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UNIVERSIDAD AUTÓNOMA DE MADRID - UNIVERSIDAD DE OVIEDO

On the Universal Absorption in
Two-Dimensional Systems

Author:
David NORIEGA PÉREZ

Mentor:
Tobias STAUBER

29 June 2014



Contents

1



1

Introduction

The first isolation of graphene [?], a single atomic sheet of carbon atoms arranged in a hon-
eycomb lattice made out of hexagons, has motivated a deep study of its interesting proper-
ties so far. Its particular lattice structure, with two identical atoms in the unit cell, provokes
an unique energy dispersion relation near the so-called Dirac points, where the charge is
neutral. In the low energies regime (E < 1 eV), the charge carriers in graphene behave
like massless Dirac fermions which can explain many of its interesting electronic properties
[?, ?, ?, ?], and new physical phases such as the non-interger Quantum Hall Effect [?, ?] or
the Quantum Spin Hall Effect [?]. Also applications of graphene due to their optical prop-
erties [?] are very likely in the near future, some of which are based on the generation of
long-lived plasmons [?, ?].

Studies of graphene have motivated the search of other truly two-dimensional systems,
either by chemical modification of graphene or exfoliation of other layered compounds,
bringing up a new class of materials: heterostructures based on 2D atomic crystals [?]. One
of these are the transition metal dichalcogenides, whose structure is characterized by the
presence of three atomic planes per layer, a triangular lattice of transition metals atoms
merged with two triangular lattices of oxygen family atoms (O, S, Se or Te). Among
them, the molybdenum disulfide (MoS2) bears a special resemblance to massive graphene
(graphene with an induced gap [?]), as its energy spectrum can be described by gapped Dirac
fermions. Due to the presence of a large gap, molybdenum disulfide has attracted a lot of
attention recently. Also the absence of inversion symmetry, what makes the spin orbit cou-
pling naturally large in contrast to massive graphene. While a monolayer of MoS2 presents
a direct band gap, the bulk is known to be an indirect semiconductor [?, ?].

Dirac fermions also occur in another kind of layered materials with repeating unit cells
of hexagonal structure of five layers, the 3D topological insulators. Such materials show
surface states that, as in graphene, follows the massless fermions Dirac equation but with
the presence of only one Dirac cone in their energy spectrum, whereas the bulk states show
a large insulating gap. Breaking time-reversal invariance by, e.g., applying a magnetic field
further produces a gap in the spectrum giving rise to giant magneto-optical Kerr effect and
universal Faraday effect. [?]

Another difference between Dirac fermions in topological insulators with respect to
graphene ones resides in the coupling with the momentum operator: while in the former
systems it is produced by the real spin, in the latter is generated by the so-called pseudo-
spin that appears due to the two atoms in the unit cell of the graphene lattice. This state
of matter, also refered as Quantum Spin Hall State, was confirmed experimentally in 2D
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topological insulators by Molenkamp [?] in HgTe quantum wells grown by molecular-beam
epitaxy.

In this master thesis a study of the absorbance of 2D systems is presented. Such study
is motivated by the universal absorption of graphene which only depends on fundamental
constants and is giving by πα with α = e2/4πε0 the fine structure constant [?]. The propor-
tionality to the fine-structure constant can intuitively be understood by noticing that the QED
coupling of the electrons with the photonic Gauge field is determined by such a constant.
The scattering rate, i.e., the absorption, should thus be proportional to α.

Absorption measurements were recently performed on conventional 2D semiconductors
structures [?]. For InAs membranes with a thickness small enough to be considered a 2D
semiconductor system, they found that each set of interband transitions in the optical range
was mediated by a quantum absorptance of πα/nc whith nc an optical local field correction
factor. The stairway appearance of the absorption was thus characterized by this quantum
of absorption and the thickness of the sample, which is determined by the number of piled
2D monolayers.
In this master thesis, we intend to investigate the universal absorption in 2D systems in
more detail. We first calculate the absorption for Dirac fermions including a mass term in
the massless Dirac Hamiltonian and show that this system does not display the universal
behavior for general frequencies. We further theoretically discuss the absorption of ordinary
2D semiconductors described within the effective-mass approximation. Finally we calculate
the absorption of a truely 2D semiconductor crystal, MoS2, experimentally measured in [?].
We close with a summary of our results and conclusions.
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Absorption in the linear regime

In a 3D material, the absorption coefficient A(ω) is characterized by the exponential atten-
uation of the intensity of the wave after having crossed a thickness z

I(z) = I0e
−A(ω)z . (2.1)

Since it only involves the intensity of the electromagnetic wave, direct measurements of
the absorption can be easily carried out. Such measurements are of quite interest if we are
studying processes near the band edge such as indirect transitions or, what interests us more,
direc interband transitions. Far from the band edge, the absorption coefficients become too
high for the absorption technique to be useful, so reflectivity measurements are made in such
cases.

