingenieria.

1.2. Objetivos

Los objetivos principales de este proyecto son los siguientes:

1. realizar un control para un motor eléctrico sin escobillas utilizando un microprocesador
basado en ARM al cual se le instala el RTOS VxWorks. Para una solucion temporal
simple y barata, se utilizard una plataforma BeagleBone para la programacion
principal.

2. realizar un control de velocidad con un regulador PI utilizando Simulink. Simulink
es una potente herramienta para la creacion de diagramas de bloques graficos que
pueden ser integrados en el microprocesador.

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

2. Motores eléctricos sin escobillas

Hoy en dia los motores eléctricos sin escobillas estdn ganando popularidad en diversas
industrias como son la industria de electrodomésticos, automotriz, aeroespacial o la
automatizacion industrial, sobre todo por su mayor eficiencia, par motor y durabilidad;
desplazando a los motores de corriente alterna y con escobillas tradicionales. Ademas,
el coste inherente de un motor sin escobillas es menor que el coste de los motores
tradicionales, aunque al ser su tasa de fabricacion mas baja y la necesidad de anadir
electronica adicional puede hacer que el precio sea mayor [5].

Algunas de las ventajas relacionadas con el uso de motores sin escobillas frente a los
motores con escobillas, son: [6]

7 No hay desgaste de las escobillas, importante para las aplicaciones espaciales
=7 Mejor velocidad frente al par

7 Alta respuesta dinamica

=7 Alta eficiencia

7 Aumenta la vida atil

7 Funcionamiento silencioso

7 Rangos de velocidad més altos

7 Temperaturas de operacion méas bajas [7]

Un motor eléctrico sin escobillas, o electrénicamente conmutado, es un tipo de motor
sincrono alimentado por una fuente de corriente continua, que tiene la singularidad de
que carece de escobillas fisicas para la conmutacién. Esta singularidad aumenta la vida
del motor, ya que es una de las piezas que requieren el mayor nivel de mantenimiento, pero

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype)

DLR

2. Motores eléctricos sin escobillas 6

suma la necesidad de una conmutacién externa en lugar de la conmutacién por escobillas
tradicional. A diferencia de los motores con escobillas, que tienen una conmutacion
mecénica interna para invertir la corriente y el sentido de rotacién, la falta de escobillas
hace necesario el uso de electrénica y software con el fin de realizar la misma tarea de
conmutacion.

Estos motores poseen una relacién lineal entre la corriente y el par motor, el voltaje
v la velocidad. El estator, la parte estacionaria, se compone de laminas de acero,
con devanados de cobre enrollados alrededor de las ranuras, que generan un campo
electromagnético controlable en magnitud y direcciéon. El rotor, la parte giratoria,
es un iman permanente a base de aleaciones de tierras raras como neodimio (Nd),
samario-cobalto (SmCo) o una aleacién de neodimio, ferrita y boro (NdFeB), que genera
un campo magnético de magnitud constante. Un rotor puede variar desde dos a un
ndmero ilimitado de pares de polos, cada uno con sus polos norte (N) y sur (S), que
influyen en la relacion entre una revolucién eléctrica y una revolucién mecénica.

Los motores pueden tener dos configuraciones diferentes segin la conexién del bobinado.
En la conexion tridngulo se conectan todas las bobinas entre si (circuito serie), en la
conexion estrella sélo se conecta un extremo de la bobina, mientras se da tensién al otro
extremo (circuito paralelo).

A pesar de que la mayoria de los motores BLDC han incorporado sensores de efecto
Hall, es posible desarrollar una secuencia de conmutacién sin sensores, sobre la base
del Back-EMF. Aunque la conmutacion sin sensores es menos complejo en términos de
hardware y mas fiable que conmutacién con sensor, para el prop6sito de este proyecto se
elige una conmutacién con sensores basado en la posicién con el apoyo de los sensores
Hall digitales incorporadas.

Hay tres métodos de conmutacién con sensores ampliamente utilizados:

=7 Conmutacién sinusoidal.
- Conmutacién trapezoidal.

—7 Control vectorial.

La conmutacién sin sensores se basa en el efecto de Back-EMF. Los devanados generan
un campo magnético que se opone al campo magnético generado por la tensiéon inductora,
segun la ley de Lenz.

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

2. Motores eléctricos sin escobillas 7

La conmutacién en bloque, también llamada conmutacién trapezoidal debido a la forma,
de la senal, es la forma maés extendida para determinar la secuencia de conmutacién de
los motores gracias a su simplicidad. Este método se conoce con el nombre de ’Six-step’
porque hay seis estados discretos diferentes que sirven para energizar el inversor. Cada
uno de los estados es determinado por la lectura de los tres sensores Hall integrados en
el motor.

Al contrario que la conmutaciéon en bloque, no demasiado adecuada para aplicaciones
de baja velocidad, la conmutacién sinusoidal es considerada una buena solucién para
aplicaciones que requieran velocidades tanto bajas como altas. Puede ser utilizado en
aplicaciones que requieren control de velocidad y par o en sistemas de lazo abierto.

Por tltimo, el control vectorial es un método basado en el hecho de que sélo la corriente
del estator perpendicular al rotor ayuda en la generacién de par, por lo que se hace
necesario controlar el vector de corriente manera que el vector de corriente del estator
sea perpendicular al rotor de posicién en todo momento.

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

2. Motores eléctricos sin escobillas

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

3. Plataformas de desarrollo

BeagleBone Black es una plataforma de desarrollo de hardware de codigo abierto y
bajo coste producida por la Fundacion BeagleBoard.org y Texas Instruments. La placa
proporciona una forma barata y facil de programacion para desarrolladores de sistemas
embebidos, asi como la posibilidad de ser utilizado como un ordenador de una placa
gracias a su conexiéon HDMI.

La plataforma BeagleBone Black esta siendo cada vez mas famosa para el desarrollo de
pequenos y grandes proyectos entre los desarrolladores profesionales o aficionados, sobre
todo gracias a su comunidad en linea, que contiene los recursos, proyectos y soluciones
de problemas que permiten hacerlo accesible para todo tipo de personas.

Algunas de sus caracteristicas son:

—Procesador: AM335x 1GHz ARM® Cortex-A8
—Connectividad

7 Cliente USB para alimentacién y comunicaciones
7 USB adicional
7 Ethernet
- HDMI
7 2x 46 pines
—Compatibilidad con software
— Angstrom Linux

-7 Android

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype 9

DLR

3. Plataformas de desarrollo 10

7 Ubuntu

=7 Cloud9 IDE
La segunda placa utilizada, DRV8312-C2-KIT, es un kit de evaluaciéon para el control
de motores desarrollado por Texas Instruments, que permite controlar motores trifésicos
sin escobillas y motores sincronos de imanes permanente (PMSM).
El kit incluye, entre otros, un inversor trifisico integrado en la placa base, DRV8312,
que soporta hasta 50V y 6.5A, una controlCARD con cédigo preinstalado para operar

los motores usando una interfaz gréafica, la XDS100 GUI para emulacién, y conexiones
UART, SPI y CAN.

7 Motor NEMA17 BLDC/PMSM 55W

7 Enchufe de corriente de 24V con adaptadores
7 DRV8312 baseboard with controlCARD slot
7 Piccolo F28035 controlCARD

7 Cable USB

= USB Stick with GUI, CCStudie IDE, Quick Start Guide, y links para controlSUITE
y documentacién

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

4. Desarrollo

El principal problema que se tuvo que resolver fue la interconexién de las dos plataformas,
debido a diferencias de tensién entre ellas. La placa DRV funciona a 5V, algunos
componentes necesitan una tensiéon de 24V, mientras que la plataforma BeagleBone
tiene una tensién de 3.3V para los pines E/S. El uso de dos diferentes fuentes de
alimentacion es algo que debe tenerse en cuenta, ya que facilmente podria conducir a un
mal funcionamiento de las placas. La solucién propuesta es el uso de un circuito integrado
inversor, como el 74LVX14, de baja tensién en cuya entrada existe un disparador de
Schmitt. Este circuito integrado serd utilizado para la conversién de voltaje de 5V a
3V.

Se recomienda tener dos fuentes de alimentacion distintas, aunque seria 6éptimo utilizar
s6lo una, una para alimentar la placa DRV (24V) y la otra la BeagleBone(5V). Aunque
el uso de dos diferentes fuentes de alimentacion no es el enfoque 6ptimo, por ser una
conexion en paralelo, usar GND comun y el circuito integrado LVX para aislarlas entre
si es una solucién aceptable, ya que reduce la probabilidad de destruir la placa.

En este proyecto, el primer paso serd la creacién de un circuito de control abierto es decir,
sin realimentacion. El control en lazo abierto es un tipo de control que calcula su entrada
en un sistema que utiliza sélo el estado actual y un modelo del sistema. Este sistema
de control no observa la salida del sistema, por lo que es incapaz de corregir los posibles
errores que pudieran aparecer durante el funcionamiento. Se prefiere este control sobre
el control de bucle cerrado cuando se necesita simplicidad, bajo coste y la realimentacién
no es importante para conseguir que el sistema funcione correctamente.

En el control de bucle abierto la entrada se da al modelo del sistema cuya salida,
normalmente, se llevara a la entrada del actuador. Sin embargo, este método, existe un
paso intermedio entre el sistema modelo y el actuador (el motor): el circuito integrado
DRV8312. El bucle ser4 el siguiente: la entrada (velocidad) sera una variable en el sistema
(el codigo); la salida del codigo sera el duty de la senial de PWM que serd la entrada
en el chip DRV. El conductor "transforma" la senal PWM en la tension necesaria para
encender el motor. El motor BLDC tiene una velocidad y un par que, en este caso, no
se mide.

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype 11

DLR

4. Desarrollo 12

El controlador se hard a partir de cero, y se corresponde con el cédigo escrito para
el microprocesador ARM. La sefial PWM, que sera la salida, se generara a través de
un algoritmo, en este caso se utilizard la modulacién por vector (SVM). La senial PWM
también lanzara una funcién en un momento determinado (cada 25 us); funcién necesaria
para calcular los nuevos ciclos de PWM.

A diferencia del control de lazo abierto, control en lazo cerrado tiene un bucle de control
de realimentacion que permite leer la posicién real del eje del rotor y corregir cualquier
error que el sistema pueda tener durante su funcionamiento. El control en lazo cerrado se
utiliza cuando hay una fuerte necesidad de controlar la salida del sistema a fin de evitar
errores en el proceso. También se puede utilizar en los procesos de ‘machine learning’,
aunque este no es el caso.

El esquema de control en lazo cerrado es practicamente igual al control en lazo abierto,
anadiendole una rama de ‘realimentacién’ a la salida del sistema. El motor cuenta con tres
sensores Hall integrados, lo que proporciona informacién acerca de la posicion del motor
y, mediante cdlculos, hallar su velocidad. Este ultimo dato se utilizarad para calcular el
error entre la velocidad deseada y la velocidad real, que se introduce en el controlador
PI. Sensor Hall también ofrece informacién acerca de la posicion del eje, lo que tendra
un impacto directo en la secuencia de activacion del PWM.

Existen algunos cambios en el uso de PWM y la configuraciéon GPIO, sobre todo en este
iltimo con la introduccidon de las interrupciones de GPIO. No habra una interrupcion
cada 25 us, que serd sustituida por las interrupciones de cambio de estado de los sensores
Hall.

La integraciéon con Matlab sera el elemento final del control en lazo cerrado. El entorno
‘Simulink ’se utilizara para crear un proyecto con bloques en el que se calcula la velocidad
real del motor y, a continuacién, el error entre ese valor y la velocidad deseada seré la
entrada del controlador PI. El entorno ‘Simulink’ también conectard las variables de su
proyecto con los que estan dentro del niicleo a través de las ‘S-function’.

‘S-functions’ es la descripcién de un bloque de Simulink que puede ser escrita en varios
lenguajes de programacion como MATLAB, C / C + +, FORTRAN, etc y compilado
como un archivo MEX. Estas funciones pueden alojar tanto sistemas continuos como
discretos e hibridos. También es posible implementar un algoritmo en una funcién y
utilizar el bloque S-Function para agregarlo a un modelo de Simulink.

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

5. Conclusiones

En resumen, esta tesis sirve como una forma de programar un motor BLDC con una
plataforma pequefia y de bajo coste como la Beaglebone Black ademas de la conexion de
la placa a una interfaz externa, un PC y cargar un proyecto Matlab dentro del kernel, lo
cual es un nuevo enfoque en la forma de creacion de los controladores.

La programacion de motores eléctricos sin escobillas es algo bien estudiado, sin embargo,
el desarrollo de nuevas placas de prototipos, mas pequefias y potentes, también anade
complejidad al proceso. Para este proyecto se han hecho dos enfoques, un control de bucle
abierto y un control de bucle cerrado. El control de bucle abierto utiliza el algoritmo SVM
para crear un vector de tensién rotatorio con el fin de ejecutar la secuencia PWM. Més
tarde, el control de bucle cerrado utiliza un controlador para garantizar que la velocidad
deseada y la velocidad real del motor de BLDC es la misma en todo momento. Para
conectar la acreditaciéon con el entorno Matlab proporciona una poderosa herramienta
para crear controladores y realizar cilculos con el entorno Simulink.

Sin embargo, la utilidad de un sistema operativo dentro del procesador, en lugar de
programar directamente en él, no se puede asegurar en este momento. Es posible que,
en un futuro, la adicién de nuevas caracteristicas podria ser un buen punto a favor del
uso de un sistema operativo, en comparacién con no usarlo.

Otras lineas de investigacién serian el desarrollo de un control de bucle cerrado utilizando
otros métodos de conmutaciéon, como ‘FOC’, ya que el sistema usado no es el mejor
enfoque para su uso en aplicaciones de baja velocidad, debido a la simplicidad del mismo.
Ademas, ‘FOC’ también controla la corriente del motor, lo que podria ser una ventaja
para su control. El DLR ha desarrollado también en una nueva plataforma, Phytec, para
esta aplicacién, por lo que la incorporacién del cédigo desarrollado en la nueva placa
también puede ser una continuacién del proyecto.

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype 13

DLR

5. Conclusiones

14

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

Part I1.

INTRODUCTION

ﬁ DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype 15

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

6. Introduction

Humankind has had a desire for discovering the world around him since the dawn of
times and, for the last fifty years, also for knowing what there is in outer space. The
first human-made object to reach space was the soviet’s satellite “Sputnik 17, in 1957,
followed by the cosmonaut Yuri Gagarin, who in 1961 became the first human being to
complete an orbit around the Earth in the outer space. After Gagarin’s success eight
years earlier, in 1969 the American Mission "Apollo 11" landed on the Moon.

In 1970, only one year after the first human landing on the Moon, the USSR launched
the spacecraft “Luna 177 containing the first unmanned robot, the “Lunokhod I” (Figure
6.1). That particular object, the first to be remotely-controlled from Earth across an
astronomical surface, marked the beginning of autonomous space exploration.

Figure 6.1.: Lunokhod I [1]

As of 2014 only three countries have launched a lunar rover: the Soviet Union (Lunokhod
Project), the United States of America (Apollo Lunar Roving Vehicle) and China (Yutu).
Several projects are currently on-going, such as the Russian “Luna-Glob” [2], the Chinese
“Chang’e” [3] and the Indian “Chandrayaan” [4].

4#7 DLR — Control of BLDC motors for a terrestrial Lunar Rover prototype 17

DLR

6. Introduction 18

6.1. Motivation

Due to the growing importance of BLDC motors in several industrial applications, it is
necessary to have an understanding of the construction and working principles of them
in order to develop a software capable of operating them.

BLDC motors, unlike the traditional types of motors, lacks the brushes used for physical
commutation. This provides several advantages in the use of BLDC motors, but also
adds the need for an external commutation that adds difficulty to the process of motor
control. The commutation is done using a program created to perform the commutation
sequence, based on the readings from sensor or performing a sensorless commutation.

Due to the reasons above explained, the project contains new challenges that can be
resolved through engineering principles and tools.

6.2. Objectives

The main goal of this thesis is:

1. to run a BLDC motor using an ARM-based microprocessor embedded with the
RTOS VxWorks. For a simple and inexpensive temporary solution, a BeagleBone
Board is going to be used as the main programming platform. Since a PWM Motor
Driver is needed, the processor board is going to be connected to a driver board
(DRV8312EVM) which contains the necessary microchips and circuitry to convert
the PWM signals into an AC supply.

2. to speed countrol the BLDC though a Pl-controller using Simulink. Simulink is
a strong tool for graphic block diagramming that could be interfaced with the
ARM-based microprocessor.

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

Part I11.

STATE-OF-THE-ART

ﬁ DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype 19

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

7. Brushless DC Motors

Brushless DC motors are a rather new type of motor, the first one was developed in 1962
by T.G. Wilson and P.H. Trickey. In that moment, even if they were a good choice for
its lack of brushes for commutation, they could not drive as much power as traditional
DC motors could. That changed with the appearance of permanent magnet materials in
the 1980s.

