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An algorithm for automatic extraction of pole-like street furniture objects using Mobile Laser Scanner
data was developed and tested. The method consists in an initial simplification of the point cloud based
on the regular voxelization of the space. The original point cloud is spatially discretized and a version of
the point cloud whose amount of data represents 20–30% of the total is created. All the processes are car-
ried out with the reduced version of the data, but the original point cloud is always accessible without
any information loss, as each point is linked to its voxel. All the horizontal sections of the voxelized point
cloud are analyzed and segmented separately. The two-dimensional fragments compatible with a section
of a target pole are selected and grouped. Finally, the three-dimensional voxel representation of the
detected pole-like objects is identified and the points from the original point cloud belonging to each
pole-like object are extracted.

The algorithm can be used with data from any Mobile Laser Scanning system, as it transforms the ori-
ginal point cloud and fits it into a regular grid, thus avoiding irregularities produced due to point density
differences within the point cloud.

The algorithm was tested in four test sites with different slopes and street shapes and features. All the
target pole-like objects were detected, with the only exception of those severely occluded by large objects
and some others which were either attached or too close to certain features.
1. Introduction

Accurate urban cartography is being increasingly demanded for
several purposes in city management (Sahin et al., 2012; Gröger
and Plümer, 2012; Shi et al., 2008). Three-dimensional models
are now widely used for street and traffic control (Buch et al.,
2008; Ranzinger and Gleixner, 1997), where the identification
and accurate determination of the location and shape of certain
street furniture elements is crucial. The presence of elements such
as traffic lights, traffic signs, lampposts, utility poles or street trees
has a huge impact on street and road planning, safety and mainte-
nance, as they have a critical role in the general city management
and in the road and street visibility studies for traffic management
purposes (Escalera et al., 2010). In addition, the presence of afore-
mentioned objects is used and needed for vehicle and pedestrian
navigation and for driver assistance (Zin et al., 2007). Most of these
street furniture objects either contain a pole or are entirely shaped
like a pole. For instance, lampposts are often pole-like objects (i.e.
shaped like a pole), traffic lights are usually placed in a pole-like
structure and street trees often have a pole-like trunk.

Three-dimensional city mapping has been carried out in the last
two decades using several methods in order to achieve accurate
spatial models of the volumetric elements present in urban
environments (Frueh and Zakhor, 2003; Haala and Brenner,
1999; Holopainen et al., 2011; Zhou and Neumann, 2013). Survey-
ing, photogrammetry and remote sensing have been widely used,
but the emergence and popularization of LiDAR technologies have
produced a wide range of new techniques and applications
(Gonzalez-Aguilera et al., 2013). The LiDAR technologies most
commonly used for urban mapping can be divided in: (i) Airborne
Laser Scanning (ALS), (ii) Terrestrial Laser Scanner Systems (TLS)
and (iii) Mobile Laser Scanning (MLS) Systems.

Airborne Laser Scanning (ALS) has been used since the early
1990s. This method produces an adequate point density for the
extraction of large urban features (i.e. building footprints or vehi-
cles), but is often not enough for smaller or vertical elements.
Moreover, the scanning angle does not allow the adequate mea-
surement of points on vertical surfaces (Boulaassal et al., 2007).
Terrestrial Laser Scanner Systems (TLS) are able to provide a much
higher point density and do not have the angle limitation for
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vertical objects detection that the ALS has. However, measure-
ments from TLS are usually affected by occlusions in urban envi-
ronments, and time-consuming scanning from different locations
is needed (Dold and Brenner, 2006).

Mobile Laser Scanning (MLS) systems operate with the same
principles as ALS, but are usually deployed in a vehicle, such as a
van or a car. However, MLS systems produce a denser 3D point
cloud than ALS and they use more adequate scanning angles for
the measurement of vertical features. Furthermore, MLS systems
avoid some of the occlusions that affect TLS, due to the movement
of the scanning device and the fact that MLS systems usually use
more than one sensor that operate in different scanning planes
(Puente et al., 2012; Tao, 2000; Vaaja et al., 2011).