In 2D, an alternative definition of the absorption coefficient is necessary. We can define
it as the power removed from the incident beam per unit volume per unit incident flux of
electromagnetic energy due to an interband transition [?]

A(ω) =
η~ω

incident electromagnetic flux
, (2.2)

where η = number of transitions/unit area/unit time. We will use Wa to denote the nu-
merator of equation ??. In this work we are considering an electromagnetic wave linearly
polarized with electric field E(t) and frequency ω, propagating along the x axis with normal
incidence through the system of area A (see figure ??). Under this assumption, the incident
electromagnetic flux (Wi from now) reads

Wi =
ε0c

2
|E|2 . (2.3)

On the other hand, we can directly calculate the Fresnel coefficients for the reflection
(r) and transmission (t) amplitude from the scattering problem of a planar interface. The
specular absorption is then defined via the continuity equation by

A = 1−R− T , (2.4)

with R = |r|2 and T =
√

ε2
ε1
|t|2 where ε1 and ε2 the relative permittivity of the two media

separated by the sample of the material. The transmission and reflection of a planar interface
including graphene is then characterized by the optical conductivity σ(ω) and given by
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2. ABSORPTION IN THE LINEAR REGIME 5

T =

√
ε2

ε1

4(ε1ε0)2

|(√ε1ε2 + ε1)ε0 +
√
ε1σ(ω)/c|2

R =
|√ε1ε2ε0 +

√
ε1σ(ω)/c− ε1ε0|2

|√ε1ε2ε0 +
√
ε1σ(ω)/c+ ε1ε0|2

(2.5)

Thus, we will calculate the absorption using two different approaches: firstly we will deter-
mine the transitions rate η using Fermi’s Golden Rule and computing the absorption from
equation ??. Secondly, by means of equations ?? and ?? within the Linear Response Theory
context. Both methods are detailed below.

Figure 2.1: Geometry of p polarized light scattering between two media with graphene
separating them [?]

2.1 Fermi’s Golden Rule
Time-dependent perturbation theory in leading (second) order leads to the following transi-
tion probabilities:

pm→n(t, t0) =
1

~2

∣∣∣∣∫ t

t0

〈n|H1(t′)|m〉ei(εn−εm)t′/~dt′
∣∣∣∣2 , n 6= m (2.6)

pm→m(t, t0) = 1−
∑
m 6=n

1

~2

∣∣∣∣∫ t

t0

〈n|H1(t′)|m〉ei(εn−εm)t′/~dt′
∣∣∣∣2 , (2.7)

where m, εm are the eigenstates and eigenenergies of the unperturbed Hamiltonian H0 re-
spectively and H1(t) a time-dependent perturbation which is switched on at t = t0. These
formulas are only valid if 1− pm→m � 1. In the case of a periodic perturbation

H1(t) = H1 cos(ωt) , (2.8)
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the probability can be approximated to

pm→n(t, t0) = (t− t0)
π

2~
|〈n|H1|m〉|2δ(εn − εm − ~ω) ; t− t0 →∞ . (2.9)

Within a two-band model and considering momentum conservation, only transitions from
the valence band m = (k,−) to the conduction band n = (k,+) are allowed

pk = (t− t0)
π

2~
|〈k,+|H1|k,−〉|2δ(ε+,k − ε−,k − ~ω) . (2.10)

Thus, the transition rate per unit area is given by

ηk =
π

2~A
|〈k,+|H1|k,−〉|2δ(ε+,k − ε−,k − ~ω) , (2.11)

where A denote the area considered. The total transition rate is obtained by summing over
all initial states