Nowadays BLDC Motors are gaining popularity in diverse industries such as Appliances,
Automotive, Aerospace, and Industrial Automation, mainly for its higher efficiency,
torque and durability, displacing stepper motors, AC motors and traditional brushed
DC motors. Also, the inherent cost of a BLDC is lower than that related to brushed DC
motors, although its lower manufacturing rate and the need to add drive electronics may

cause the price to rise [5]. Some of the advantages related to the use of BLDC motors,
in contrast to brushed motors, are: [6]

7 No brush wear, important for space applications
7 Better speed versus torque characteristics

— High dynamic response

7 High efficiency

- Long operating life

7 Noiseless operation

7 Higher speed ranges

7 Lower operating temperatures |7|

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype 21

DLR

7. Brushless DC Motors 22

In addition, the ratio of torque delivered to the size and weight of the motor is higher,
making it useful in applications where space and weight are critical factors [6].

This section is dedicated to explain the basics about BLDC motors: physical construction,
operating principles and commutation.

7.1. Construction and operating principle

A BLDC or electronically-commutated DC motor (EC Motor), is a type of synchronous
motor powered by a DC source, that have the singularity of lacking physical brushes
for commutation. This singularity improves the operating life of the motor, as it is one
of the parts that requires the highest level of maintenance, but adds the necessity of
an external commutation instead of the traditional brush commutation. Unlike brushed
DC motors, which have a internal mechanical commutation to reverse motor windings’
current in synchronism with rotation, the lack of brushes require the BLDC motors to
have electronics in order to perform the same task.

BLDC Motors can be referred as a reversed brushed DC motor and, like them, have
a linear relationship between current and torque, voltage and speed. The stator, the
stationary part, of a BLDC is made up of stacked steel laminations with windings (copper
wire) placed around the slots that generate an electromagnetic field of controllable
magnitude and direction, whereas the rotor, the rotating part, is a permanent magnet,
usually rare earth alloy magnets such as Neodymium (Nd), Samarium Cobalt (SmCo)
and the alloy of Neodymium, Ferrite and Boron (NdFeB), that generates a magnetic
field of constant magnitude. A rotor can vary from two to an unlimited number of pole
pairs, each with its North (N) and South (S) poles, which have an influence on the
relationship between an electrical revolution and a mechanical revolution. Figure 7.1
shows the physical model of BLDC motors.

BLDC motors can have two different winding configuration. Delta configuration connects
all windings to each other following a series circuit pattern, whereas Wye configuration
(Y or Star configuration) only connects together one end of the winding, while applying
voltage to the other end (parallel circuit). Figure 7.2 shows these configurations. Another
difference is, while delta configuration gives low torque at low speed and low voltage; Wye
configuration gives high torque at low speed, but requires more voltage. The difference
between Wye/Delta configuration is always a factor of 1.73 because of the way that the
windings of an induction motor are put together [8].

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

7. Brushless DC Motors 23

Figure 7.1.: Construction of a BLDC motor

Stator

Hall Effect

Sensors
Rotor

Permanent

Magnet

honded to
Rotor

The 3-phase supply is controlled by the switching of a 3-phase bridge with six transistors
(IGBT or MOSFET), converting the PWM signals from the microprocessor into an AC
supply (figure 7.3). Each bridge of the inverter is connected to a motor phase; in the
figure, Q1 and Q2 to Phase A; Q3 and Q4 to Phase B, and Q5 and Q6 to Phase C.
Simultaneously, Q1, Q3 and Q5, which are connected to the voltage, form the ‘High side’
of the inverter, and 2, Q4 and Q6, connected to ground, the ‘Low Side’.

The transistors switch synchronously with the rotor position and only two transistors
could be switched on at the same time in order to energise, positively or negatively, two
of the three phases (the third one should be switched off or floating). For example, when
energizing the windings as step (1) in figure 7.4, current entering Phase A and leaving
through Phase C, the transistors switched on should be Q1 (on the high side) and Q6
(on the low side), which close the circuit. For each of the six steps, one step equals

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

7. Brushless DC Motors 24

Figure 7.3.: 3-phase BLDC Inverter

Vpc
a1 Q3 Qs
PWM_Q1), PWM_Q3 >£B PWM_Q5 >}—Q\}D
- c1
Q2 Q4 Qs
PWM_Q2 PWM_04)@D PWM_Q6 >>—@D
GND

Phase A Phase B Phase C

60° electrical , different transistors are switched on and off, changing its state only one
of them, but remaining active only two at a time. Table 7.1 summarises the switching
sequence for all the steps.

Table 7.1.: Switching sequence
Step Phase A Phase B Phase C Transistors ON

1 Vpe + Vpe - 0 Ql1-Q4
2 Vbpc + 0 Vpe - Q1 - Q6
3 0 Vpe + Vpe - Q3 - Q6
4 Vpe - Vpe + 0 Q3 -Q2
5 Ve - 0 Vpe + Q5 - Q2
6 0 Vbe - Vpo + Q5 - Q4

As previously said, BLDC motors are electronically commutated, meaning that the
stator windings should be energised in a sequence, so that the position of the rotor
should be known. Hall Sensors embedded into the non-driving end of the stator usually
fulfil these requirements, but there are others such as encoders, analogue Hall sensors,
magneto-resistive sensors, used when the resolution of the digital Hall sensor is not
enough; or sensorless, by reading the BEMF. The existing methods for BLDC commutation,
both sensored and sensorless, which will be summarised and analysed in the next section.

Motors rotate due to the torque produced by two interacting magnetic fields forming an
angle (¢), as shown in the following equation. Then, for optimal torque, the stator’s
magnetic field (B¢) should be located 90° in front of the rotor field (B¢) [7]. The previous
statement should be taken into account when deciding the feedback system for the control
loop, as it has a impact on the type of sensors that are going to be used (Hall, encoder or

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

7. Brushless DC Motors 25

Figure 7.4.: Winding energizing sequence [6]

other type of magnetoresistive sensors), though for this project only digital Hall sensors
are going to be used.
T = KBsBssing (7.1)

The motor used for this project is a NEMA17 BLDC Motor included in the DRV 8312
- EVM Kit by Texas Instruments and its characteristics can be found in Anaheim
Automation’s BLY17 Series datasheet [9]. Next table 7.2, summarises some of the
specifications for model BLY1728-24V-4000 in Imperial Units, as they were given by
the manufacturer.

Table 7.2.: Characteristics of the motor

Phases Rated Rated Rated Rated Peak Rotor Pair
Voltage Speed Power Current Torque Inertia Poles
(V) (RPM) (W) (A) (oz-in) (oz-in- sec2)
3 24 4000 53 3.5 54 0.00068 4

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

7. Brushless DC Motors 26

7.2. Commutation Methods

The commutation circuit can be implemented with discrete components or dedicated
control Integrated Circuits (IC), the latter requiring less or no additional circuitry.
Usually, the design with discrete components requires a lot of effort from the engineers,
is more time-consuming in terms of hardware design and troubleshooting [10].

Despite most of the BLDC motors have embedded Hall sensors, it is possible to develop a
sensorless commutation sequence, based on the ‘Back Electromotive Force’ (Back-EMF).
Though back-EMF commutation is less complex in hardware than sensored commutation
and more reliable than sensored commutation [11], for the purpose of this project a
position-based sensor commutation with the support of the in-built digital Hall sensors
is chosen.

There are three widely used sensored commutation methods:

7 Sinusoidal commutation.
7 Six-step (Trapezoidal or Block) commutation.

-7 Field-oriented control or vector commutation.

7.2.1. Sensorless commutation

Sensorless commutation of BLDCs is based on the effect of Back-EMF. The windings
generate a magnetic field, which is opposed to the magnetic field generated by the
energizing voltage, as Lenz’s Law formulates: "An induced electromotive force (EMF)
always gives rise to a current whose magnetic field opposes the original change in magnetic
flux.". Mathematically, specially for electrical motors, is represented as [12]:

€= NlrBw (7.2)

Once the motor is designed, the number of winding turns (N), the rotor’s lenght (1) and
radius (r), and the magnetic field (8) remain constant, leaving the angular speed of the
rotor(w) as the only variable that governs the EMF.

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

7. Brushless DC Motors 27

As seen with the Hall sensors, the BEMF is also 120° out of phase to each other but both
signals aren not synchronous (in figure 7.5 the difference is 30°). At each sequence, two
winding phases are connected to power supply, while the third one is turned off. The
result is a trapezoidal waveform (dashed-line in figure 7.5) that crosses the "zero-line"
each 60°. The combination of the zero crossings determine the commutation sequence
for the motor.

Figure 7.5.: Waveform of Hall Sensors vs BEMF [12]

60°
< »

Hall A | I
—

Hall B
Hall C
e T ™ 4 Phase A 4
4 N7 Zero cross Phase A [7
2 \ Current /
Phase A —_— e -- .-
/ N L Ko7
/s \ N /
b Phase A M I _
Voltage —_———— = = = -
PhaseB ' | 7 e e e e iaaas \ lag— FPhase B
Current /! AN Zero cross
Phase B T - = = = — —
........... K. ¢ N
/ \ Phase B \
________ - N o o — -
Voltage
[EUE ——— - — — — o
< Phase C Phase C 7
******* 1 Current Fom - ==l s s ==
N Zero cross VA
Phase C b / -—
| I
N Kl
N\ / Phase C
- = = — il Valtage

BEMF zero crossings can be detected by comparing the BEMF to half of the DC bus
voltage by using comparators as shown in figure 7.6. When there is BEMF at Phase
B, it increases and decreases as DC+ and DC- are connected or disconnected to the
winding terminals. Each phase of the motor needs a circuit like figure 7.6 to determine
the operating sequence. However, this method has the disadvantage of drawing excessive
current due to phase shifting if the windings don’t have identical characteristics.

Another method of detecting BEMF is the use of A/D converters to measure the voltage.
A signal conditioning circuit should lower the signal until a value that the A/D converter
can read, then the signal is sampled and compared to a value corresponding to the zero
value. Once both values match, the commutation sequence is updated. This method is

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

7. Brushless DC Motors 28

more flexible than the comparator method, as the microcontroller has absolute control
over the zero crossing value [12] .

Figure 7.6.: BEMF detecting with comparator [12]
| |

Back EMF

Since BEMF is proportional to speed, it is possible that at lower speed the system is not
able to detect the zero crossings, making it impossible to start the motor from standstill.
This drawback is overcome by starting the motor in open loop and then changing the
mode to BEMF sensing [12].

7.2.2. Block commutation

Block commutation, also called six-step commutation or trapezoidal commutation (due
to the shape of the signal), is the most widespread way of determining the commutating
sequence of BLDC motors thanks to its simplicity and results. The method is called
‘Six-Step’ because there are six different discrete states to drive the inverter bridge.
Each state can be determined by reading the status of the three Hall sensors embedded
in the motor.

Each six commutation steps, the rotor turns one electrical revolution. The number of
electrical revolutions required for a mechanical revolution depends on the number of pole
pairs: one pole pair equals one electrical revolution. The motor used in this project
has four pole pairs, thus requiring four electrical revolutions to complete one mechanical
revolution.

Whenever the rotor poles pass near the Hall sensors, they give a signal (high or low) that
indicates the moment in which the pole is passing near the sensor. Most BLDC motors
have three Hall sensors situated 120 electrical degrees apart. Knowing the combination

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

7. Brushless DC Motors 29

of the Hall sensors, it is possible to roughly determine the position of the rotor. Digital
Hall sensors behave the same way as the transistors do, with only one sensor changing
its value at each time.

As stated in section 2.1, for maximum torque efficiency the stator field and rotor field
should be 90° apart, however, the Hall sensor’s resolution is 60°, therefore it is only able
to detect with certainty an angle between 60° and 120°. This leads to an undetectable
error of maximum 30° that causes a small torque decay.

In table 7.3, table 7.1 is updated to add three columns for the Hall sensors represent each
possible combination of the sensor’s signals. The order of the sequence’s values of table
7.1 will follow the one shown in Texas Instruments’ DRV 8312 datasheet, which will be
included in the Annex, asg it is the driver chip that is going to be used in this project.

Table 7.3.: Switching sequence including hall sensors

Step Hall A Hall B Hall C Phase A Phase B Phase C Transistors ON

1 1 0 1 Vpe + Vpe - 0 Q1-Q4
2 1 0 0 Vpe + 0 Vpe - Q1 -Q6
3 1 1 0 0 Vpo + Vpe - Q3 - Q6
4 0 1 0 Vpe - Vpo + 0 Q3-Q2
5) 0 1 1 Vpe - 0 Vpe + Q5 -Q2
6 0 0 1 0 Vpe - Vpe + Q5 - Q4

In this method, there is a torque ripple with a magnitude up to 13% of the maximum
torque, being more noticeable at low speed. For this reason, this approach is more
suitable for high speed applications where torque ripple has low or no importance |[7].

7.2.3. Sinusoidal commutation

In contrast to block commutation, which was not suitable for low speed applications,
sinusoidal commutation is regarded as a good solution for both low and high speeds, as
sinusoidal eliminates the torque ripple. It can be operated as an open-loop or closed-loop
configuration in applications requiring speed and torque control [10]

In sinusoidal commutation, the windings are energized by three sinusoidal shaped signals
shifted 120° apart. The sinusoidal waveform is generated by PWM signals, varying
gradually instead of each 60° as in six-step control.

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

7. Brushless DC Motors 30

Torque at sinusoidal commutation can be expressed as the product of a motor constant
(K) by the average current that flows into the three phases (I). Torque does not depend
on the rotor position anymore, and a correctly executed control implies that the torque
remains constant and the rotor rotates smoothly [10].

T =15KI (7.3)

The fact that torque is not dependant on the position of the rotor doesn’t imply that
knowing the position is not required, in fact, it is needed to determine the commutation
and to maintain the required 90° angle between the magnetic fields in order to have
the optimal torque. Hall sensors don’t have enough resolution for a smooth behaviour,
therefore the use of optical encoders, resolvers or other high resolution sensors is strongly
recommended.

Figure 7.7.: Sinusoidal commutation [7]

48-StepSinusoid

re
ot .
0.8 + *

Sine value
+

Degree
(=)

192-Step Sinusoid

Sine value

Degree

(b}

In summary, sinusoidal commutation provides optimal (constant) torque control but
imposes certain position feedback requirements. Also, the use of encoders or resolvers for
position control can lead to a more expensive system and the complexity of the control
increases.

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

7. Brushless DC Motors 31

7.2.4. Field-oriented control

Field-oriented control is a method based on the fact that only the stator current that
is perpendicular to the rotor helps to generate torque, then it is practical to control the
current vector in a way that the stator’s current vector is perpendicular to the rotor’s
position at all time.

The current in each phase is measured through the shunt resistor in a three-shunt bridge
(ain Figure 7.8) or reconstructing the current using information from a single shunt
resistor (b in Figure 7.8). In order to keep the stator’s current vector perpendicular
to the rotor’s position, the part of the current parallel to the rotor, direct current (/4),
should be zero, and the one perpendicular to the rotor, quadrature current (/;), depends
on the desired motor speed [7].

Figure 7.8.: Current sensing |7|

BEEN
I

—
'| oWy
] T

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

7. Brushless DC Motors 32

The BLDC motor is a three-phase sinusoidal system, adding difficulty to the calculations
needed in this method. The Clarke Transformation (figure 7.9 converts the three-phase
system (A, B, C) into a two-phase time variant system (o, f) and a two-phase invariant
system (d, q) is obtained applying the Park Transformation (figure 7.10). This last
system uses the previously said direct and quadrature currents.

Figure 7.9.: Clarke Transformation [7]

i r

/ Three-phase / Two-phase

¢ ¥ stator axis ¢/ stator axis

Figure 7.10.: Park Transformation 7|
| |

Ijﬂ

»

I"\,I
\'-.._ CFY|] [——— e

= L l i
. \ S H —_
=\

The direct and quadrature currents are fed into a PI controller, whose output is a voltage
in two-phase axis. The values are converted back into a three-phase system applying
inverse Park and Clarke transforms and, finally, applied to the half-bridges of the BLDC
though Space Vector Modulation (SVM).

SVM generates a voltage vector with certain direction and magnitude, which causes
current to flow through the coil. These voltages can be applied on the stator in six
different directions for a certain time, generating an equivalent voltage (V,er) that controls
the current vector. Manipulating the voltage vector has an impact in the stator current
vector.

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

7. Brushless DC Motors

33

FOC is the most complex algorithm for BLDC commutation, and depends heavily in
the accuracy of the current measured, the accuracy of the angle between the rotor and
the stator axes and the processing time between current measurements in order to be

successfully implemented [7].

7.3. Summary of Commutation Methods

Each of the commutation methods described above are used when different requirements
should be fulfilled, whether it is speed, torque or the need to have an algorithm as less
complex as possible. Table 7.4 summarizes the three sensored control methods and shows

their most important features.