The distribution of the points from laser scanning systems
(especially MLS) is usually heterogeneous and the amount of data
is generally extraordinarily large. Therefore, and in order to reduce
the processing times and the complexity of the datasets, the point
clouds are often simplified before the use of an algorithm for fea-
ture extraction. In some cases (Yokoyama et al., 2011), the largest
features present in the point cloud (i.e. ground points and/or build-
ings) are removed manually. Alternatively, a segmentation tech-
nique based on a surface growing algorithm, which groups points
according to their connectivity and coplanarity, can be used
(Pu et al., 2011; Vosselman et al., 2004). Another option is to apply
a segmentation to the sweeps of the MLS, eliminating groups of
points that are not compatible with the section of the target
elements (i.e. pole-like objects) (Lehtomäki et al., 2010). More
recently, (Puttonen et al., 2013) applied different distance-
sensitive sampling methods to the original point cloud and tested
them for pole-like objects detection using the algorithm from
(Lehtomäki et al., 2011).

Storage and compression of a vast and dense point cloud from
TLS is performed in (Elseberg et al., 2013) using octree structures,
where the point clouds are stored in a volumetric hierarchical
space (Meagher, 1982). Nevertheless, in many cases, it is not nec-
essary to build categorized structures (Elseberg et al., 2013) and
a grid of volumetric units (i.e. voxels) is used (Aijazi et al., 2013;
Hosoi and Omasa, 2006; Moskal and Zheng, 2012; Truong-Hong
et al., 2013; Wu et al., 2013). In some of these voxel spaces, the
topologic relations are not initially established, so conditions of
neighborhood/proximity that would represent one third of the to-
tal processing time (Vanderhyde and Szymczak, 2008) can be ana-
lyzed in subsequent stages within the regions or groups of voxels
of special interest.

It is only very recently that a few studies have started to address
pole-like object extraction from MLS in urban environments. In
2010 (Lehtomäki et al., 2010) used a method which looked for pole
sections within each sweep of the MLS. The selected features from
different scan lines were linked together and their isolation was
checked using two cylinders (see (Brenner, 2009)).

In 2011, (Yokoyama et al., 2011) used iterative smoothing in or-
der to obtain skeleton structures and a subsequent identification of
the pole-like objects using principal component analysis. (Pu et al.,
2011) used both a shape-based method, and a process based on the
identification of horizontal sections of the pole-like features avoid-
ing their extreme segments.

Golovinskiy et al. (2009) propose methods for urban features
recognition (including poles) developed from an initial selection
of potential objects based on point densities. The candidate objects
are separated from the background, and they are characterized
according to their spatial context and configuration. Finally, the
features are classified comparing their characterization with la-
beled data from a training dataset.

More recently, (Wu et al., 2013) developed a method that uses
an orthogonal, but non regular voxel space for tree detection in ur-
ban environments. The algorithm is based in the detection of the
sections of trees that match with the expected diameter at breast
height (DBH) (i.e. 1.2–1.4 m from the ground). A neighborhood
search is applied to the sections that fulfill the requirements at
DBH in order to extract the tree trunk and the estimation of other
morphological parameters.

The aim of this work is to develop a new methodology for iden-
tification of pole-like street furniture objects from MLS data, which
is more general and able to improve the performance of the exis-
tent methods: (i) able to detect pole-like objects with indepen-
dence of the structures attached to them. It is a frequent
situation that poles are joined together through tree branches or
other features. Some methods like (Pu et al., 2011) or (Yokoyama
et al., 2011) use 3D connected components labeling before the pole
extraction, so they are not able to detect connected poles sepa-
rately. (ii) Does not require training data. Machine learning based
methods, such as (Golovinskiy et al., 2009) imply the time-
consuming collection of training data, in addition, the fact that a
model works with a training dataset, does not necessarily guaranty
that adequate results could be obtained with other data, and they
can suffer from overfitting problems (Ling, 1995; Zhang, 2000).
(iii) No initial assumptions are taken about the position of the
poles. In (Wu et al., 2013) it is assumed that all the targets (i.e.
trees) are placed at the same height from the ground, and that they
have a pole-like section at breast height (i.e. 1.2–1.4 m). (iv) The
algorithm has to be independent of the scanning geometry (i.e.
scanning angles and scanning frequency) and structure of the data
(i.e. only the XYZ coordinates of the points are needed). The meth-
od from (Lehtomäki et al., 2010) fulfills the previous requirements,
but is dependent of the scanning geometry, as it is based in the use
of sections of the poles, which imply a limit in the tilt angle of the
sweeps. An indexation of the points (i.e. sweep id. and point index
within the sweep) is also needed as input for this algorithm.