η =
π

2~A
∑

k

|〈k,+|H1|k,−〉|2δ(ε+,k − ε−,k − ~ω) . (2.12)

Because the electronic states in the Brillouin zone are quasi-continuous functions of k and
considering a two-dimensional system, we can replace the sum by the following integral:

η =
1

8~π

∫∫
dk|〈k,+|H1|k,−〉|2δ(ε+,k − ε−,k − ~ω) , (2.13)

and by a change of variable
k → ε+,k − ε−,k , (2.14)

we can transform the integral in k to an integral in the difference in energy between the two
bands (eigenstates) involving the transition

η =
1

8~π

∫∫
dϕd(ε+,k − ε−,k)k(ε+,k − ε−,k)

∣∣∣∣ ∂k

∂(ε+,k − ε−,k)

∣∣∣∣×
|〈k,+|H1|k,−〉|2δ(ε+,k − ε−,k − ~ω) . (2.15)

2.2 Linear Response

Considering an applied field E(t) = −∂tA(t), with monochromatic frequency dependence
E(t) = iωA(t), the current operator is then given by

jitot =
ine2

mω
Ei + ji ,

ji = − e

m

∑
α

piα (2.16)

where pα is the momentum operator for the αth electron. The first term of jtot is known
as the diamagnetic contribution, related to the substitution pα → pα + eA(rα, t). The
Hamiltonian of the system is

H = H0 +H1(t) ,

H1(t) = −j · A(t) = (i/ω)j · E(t) (2.17)
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where H0 contains all the equilibrium properties of the system. We want to compute the
current by means of the density matrix. The density matrix is perturbed away from its
equilibrium value ρ = e−βH0/Z by the field, and we want to know the correction factor δρ to
first order in E (linear response). First-order time-dependent perturbation theory for δρ can
be written in operator language using standard field-theoretic methods as

δρ(t) = − i
~
e−iH0t/~

∫ t

−∞
dt′[H1(t′), ρ]eiH0t/~ . (2.18)

From this last equation we can derive Kubo formula for the conductivity in the spectral
representation given a set of eigenstates H0|n〉 = εn|n〉 of the system before the field is
applied

σij(ω) =
ine2

mω
δij +

ie2

ωV

∑
m,n

e−βεn − e−βεm
Z

〈n|vi|m〉〈m|vj|n〉
~(ω + iδ)− (εm − εn)

. (2.19)

Considering a 2D system of area A, the real part of the conductivity reads [?]

Reσij =
4σ0

ωA

∑
m∈c,n∈v

π〈m|vi|n〉〈n|vj|m〉δ(~ω − (εm − εn)) , (2.20)

where c,v denotes the empty and occupied states respectively and σ0 = e2

4~ . The velocity
operator is given by

v =
i

~
[H, r] =

∂H

∂p
. (2.21)

If we consider that the electric field is oriented along the x direction then the Kubo formula
reads

Reσxx =
4σ0

ωA

∑
m∈c,n∈v

π|〈m|vx|n〉|2δ(~ω − (εm − εn)) . (2.22)

On the other hand we can transform the summatory in accesible states into a sumatory in k
as follows

Reσxx =
4σ0π

ωA

∑
k

|〈k,+|vx|k,−〉|2δ(~ω − (ε+,k − ε−,k)) =

=
σ0

ωπ

∫∫
dϕd(ε+,k − ε−,k)k(ε+,k − ε−,k)

∣∣∣∣ ∂k

∂(ε+,k − ε−,k)

∣∣∣∣×
|〈k,+|vx|k,−〉|2δ(~ω − (ε+,k − ε−,k)) . (2.23)

Thus, the Kubo Formula relates the current fluctuations of H0 to the dissipative part of the
conductivity Reσ. This last equation is quite similar to equation ??. In fact, using Fermi’s
Golden Rule with the perturbation H1(t) = −j ·A(t) we would obtain a similar result for η.
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Massive Dirac fermions

Graphene has a honeycomb lattice structure made out of carbon atoms. The first Brillouin
zone of graphene is an hexagon. Only two corners of it can not be connected by primitive
vectors of the reciprobal lattice, i.e. this two points are inequivalent and are calledK andK ′

points. Near these points, the electrons behaves like massless Dirac fermions H0 = vFσ ·p.
This is why theK andK ′ are also called Dirac points. Including a mass term in the massless
Dirac fermions Hamiltonian we have