Table 7.4.: Comparison of sensored commutation methods [10]

Commutation Speed Torque Control Required Algorithm
Methods Control feedback complexity
Low Speed High Speed devices
Trapezoidal Excellent Torque Ripple Efficient Hall Low
Sinusoidal Excellent Excellent Inefficient Encoder, Medium
resolver
FOC Excellent Excellent Inefficient Current High
sensing,
encoder

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

7. Brushless DC Motors

34

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

7. Brushless DC Motors

35

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

Part 1V.

PROTOTYPING PLATFORMS

ﬁ DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype 36

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

8. Prototyping Platforms

8.1. BeagleBone Black

BeagleBone Black is a low-cost ($45), low-power, open-source hardware development
platform produced by the BeagleBoard.org Foundation and Texas Instruments. The
board provides a cheap and easy way of programming for embedded developers, as well as
the possibility of being used as a single-board computer thanks to its HDMI connection.

The BeagleBone platform is getting more attention for both big and small projects
and professional or amateur developers, thanks to its online community, which contain
resources, projects and troubleshooting, making it accessible for all kinds of people.

Figure 8.1.: BeagleBone Black [16]

L

Several add-ons (capes) have been developed for the BeableBone, including Touchscreens,
prototyping boards or serial communication boards.

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype 38

DLR

8. Prototyping Platforms 39

The characteristics of BeagleBone Black are:

—Processor: AM335x 1GHz ARM®) Cortex-A8
—Connectivity

7 USB client for power & communications
7 USB host
—Z FEthernet
— HDMI
=7 2x 46 pin headers
—Software Compatibility
- Angstr'dm Linux
= Android
7 Ubuntu
7 Cloud9 IDE
Though it is not stated on the list, the software installed on the BeagleBone used for this

project will be the proprietary RTOS VxWorks, which will be booted from an SD-card.

8.1.1. AM335x 1GHz ARM® Cortex-A8

The MPU integrated in the BeagleBone is an AM335x 1GHz ARM® Cortex-AS8 from

Texas Instruments.

- 512MB DDR3 RAM
7 2GB 8-bit eMMC on-board flash storage

7 NEON floating-point accelerator

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

8. Prototyping Platforms 40

=7 2x PRU 32-bit microcontrollers

7 Up to Four Banks of General-Purpose 1O (GPIO); 32 GPIOs per Bank (Multiplexed
with Other Functional Pins). BeagleBone Black has 66 operational GPIO pins out
of the total.

7 GPIOs Can be Used as Interrupt Inputs (Up to Two Interrupt Inputs per Bank)

= Six UARTS

7 Up to Three 32-Bit Enhanced Capture Modules (eCAP)

7 Up to Three Enhanced High-Resolution PWM Modules (eHRPWM)

7 Boot modes

The BeagleBone Black will be used as the main processor board, driving out the PWM
signals required for the commutation and reading the Hall sensor signals required for the
control loop.

8.2. Three Phase BLDC Motor Kit

The DRV8312-C2-KIT is a motor control evaluation kit developed by Texas Instruments,
for spinning three-phase brushless DC (BLDC) and permanent magnet synchronous
(PMSM) motors. The kit includes sub-50-V and 7-A brushless motors for driving medical
pumps, gates, lifts and small pumps, as well as industrial and consumer robotics and
automation applications.

The kit includes, among others, a DRV8312 three phase inverter integrated power module
base board supporting up to 50V and 6.5A with controlCARD interface -C2000 Piccolo
F28035 controlCARD (pre-flashed with code to spin all motors using GUI)- GUI- Isolated
XDS100 Emulation, UART, SPI and CAN Connectivity.

Each kit includes:

7 1 NEMA17 BLDC/PMSM 55W Motor

7 24V wall power supply (with adapters)

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

8. Prototyping Platforms 41

- DRVS&312 baseboard with controlCARD slot
7 Piccolo Isolated F28035 controlCARD
-7 USB Cable

7 USB Stick with GUI, CCStudie IDE, Quick Start Guide, and link to controlSUITE
for all documentation

Figure 8.2.: DRV8312EVM board [16]

8.2.1. Three Phase Brushless DC Motor Driver - DRV8312

Typical microcontrollers or microprocessors drive out signals up to 5V or less, for example
the BleagleBone Black board GPIO output is 3.3V and a current of 8SmA. Motors typically
require voltages or currents that exceed what can be provided by the analogue or digital
signal processing circuitry that controls them. For this, there should be a circuit, or 1C,
whose purpose will be that of ‘amplifying’ the microcontoller’s signals. The motor driver
provides the interface between the signal processing circuitry and the motor itself.

The DRV8312/32 included in the kit are high performance, integrated three phase motor
drivers with an advanced protection system. Some of their characteristics are [13]

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

8. Prototyping Platforms 42

—Z Two power supplies, one at 12V for GVDD and VDD, and another up to 50V for
PVDD

7 Up to 500kHz PWM switching frequency

= Protection system against fault conditions:short-circuit, overcurrent, undervoltage,
and thermal.

7 Current-limiting circuit that prevents device shutdown during load transients such
as motor start-up

Figure 8.3.: DRV8312 IC |16]

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

8. Prototyping Platforms

43

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

9. VxWorks RTOS

VxWorks is a real-time operating system (RTOS) developed as proprietary software by
Wind River. First released in 1987, VxWorks is designed for use in embedded systems,
and currently is used mainly in robotics, spacecraft and transportation systems. It has
been ported to a number of platforms, including the x86 family, MIPS, PowerPC (and
BAE RAD), Freescale ColdFire, Intel 19960, SPARC, Fujitsu FR-V, SH-4 and the closely
related family of ARM, StrongARM and xScale CPUs.From 2011 is also available for
64-bit systems [14].

Among the features of the RTOS it can be found:

—Z Multitasking kernel with preemptive and round-robin scheduling and fast interrupt
response.

7 Native 64-bit operating system (only one 64-bit architecture supported: x86-64)
7 User-mode applications ("Real-Time Processes", or RTP)

7 Error handling framework

7 Binary, counting, and mutual exclusion semaphores with priority inheritance

7 Local and distributed message queues

= POSIX PSE52 certified conformity in user-mode execution environment

7 File systems: High Reliability File System (HRFS), FAT-based (DOSFS), Network
File System (NF'S)

Cross-compiling (a compiler capable of creating executable code for a platform other
than the one on which the compiler is running) is available in VxWorks. Development
is done on a "host" system, for example Windows or GNU/Linux, where an integrated

4#7 DLR — Control of BLDC motors for a terrestrial Lunar Rover prototype 44

DLR

9. VxWorks RTOS 45

development environment (IDE), including the editor, compiler toolchain, debugger, and
emulator can be used. Software is then compiled to run on the "target" system, in this
case the BeagleBoneBlack platform.

Until VxWorks 5.x, the Tornado IDE was used as a development environment, changing
to an Eclipse-based IDE (figure 9.1) from version 6.x onwards, WindRiver Workbench.

Figure 9.1.: A view of VxWorks Workbench environment

@O ¥ = ©e ®
Flle Edt Source Refaclor Navigate Search Project Target Anabze Run Window Help
m i a -0 Q- B H- | PSP~ AFEREBR & W |» = B ™
(2 Project Explor 33 28 Debug Symbo| = B[[@ maorcantioc 31 (@ maforCantiolh = 5[$5 Debug =
- . rol.c - support routine for GPIO keys and leds
s D- =@ L trol port routine for GP i led
» & BeagleBone_MotorControl (ind River 1 -
+ 5 BeagleBoneKemel (Wind R ks 69
» & System Viewer Logs
9 Breakpoints 53 =
® w e x
« D
8 Remote Systems 53 Sla
£ s S
» B Local
» i LinucHost_serr_cr (H
» §8 visimo Wind R s 69 "
» 4B visim1_smp (Wind River ViNorks 69 = - =
B3 Build Console | 4 Search 2« Call Hierarchy| & Progress = - P L2
+ 8 \uWorks6x_BeagleBoneBlack01 BANCIIC) o Buldc I AT el hy| = Prog ©=V R aMoP™
Serial (detyUSEO, 115200, 8, 1. None, None - CONNECTED) - Encoding, (150-8858-1)
NN EEHE W
iCopyright 1984-2014 Wind River Systems, Inc | & < &% v >

CPU: TI_AMI3SK - ARMV7 (ARM) - BeagleBonsBlack
Runtine Name: Vaorks

BSP version: 6.9/3
Created: Apr 3 2014 13:53:02
EDGR Policy Hode: Lab
WOB Conn Type: WOB_COMM_END
WOB: Ready

Card inserted

Serial (deumyUSBO, 115200, 1. None, None - CONNECTED) - Encoing: 150-8655-1) amor7v @

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

10. Matlab/Simulink

MATLAB is a multi-paradigm (capable of supporting different programming paradigms
as OOP, logic, symbolic...) numerical computing environment developed as proprietary
software by MathWorks. MATLAB allows matrix manipulations, plotting of functions
and data, implementation of algorithms, creation of user interfaces, and interfacing
with programs written in other languages, including C, C++, Java, and Fortran. An
additional package, Simulink, adds graphical multi-domain simulation and Model-Based
Design for dynamic and embedded systems.

Simulink, developed by MathWorks, is a data flow graphical programming language
tool for modeling, simulating and analysing multidomain dynamic systems. Its primary
interface is a graphical block diagramming tool and a customizable set of block libraries.
Simulink can automatically generate C source code for real-time implementation of
systems. As the efficiency and flexibility of the code improves, this is becoming more
widely adopted for production systems,in addition to being a popular tool for embedded
system design work because of its flexibility and capacity for quick iteration. Embedded
Coder creates code efficient enough for use in embedded systems.

A view of Matlab’s environment is found in figure 10.1.

Figure 10.1.: A view of Matlab’s environment

4#7 DLR — Control of BLDC motors for a terrestrial Lunar Rover prototype 46

DLR

10. Matlab/Simulink

47

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

Part V.

DEVELOPMENT

ﬁ DLR — Control of BLDC motors for a terrestrial Lunar Rover prototype 48

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

11. Hardware and software frameworks

11.1. Board interconnection

As seen in the previous section two different prototyping boards are going to be used in
order to perform a basic motor control. Initially, the Texas Instruments IDK was going
to be used instead of the BBB as the main processor board, but it was extremely complex
to interface with the driver board and was, consequently, rejected as the processor
board. Both the IDK and the BBB shared the type of microprocessor, an ARM-Cortex
A8 AM3359, therefore this change didn’t lead to software incompatibilities that could
increase the complexity of the code.

The most troublesome issue to resolve was the interconnection of the two boards, due to
voltage differences. The DRV board runs at mainly 5V, with some components at 24V,
while the BBB is a 3.3V board. The use of two different power supplies was also something
to be taken into account, as it could easily lead to the malfunction of the boards. The
proposed solution is the use of a inverter, such as the 74LVX14, a Low-Voltage inverter
with Schmitt Trigger input used for 5V to 3V voltage conversions. The LVX also has to
convert the 5V input signals into 3.3V signals that the BBB admits.

Figure 11.1 shows a connection diagram including all the necessary elements for the motor
control: microprocessor, driver, circuitry... It is recommended to have two different power
supplies, though it would be optimal to have only one, for powering the DRV board (24V)
and the BBB (5V). Although the use of two different power supplies is not the optimal
approach, parallel supply, putting the two boards in common GND and using the LVX
IC for isolation is a rather good solution, as it reduces the probability of destroying the
board.

The DRV board is powered by a 24V connector included in the kit. The BBB also
includes a power connection, but it is not going to be used in this project. Instead, a
power supply is connected to the BBB’s GND (P9- Pins 1 and 2)and VDD _ 5V (P9-Pins
5 and 6), that provide a safer way to power the system. The BBB should be powering the

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype 50

DLR

11. Hardware and software frameworks 51

LVX through its 3.3V outputs and all the GND points are connected to one of the GND
points in the BBB or the line from the power source. There is no difference whether the
general line or the BBB pins should be used, as all the BBB’s GND pins are internally
connected, but at least one source has to be connected to the DRV board’s GND (J5-
Pins 19, 20, 27, 30, 39, 40), due to the reasons explained on the previous paragraph.

Figure 11.1.: Block diagram for physical connection

| 1
45V | |
POWER SUPPLY | BEAGLEBONE |
+5Y GND | BLACK |
R
| i | 20V
3.3V |
| Y Y $ | -
| | e "‘\\
GMND | o DRIVER _| DRV 8312 [
T 7aLvxia = BOARD ™ BLbC 5 |
| | —l‘\I' \ {,-'
| | | |
—————— -t t——{oog!
GHD HALL SEMNSORS |

Other signals that should go between the two boards are the PWM signals, Hall Sensor
lines and Reset lines. They should go though the LVX IC as previously said, taking
care of connecting inputs and outputs adequately. The 74LVX14 has six inputs and
corresponding outputs, whereas there are three PWM signals, three Hall Sensor signals
and three Reset lines; a total of nine different signals. For that reason, two different IC
are going to be used, one for Hall Sensor and Reset lines and the other one for PWM
signals. PWM signals and reset lines should be connected from the BBB to the LVX’s
inputs and from there to the DRV board, as it is the processor who is in charge of driving
out the signals. On the other hand, the sensor’s signals should be connected from the
DRV to the LVX’s inputs, and the output to the BBB; because the DRV board is the
board generating the signals, while the BBB receives and processes them.

The microprocessor AM3359 Cortex-A8 has a PWM subsystem with six PWM outputs,
PWMO0-2 with two PWM outputs each (A and B), three of which will be used to generate
the voltage needed by the motor. The chosen PWM signals are: PWMO0-A, PWM2A and
PWMZ2B, each of which has a corresponding pin output in one of the BBB output headers,
P8 and P9. The BBB output pins are then connected to the input of the LVX IC, the
output of the LVX to a 40-pin header that is connected to the DRV board J5 header.
The final connections for PWM signals are as following:

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

11. Hardware and software frameworks 52

7 PWM2-A BBB: P8-Pin 19 (EHRPWM2A)— 74LVX14/1: Pin 1 (/y) - Pin 2 (Op)
— DRV8312 Board: J5-Pin 26 (PWMA)

— PWMO0-A BBB: P9-Pin 22 (UART2_RXD)— 74LVX14/1: Pin 3 (/1) - Pin 4 (O1)
— DRV8312 Board: J5-Pin 25 (PWMB)

—~ PWMO-B BBB: P9-Pin 21 (UART2_TXD)— 74LVX14/1: Pin 5 (/) - Pin 6 (Os)
— DRV8312 Board: J5-Pin 28 (PWMC)

It was previously stated that Hall sensors are a vital part of BLDC motors, therefore they
should be implemented into the physical system. Hall sensors are usually a digital type
of sensors with two states, active or inactive. Connecting the Hall sensors to a GPIO
pin is the easiest way to read the pin’s status in the BBB and process the results. Out
the 66 GPIO pins, three of them are going to be used as the input for the sensors. The
signal flow is opposite to the PWM, from the DRV board to the BBB, as the BLDC is
connected to the DRV board and the BBB receives the signals and processes them. It
is mandatory to convert these signals from 5V to 3.3V, what the LVX does. Below it is
shown how the signals are connected.

— HALLA DRV8312 Board: J5 -Pin 16 (CAP1)— 74IVX14/2: Pin 9 (/3) - Pin 8
(Os) — BBB: P8-Pin 36 (UART3_CTSN) - GPI02-16

~ HALLB DRV8312 Board: J5-Pin 11 (CAP2)— 74LVX14/2: Pin 11 (/4) - Pin 10
(O4) — BBB: P8-Pin 35 (UART4_CTSN) - GPIO0-8

—~ HALLC DRV8312 Board: J5-Pin 14 (CAP3)— 74LVX14/2: Pin 13 (/s) - Pin 12
(Os) — BBB: P8-Pin 34 (RART3_CTSN) - GPI02-17

Finally, the DRV8312 has an input for Reset action. The RESET x lines are activated or
not depending on the operation mode that is selected. The signals are driven out from
the BBB to the DRV board, just like the PWM signals, but due their mode of operation,
only using two states: on and off, GPIO pins are used. Once more, three GPIO pins are
selected from the 63 remaining outputs, and connected as following.

— RESETA BBB: P8-Pin 22(GPIO1_5)— 74LVX14/2: Pin 1 (/o) - Pin 2 (Op) —
DRV8312 Board: J5-Pin 6 (RESET_A)

~ RESETB BBB: P8-Pin 23 (GPIO1_4)— 74LVX14/2: Pin 3 (/1) - Pin 4 (01) —
DRV8312 Board: J5-Pin 9 (RESET_B)

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

11. Hardware and software frameworks 53

— RESETC BBB: P8Pin 24 (GPIO1_1)— 74LVX14/2: Pin 5 (/1) - Pin 6 (O5) —
DRV8312 Board: J5-Pin 12 (RESET _C)

Notice that the LVX IC has inverting gates, which should be taken into account when
processing the Hall sensor’s signals and the reset action.