The proposed methodology is based on very simple geometric
principles and consists in the initial creation of a simplified version
of the original point cloud through voxelization, the subsequent
analysis of its horizontal sections, and the final identification of
the poles and the structures attached to them in the voxel space.

Four test sites from different environments are used in order to
test the algorithm. Three of them are from a narrow street in the
city center, and they contain different common features in urban
environments (i.e. large buildings, junctions, roundabouts, small
parks, parked vehicles or bins). The fourth test site is a long street
which contains many peri-urban structures, such as commercial
centers, large parks, bridges and some road elements).
2. Methodology

The method proposed for the detection of street furniture pole-
like objects from MLS data consists of three consecutive steps:

1. Voxelization of the point cloud space through codification. This
stage allows to simplify the analysis and to reduce the comput-
ing cost of the subsequent operations.

2. Two-dimensional analysis of horizontal sections of the voxel-
ized point cloud. At this stage, the candidates are identified by
the properties of their sections.

3. Tridimensional reconstruction of the selected features from the
previous 2D analysis.

2.1. Voxelization

Point clouds from MLS measurements are habitually very large
and the distribution of the points is usually extremely heteroge-
neous. For that reason a simplification is often necessary. Conse-
quently, we developed a voxelization method that allows the



generation of a reduced version of the original point cloud. In that
way, a reduction of the computing requirements is performed by
fitting all the data in a regular tridimensional network that does
not represent a significant information loss if the scale is correctly
chosen. However, the original data is preserved and directly related
to the reduced version.

The space is divided in a regular tridimensional grid. As a result,
every single point is inside a volumetric cubic unit (i.e. voxel), and
the only information which is stored is: (i) the coordinates of the
centroids of the voxels containing at least an original point and
(ii) the number of points which are inside each voxel. In that
way, the original point cloud is significantly simplified using a spa-
tial discretization and just storing the data needed in the following
stages, although the initial data is preserved.

Our voxelization method is based on the codification of the XYZ
coordinates of the scanned points in a single code and its subse-
quent decoding. The code is an integer number of 12 digits, con-
sisting of three four-digit components. Each component
represents one of the three XYZ coordinates. The coordinates are
transformed to voxel units by dividing by the voxel size, and re-
duced to the origin of the point cloud using the minimum XYZ val-
ues (Eq. (1)). Then, the three components are assembled in the
single code. An example of codification can be found in the first
table of Fig. 1.
Code : xxxxyyyyzzzz

xxxx ¼ integer
X � Xmin
VoxelSize

yyyy and zzzz are similarly calculated

ð1Þ

Eq. (1): Codification of voxel centroids coordinates.
The values of the 12-digit code are stored in a single vector. Its

length is equal to the number of points in the original point cloud
(N). Given that original points belonging to the same voxel have
the same code, vector elements are sorted by their value. In that
way, all the points from the same voxel are placed together (see
Fig. 1). From the vector containing sorted values, the unique ele-
ments (i.e. values of codes which appear at least once, but with
no repetitions) are extracted and transferred to another vector.
The length of the new vector (n) is equal to the number of voxels
containing one or more points.

At this stage, two vectors (i.e. correspondence vectors) are gen-
erated in order to relate each original point with its voxel and vice
versa. See Fig. 1 for a graphic example. Vector M contains n ele-
ments and stores the indices of the first point of each voxel. How-
ever, vector m contains N elements and stores the indices of the
voxels that correspond to each original point.
Fig. 1. Example of the voxelization process. In the first table, the 12-digit code is calculate
right, as well as the code of the points, the sorted vector, the voxel assignation for each
Finally, the codification process is reverted. The 12-digit codes
are split, and the data needed for the subsequent stages in the vox-
el space is calculated: (i) the coordinates of the centroids of the
voxels containing at least a point and (ii) the number of points in-
side each voxel. In the same way, using the correspondence vectors
(i.e. M and m), each voxel is directly related to its points, and each
point is related to its voxel, so the points inside any voxel could be
directly extracted if desired.

2.2. Two-dimensional analysis

Once the voxelization has been performed, the tridimensional
grid is divided in horizontal slices in order to identify the struc-
tures that correspond more likely to the horizontal section of a
pole. Regarding the properties of the target pole-like objects, some
assumptions are established at this point: (i) the area of its sections
has to be small, and (ii) a pole section has to be isolated (i.e. almost
no point should be detected at its immediate surroundings).