H0 = vFσ · p + τmv2
Fσ

z =

(
τmv2

F ~vF (kx − iky)
~vF (kx + iky) −τmv2

F

)
, (3.1)

where τ = ± denotes the two K-points. Particles who follow this Hamiltonian are called
massive Dirac fermions. For time-reversal symmetric systems, it is sufficient to only con-
sider one valley (τ = +) and include the other by the valley degeneracy factor gv = 2. Since
there is no coupling with the spin component, we will introduce also a degeneracy factor
gs = 2 in our further calculations. Such a system has the following eigenenergies

ελ,k = λ
√

~2v2
F (k2

x + k2
y) + (mv2

F )2 , (3.2)

where λ is the band index taking on the value λ = 1 for the conduction band and λ = −1
for the valence band. The normalized wave functions read

ψ+,k(r) =
1√
A

(
cos(θ/2)

sin(θ/2)eiϕ

)
eik·r , (3.3)

ψ−,k(r) =
1√
A

(
sin(θ/2)

− cos(θ/2)eiϕ

)
eik·r , (3.4)

with

cos(θ) =
2mv2

F

ε+,k − ε−,k
; eiϕ =

kx + iky
k

. (3.5)

To study the absorption of photons by electrons of massive Dirac fermions valence band we
consider a light wave linearly polarized with electric field E(t) and frequency ω, propagating
along the x axis with normal incidence through a graphene sheet of area A. Such absorption
process would promote an electron from the valence band to the conduction one with a gain
of energy of ε+,k − ε−,k = ~ω.

8



3. MASSIVE DIRAC FERMIONS 9

Considering minimal coupling: p→ p + eA(t) with e > 0 gives the time-dependent pertur-
bation H1(t) = evFσ · A(t) and with E(t) = −∂tA(t) = E cos(ωt) we finally have

H1(t) =
evF
iω

σ · E cos(ωt) . (3.6)

Using Fermi’s Golden rule (??) we obtain

η =
gsgve

2|E|2

32ω2~3

∫ (
(ε+,k − ε−,k) +

(2mv2
F )2

ε+,k − ε−,k

)
δ(ε+,k − ε−,k − ~ω)d(ε+,k − ε−,k) =

=
e2|E|2

2ω2~3

(
~ω
4

+
(mv2

F )2

~ω

)
×Θ(~ω − 2mv2

F ) , (3.7)

where we have considered the valley- and spin- degeneracy factors gv = gs = 2 .
The absorption is then given by

A(ω) =
Wa

Wi

= πα

(
1 +

(
2mv2

F

~ω

)2
)
×Θ(~ω − 2mv2

F ) . (3.8)

Let’s do the same but by means of the Kubo’s formula. Giving the Hamiltonian ?? the
velocity is

vx =
∂H

∂px
= vFσ

x . (3.9)

Taking this velocity, equation ?? yields

Reσxx =
gsgvσ0

ωπ

∫∫
dϕd(ε+,k − ε−,k)

1

(~vF )2
×

|〈k,+|vFσx|k,−〉|2δ(~ω − (ε+,k − ε−,k))

= σ0

(
1 +

(
2mv2

F

~ω

)2
)
×Θ(~ω − 2mv2

F ) . (3.10)

Using equations ?? and ?? and considering both media to be vacuum we obtain the absorp-
tion of massive Dirac fermions

A(ω) =

1− 4ε2
0∣∣∣∣2ε0 + σ0

c

(
1 +

(
2mv2F
~ω

)2
)∣∣∣∣2
×Θ(~ω − 2mv2

F ) (3.11)

' πα

(
1 +

(
2mv2

F

~ω

)2
)
×Θ(~ω − 2mv2

F ) . (3.12)

Both results agree, as it must. We see that for massive Dirac fermions the absorption has
a dependence on the frequency ω and on parameters of the material: m and vF . We have
universality only for ω = 2mv2

F/~, and the absorption in such a case is A = 2πα. From
this frequencies the absorption decays up to reaching universality again with A = πα, when
the mass term (2mv2

F/~ω) is negligible. Thus, we can define a crossover region where a
dependence on the frequency shows up. Such behavior is expected to be seen experimentally
in gapped topological insulators, which are massive Dirac fermions systems with gv = 1
(since they present only one Dirac cone) and gs = 1 (due to the strong spin-orbit coupling
[?]).
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2D Semiconductors