Figure 11.2 shows the finished version of the circuit. All elements are mounted on a
perforated prototyping board, being a temporary solution rather than a permanent one.
The connection between the two boards is made though a 40-pin header and flat wire.
The 5V power supply is connected through wire, in the picture red for 5V and black for
GND. Other connections are the UART and Ethernet, which will have more impact in
next sections.

Figure 11.2.: Final result of circuit and connection

O aMiN 3

H:an

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

11. Hardware and software frameworks 54

11.2. VxWorks IDE

The WindRiver Workbench is going to be used as the main environment for the code
development for the motor control, therefore it should be connected to the processor
board. There will be two connections between the PC and the BBB, one being a serial
communication that access the BBB through the Terminal in the VxWorks Workbench
and the Ethernet connection that allows the board to be programmed.

The serial connection is using a USB to T'T'L serial cable like the one in figure 11.3. The
BBB’s voltage level for TX and RX is 3.3V, therefore, when selecting a serial cable, the
voltage level should be taken into account so that the BBB won’t break down. For this
purpose, the chosen cable is the TTL-232R-3V3 by FTDI Chip connected to the BBB’s
serial header J1 and an USB port.

Figure 11.3.: USB to TTL serial cable [15]

In Linux systems, the workbench can be accessed through the Terminal window by
writing the file’s path in the command line.

Jopt/vxworks/vxworks —6.9.3.3 _0/startWorkbench . sh

The ‘Settings’ button is located at the right side of the the ‘Terminal’ tab in the
Workbench. In the ‘Settings’ window, parameters like ‘Port’ or ‘Baud Rate’, that serial
connections need, can be introduced. USB ports in Linux systems are usually located
inside ‘/dev’ and the exact channel can be found using the command ‘dmesg’. This
command prints out all the hardware connected to the PC so it would be better to use
a filter command like ‘grep’ to reduce the list. The output of the command:

dmesg | grep FTDI

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

11. Hardware and software frameworks 55

gives this list:

[4.264791] usb 4—1: Manufacturer: FTDI

[8.514807] USB Serial support registered for FTDI USB Serial
Device

[8.514945] ftdi sio 4—1:1.0: FTDI USB Serial Device converter
detected

[8.517601] usb 4—1: FTDI USB Serial Device converter now
attached to ttyUSBO

[8.517797] ftdi_sio: v1.6.0:USB FIDI Serial Converters Driver

The fourth line indicates the port in which the FTDI cable is connected. The USB port
for this connection will then be:

/dev /ttyUSBO

Other paramenters are shown in the following figure (figure 11.4)

Figure 11.4.: Open-loop system overview

N} O Terminal Settings — o O @

View Settings:

View Title: | Terminal 1 |

Encoding: |1S0-8859-1 |+]
; Connection Type:
Serial i
Settings:
Port [sdevityusBO (=]
Baud Rate: | 115200 =
i
. DataBits: |8 =
| t
Stop Bits: |1 =
Parity: [None =
Flow Control: | Nane =

Timeout (sec); |5 |

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

11. Hardware and software frameworks 56

The ‘target’ connection is established in the ‘Remote Systems’ tab, usually located at
the bottom left of the Workbench. Clicking the leftmost button in this tab, creates a
new connection to a remote system. The first ‘pop-up’ window will show the ‘Remote
System type’, in this case ‘Wind River VxWorks 6.x Target Server Connection’. Clicking
‘Next’ leads to the ‘Target Server options’ window, where the connection parameters will
be written in (figure 11.5).

Figure 11.5.: Target Server options

L N o Target Connection —— O O @

3 Target Server Options

1 @Thetalgel name can be validated by pressing the check bufion Iy
Name |MxWorks6x_BeagleBoneBlacko Shared: [|

I
| Associated target platiorm: | | |

TJ Target Server Options | Object Path Mappings | Target State Refresh .|'

Backend seftings

Pracessor: | (default from target)

Backend: |wdbrpc

Target name or address: ﬁBeagleBoneBlackO‘l

Kernel image
() File path from target (it available)

@ File: |/mome_localiitpboothsiorks

|| Bypass checksum comparison

Advanced target server options
|v] Verbose target server output

[g —

Options: |-R/homefserr_cr/ -RW -Bt3

Command Line:
tgtsvr -V -R/homelserr_crl -RW -Bt 3 -c /home_localfftpbootvdWorks BeagleBoneEla

Lt

@:J I oK] | Cancel |

T T LA T T DEEy LEOUTE D Tash

Once all the parameters have been written, clicking on the green ‘Connect’ buttons in
the ‘Remote Systems’ and in the ‘Terminal’ tab will automatically connect the PC to
the board. Once the board is connected, it can be disconnected from the ‘Terminal’ by
pressing the red "Disconnect" buttons on the ‘Terminal’ tab or the ‘Remote Systems’.

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

11. Hardware and software frameworks 57

When accesing the BBB though the ‘Terminal’, clicking ‘Ctrl+x’ with the window active
restarts the BBDB.

New projects are created by going to ‘File — New’, or right-clicking in the ‘Project
Explorer’ window 'New‘, then selecting ‘VxWorks Downloadable Kernel Module’ Project.
VxWorks kernel applications execute in the same mode and memory space as the kernel
itself and can either be interactively downloaded and run on a VxWorks target system, or
linked with the operating system image. Creating a new project is really straightforward
until the ‘Build Specs’ window, where the only option selected is the ‘ARMARCHT7gnu’
box.

The ‘Debug’ and ‘Run’ buttons (figure 11.6) will load the code into the microprocessor.
The ‘Debug’ button does this automatically after selecting an ‘Entry point’, while to
‘Run’ it, it must be downloaded first into the kernel by right-click on the project’s name
in the ‘Project Explorer’ window and selecting ‘Download Kernel Module’.

Figure 11.6.: Debug and Run buttons

DEBUG RUN

O -0 - Q-
QE Q 4 1 b
| |

Matlab/Simulink projects can be loaded and unloaded into the kernel, but this will be
explained when talking about the ‘Closed-loop control’.

11.3. Matlab

The speed control loop for the BLDC is going to be made using the Matlab/Simulink
environment, loading the blocks into the kernel. As with the VxWorks Workbench,
the program is initialised, in Linux systems, by writing its path into the ‘Terminal’s’
command line. The path could be different to the one here written.

Jopt/vxworks/vxworks —6.9.3.matlab/2010b/bin/matlab_acad

Interconnecting Matlab/Simulink and VxWorks is not straightforward and it calls for the
writing of new code in order to allow Matlab to run in other environments. The process

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

11. Hardware and software frameworks 58

of adapting software so that an executable program can be created for a computing
environment that is different from the one for which it was originally designed is called
porting.

The port used in this project was developed by colleagues at the ‘German Aerospace
Center’ and given to use as a tool. These instructions here stated are only valid for this
port and there is no guarantee that they will work in other cases.

First of all, the parameters or the POSIX targets should be loaded into the Matlab
Workspace by writing the following command in the Matlab console. If they are not
loaded, the port won’t work properly.

run targets/init.m

The following steps are done in the Simulink environment. In the project created, the
‘Real Time’ configuration is done ‘Simulation — Configuration Parameters’. On the left
side of the ‘Configuration Parameters’ window there are several options for the simulation
configuration. First, in the ‘Real Time Workshop’ panel (figure 11.7), it is mandatory to
select the ‘System Target File’, in this case ‘posix.tlc’

Figure 11.7.: Matlab Simulation Configuration

@ O « i fon (Active) —— © @
‘ngc[~Target selection
- Solver System targetfile: [posixic]] [W]
~-Data Impor/Export
Optimization Language: [C I']
---Diagnostics) - -
- Sample Time Description Posix Real-Time Target
-Data Validity
~Type Conversion B e A
& Connectivity TLC options [
= Compatibility
-Model Referencing ~Makefile configuration
- Saving [%| Generate makefile
- Stateflow
Hardware Implementation Make command [make_rtw]
Model Referencing Template makefile: [posixmt]
=I-Simulation Target
- Symbols
.Custom Code
i Time \ = ~Code Generation Advisor
Report Select objective [Unspeciiied -
-Comments
-Symbols Check model before generating code: [Oﬁ ‘v] [Check model ...]
-Custom Code
5---Debug [] Generate code only
- Interface
+-Posix code generatio..
=Trigger
=I-HDL Coder
i--Global Settings
i-Test Bench
L-EDATool Scripts

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

11. Hardware and software frameworks 59

Next step is the configuration of the ‘Interface’ parameters for the ‘External Mode’, which
will allow the connection between the Matlab environment and the VxWorks and BBB
(figure 11.8). The ‘Interface’ box must be switched to ‘External’; the ‘ITransport layer’
is the type of connection ‘TCP/IP’ (tcpip), and the ‘Mex-file arguments’ correspond to
the name of the target, ‘BeagleBoneBlack01’

Figure 11.8.: Matlab Simulation ‘Interface’ Configuration

%0 - i ion (Active) ©e
|Se|ect ~Software environment
Solver
T: tfunction library: C89/C30 (ANSI -
~Data ImportExport TG Shsb]
- Optirnization Utility function generation [Auiu I'l
—-Diagnostics
5---Samp\eT\me [%] Support nan-finite numbers
i Data Validity
i-Type Canversion rData exchange
i~ Connectivity [mMaT-file logging
_--Cnmpatmlllty
~Model Referencing Interface: [Externa\ mode |~
saving HostTarget interface
=~ Stateflow
-~ Hardware Implementation Transport layer [tcplp |-] MEX-file name: ext_comm

~Model Referencing
= Simulation Target
H '--Sy’mbcls

MEX-file arguments: [‘BeagleEoneE\ackO‘l']

Custom Code Memory managemen‘
;-ReakTime Workshop [Static memory allocation
"Repmt

~Comments

E---Sy’mhuls

i~ Custom Code

i-Debug

nterface

~Posix code generatio

=-Trigger

--HDL Coder
i-Global Settings
~Test Bench
~~EDATool Scripts

In the ‘Posix code generation’ menu there is a ‘drop-down’ menu where the ‘Target
toolchain’ is selected. Depending on the installed toolchains there are several different
possibilities: the toolchain used in this project is called ‘vxworks6.9-armv7-gccd.x-kernel’
and was developed at the DLR.

Finally, building the project is done by going to ‘Tools — Real Time Workshop —
Build’. The resulting file with the name of the project will be loaded into the BBB via
the VxWorks Workbench.

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control

12.1. Open-loop Control

The first attempt to develop a motor control will be by creating an open-loop, or
non-feedback, control for the BLDC. Open-loop control is a type of control that computes
its input into a system using only the current state and its model of the system. It does
not observe the output of the system, making it incapable of correcting any errors that
could appear during operation. This control is preferred over closed-loop control when
simplicity and low-cost are recommended and feedback is not important.

In open-loop control the input is given to the model if the system, whose output is driven
into the actuator. In this method, there exists an intermediate step between the model
system and the actuator (the BLDC motor): the driver mentioned in the previous chapter
of this document (DRV8312). The loop will be as follows (figure 12.1) the input(speed)
will be a variable in the system (the code); the output of the code will be the PWM
signal which will be driven into the DRV chip. The driver "transforms" the PWM signal
into the voltage needed to power up the motor. The BLDC motor has a speed and a
torque which, in this case, won’t be measured.

Figure 12.1.: Open-loop system overview

Input Speed | PWHM Duty | Yoltage | Torgue, Speed
———» CONTROLLER —l—| DRWVER +——®» MOTOR ——»

The "Controller" is the only part of the loop that will be done from scratch, and
corresponds to the code written for the ARM microprocessor. The PWM signal, which
will be the output, is going to be generated through an algorithm. PWM will also trigger
an ISR at a specified time; necessary to calculate the new PWM duties.

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype 60

DLR

12. Motor Control 61

Figure 12.2.: Open-loop flow diagram

bBoardhotarContral ; [ISR]

‘ sysCIkRateSet | j | Clear Flag |
v

‘InitiahzeMotorControl{]| | | Save FP Registers |
e

‘ Enable FWH | | Reload PWM duty |
| v

‘ Enable GPIO | | ‘ CalculateMatorControl(|
4

‘ Enahble Interrupts | | | Calculate new angle |

% /
Anglen M Angle recalculation

YES

|Calculatel‘u‘luturCuntroISpacePuinter(}|

~—

| Calculate sector |

~-—

‘ Calculate time parameters |

v

| Calculate and save PWM values |

Y

| Reload FF registers |

The chosen algorithm is Space Vector Modulation, which is mainly used for creating AC
waveforms. SVM calls for the implementation of a rotating voltage vector, whose angle
value is incremented at each time an ISR is triggered.

Since the Beaglebone Black’s pin outputs are highly multiplexed and more than one
feature can be used for each pin, it is mandatory to chose the operation mode from the
list included in the BBB System Reference Manual (SRM) [17] to correctly determine the
outputs. The pinmuxing table is taken out from the ‘Sitara AM335x ARM Cortex-AS8
Microprocessors (MPUs)’ [18] datasheet and pins selected in the SRM should correspond
to one number (in the ZCZ package schematic) in the MPU datasheet. Another useful
document to configure will be the ‘AM335x ARM Cortex-A8 Microprocessors (MPUs)

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control 62

Technical Reference Manual’ (TRM) [19], which contains all the main information about
the microprocessor, like modules and registers, as well as configuration examples.

12.1.1. Function Main

The flow diagram in figure 12.2, presents the steps that the software should complete
to create a correct PWM waveform. The left branch contains the functions present
on the main routine, called "bBoardMotorControl", and are called only one time at
the beginning of the running process. These functions are the configuration functions
for PWM (PWMConfiguration()) and GPIO (openGPIOConfig()), and the initial
parameters for the SVM and the motor control in general (InitializeMotorControl()).

The configuration and initialisation function’s content will be explained in the next
sections. However, in the main function, a message will be printed in the Terminal
screen indicating whether the configuration of the PWM and GPIO was successful or
not. One of the main causes of the configuration functions failing is that the BBB was
not shut down correctly and the input parameters are not written correctly. To ensure
the configuration, the BBB should be shut down every time before running the code.

//PAWM Configuration
if (PWMConfiguration () == ERROR){

printf ("PWM Configuration: Failed. \n");
}

else{

}

//GPIO Configuration
if (openGPIOConfig() = ERROR){

printf ("GPIO Configuration: Failed. \n");
}

else{

printf ("PWM Configuration: OK. \n");

printf ("GPIO Configuration: OK. \n");
}

At the end of the "bBoardMotorControl" function, a infinite while loop prevents the
program from shutting down and allows running for an undefined amount of time. For
the time the processor is doing nothing for example, waiting for a new ISR, the "sleep"
function is used so that the program is not consuming resources.

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control 63

while (1){
sleep (1);
}

12.1.2. Pulse-Width Modulation (PWM)

Pulse-Width Modulation is a modulation technique in which the duration of each pulse
(a square wave) is set by equation (7.1). The duty cycle (D) is the percentage between
the active time of the signal (T') and the period of the signal (P) (figure 12.3). The main
advantage for PWM signals is that power loss in the switching devices is very low as,
when a switch is off, there is practically no current, and when it is on, there is almost no
voltage drop across the switch.

D=

-
5 (12.1)

Figure 12.3.: PWM signal with different duty cycles

----- |

The AM3359 microprocessor has three ePWM Modules, each of which has up to two
separate outputs, all of them connected to the output pins. The first step will be to
configure the pin multiplexing for the ePWM operation mode. The ePWM outputs
chosen for the board interconnection in ‘Section 6.1’ will be used in the code, and their
corresponding ZCZ number in the datasheet are:

~ ¢HRPWMOA (UART2 RXD) — A17 (SPI0_SCLK)
— eHRPWMOB (UART2_TXD) — B17 (SPI0_DO0)

— ¢HRPWM2A (EHRPWM2A) — U10 (GPMC_ADS)

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control 64

The following figures (12.5, 12.5 and 12.6) indicate the operation mode for each PWM
output. The table shows the ‘Pin number’ for ZCE and ZCZ packages (currently using
the ZCZ package), the signal name (which may or may not be the same as the operation
mode that is being used), the number for each mode and the type of pin: Input (T),
Output (O) or Input/Output (I/O). There is several other information, but it is not
relevant for this purpose. After the operation mode for each ePWM output has been
found, code should be written to indicate the processor which output to use.