The two-dimensional analysis is carried out in three stages: (i)
Segmentation of the connected horizontal elements, (ii) selection
of elements by a maximum area criterion and (iii) selection of ele-
ments by an isolation criterion. The result of this process is a set of
2D segments associated to a Z coordinate that are potentially part
of a pole.

2.2.1. Segmentation of the connected horizontal elements
Each of the 2D sections is analyzed individually. A segmentation

process based on the connectivity of the voxels is then imple-
mented and the adjacent voxels are identified, grouped and stored.
The segments are usually composed either by voxels from the
same object or by voxels from objects attached to them. Hence,
as shown in Fig. 2, the purely pole-like parts of a pole are expected
to be separated from the rest.

2.2.2. Selection of elements by maximum area
A dimensional restriction to the size of the 2D segments (i.e.

sets of connected voxels) obtained during the previous segmenta-
tion is applied. In order to be considered part of a pole, the area of
its horizontal sections has to be limited; only the groups of voxels
whose area is below a threshold are selected. Other restrictions
regarding the shape of the section could be established at this
point (e.g. the maximum length of the major axis, or a circularity
ratio), but they are implicit in the next stage of the process (see
Section 2.2.3 case C), where a maximum radius is set from the cen-
troid of each section.

A threshold dependent on the voxel size is chosen, and the
groups of voxels from the 2D sections are classified in 2 groups:
d for point 1. A graphic schema of the position of 8 example points is shown further
point and the correspondence vectors.
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Fig. 2. 2D horizontal section of the tridimensional grid. Color represents the
number of points stored in each voxel. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Segmentation of horizontal sections by area. Red: voxels from a pole section.
Green: voxels from building sections. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
(i) possible pole sections and (ii) non-pole sections. As shown in
Fig. 3, a big group of pixels (i.e. bigger than the threshold) belongs
to a large feature, not to a pole, but a small-size group, could be
either part of a pole or part of a larger structure. Features with the-
oretically large horizontal sections (e.g. buildings or vehicles),
could be affected by occlusions and present gaps or lack of continu-
ity in their 2D representation. Thus, the features rejected at this
stage are expected not to belong to a pole, and the selected features
must be checked in subsequent stages.
2.2.3. Selection of elements by an isolation criterion
The second assumption described in Section 2.2 establishes that

a pole section has to be an isolated element (i.e. no other elements
should be found at its close surroundings). In order to check this
condition, at this stage the centroids of the selected sections are
calculated, and from that point, a neighborhood-proximity analysis
is established for each pole section candidate.
A B

Fig. 4. Diagram of the outer ring search in a horizontal section. Cases: (a) Pole section, (b)
voxels in the ring.
From the centroid of each candidate section, two search radii
are set: (i) an inner radius, within whose influence (i.e. Inside the
area closer to the centroid than the radius distance) all the points
of the section are supposed to be and (ii) an outer radius that de-
fines a ring, in combination with the inner radius, where no point
is expected (see Fig. 4).

Three possible situations are expected a priori (see Fig. 4): (a) In
the case of the section of a pole (or any other object with a similar
section) all the voxels are located within the influence of the inner
radius, and no point is detected in the outer ring. (b) A large object,
such as a building or a vehicle, should generate continuous sections
with a number of connected voxels much bigger than the threshold
set in the previous stage. Nevertheless, mainly due to occlusions,
small gaps can give rise to patches with an area smaller than the
threshold, but surrounded by voxels in the outer ring. (c) Sections
from a medium-sized object (e.g. small vehicles or bins), or isolated
patches from large objects resulting from big occlusions. Those sec-
tions can have a number of voxels lower than the threshold, but a
shape not compatible with the horizontal section of a pole. The in-
ner radius limits the major axis of the group of pixels and there-
fore, joined to the maximum area (see Section 2.2.2), the shape
of the section.

Although, theoretically, no point is expected in the outer ring,
individual points could be located at the surroundings of a pole
section. Using the information stored in each voxel (i.e. regarding
the number of original points placed within its limits), a threshold
is set, allowing a certain number of isolated points in the outer
ring. The number of points located in the ring is calculated and a
section is rejected when the limit is surpassed. (Lehtomäki et al.,
2010) applied a similar process in order to check the isolation of
the preselected poles. The method used two concentric cylinders
and compared the percentage of points inside each one of them.
2.3. Tridimensional analysis

A tridimensional neighborhood analysis is applied to the group
of voxels that had been selected in the two-dimensional analysis.
The sections that were not discarded in previous stages are now
joined to their neighbors. All the voxels that share a face, an edge
or a corner are grouped together.