We will now consider a general (Galilei invariant) semiconductor with H0 = p2

2m0
+ V (r)

where p = −i~∂r and the periodic potential V (r) = V (r + aj) along the lattice vector
aj . From Bloch’s theorem we can write the wave function as φk(r) = eik·runk(r) with
k denoting the Bloch wave vector. The effective Hamiltonian for the periodic function
unk(r) = unk(r + aj) is thus given by

Hk·p(k) = H0 +
~
m0

k · p +
~2k2

2m0

. (4.1)

This Hamiltonian shall be represented within a minimal basis set consisting of |s〉 for the
conduction band and |pj〉 for the valence band with j = x, y, z which correspond to the
Bloch function unk at k = 0. With ε0(k) = ~2k2

2m0
and 〈s|p|pj〉 ≡ im0

~ P , we thus can write
the Hamiltonian in matrix terms as follows

Hk·p(k) =


εc + ε0(k) iPkx iPky iPkz
−iPkx εv + ε0(k) 0 0
−iPky 0 εv + ε0(k) 0
−iPkz 0 0 εv + ε0(k)

 . (4.2)

The valence band thus splits into a light hole with energy εlh(k) = 1
2
(εc + εv) + ε0(k) −√

E2
g/4 + P 2k2 and a doubly degenerated heavy hole with energy εhh = εv + ε0(k) where

Eg = εc − εv. The energy of the conduction band is renormalized to εe(k) = 1
2
(εc + εv) +

ε0(k) +
√
E2
g/4 + P 2k2.

Let us neglect the degenerate heavy hole band and approximate the other two bands for
small values of k. This yields

εe(k) = εc +
~2k2

2m0me

; εlh(k) = εv −
~2k2

2m0mlh

, (4.3)

with the effective (dimensionless) masses m−1
e = EP/Eg + 1 and m−1

lh = EP/Eg− 1 where
EP = 2m0P

2/~2. The reduced mass is thus given by m−1
e + m−1

lh = 2EP/Eg which is the
crucial relation in order to obtain an universal optical conductivity for a 2D semiconductor.

For the optical conductivity or absorption, we need to evaluate the matrix element 〈k, c|e0·
p|k′, v〉 where we only consider transitions from the valence (v) to the conduction (c) band
and k = k · e0. Using the above model, the full wave function is the product of the envelope
function with the Bloch function at k = 0, ψk(r) ∝ χk(r)uk=0(r).

10



4. 2D SEMICONDUCTORS 11

For a quantum well, the envelope function can be written as χn(r) = A−1/2eik·rφn(z).
For these systems the matrix element reads

〈k, c, n|e0 · p|k′, v,m〉 ≈
∑
j

χ∗cnk(rj)χvmk′(rj)
∫

unit cell
u∗cn(r)(e0 · p)uvm(r)d3r

≈ e0 · pcn,vm(0)δk,k′

∫
φ∗cn(z)φvm(z)dz ≡ pcn,vmδk,k′〈c, n|v,m〉

(4.4)

To study the absorption let us consider a semiconductor with H0 = p2

2m0
+ V (r). Peierls

substitution p → p + eA(t) then leads to a paramagnetic perturbation Hpar = A · p/m0 as
well as to a diamagnetic perturbation Hdia = A2/2m0. The contribution of the diamagnetic
term does not contribute at finite frequencies. Again, we parameterize the gauge potential
as E(t) = −∂tA = E0 cos(ωt) and the time-dependent perturbation thus reads V (t) =
eE0

im0ω
p · e0 cos(ωt) where we defined E0 = e0E0. If we only consider transitions from

the conduction band εc(k) to the valence band εv(k), the absorption obtained from Fermi’s
Golden rule is thus obtained as