Figure 12.4.: ePWMOA Mode [18]

5]
E]

A13 AT SPID_SCLK spil)_scik
uart2 md

12G2_SDA
=hrpwmOA

,____
[=]
=]

pri_uartD_cts_n
or1_edio_sof
EMU2

gpic0_2

|70

@[o & @] =2

T=l=

=] K=

Figure 12.5.: ePWMOB Mode [18]

(=]
]

B1a B17 SPI0_DO0 spill_dl
uart?_ted
12C2_SCL

o=

51
=1

ehrpwm0i8

prl_uartD_rts_n

pri_edie_latch_in
EMU3

@ w2] ==
oo

Glo

apioD_3

Figure 12.6.: ePWM2A Mode [18]
| _ |

V15 u1o GPMC_ADS gpme._add

icd_data2a
mme1_datl
mmc2_datd
ehrpwm2A

[=]
=

=1

(=3 =]

Q=

R EREEE

pr1_mii_mt0_cik

5}

gpio0_22 7

The code snippet below shows a way of resolving this using a struct in C. The I/O
multiplexing is interfaced by the ‘Control’ module (CTRL) (base address 0x44E1 0000)
and is configured by adding the ‘offset’ given on the TRM’s register specifications at the
end of the CTRL base address. The first variable indicates the register’s offset address
for each output pin, the second one interfaces the operation mode from ‘0’ to ‘7’ and
other features. ePWM pins will be used only as an output, therefore the ‘Input enable

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control 65

value’(Receiver) should be disabled (IDIS is a define containing 0). If the pins are used as
input, or input/output, the Receiver should be enabled by writing ‘1’ in the register.

struct am335xPadConf pwm_pad || = {
{CONTROL PADCONF_GPMC ADS, (IDIS | MODE4)},/* PWM A x/
{CONTROL_PADCONF _SPI0_ SCLK, (IDIS | MODE3)},/« PAM B x/
{CONTROL_PADCONF_SPI0_D0, (IDIS | MODE3)}, /« PAM C x/
{AM335X_PAD END, AM335X PAD END }};

After the pin multiplexing is done, the proper ePWM configuration can be started.
It will be done in a function called ‘PWMConfiguration()’ and called from the main
function, as seen previously. This function returns an ‘int’ parameter with the status of
the configuration (OK if the configuration was successful or ERROR if not). The ePWM
modules used will be ‘ePWM0’ (EPWMSS0) and ‘ePWM2’ (EPWMSS2), as the selected
pins were ePWMOA, ePWMOB and ePWM2A. The whole module should be configured
even though only one output is used for ePWM2. It is important to notice that each
PWM subsystem has its own register address where the configuration parameters are
written in. The exact address can be checked in the TRM. For the AM335x, ePWMO0
has its base address at (0x4830 0200) and ePWM2 at (0x4830 4200).

The ARM microprocessor needs to configure the ePWM Clock in order to run the ePWM.
The ‘Clock Management’ protocol for the microprocessor is stated in the TRM | on the
‘Power, Reset, and Clock Management (PRCM)’.

At the beginning of the function, the parameter that will be returned is initially declared
as ‘OK’ and the pin multiplexing configuration is done by calling a configuring function
using the previous struct as an argument.

The elements that will be configured on the first step are ‘Module Mode’ and ‘Idle’.
‘Module mode’ (MODULEMODE) option controls whether the interface clock is enabled,
while ‘Idle’(IDLEST) controls if the module is in ‘Idle’ mode or performing another
action. The MODULEMODE parameter will be set to ‘Enable’ and the IDLEST to
‘Func’, both being enabled and operational. A function written specially for ARM
microprocessors will write the options into to registers and return the status of the action
(OK or ERROR). The ‘Shift’ parameter will displace the option to match the register’s
bit corresponding to IDLEST.

/* Writing to MODULEMODE field of CLKCTRL register. x/
SetAndChkRegister (SOC_CM_PER REGS+CM_PER EPWMSS0 CLKCTRL,
CM_PER EPWMSS) CLKCTRL_MODULEMODE,
CM_PER EPWMSS) CLKCTRL MODULEMODE ENABLE) ;

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control 66

' CM_PER_REGS+CM_PER_EPWMSS2 CLKCTRL,
CM_PER EPWMSS2 CLKCTRL MODULEMODE,
CM_PER_FPWMSS2 CLKCTRL_ MODULEMODE ENABIE)

SetAndChkRegister (SOC
P

/* Check writing to IDLEST field in CLKCIRL register. x/

ChkRegister (SOC_CM_PER REGS + CM_PER_EPWMSS0 CLKCIRL,
CM_PER EPWMSS0 CLKCTRL IDLEST,
CM_PER EPWMSS0 CLKCTRL_IDLEST FUNC <<
CM_PER_EPWMSS0 CLKCTRL IDLEST SHIFT);

ChkRegister (SOC_CM_PER_REGS + CM_PER_EPWMSS2 CLKCTRL,
CM_PER EPWMSS2 CLKCTRL_IDLEST,
CM_PER_EPWMSS2 CLKCTRL_IDLEST FUNC <<
CM_PER EPWMSS2 CLKCTRL IDLEST SHIFT);

Next, the clock and the ‘Time Base Module Clock’ should be enable in the ‘Control
Module’ register. The control module includes status and control logic not addressed
within the peripherals or the rest of the device infrastructure. The ePWM clock is
enabled in the ePWM Sub-System’s registers.

/+* Enable Clock for FHRPWM in PAWM sub system x/
EHRPWMClockEnable (SOC_ PWMSS0 REGS) ;
EHRPWMClockEnable (SOC_PWMSS2_ REGS) ;

/* Enable Timer Base Module Clock in control module x/

status |= SetAndChkRegister (SOC_CONTROL REGS+CONTROL PWMSS CIRL,
CONTROL_PWMSS CIRL PWMSS0 TBCLKEN,
CONTROL_PWMSS CTRL. PWMSS0 TBCLKEN) ;

status |= SetAndChkRegister (SOC_CONTROL REGS+CONTROL PWMSS CTRL,
CONTROL_PWMSS CTRL_PWMSS2 TBCLKEN,
CONTROL_PWMSS CTRL PWMSS2 TBCLKEN) ;

After configuring the clocks, the proper configuration of the PWM module starts. The
ePWM module has seven different submodules: Time-base (TB), Counter-Compate
(CC), Action-Qualifier (AQ), Dead-band (DB), ePWM-chopper (PC), Event-trigger (ET)
and Trip-zone (TZ). The most important submodules are the first three: TB, CC and
AQ; but the ET will also be configured to create a ePWM interrupt.

The ‘Time Base Clock’ submodule is in charge of the major features of every ePWM

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control 67

signal: time base, period, operation mode (up, down or up-down). The first step
will be configurating the ‘Time-Base Clock, the minimum time step value, for each
ePWM module, at a frequency of 100MHz (10 7s), with a prescaler(CLKDIV) value
of 1 (PWMClockFrequency = 100000000, CLOCK DIV VAL = 1) in the ePWM
registers. The registers associated with the ‘Time base’ period value are ‘Time-Base
Clock’ (TBCLK) for the period, and ‘Time-Base Control’(TBCTL) to fix prescaler value.
Texas Instruments provides several pre-made functions that automatically write the
desired values into the correct registers that make the configuration process easier.

EHRPWMTimebaseClkConfig(SOC_EPWM 0 REGS,
PWMClockFrequency /CLOCK DIV VAL,
PWMClockFrequency);

EHRPWMTimebaseClkConfig(SOC_EPWM_2 REGS,
PWMClockFrequency /CLOCK_DIV_VAL,
PWMClockFrequency);

According to the DRV8312 datasheet, the PWM period signal should not have a frequency
lower than 10KHz or higher than 500KHz to ensure a correct functioning. A frequency of
40KHz (25 ps) will be selected as the ePWM cycle frequency (PWMCycleFrequency =
40000) and written inside the register ‘Time-Base Period’ (TBPRD). The period value in
the TBPRD register is not directly set, but rather it is written as ‘n’ times the Time-Base
Clock. The value written inside the register is, therefore:

PWMClockFrequency 10x10°

TBPRD = =
PWMCycleFrequency 40x103

= 2500 (12.2)

The time-base counter has three modes of operation selected by the time-base control
register (TBCTL) (figure 12.7):

=7 Up-Down-Count Mode: In up-down-count mode, the time-base counter starts from
zero and increments until the period (TBPRD) value is reached. When the period
value is reached, the timebase counter then decrements until it reaches zero.

=7 Up-Count Mode: In this mode, time-base counter starts from zero and increments
until it reaches the value in the period register (I'BPRD).

7 Down-Count Mode: In down-count mode, the time-base counter starts from the
period (TBPRD) value and decrements until it reaches zero.

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control 68

The chosen solution for SVM will be creating a symmetrical PWM waveform, making
‘Up-Down Count Mode’ the best operation mode among the existing three. The PWM
values that are going to be calculated represent the CC value, which will be explained
afterwards. To enable ‘Up-Down Count Mode’ the field inside the ‘Counter Mode’
(CTRMODE) in the TBCTL registers should be loaded with the value ‘2h’.

The time-base period register (TBPRD) has a shadow register that allows the register
update to be synchronized with the hardware. This feature won’t be used in this
project, the TBPRD register will be loaded without a shadow register, therefore it should
be disabled by writing the value ‘1h’ into ‘Active Period Register Load From Shadow
Register Select’(PRDLD) in the TBCTL register.

Figure 12.7.: PWM Periods based on Count Mode [19]

| Tewm |

For Up Count and Down Count

Tewm = (TBPRD + 1) x Tk
Fevim = 1/ (Tewm)

For Up and Down Count
Tewm=2 x TBPRD x T1gcik

Fewm=17 (Tewm)

CTR_dir Up Down Up Down

EHRPWMPWMOpFregSet(SOC_EPWM_0_ REGS,
PWMClockFrequency /CLOCK_DIV_VAL,
PWMCycleFrequency
EHRPWM_COUNT UP_DOWN,
EHRPWM_SHADOW WRITE DISABLE) :

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control 69

EHRPWMPWMOpFregSet(SOC_EPWM_2 REGS,
PWMClockFrequency /CLOCK DIV VAL,
PWMCycleFrequency
FEHRPWM_COUNT UP_ DOWN,
EHRPWM_ SHADOW WRITE DISABLE) ;

Counter-compare submodule takes as input the time-base counter value. The time-base
value is continuously compared to the counter-compare A (CMPA) and counter-compare
B (CMPB) registers. When the timebase counter is equal to one of the compare registers,
the counter-compare unit generates an appropriate event programmed by the AQ module.
When appropriately configured in the AQ module, the CC controls the PWM duty
cycle.

The expected CC value should be loaded into the ‘Counter-Compare A Register’(CMPA)
or ‘Counter-Compare B Register’(CMPB) as a value ‘n’ times the TBCLK. The value
can be reloaded as many times as needed, and so it will be done at each PWM cycle. In
the configuration function, the value loaded will be ‘0’ to ensure that the duty cycle is
0. The CC configuration and value loading should be done for all the ePWM outputs
involved, though in the code below only ePWMOA and ePWMOB are stated.

/* Load Compare A value and B value x/
EHRPWMLoadCMPA(SOC_EPWM_0 REGS,
0,
EHRPWM SHADOW_ WRITE DISABLE,
FHRPWM_COMPA_NO TOAD,
EHRPWM CMPCIL _OVERWR, SH FL);
EHRPWMLoadCMPB(SOC_EPWM 0 REGS,
0,
EHRPWM_SHADOW _ WRITE DISABLE,
EHRPWM_COMPB_NO TOAD,
EHRPWM_CMPCTL._OVERWR, SH FL);

The action-qualifier submodule is responsible for qualifying and generating actions (set,
clear, toggle) based on the following events:

—Z CTR = PRD: Time-base counter equal to the period
—Z CTR = 0: Time-base counter equal to zero
—7 CTR — CMPA: Time-base counter equal to the counter-compare A register

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control 70

—7 CTR = CMPB: Time-base counter equal to the counter-compare B register

A symmetric PWM waveform can be obtained loading a CC value and configuring the
AQ module as shown in figure 12.8. However, due to the inverting effect of the LVX
IC, the actual configuration written into the register ‘Action-Qualifier Control Register
for Output A Section (EPWMxA)’ (AQCTLA) or its ‘B’ counterpart, will be the exact
opposite of said figure. When a new cycle begins (CTR = 0), the signal is high until it
reaches CTR = CMPAU (Up), when it is turned low. The signal continues to be low
until CTR = CMPAD (Down), when is turned high again until the end of the cycle,
CTR = PRD. When configuring the AQ for the output ‘B’ it is good to use the register
CMPB and configure the switchings for CMPBU and CMPBD.

Figure 12.8.: PWM Counter Compare AQ configuration example

CCA UP CCA DOWN

<) J

-

/* Configure Action Qualifier x/

EHRPWMConfigureAQActionOnA (SOC_EPWM 0 REGS,
EHRPWM_AQCTTLA 7RO FPWMXAHIGH,
EHRPWM AQCTTA PRD FPWMXALOW,
EHRPWM_ AQCTTA CAU FPWMXATOW,
EHRPWM_AQCTLA CAD EPWMXAHIGH,
EHRPWM_AQCTLA CBU_DONOTHING,
EHRPWM_AQCTLB CBD DONOTHING,
EHRPWM AQSFRC ACTSFB DONOTHING) ;

EHRPWMConfigureAQActionOnB (SOC_EPWM_0 REGS,
EHRPWM_AQCTIB 7RO FPWMXBHIGH,
EHRPWM_AQCTIB_PRD EPWMXBLOW,
EHRPWM_AQCTLB_CAU_ DONOTHING,
EHRPWM_AQCTLB CAD DONOTHING,
FHRPWM_AQCTIB (BU FPWMXBLOW,
EHRPWM_AQCTLB_CBD EPWMXBHICH |
EHRPWM_AQSFRC ACTSFB DONOTHING);

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control 71

The Event-Trigger sub-module main features are:

7 Receives event inputs generated by the time-base and counter-compare submodules
7 Uses the time-base direction information for up/down event qualification
7 Uses prescaling logic to issue interrupt requests at:

Every event

Every second event

Every third event

The Event Trigger will generate an interrupt every cycle (25 us), in which the new PWM
duty cycles will be calculated and their value reloaded into the CMPx registers. The
interrupt will only be generated in one on the ePWM channels (ePWMO0) at the beginning
of every event (TBCNT = 0). The field ‘¢ePWM Interrupt (EPWMx_INT) Period
Select’(INTPRD) in the ‘Event-Trigger Pre-Scale Register’ (ETPS) register, determines
how many events need to occur until an event is generated (‘1h’ to generate interrupts
in the first event). The ‘Event-Trigger Selection Register’ (ETSEL) determines when
the interrupt is generated by writing a value in the ‘¢ePWM Interrupt (EPWMx INT)
Selection Options’(INTSEL) field (‘1h’ to generate an interrupt at TBCNT = 0).

/* Generate interrupt every occurrence of the event x/
EHRPWMETIntPrescale (SOC_EPWM 0 REGS,
EHRPWM_ETPS INTPRD FIRSTEVENT);

/* Generate event when TBCTR = 0 x*/
EHRPWMETIntSourceSelect (SOC_EPWM_ 0 REGS,
EHRPWM _ETSEL INTSEL TBCTREQUZERO);

The remaining modules Dead-band (DB), ePWM-chopper (PC), Trip-zone (TZ) and the
High-Resolution PWM capabilities (HRPWM) will not be configured.

The last step is connect the interrupt event to the function (ISR) where the PWM duty
cycles will be calculated. VxWorks has its own functions that allow interrupt connection.
First, the IRQ number (AM335X _ePWMOINT = 86) should be known, so that the event
triggering the ISR is the correct one. The function ‘intConnect’ connects the ISR to the
IRQ number, while the function ‘intEnable’ allows the interrupt generation. An optional

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control 72

priority value, that determines whether the function will be executed before or after
another function, can be selected using the ‘IntPrioritySet’ function.

/* Connect interrupt to ISR and set priority x/

intConnect (AM335X_ePWMOINT, (VOIDFUNCPTR) Interrupt EHRPWM25usec , 0)
intEnable (AM335X_ePWMOINT)

IntPrioritySet (AM335X ePWMOINT, 16, AINTC HOSTINT ROUTE IRQ)

If the configuration was successful, the function returns the variable ‘status’ as ‘OK’ and
returns ‘ERROR’ if there was any problem on the configuration. A message indicating
whether or not the configuration was successful will be printed in the ‘Terminal’ window
of the Workbench.

Each 25 ps, the interrupt is generated, entering into the ISR (Interrupt EHRPWM25usec).
After clearing the interrupt flag, the ISR will reload the ePWM with the values calculated
in the previous iteration. The value is loaded into the register by writing the CMPx
register for each PWM address.

/* Reload PAM duty via Counter—Compare */

HWREGH(SOC_EPWM 0 REGS + EHRPWM CMPA) =
AIIPWMChannels PWMA[1]| & EHRPWM CMPA CMPA;

HWREGH(SOC_EPWM 0 REGS + EHRPWM CMPB) =
AllPWMChannels PWMB| 1] & EHRPWM CMPB CMPB;

HWREGH(SOC_EPWM_2 REGS + EHRPWM CMPA) =
AllPWMChannels PWMA[2] & EHRPWM. CMPA CMPA;

After the duty is reloaded, there is a call to the function ‘CalculateMotorControl(&
AIIPWMChannels), which will calculate the PWM new duty cycle. Once the duty
cycle is calculated, the program exits the ISR and waits for a new interrupt.