Wa

E2
0

=
π

2

e2

m2
0ω

gsgv
V

∑
k

|〈k, c|e0 · p|k, v〉|2 δ(εc(k)− εv(k)− ~ω) , (4.5)

where we will set gs = 2 and gv = 1 in the following.
Alternatively, we can consider the real part of the conductivity of a 2D semiconductor

which is given by

Reσ(ω) ≈ πe2

m2
0Lω
|pcn,vm|2|〈c, n|v,m〉|2

2

A

∑
k

δ(εc,n(k)− εv,m(k)− ~ω) (4.6)

where the energy bands for small k can be approximated by εb,n(k) = εb±εb,n± ~2k2
2m0mb,n

and
the upper and lower sign stands for the conduction (b = c) and valence (b = v), respectively.
With the joint density-of-states

2

A

∑
k

δ(εc,n(k)− εv,m(k)− ~ω) =
2m0mnm

π~2
Θ [~ω − (Eg + εc,n + εv,n)] (4.7)

where m−1
nm = m−1

c,n + m−1
v,m and Eg = εc − εv the energy gap, the absorption shows a step-

like behavior as function of the photon energy as more and more transitions from different
sub-bands are involved. The height of these steps is quasi-universal if we assume pcn,vm =
im0P/~, 〈c, n|v,m〉 ≈ 1 and ~ω ≈ Eg:

∆Reσ =
e2

4~L
≡ 2σ0

L
(4.8)

Apart from the geometrical factor L, this is the same result as for graphene, but note that
transitions at the Γ-point, i.e., one valley with gv = 1, are involved. Defining the valley-
and spin-dependent universal conductivity as σ0 = gsgv

16
e2

~ , we have twice the absorption of
graphene.

This universal absorption has recently been measured [?] for thin films of InAs. In
the next chapter, we will theoretically discuss the absorption of a truely two-dimensional
semiconductor crystal (MoS2) and analyze whether this universality still holds.
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Molybdenum disulfide

A monolayer of molybdenum disulfide [?, ?, ?], as well as graphene, has a honeycomb
lattice made of molybdenum and sulfur atoms instead of carbon. Such a two-dimensional
system, contrary to graphene, presents a large band gap separating valence and conduction
band. A monolayer of MoS2 around the corners of the Brillouin zone can be described by
the effective two-band model for both spin (s± 1) and valley (τ ± 1) components

Hτs
0 =

(
∆

2
+

~2β

4m0

k2

)
σz +

~2α

4m0

k2 + τsλ
1− σz

2
+ t0a0k · στ , (5.1)

with στ = (τσx, σy); m0 as the free electron mass and the following values for the parame-
ters

∆ = 1.9 eV ; t0 = 1.68 eV ; a0 = 1.84 Å ; α = 0.43 ; β = 2.21 ; λ = 0.08 eV . (5.2)

Such a system has the following eigenenergies

ε± =
~2α

4m0

k2 +
τsλ

2
±

√
(t0a0k)2 +

(
∆

2
+

~2βk2

4m0

− τsλ

2

)2

. (5.3)

We will use the same eigenvectors as for massive Dirac fermions, but in this case the angle
θ is defined by

cos(θ) =
∆ + ~2β

2m0
k2 − τsλ

ε+ − ε−
. (5.4)

Introducing the effect of an electromagnetic field with minimal coupling: p → p + eA =
p + eE

iω
and with a light wave linearly polarized with electric field propagating along the x

axis with normal incidence we have for the time-dependent perturbation

Hτ
1 =

βe|E|
4m0ω

(
2~
i
k

)
σz +

t0a0e|E|τ
i~ω

σx +
αe|E|
4m0ω

(
2~
i
k

)
, (5.5)

where we have neglected the diamagnetic term as it is quadratic in E.
The band structure near k = 0 is plotted in figure ?? where we distinguish the difference

bands according to the two possible values of τ ·s = ±1. It corresponds to a direct semicon-
ductor with gap ∆−λ = 1.82 eV. We have plotted with narrows the two possible interband
transitions for a given valley. The red narrow corresponds to a transition from the valence

12



5. MOLYBDENUM DISULFIDE 13

band with τ · s = −1, with an energy gain of ε = 2

√
(t0a0k)2 +

(
∆
2

+ ~2βk2
4m0

+ λ
2

)2

, and the

black narrow to a transition from the τ · s = 1 valence band with an energy band-width of

2

√
(t0a0k)2 +

(
∆
2

+ ~2βk2
4m0
− λ

2

)2

.