12.1.3. General Purpose Input/Output (GPIO)

The ‘General Purpose Input/Ouput’ (GPIO) are generic pins on an integrated circuit
whose behaviour, including whether it is an input or output pin, can be controlled by
the user. GPIO pins can be used for the following applications.

7 Data input (capture)/output (drive)

7 Keyboard interface with a debounce cell

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control 73

7 Interrupt generation in active mode upon the detection of external events.

7 Wake-up request generation (in Idle mode) upon the detection of signal transition(s)

GPIO pins will be used to drive the ‘RESET x’ status, active or not, to the half-bridges
in the DRV&8312 IC, allowing an independent control of each half-bridge. In the open-loop
control they will be maintained on ‘high’ at all times (not resetting). Due to its inverting
behaviour, driving out ‘low’ level signals will reset the half-bridge by forcing it into a
high-impedance state.

There exist four GPIO modules (GPIO0-3) with 32 dedicated input/output pins each
making a total of 128 input/output pins, though multiplexed with other options. As
explained in the PWM section, the high level of pin multiplexing calls for the necessity
of finding the operation mode in the BBB’s and the microprocessor’s datasheets. The

GPIO module used for the three reset lines will be GPIO1 and the configuration process
below explained will be for this module’s operation.

— RESETA (GPIO1_5) — V8
~ RESETB (GPIO1_4)— U8
~ RESETC (GPIOL_1)— V7

Figure 12.9.: GPIO1 5 Mode [18]

IpIol_s
W14 vs GPMC_ADS gome_ads

UF)
o L

o

o

mmc1_dats

gpiol_5
L4 R GPME ADNG e adf

S[=[==-

Figure 12.10.: GPIO1 4 Mode [18|

gpio1_3
V13 ua GPMC_AD4 gome_ad4

o L
o

o

mmic1_datd

gpiol_4

ADUR ARE JE—T n 1

| A o N = ' |

The reset lines for the DRV8312 will be configured as data outputs in the GPIO pins.
This lines will drive The pinmuxing configuration is done exactly as it was done with the
ePWM module, changing the register’s addresses and the operation mode number to fit
the tables, taking into account that GPIO mode is usually MODE 7.

===~

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control 74

Figure 12.11.: GPIO1 1 Mode [18]

] \ii GPMC_AD1 geme_adi 0 oL
mmc1_dat1 1 o
@pio_1 7 o

struct am335xPadConf reset line pads || = {
/* GPIO1[5] RESET A x/
{CONTROL_PADCONF_GPMC_AD5, (IDIS | MODEY)},
/* GPIO1[4] RESET B x/
{CONTROL PADCONF GPMC_AD4, (IDIS | MODE?)},
/* GPIOL[1] RESET C «/
{CONTROL PADCONF GPMC ADI, (IDIS | MODET)},

{ AM335X_PAD END, AM335X_PAD END }};

The configuration of GPIO pins is different from the ePWM’s. TT offers a set of functions
for this purpose, that makes the process easier as it involves less register configuration
and is a more straightforward method than the previous one.

The GPIO pins should be allocated for an specific function in order to be able to run as
input or output. The function for allocation has two input parameters, one to select the
output pin and a parameter that allows to write the usage of the pin inside a ‘string’.

The GPIO pin number should be submitted not by indicating the pin number only but
also the module the pin is in, as there is not a way of distinguish the GPIO module.
Each GPIO has 32 pins, so GPIO-0 pins will be identified with a number between ‘0’

and ‘31; GPIO-1, a number between ‘32’ and ‘63, and so on. In this project, GPIO pins
will be expressed this way:

7 am335xResetA = 32 + 5 /* gpio 1 pin 5 */
7 am335xResetB = 32 + 4 /* gpio 1 pin 4 */

- am335xResetC = 32 + 1 /* gpio 1 pin 1 */

Ultimately, GPIO allocation will have this structure.

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control 75

// Allocate pins for GPIO

status |= sysGpioAlloc (am335xResetA, "RESET A");
status |= sysGpioAlloc (am335xResetB, "RESET B");
status |= sysGpioAlloc (am335xResetC, "RESET C");

The output operation mode should be enabled by writing a ‘0’ inside the ‘Output Enable’
(GPIO _OE) register for each one of the output pins.

// Set as output

status |= sysGpioSelectOutput (am335xResetA);
status |= sysGpioSelectOutput (am335xResetB);
status |= sysGpioSelectOutput (am335xResetC);

Even though the input of ‘RESET x’ is inverted, the action of the LVX IC at the output
of the pins, driving out a ‘low level’ signal will put a ‘high level’ input in the DRV8312.
The output value is selected by setting or clearing the bit number corresponding to the
output pin in the register ‘GPIO Data Output’ (GPIO _DATAOUT) for each output
pin.

// Set low value

sysGpioSetValue (am335xResetA ,0);
sysGpioSetValue (am335xResetB ,0);
sysGpioSetValue (am335xResetC ,0);

It is a good practice to release the pin allocation before starting a new configuration to
avoid errors in the allocation of new pins. The already-made function by TI allows to do
it by inserting the pin number as parameter.

// Releases pin from specified purpose

status |= sysGpioFree (am335xResetA);
status |= sysGpioFree (am335xResetB);
status |= sysGpioFree (am335xResetC);

GPIO pins and their features will have a more prominent role in the ‘closed-loop’ control
algorithm.

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control 76

12.1.4. Space Vector Modulation (SVM)

Space vector modulation is the most common algorithm for controlling PWM duty for
DC motors [20]. This method has six possible ‘active’ states in which the vector can be
included, figure 12.12, and two extra states ({0,0,0}and{1,1,1}) called ‘zero vectors’
that have no effect in the voltage vector. The voltage vector can be generated using
the ‘Clarke Transformation’ and the FOC explained, but this project will use a ‘virtual’
voltage vector instead, whose amplitude is a percentage (uConst) of the voltage value in
the capacitors of the voltage supply (UZK = 24 V).

1
Uabs = uConst x — x UZK; 12.3
Ve (123)

Figure 12.12.: SVM possible sectors

V—+-\ -W ++-

| |
Table 12.1.: Switching sequence and output voltage for SVM
U V W Phase A Phase B Phase C Sector

1 0 0 Vpce + 0 Vbo - 1
1 1 0 0 Vpe + Vpe - 2
0 1 O Vpe - Vpc + 0 3
0 1 1 Vpe - 0 Vpe + 4
0 0 1 0 Vpe - Vpeo + 5
1 0 1 Vpe + Vpe - 0 6

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control 77

Each 25 ps, ePWMO generates an interrupt, whose ISR will perform several calculations
to determine the PWM duty cycle that is going to be reloaded to the PWM in the next
iteration. The calculation is done within two functions: ‘CalculateMotorControl” which
calculates the angle value, given as parameter to the space vector function, and saves
the PWM result, and ‘CalculateMotorControlSpacePointer’, which calculated the space
vector given the angle.

Since the open-loop control lacks any form of feedback, it is impossible to determine the
actual position of the rotor shaft. However, this can be avoided by creating a "virtual"
rotating voltage vector dependent on the input speed. At every interrupt, the angle of
the voltage vector will be incremented a certain angle, whose amplitude is based on the
desired speed; the higher the speed, the higher the amplitude for a fixed amount of time.
Below there is a general equation for calculating angles in radians. The calculated angle
should maintain its value between 0 and 27.

revolutionsPerMinute
60

Angle = Angle + [(2m)x x(25x1079)] (12.4)

It can be noticed here,when talking about Electrical Revolution / Mechanical Revolution
conversion, thatthe previous equation is a 1:1 equation (One electrical revolution equals
one mechanical revolution). This is true only when the BLDC motor has only one
pole-pair; however, the motor in this project has four pole-pairs. Having four pole-pairs
instead of one implies that, at the time one electrical revolution is completed, only a
quarter of the mechanical revolution has been completed. A quick way of resolving
this issue, since the program has no feedback from the motor, is to multiply the speed
variable, ‘revolutionsPerMinute’, by the number of pole-pairs of the motor, for example,
four electrical revolutions per mechanical revolution.

As seen in figure 12.12, the voltage vector’s position could be in one of the six possible
vectors depending on its angle value. The amplitude of each sector is 60°, therefore the
angle should be converted from radians to degrees using the equation:

360
Angle(degrees) = Ang/e(rad/ans)xg (12.5)

Dividing the resulting angle in degrees by 60 will result on a number whose integer part
will be a number between ‘0" and ‘6’ (decimals are not important), with 360 as the sole
value that gives ‘6’ as a result. The results, table 12.2, will be saved into a variable, for
it will be used later in the code.

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control 78

Table 12.2.: Sectors according to angle value

Angle Sector

0-60 0
60 - 120 1
120 - 180 2
180 - 240 3
240 - 300 4
300 - 360 5

Figure 12.13 show the sequence that will lead to the equations that calculate the pwm
duty based on the SVM’s space vector as shown in figure 12.12. Each sector has four
‘states’, the first and the last are ‘zero vectors’ and the two in the middle are ‘active
vectors’ and the equations are obtained by the sum of each sector’s U, V, and W variables
and their active vectors.

In figure 12.13 ‘t1” and ‘t2’ correspond to the same names in figure 12.12. ‘t2’ is the sine
T
of the actual angle, while ‘t2’ is the sine of — — 8, not its cosine. These values should

be multiplied by a constant number, which will be a value depending on the time period
(Timep = 25 us), the voltage vector (Uabs) and the voltage at the capacitors (UZK).
‘t0” is the result of substracting ‘t1” and ‘t2’ from the time period. [20]

constValue = T/mepxx/gxlﬁzb: (12.6)
t = s/n(g —9) (12.7)

t2 = sin(6) (12.8)

t0 = Timep — t1 — t2 (12.9)

The equations for each sector are obtained from figure 12.13 by looking at each ‘state’. In
the first ‘state’, t0, the status should be a ‘zero vector’ ({0,0,0}or{1,1,1}), afterwards,
state t1, is the status at the beginning of the sector as seen in figure 12.13; for example,
{0,0,1} at the beginning of sector A. The next part, t2, is the status at the end of
the sector, {0, 1,1} for sector A, and the final t0 is another ‘zero vector’. It should be
noticed that it only changes one state in the ‘active vectors’ because the switching losses

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control

Figure 12.13.: Sectors

Sector A Sector B

O il pigt2 pigt0 O it pigt2 i gt0
u - + + + u + + - -
\% - - + + \% + + + -
w - - - + w + - - —

Sector C Sector D

!0 pigt! piglt2 i gt0 !0 pigt! pigt2 i gt0
u - - - + u + — — —
\Y% - + + + \Y% + + - —
w - - + + w + + + -

Sector E Sector F

O pigl! pig!2 pigtly :t0=§:t1=i:t2 <0 p
u - — + + u + + + —
\% - - - + \% + - — —
w - + + + w + + - -

are lower. By doing the same procedure for every sector, a set of equations is obtained,

with which makes possible to calculate the pwm duty for each phase.

Sector A:
u = t0/2
v =t0/2
w = t0/2

Sector B:
u = t0/2
v =1t0/2
= t0/2

Sector C:

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

+ t1 + t2
+ t2

+ tl
+ tl + t2

12. Motor Control 80

u = t0/2
£0/2 + t1 + t2
wo= t0/2 + t2

<
I

Sector D:
u = t0/2
v = t0/2 + t1
W= t0/2 + t1 + t2

Sector E:
u = t0/2 + t2
v =t0/2
wo=t0/2 + t1 + t2

w= t0/2 + t1 4 t2
v =1t0/2
— t0/2 + t1

The results are finally saved into variables, a struct was created in order to do so, and
their value will be loaded into the PWM on the next ISR iteration.

12.2. Closed-Loop Control

Unlike open-loop control, closed-loop control has a ‘feedback’ control loop that allows to
read the actual position of the rotor’s shaft and correct any error that the system can
have during its operation. Closed-loop control is used when there is a strong need for
controlling the system’s output in order to avoid errors in the process. It can also be
used in ‘Machine Learning’ processes, though this is not the case.

The closed-loop control diagram is essentially equal to the open-loop’s, only adding a
‘feedback’ branch reflected in figure 12.14, after the system’s output. The BLDC motor
has three ‘Hall sensors’ embedded within, which provides information about the motor’s
position and, eventually, its speed. The latter will be used to calculate the error between
the desired speed and the actual speed, which will be fed into the PI controller. Hall
sensor also gives information about the position of the shaft, which will have a direct
impact on the PWM energizing sequence.

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control 81

Figure 12.14.: Closed-loop diagram

. Speed,

- _ t
Dputzpegd s " » CONTROLLER }—»PWM ay DRVER }—»V“wg“mta £ MOTOR | °ue o

T Actual speed

FEEDBACK |

There will be a few changes in the use of PWM and GPIO configuration, mostly in
the latter with the introduction of GPIO interrupts. There will not be a 25 us PWM
interrupt anymore, substituted by interrupts that will be activated each time a Hall
sensor changes its state.

The only change inside function ‘bBoardMotorControl()’ will be adding a call to the
interrupt configuration function (openlntConfig()). The rest of the function will remain
exactly the same as it was in the open-loop control. The flow diagram in figure 12.15
shows the structure of the program.

Figure 12.15.: Closed-loop flow diagram

Hall Sensor ISR]

Y

| Update ticks

'

I Read Hall Sensor Value

I Upload Hall Sensor Status | P| Controller

Matlab/Simulink

| Enable GRIO | | CalculateSechorl() |
Enable Intemrupts | crmj sector |
Y
=7 | Change PWM and Reset Valuss |
' BeagleBone Black

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control 82

12.2.1. Pulse-Width Modulation (PWM)

Most of the ePWM configuration process has not changed from the one used in the
open-loop control. However, there are some minor changes that will affect the ePWM
behaviour that are worth explaining. The major change will be changing the count mode
from ‘Up-Down’ no ‘Up’ count mode, and the AQ, since there is no need for a symmetrical
PWM signal anymore.

The count mode is changed when the frequency of the ePWM signal is set. The AQ
should be then configure to reflect a regular PWM signal, as figure 12.3 shows, instead of
the symmetric signal created in the open-loop control. The process’ signal will start in
‘high level” and switch to ‘low level’ once the counter has reached the ‘CAU’ value. The
inverting effect of the LVX should be noticed when writing the AQ configuration, so the
code will be ‘low’ the beginning and the switch to ‘high’ in order to obtain the desired
signal.

EHRPWMPWMOpFregSet(SOC_EPWM_0_ REGS,
PWMClockFrequency /CLOCK_DIV_VAL,
PWMCycleFrequency ,
FHRPWM._COUNT_UP,
EHRPWM_SHADOW WRITE DISABLE) :

EHRPWMConfigureAQActionOnA (SOC_EPWM 0 REGS,
EHRPWM_AQCTTA 7RO EPWMXALOW,
EHRPWM_AQCTLA PRD DONOTHING,
EHRPWM AQCTLA CAU EPWMXAHIGH,
EHRPWM_AQCTLA CAD DONOTHING,
EHRPWM_AQCTLA CBU_DONOTHING,
EHRPWM_ AQCTLB CBD_ DONOTHING,
EHRPWM AQSFRC ACTSFB_DONOTHING) ;

In addition to the changes above, the commutation method for the closed-loop control
needs to have two different PWM signals, one ‘normal’ signal and one ‘inverted’ signal
(figure 12.16) The reason behind this need will be explained when talking about the
commutation method for the closed-loop, which will be ‘block commutation’.

An ‘inverted” PWM signal is, basically, a mirrored ‘normal” PWM signal. It can also be
explained as the signal whose PWM duty is the remaining duty of the ‘normal’ signal;
a ‘normal’ signal with a duty cycle of 90% will have a 10% ‘inverted’ signal. A function
containing the configuration for the inverted PWM signals will be made, and the input

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control 83

Figure 12.16.: PWM normal duty and inverted duty

al
10% Duty Cycle
B R ESGURGCEEEY ' EEPEPPEETEEPPEY B PERPPEEEEPRPREE & PPPEETEEPPEETS I FEETEER Inverted

parameter ‘'numP WM’ will contain the address to the module register of the PWM signal,
PWMO0 or PWM2.

EHRPWMConfigureAQActionOnA (nunPWM,
EHRPWM_AQCTILA 7RO EPWMXAHIGH,
EHRPWM_AQCTLA PRD DONOTHING,
EHRPWM AQCTTA CAU EPWMXALOW,
EHRPWM AQCTLA CAD DONOTHING,
EHRPWM_AQCILA CBU DONOTHING,
EHRPWM_AQCILB_CBD_DONOTHING,
EHRPWM._AQSFRC_ACTSFB_DONOTHING) ;

12.2.2. General Purpose Input/Output (GPIO) and interrupt

The feedback loop is done by reading the input of the Hall sensors embedded in the
BLDC motor. The sensors are connected to three GPIO pins in the BBB, which will be
configured as an input to read its state. They will also promt an interrupt each time one
sensor changes its state: from ‘high’ to ‘low’ or vice-versa. The GPIO pins used for this
purpose are:

~ HALL1 (UART3_CTSN) — U4
~ HALL2 (UART4_CTSN)— V2

— HALL3 (UART3_CTSN)— U3

The general configuration follows the same pattern as with the ‘RESET x’ outputs in the
open-loop control. Figures 12.17, 12.18 and 12.19 show the configuration modes for the
selected GPIO pins. The code snippet below is fairly similar to the one in the open-loop

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control

84

control, except for the direction of the pin, writing the value ‘1’(IEN) into the register

to select the input mode.