In figure ?? we represented the total absorption of MoS2 which can be written down as
follows

A(ω) = πα
1√
γ−~ω

{
2a2

0t
2
0

[
~ω +

16m2
0

(
a2

0t
2
0 −
√
γ−/4

)2

β2~4~ω

]

+
(
−4a2

0t
2
0 − β(∆− λ)~2/m0 +

√
γ−
)[

~ω −
16m2

0

(
a2

0t
2
0 −
√
γ−/4

)2

β2~4~ω

]}
× Θ[~ω − (∆− λ)]

+ πα
1√
γ+~ω

{
2a2

0t
2
0

[
~ω +

16m2
0

(
a2

0t
2
0 −
√
γ+/4

)2

β2~4~ω

]

+
(
−4a2

0t
2
0 − β(∆ + λ)~2/m0 +

√
γ+
)[

~ω −
16m2

0

(
a2

0t
2
0 −
√
γ+/4

)2

β2~4~ω

]}
× Θ[~ω − (∆ + λ)] , (5.6)

with
γ∓ ≡ 16a4

0t
4
0 + 8a2

0t
2
0β~2(∆∓ λ)/m0 + β2~4(~ω)2/m2

0 . (5.7)

We have normalized the absorption by A0 = πα, and represented for the range of en-
ergies [0-4 eV], together with the absorption of a massive Dirac fermions system with
∆ = 2mv2

F = 1.9 eV and degeneracy factors gs = gv = 2. We included two insets: on
the top for ~ω ∈ [0 − 40 eV], and on the bottom for the high-frequency limit. We can
observe a dependence on the frequency for the absorption of both systems. We also see
that the value πα and 2πα is not exactly reached close to the band edge. We attribute this
to renormalization effects due to the spin-orbit interaction similar to what is seen for other
interactions such as the the electron-phonon interaction in graphene [?].

Let us discuss the high-frequency limit. Taking ω → ∞ in equation ?? we can realize
that a universal absorption is recovered in massive Dirac fermions:

AMDF(ω →∞) = πα . (5.8)

On the other hand, doing the same for MoS2,

AMoS2(ω →∞) = 0 , (5.9)

as we expected since for this regime the perturbationH1 is dominated by the terms quadratic
in k, i.e. the electrons behave like Schrödinger fermions, and for symmetry reasons, as we
discussed in chapter ??, the matrix element |〈k,+|H1|k,−〉 vanishes.
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Figure 5.1: Band structure of 2D MoS2 near k = 0 and allowed interband transitions from
the valence band to the conduction band, present in the absorption process.

Figure 5.2: Normalized absorption as a function of the energy provided by an electro-
magnetic wave with normal incidence through a sheet of a massive Dirac fermions system
(black) and MoS2 (red). The above inset shows the absorption for ~ω ∈ [0− 40] eV. Below
is plotted for the high-frequency limit.
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Summary

In this master thesis, we have investigated the absorption coefficient of three systems: mas-
sive Dirac fermions, ordinary 2D semiconductors and a truely 2D semiconductor crystal,
MoS2, with two different approaches: Fermi’s Golden Rule and Linear Response. The
results showed an universal absorption for 2D semiconductors within the effective-mass
approximation, in accord with recent experimental results [?], and with studies of the ab-
sorption in graphene, which remains universal even beyond the Dirac approximation [?].

But this universality is not obtained for massive Dirac fermions, where we got an explicit de-
pendence on parameters of the material. In fact, the maximum in the absorption for massive
graphene, a massive Dirac fermions system, was found to be twice the 2D semiconductors
one. This discrepancy is due to the difference in the valley-degeneracy factor, which is 2 for
massive graphene and 1 for 2D semiconductors in the k · p approximation.

Finally we study the absorption in a real 2D semiconductor, MoS2, whose Hamiltonian
is well-known [?]. We observed a similar behavior with respect to massive Dirac fermions,
with a dependence of the absorption in ω.

We conclude that the universality of the absorption is observed within a short range of ener-
gies close to the band edge, compatible with the limitations of the k · p perturbation theory,
and also for high frequencies in the case of massive Dirac fermions, where it is reduced to
a half part. A crossover region exhibits a dependence between the absorption and the fre-
quency, as we observed in our study of massive Dirac fermions and MoS2. This might be
observable in 3D-topological insulators such as Bi2Se3 where a small gap is produced by a
time-reversal symmetry breaking magnetic field [?].
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