Figure 12.17.: Hall 1 Mode [18]

[W2 LCD_DATA12 @ led_data12 i} [[s]
gpmec_altg 1 (o]
eQEP1A_in 2 I
mcaspl_aclkr 3 ls]
mcaspl_axr2 4 ls]
pri_mii0_rxlink 5 I
uartd_ctsn 6 I
gpio0_& T o]
|
Figure 12.18.: Hall 2 Mode [18|
|
us u3 LCD_DATA10 @ led_data10 0 1o
gpmc_al4 1 o
ehrpwm 14 2 o
mcaspl_axr0 3 o
pri_mii0_rxd1 5 I
uart3_ctsn 6 I
gpio2_16 7 1o
| =
Figure 12.19.: Hall 3 Mode [18]
|
U4 LCD_DATA11® led_datat1 0 1o
gpme_als 1 Q
ehrpwm1B 2 Q
measpl_ahclkr 3 1o
measpl_axr2 4 1o
pri_mii0_rxd0 5 |
uart3_rtsn] Q
gpio2_17 7 1o

struct am335xPadConf hall sensor pad [] = {
/% LCD_DATA12 HALL~1 +/

{CONTROL_PADCONF_ICD DATAI2,

/% LCD_DATAI0 HALL-2 x/

{CONTROL PADCONF LCD DATALIO,

/* LCD_DATAI1l HALL—3x/

{CONTROL_PADCONF _LCD DATAIL,
{ AM335X_PAD END, AMB335X_PAD

(IEN | MODE7) },
(IEN | MODE7) },

(IEN | MODET) },
_END }};

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control 85

The pin allocation follows the same structure as before, taking into account that the pins
are located in different modules (GPIO0 and GPIO2) and, as such, its pin number differ.
They should also be configured as input by selecting the right function.

- am335xGPIO0_8 = 8 /* gpio 0 pin 8 */
7 am335xGPIO2 16 =2 * 32 + 16 /* gpio 2 pin 16 */

7 am335xGPI0O2 17 =2 * 32 4 17 /* gpio 2 pin 17 */

sysGpioAlloc (am335xGPIO0_8 ,"HALL 1");
sysGpioSelectInput (am335xGPIO0_8);

sysGpioAlloc (am335xGPIO2 16, "HALL 2");
sysGpioSelectInput (am335xGPIO2_16);

sysGpioAlloc (am335xGPIO2 17, "HALL 3");
sysGpioSelectInput (am335xGPIO2 17);

These lines will have to be configured to perform an interrupt every time a hall sensor
changes its state in order to read the current sector and enable the possibility of BLDC
speed calculation, basic for the configuration of the PI controller afterwards. Interrupts
should be activated whenever a rising or falling edge is read. The function is activated
by writing the variable (GPIO_IRQ BOTH _ EDGE SENSITIVE), and, by doing so,
there will be a better control the status of the motor. The registers in charge of enabling
interrupts for one or both edges are (GPIO RISINGDETECT) for rising edge, and
(GPIO _FALLINGDETECT) for falling edge.

The three interrupts are connected to the same ISR, as the task they will perform is
the same. This ISR will have the interrupt pin as input parameter, allowing to know
which pin prompted the interrupt. The GPIO has inner glitch issues, if no debounce
handling, the GPIO value may not be right. A debounce time, measured in steps
of 31us (AM335X_KEY DEBOUNCE = 7936), will take care of the issue. The
debounce is enabled by writing a ‘1’ in the pin corresponding to the GPIO inside
the register (GPIO_DEBOUNCENABLE), and the time value in steps is loaded into
(GPIO _DEBOUNCINGTIME)

sysGpioSetDebounceTime (am335xGPIO0_8,
AM335X USDBOOT KEY DEBOUNCE) ;

sysGpioEnableDebounce (am335xGPIO0_8);

sysGpiolntConnect (am335xGPIO0_ 8,

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control 86

GPIO IRQ BOTH EDGE SENSITIVE, (FUNCPIR) hallSensorlsr |
(void *)am335xGPIO0_8);

sysGpioSetDebounceTime (am335xGPIO2 16,
AM335X_ USDBOOT KEY DEBOUNCE) ;
sysGpioEnableDebounce (am335xGPIO2 16);
sysGpioIntConnect (am335xGPIO2 16,
GPIO_IRQ_ BOTH_ EDGE_SENSITIVE, (FUNCPTR) hallSensorlsr |
(void *)am335xGPIO2 16);

sysGpioSetDebounceTime (am335xGP1O2 17,
AM335X_ USDBOOT KEY DEBOUNCE) ;
sysGpioEnableDebounce (am335xGPIO2 17);
sysGpioIntConnect (am335xGPIO2 17,
GPIO_IRQ BOTH EDGE SENSITIVE, (FUNCPIR) hallSensorlIsr |
(void *)am335xGPIO2_ 17);

Finally, the interrupt should be enabled by writing ‘1’ in (GPIO_IRQSTATUS SET x).
It is important to note that the ISR should be connected first and then enabled to avoid
possible errors when running the program.

sysGpiolntEnable (am335xGPIO0_8);
sysGpiolntEnable (am335xGPIO2 16);
sysGpiolntEnable (am335xGPIO2 17);

Each time a rising or falling egde is detected, the ISR will be called and give the number
of the pin that performed the interrupt. Knowing which pin raised the interrupt is
necessary for the implementation of the commutating sequence, as it depends heavily on
the data from the Hall sensors. More specifically, it provides information about the sector
in which the motor is located. Also, the number of ticks performed until the interrupt
will be read, as it will be used as a way of knowing the actual speed of the motor.

TickCounter.countTicks = tickGet ();
tmp = sysGpioGetValue (gpio);

The reading of the pin os performed by reading bit inside the register (GPIO _DATAIN)
associated to the pin that entered the interrupt. Its value is then switched, if it was ‘low’
is changed to ‘high’, due to the LVX inverting effect, and then loaded into the variable
that corresponds to the hall sensor that activated the interrupt.

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control 87

One of the hall sensors, the one connected to GPIOO0-8 in this case, will be used to
know the actual speed of the motor. Reading only one channel instead of all of them,is
the simplest and quickest method as it reduces the amount of code and its complexity.
Whenever GPIO0-8 enters the ISR, the actual tick count for speed is calculated by
subtracting the actual value of the count minus the previous value. The previous value
is the previous rising edge counter value. The time between two rising edges of a hall
sensor is equal to one electrical revolution (S1 to S1 for Hall A in figure 12.20), and it
can be used to calculate the rotation speed using the equivalent electrical/mechanical
revolutions conversion.

Figure 12.20.: DRV8312 Hall sensor sequence [13]

S1 | S2 | S3 | S4 | S5 | S6 | S1 |
| |

1

Hall Sensor H1

|
Hall Sensor H2 |

| |
—

Hall Sensor H3

i
|
|
|
|
|

-r—---

Since the interrupt occurs at rising and falling edges, and only rising edges are required,
discriminating the falling edge is done by reading the actual state of the interrupt pin.
If the actual state is ‘high’, the triggered was a rising one.

if (am335xGPIO0_8 = = 1){
actualTicks = TickCounter.countTicks — TickCounter.pastTicks;
TickCounter.pastTicks = TickCounter.countTicks; }

The result of the operation, actualTicks, will be fed into the PI controller on the Matlab
environment. Also, the final step before leaving the ISR, and waiting for the next ISR to
occur, will be calling the function (CalculateSector(&sensor)) where the actual state of
the motor will be calculated and later used to perform the commutation sequence needed

for the BLDC.

12.2.3. Commutation sequence
The commutation sequence for the closed-loop control is simpler than the open-loop

control, as most of the information about the configuration is contained within the

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control 88

DRV datasheet. Figure 12.21 shows the configured signals status for each of the six
commutation steps: ‘Hall Sensor’, ‘PWM’ and ‘RESET’. The ‘Phase Current’ line is
left out in this project. As said in the previous section, the commutation sequence is
called from the ISR via (CalculateSector(&sensor).

The sector’s actual status is obtained with the results given from the reading of the ‘Hall
sensor’ input lines in the ISR. The PWM signal can trigger two possibilities, any duty
over 50% has Vpc + effect, and below 50%, Vpc - effect. A summary of the signal’s
status is shown in table 12.3, looking very similar to the one in section 2.2.2 ‘Block
commutation’, table 7.3.

Table 12.3.: Switching sequence and output voltage for Block Commutation

H1 H2 H3 PWMA PWMB PWMC RESETA RESETB RESETC

1 0 1 Vpo + Vpe - 0 1 1 0
1 0 0 Vpe + 0 Vpe - 1 0 1
1 1 0 0 Vpe + Vpe - 0 1 1
0 1 0 Vpce - Vpc + 0 1 1 0
0 1 1 Vpe - 0 Vpe + 1 0 1
0 0 1 0 Vpe - Vpe + 0 1 1

A series of nested ‘if-else’ loops will provide the interface for driving out the ‘PWM’
and ‘RESETx’ signals depending on whichever sector the motor is in. Afterwards, the
program exits the ISR and waits for a new interrupt.

The speed is controlled directly by the duty cycle, as it controls the voltage flow into
the motor. Any value above 50% duty cycle will have a rotation speed in one direction,
below 50% will have a rotation speed in the opposite direction. The equation relating
speed and duty depends on the characteristics of the BLDC.

12.2.4. Matlab Integration and PI Controller

Matlab integration will be the final element in the closed-loop control. The environment
‘Simulink’ will be used to crete a project in which the actual speed of the motor is
calculated and then, its value fed into a PI controller. The ‘Simulink’ environment
will also connect the variables of its project with those inside the BBB kernel through
‘S-functions’.

S-functions are a computer language description of a Simulink block written in several

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control

89

programming languages as MATLAB, C/C++, FORTRAN, etc.

Figure 12.21.: Hall Sensor Control with 6 Steps [13]

Hall SensorH1

Hall SensorH2

Hall SensorH3

Phase Cument A

Phase Cument B

Phase Cument C

|
85
|
|
|

|
56 | &
|

| |
PAWM_A | :
I I | | [I I |

s | T
| | | I | | | | | | | I |
R R
e LT L L
= H
| 360" | 360" |
I PWM= 100% I PWM=T 5% :

and compiled as a

MEX-file. S functions can accommodate continuous, discrete, and hybrid systems. It is
also possible to implement an algorithm in an S-function and use the S-Function block
to add it to a Simulink model.

To connect the BBB and Simulink variables, they should be declared as ‘extern’ inside
the S function and with the same name in both platforms. As an example, below there

is a code snippet showing how the variables should be declared.

extern unsigned char halllStatus,

extern

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

int sector;

hall2Status ,

hall3Status;

12. Motor Control 90

Figure 12.22.: Block diagram in Simulink showing S functions

Scopel
I
-
All
Hall &
Hall B
Hall C:
100.0 sParameters @
sector
resvalutionsper Minute Dizpla
" - et =©—’ arror Uabs
desired Speed
- F Y
artualTicks Flcontraller
clk Rite
S-Function actualTicks E
actual Speed (rpm)
] clk Rt Drispla 1
Caleulate Speed

extern float revolutionsPerMinute;
extern unsigned int actualTicks;
extern unsigned int clkRate;

Several functions must be written for the S function to work properly. 1/0 allocation
is done in the function ‘mdllnitializeSizes’. Each input or output has its own number,
which will be addressed later to read in and drive out the variables for the system. The
I/O variables are initialized with the same type that they originally had in the BBB’s

code.

/* set number of block inputs x*/

if (!ssSetNumlInputPorts(S, 2)) return;

ADD DOUBLE INPUT(S, 0, 1) // revolutions per minute
ADD DOUBLE INPUT(S, 1, 1) // Pl controller output

/* set number of block outputs x*/

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control 91

if (!ssSetNumOutputPorts(
ADD_DOUBLE OUTPUT(S, 0, 1
ADD_DOUBLE OUTPUT(S, 1, 1
ADD DOUBLE OUTPUT(S, 2, 1
)
1
1
1

S, 7)) return;
, 1) // Hall sensor 1
) // Hall sensor 2
) // Hall sensor 3
// Sector
) // desired speed
) // actual ticks

) // CLKrate

?

ADD_UINT8 OUTPUT(S, 3, 1
ADD DOUBLE OUTPUT(S, 4
ADD UINT32 OUTPUT(S, 5
ADD_UINT32_OUTPUT(S, 6

7

7

) b

The variable inputs are written into the declared variables, using the same number as
they were declared as inputs with the function ‘get input’.

revolutionsPerMinute = get input (0, double, 0);

As well as outputs, which are driven out to the system with ‘set output’. Variable type
and number are also needed in the function’s parameters.

set _output (4, double, 0, revolutionsPerMinute);
set _output (5, uint32 T, 0, errorTicks);
set _output (6, uint32 T, 0, clkRate);

The actual speed is calculated using the ‘ticks’ that were read in the BBB’s hall sensor
ISR. Borh variables, in the BBB and Simulink, are interconnected so that their values are
equal at all times. Using the electrical/mechanical revolution conversion and the ‘Clock
rate’, in Hz, used in the BBB, it is possible to calculate the speed of the BLDC. Figure
12.23 show the speed calculation for a 4 pole-pair motor.

Figure 12.23.: Speed calculation

Constant

actual Speed {rpm)

Divicle1 Divicle Gainl

clkRate

Finally, the second ‘S function’ is going to be used to write the equations that will form
the PI control loop. A PID controller calculates an error value as the difference between

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control 92

a measured process variable (actual speed) and a desired setpoint (desired speed), and
attempts to minimize the error by adjusting the process through use of a manipulated
variable. The PI controller is a form of controller in which the derivative (D) term is
not used, leaving the proportional (P) and integral (I) terms as the only affecting the
error.

The proportional term produces an output that is proportional to the current error value,
thus it is only needed to multiply the error (e(t)) by the proportional gain (Kj). If the
proportional gain is too high, the system may become unstable, if it is too low, the output
is small and can create a less responsive or less sensitive controller.

Prerm = er(t); (12.10)

The integral term considers both the magnitude of the error and the duration of the error;
the sum of instantaneous error over time. The accumulated error (integral) is multiplied
by the integral gain (K,) and added to the proportional term to form the output of the
PT controller.

t
ITerm = K,‘/ e(t) dt (12.11)
0

Pl = Kpe(t) + K,'/t e(t)dt (12.12)
0

However, since the PI controller is going to be a part of a microcontroller, it would be
a good practice to write the controller as a discrete controller. The proportional term is
left as it was before, but the integral term should be discretized.

/+* Proportional Term x/

PTerm = Kp *x Error;

/+* Integral Termsx/

Iterm = PTerm / Ki;

/* Integration x/

loutput = past_loutput + Error * (sampleTime / 2);
/* Output x/

PIOutput = PTerm + loutput;

The tuning of the PI controller can be done though algorithms, like the Ziegler—Nichols
method or the Cohen—Coon method. However, the parameters will be adjusted manually

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

12. Motor Control 93

in this case, as is the method with less mathematical requirements. Figure 12.24 shows
the input variables to the PI controller and its output.

Figure 12.24.: PI controller parameters

[=
Display2
o

errar

1 e —

Ki

L e —

Kp

ha Walue

e} N i

Sample Time Dizplay1
———————————————

sPI1_Controller = 1)

Usahs

Feset

[«]

Fieset alue

Fl Controller

After all the parts have been set, the model has to be built and loaded into the BBB. The
‘S Functions’ are compiled through the ‘Matlab’ command line. The MEX-file is compiled
by writing ‘mex’ and the name of the ‘S function’. In the ‘Simulink’ environment, clicking
“Tools — Real Time Workshop — Build’, will build the model and create the necessary
files.

In the ‘VxWorks Workbench’, the terminal window is used to get the files from the
computer and load them into the BBB’s kernel. The ‘cmd’ line will enter the console
and, from there, the file path is selected by writing it in the ‘cd’ command. To load the
file, the command below should be written and, afterwards, enter the command ‘main’
to enter the file and run it.

Id 1,0,"PIcontroller”

Back in the ‘Simulink’ environment, once all the steps are done and the BLDC is running
with the PI controlled loaded, the changes in real time can be seen by connecting
‘Simulink’ to the BBB clicking on ‘Simulation — Connect to target’.

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

Part VI.

CONCLUSIONS

ﬁ DLR — Control of BLDC motors for a terrestrial Lunar Rover prototype 94

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

96

In summary, this thesis serves as a way of programming a BLDC motor with a small,
low-cost platform as the BeagleBone Black is, and the integration with a driver board,
diferent from the processor board. Also, connecting the BeagleBone Black board to an
external interface, a PC, and load a Matlab project within the kernel is a new approach
in the way of creating controllers.

The programming of BLDC motors is well known, however the development of new
prototyping boards, smaller and more powerful, also adds complexity to the process.
Two approaches have been made, an open-loop control and a closed-loop control The
open-loop control uses a SVM method to create a rotating voltage vector in order to
execute the PWM sequence. Later, the closed-loop control uses a ‘Block commutation’
approach to connect the data from the ‘Hall’ sensors with the PWM signals that are
used to run the motor. A PI controller is used to guarantee that the desired speed and
the actual speed of the BLDC motor is the same at all times. Interfacing the BBB
with the Matlab environment provides a powerful tool to create controllers and perform
calculations with the ‘Simulink’ environment.

However, the usefulness of an Operating System inside the processor, instead of directly
programming it, can not be assured at this point. It is possible that, in the future, adding

new features might be a good start point in favour of the OS, compared to not using an
OS.

Further lines of investigation would be the development of a closed-loop control using
other commutation methods: like ‘FOC’, as ‘Block commutation’, due to its simplicity,
is not the best approach to use in ‘low speed’ applications. Furthermore, ‘FOC’ controls
the current of the BLDC, which might be an advantage in the motor control. The DLR
has also developed a new board, Phytec board, for this application, so embedding the
developed code into the new board can also be a continuation of the project.

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

Part VII.

REFERENCES

ﬁ DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype 98

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

Bibliography

[1] Lunokhod I.Department of Lunar and Planetary Research. Moscow University.
Russia. Retrieved from: |[RUSSIAN]|
http://selena.sai.msu.ru/Home/Spacecrafts/Lunokhodl/lunokhodle.htm

[2] Luna-Glob probe to launch in 2014. Solar System Exploration Research Virtual
Institute (SERVI) of NASA. USA. 2011. Retrieved from:
http://sservi.nasa.gov/articles/luna-glob-probe-launch-2014/

[3] Official Website of the “China National Space Administration” (CNSA).China
National Space Administration. China.

http://www.cnsa.gov.cn/n360696/index.html

[4] Official Website of “Chandrayaan” Project. Indian Space Research Organisation
(ISRO). India.
http://www.isro.org/chandrayaan/htmls/home.htm

[5] Larry K. Baxter. Capacitive Sensors: Design and Applications. Edn. Wiley-IEEE
Press. New York, USA, 1996.

[6] P. Yedamale. AN885:Brushless DC Motor Fundamentals. Microchip Technology
Incorporated. USA. 2003.

[7] P. Supinya, S. Athanasios, Dr. M. Lambrechts, Prof. Ir. L. Bientsman. Design of a
high power controller for BLDC-motors on FPGA and dsPIC. Leuven Engineering
College. Leuven, Belgium. 2009-2010.

[8] K. Zierhut. Wye/Delta In Perspective. Modern Machine Shop. 1999. Article source:
http://www.mmsonline.com/articles/wyedelta-in-perspective

[9] K. Zierhut. BLY17 Series - Brushless DC Motors. Anaheim Automation. USA.
Webpage:
http://www.anaheimautomation.com

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype 100

DLR

http://selena.sai.msu.ru/Home/Spacecrafts/Lunokhod1/lunokhod1e.htm
http://sservi.nasa.gov/articles/luna-glob-probe-launch-2014/
http://www.cnsa.gov.cn/n360696/index.html
http://www.isro.org/chandrayaan/htmls/home.htm
http://www.mmsonline.com/articles/wyedelta-in-perspective
http://www.anaheimautomation.com

Bibliography 101

[10] S. Lee, T.Lemley. A comparison study of the commutation methods for the
three-phase permanent magnet brushless DC motor.

[11] S. Keeping. Controlling Sensorless, BLDC Motors via Back EMF. Digi-Key. 2013.
Retrieved from:
http://www.digikey.com/en/articles/techzone/2013/jun/
controlling-sensorless-bldc-motors-via-back-emf

[12] P. Yedamale. AN: 970. Using the PIC18F2431 for Sensorless BLDC Motor Control.
Microchip Technology Incorporated. USA. 2000.

[13] DRV8312 Three Phase PWM Motor Driver. Texas Instruments USA. Revised:
January 2014.
http://www.ti.com

[14] Official website of WindRiver. Wind River Releases 64-Bit VxWorks RTOS.
WindRiver. USA. 2011.
http://www.windriver.com/news/press/pr.html7ID=8881

[15] Website of FTDI chip
http://www.ftdichip.com

[16] Website of Texas Instruments
http://www.ti.com

[17] G.Coley. BeagleBone Black System Reference Manual. BeagleBoard.org. USA. 2013.
http://circuitco.com/support/index.php

[18] AM335x ARM® Cortex-A8 Microprocessors (MPUs). Texas Intruments. USA.
2013.

[19] AM335x ARM® Cortex-A8 Microprocessors (MPUs) Technical Reference Manual.
Texas Intruments. USA. 2013.

[20] ATMEL Corporation. AVR32710: Space Vector Modulation using AVR32 UC3
Microcontroller. Atmel Corporation. California, USA. 2009.

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

http://www.digikey.com/en/articles/techzone/2013/jun/controlling-sensorless-bldc-motors-via-back-emf
http://www.digikey.com/en/articles/techzone/2013/jun/controlling-sensorless-bldc-motors-via-back-emf
http://www.ti.com
http://www.windriver.com/news/press/pr.html?ID=8881
http://www.ftdichip.com
http://www.ti.com
http://circuitco.com/support/index.php

Part VIII.

ANNEXES

ﬁ DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype 102

103

4#7 DLR - Control of BLDC motors for a terrestrial Lunar Rover prototype

DLR

MASTER DE INGENIERIA MECATRONICA

Control of BLDC motors

for a terrestrial Lunar Rover prototype

Pag. Mediciones y Presupuesto

N° ORDEN CONCEPTOS N° UNIDADES FABRICANTE PRECIO UNITARIO (€) PRECIO TOTAL (€) TOTAL (€)
1 BeagleBone Black 1 BeagleBone.org 46,10 46,10
2 Three Phase BLDC Motor Kit with DRV8312 1 Texas Instruments 220,00 220,00
3 74LVX14M, CMOS Schmitt-Trigger Inverter 2 Fairchild Semiconductor 0,35 0,70
4 Cable Cinta Plano Speedbloc, 50 vias 0,3 Speedblock 113 (30m) 1,13
5 Placa de prototipado con orificios REO10 1 Roth Elektronik 9,17 9,17
6 Placa para SMD RE931-01 2 Roth Elektronik 7,74 15,48
7 Cable TTL-232R-3V3 1 FTDI Chip 20 20,00

312,58

DESCRIPTION

SPECIFICATIONS

BL

ANAHEIM

UTOMATION

* 42mm Square Body
* Compact Size and Power Density
* Cost-Effective Replacement for Brush DC Motors
* Long Life and Highly Reliable
* Can Be Customized for:
- Maximum Speed
- Winding Current
- Shaft Options
- Cables and Connectors
* CE Certified and RoHS Compliant

The BLY17 Series Brushless DC Motors come in a compact package with high power density. These motors
are cost-effective solutions to many velocity control applications. They come in four different stack lengths
to provide you with just the right torque for your application. A number of windings are available off-the-shelf
and all the motors can be customized to fit your machine requirements. The motors come in a standard 8-lead
configuration with three wires for the phases and five wires for the hall sensors. We can also customize the
windings to perfectly match your voltage, current, and maximum operating speed. Special shaft modifica-
tions, cables and connectors are also available upon request.

Line to Line to

Rated Rated Rated Peak Rated e 1 Torque Inertia Weight “L”
el Vo(lsa)ge (S':\E)S,\e/ld) P((C/vv;er 1('2;(_1#]()3 CU(Z?m Resistance Inductance %oc;rjlsr:;aAn)t (0z-in- (Ibs) Le(?ng)th
(ohms) (mH) (VKRPM) sec?)

BLY171S-15V-8000 15 8000 26 14 2.2 0.35 0.35 1.98 1.14 0.00034 0.66 1.59
BLY171S-17V-8000 17 8000 42 21 3.6 0.20 0.26 1.98 1.14 0.00034 0.66 1.59
BLY171S-24V-4000 24 4000 26 27 1.8 1.50 2.10 4.96 2.45 0.00034 0.66 1.59
BLY172S-17V-9500 17 9500 70 30 6.4 0.09 0.09 1.56 0.90 0.00068 0.99 2.37
BLY172S-24V-2000 24 2000 41 63.72 3.6 1.60 2.70 8.78 5.00 0.00068 0.99 2.37
BLY172S-24V-4000 24 4000 53 54 BI5) 0.80 1.20 5.81 BI85 0.00068 0.99 2.37
BLY173S-24V-4000 24 4000 77 79 4.9 0.46 0.70 5.38 3.10 0.00102 1.43 3.19
BLY174S-24V-4000 24 4000 104 106 7.0 0.30 0.50 5132 3.10 0.001359 1.76 3.95
BLY174S-24V-12000 24 2000 41 38.2 3.6 0.07 0.08 1.97 1.02 0.00068 0.99 2.37
BLY171D-17V-8000 17 8000 42 21 3.6 0.20 0.26 1.98 1.14 0.00034 0.66 1.59
BLY171D-24V-1400 24 1400 9.8 27 0.9 8.00 10.50 10.62 8.42 0.00034 0.66 1.59
BLY171D-24V-2800 24 2800 25 31 2.0 2.78 3.36 6.09 4.57 0.00034 0.66 1.59
BLY171D-24V-4000 24 4000 26 27 1.8 1.50 2.10 4.81 2.7 0.00034 0.66 1.59
BLY171D-24V-6000 24 6000 25 27 1.4 1.15 1.47 3.97 4.00 0.00034 0.66 1.59
BLY172D-24V-2000 24 2000 41 54 3.6 1.40 2.25 7.79 5.66 0.00068 0.99 2.37
BLY172D-24V-4000 24 4000 53 54 3.5 0.80 1.20 5.03 3.1 0.00068 0.99 2.37
BLY173D-24V-4000 24 4000 77 79 4.9 0.46 0.70 5.38 4.14 0.00102 1.43 3.19
BLY173D-160V-4000 160 4000 7 79 0.7 26.67 20.00 36.96 18.83 0.00102 1.43 3.19
BLY174D-24V-4000 24 4000 104 106 7.0 0.30 0.50 5.32 3.1 0.001359 1.76 3.95
BLY174D-24V-12000 24 12000 113 38 5.4 0.07 0.76 1.97 1.02 0.001359 1.76 3.95
BLY174S-24V-12000 24 12000 113 38 5.4 0.07 0.09 2.35 1.55 0.001359 1.76 3.95
Notes:

- Custom leadwires, cables, connectors, and windings are available upon request.

- The 7* character “S” denotes a single shaft, use “D” for double shaft.

- Dual Shaft motors have different mounting dimensions; please see drawings on next page.
L010228

[910 East Orangefair Ln. Anaheim, CA 92801 Tel. (714) 992-6990 Fax. (714) 992-0471 www.anaheimautomation.com}

| ANAHEIM

UTOMATION

-

Lo

(Single Shaft)

—= 86£.02 L
maxo7 [01854 —=] e 120
137, 4PLCS T\
45° —1
+.0000 J i
$.1969_ 05
¢.988" 00 @ 1.417£.004
. Vv
2 1 L
Z
= 15.75+.79
24 (Double Shaft)
T —={ 86+.02 L 53+.04
= M3x0.5 — =120
(@) A7V, 4PLCS
45j° | — { ¢.1989" 3000 (D
M2.5%0.45
®.1969" 0008 08V, 2 PLCS
¢.866" 30 @ 1.726:.004 ' M y
| i T

15.75£.79 Note: All units are in Inches

Notes: Dual Shaft motors have different mounting dimensions.

(D)
% Wire Color Description PHASE A
E
|: Red Hall Supply YEL
<§‘: Blue Hall A
' Green Hall B
o White Hall C
Z Black Hall Ground
= vellow Phase A PHASE B A PHASE C
E Red Phase B RED BLK
E Black Phase C
(9p]
Z
9 Winding Type: Delta, 8 Poles Max. Radial Force: 28N @ 20mm from the Flange
= Hall Effect Angle: 120 Degree Electrical Angle Max. Axial Force: 10N
<
9 Shaft Run Out: 0.025mm Insulation Class: Class B
LL_IS Radial Play: 0.02mm@450g Dielectric Strength: 500VDC for one Minute
L End Play: 0.08mm@450g Insulation Resistance: 100MOhm, 500VDC
o
0p]
. {910 East Orangefair Ln. Anaheim, CA 92801 Tel. (714) 992-6990 Fax. (714) 992-0471 www.anaheimautomation.com}

I] IS I I T
1/7 Pl 219235— (220 ¥78 L0-£0—$T0Z) BW3y2s33 y'Q'3 pediy
T A3y 9702 N[6 2380 | 4V 325
3}IN3J1) UOj323UU0d43jU| 313
/ 1334s
yds-aljewayds :3)l4
13jua) adedsolsay uewI3H
4mkjo mz,m|._”
4 1no SNI| TT %:kjo N7
01 1no N7 4MF30 mz,4
] 1no ENI| 3 9 e} CNI S
9 1no N S Y TLN0 _ TN S
Yy TLno TN T z 01N0 a ONI T
< a
g N TIXATHL
HIXAIL = ven
= van
MOV193N0g319vVig MOV193IN0g319v3d
- %hwmoau @HNoEu% —g55 IN9C AN9U—g75—
=) #m Woau m\NoEu% #m@uo ozuo#
5 o rco T b N
2 |o:m aXy~sLdvn oxk\mkm<:|mmm |o¢u CNIV wz,<|mmu
N 8¢ - _ A 8¢J L§D
9¢cq zmku\mzzj zmku\‘;maﬁ 5cg ﬂmz,(@z?ﬂ
ﬂzm&\m&(z zmkm\‘;maﬁq ﬂum(%azu \:z?ﬂ
Zcq ;me Slyvn zmku\mkmaﬁq ﬂumm adA v:um\immﬂ
%mm\moiu mm\moiuq ﬂﬁo HZm o!m immﬁ
O 7 #.NN\NDEU wamoiuq ﬂomu\imm malmoioj
) O S ﬂmw T01d9 owﬂoioq ﬂmxgﬂkm(: ﬁwlmoioﬂ
5 O ¢ vzg H\aoau :\HDEU 4] #aXF\a%m(j ha\ﬁoiuﬂ
Z ; O T Z28 Hoau 0¢ HDEU# (&) aXm\Nszj axr N\F&(n T2
id #Hm 10149 <Nz§mm1 679 ﬂ(amwwumg qum\NUN,ﬂ
ﬂﬂ WoEu mm\om&u# ﬂ(mm 14| qu!m aum,j
#.l\ﬁmau ST HDEU# ﬂmﬁzsmmrw ca\ﬁo,muq
.~|._“moN\ODEU mmi%mmrwq 4<ﬁm3mmrm QXF\:Fm/\:q
#Nﬁ 10149 T HDEU# jmw ao,mu axdy :!Fm,\:j
#ommz: mmwiﬁ% ﬂr_kwmwm SAS ?5\&3&4
%hmmz: mmwzﬁ4 4)m\m>m >m\m>m4
4mwaoau N\HDEU4 4\5 aa>l >m\mm\.4
T Mzauﬁmau 9 HQDLMM|MQ e8] M,UWM\,M [JUA anm>McMMm|mU
¢ la/8d w/gd] " < la/ed v/6d| 7
arn vin azesn JZn
I Y [I I i

	RESUMEN
	Introducción
	Motivación
	Objetivos

	Motores eléctricos sin escobillas
	Plataformas de desarrollo
	Desarrollo
	Conclusiones

	INTRODUCTION
	Introduction
	Motivation
	Objectives

	STATE-OF-THE-ART
	Brushless DC Motors
	Construction and operating principle
	Commutation Methods
	Sensorless commutation
	Block commutation
	Sinusoidal commutation
	Field-oriented control

	Summary of Commutation Methods

	PROTOTYPING PLATFORMS
	Prototyping Platforms
	BeagleBone Black
	AM335x 1GHz ARM® Cortex-A8

	Three Phase BLDC Motor Kit
	Three Phase Brushless DC Motor Driver - DRV8312

	VxWorks RTOS
	Matlab/Simulink

	DEVELOPMENT
	Hardware and software frameworks
	Board interconnection
	VxWorks IDE
	Matlab

	Motor Control
	Open-loop Control
	Function Main
	Pulse-Width Modulation (PWM)
	General Purpose Input/Output (GPIO)
	Space Vector Modulation (SVM)

	Closed-Loop Control
	Pulse-Width Modulation (PWM)
	General Purpose Input/Output (GPIO) and interrupt
	Commutation sequence
	Matlab Integration and PI Controller

	CONCLUSIONS
	REFERENCES
	ANNEXES