In order to eliminate isolated sections (i.e. sections without
neighbors and/or vertical connection), a threshold that limits the
minimum height is set. The structures with a vertical length bigger
than the limit are stored as poles, and the remaining groups are ig-
nored because of their lack of vertical continuity or height (see
Fig. 5).

The final result of the application of the pole detection algo-
rithm is a set of voxel-structures that define the pole-like objects.
Hence, they are likely to be classified and identified subsequently.
These structures are directly related to the original point cloud
from the MLS through the correspondence vectors obtained during
C

a section of a wall with occlusions and (c) false positive detected by the presence of



Fig. 5. Vertical union of filtered horizontal sections. Red: Group that exceeds the
minimum height (Pole representation). Green: Isolated sections. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 1
Manufacturer specifications for the Lynx Mobile Mapper.

Maximum range 200 m, 20%
Range precision 8 mm, 1r
Absolute accuracy* ±5 cm (1r)
Laser classification IEC/CDRH class 1 eye-safe

* To meet the absolute accuracy, the GPS data must be of sufficient quality.

Fig. 6. Footprint and perspective view of the test sites.
the voxelization process. Therefore, points inside each voxel can be
recovered if desired.

3. Test case

3.1. Mapping data

The proposed algorithm was tested using two MLS datasets ac-
quired with The Lynx Mobile Mapper system (Optech, 2013). The
system is based on two LIDAR sensors mounted on a vehicle, an
inertial measurement unit (POS LV 520) produced by Applanix,
which consists of a 2-antenna heading measurement system, and
an inertial navigation system (Puente et al., 2013). Table 1 contains
some technical specifications of the MLS system.

The LIDAR sensors are located in the rear part of a van. Each one
registers points in a plane at 60� to the horizontal and 45� to the
longitudinal axis of the vehicle (i.e. driving direction) with a 360�
field of view.

A point cloud is generated by combining the data from the
LiDAR sensors and the inertial measurement unit. Its spatial
resolution depends on the scan frequency of the LiDAR heads, that
varies from 80 to 200 Hz, and the pulse repetition rate (PRR), rang-
ing from 75 to 500 kHz. Both vertical and horizontal resolutions are
influenced by the speed of the vehicle and the distance to the mea-
sured objects.

Two different datasets (Dataset A and Dataset B) from the city of
Ourense (North-West of Spain) were used. Same settings were ap-
plied to the sensors in both datasets (i.e. A scan frequency of
200 Hz and a PRR of 500 kHz), and from the two of them, four dif-
ferent test sites (TS) were selected: TS-A1, TS-A2, TS-A3 and TS-B.

3.1.1. Dataset A (Test sites A1, A2 and A3)
The measurements from Dataset A were made along a 1.1 km

long street in the city center (Rúa do Progreso). It is a narrow street
(22 m on average) which widens in some parts because of parks,
junctions and roundabouts (there are buildings on both sides of
70% of the street).
In order to test the algorithm separately in different urban envi-
ronments, three test sites (TS) were selected from Dataset A, all of
them with a high density and diversity of poles and with different
urban features (see Fig. 6): TS-A1 is a street section completely sur-
rounded by buildings, TS-A2 contains part of a park and TS-A3 con-
tains a big junction and part of a roundabout. The slope of the
terrain also influenced the election of the test sites: TS-A1 is almost
flat (i.e. the biggest height difference on the ground surface of that
segment of the street is 0.5 m). However, in TS-A2 and TS-A3 the
height difference is, respectively, 1.3 m and 3.5 m.

The length along the trajectory of each one of the ‘‘A’’ test sec-
tions is 100 m, and the number of points per sensor and TS is be-
tween 4 and 4.6 million. In the three test sites, features such as
cars, vans, telephone boxes, banks, street billboards, trees, lamp-
posts, traffic lights, traffic signs, large and small bins, motorcycles,
bushes, street walls, columns and pedestrians were present.
3.1.2. Dataset B (Test site B)
Test site B comprises the whole Dataset B, which contains

41.5 million points from a street 820 m long (Rúa Ribeira Sacra).
The street goes along the Miño river and has many peri-urban
and road features such as car parks, commercial centers, bridges
(with heights between 7 and 30 m), open parks or guardrails (see
Fig. 6). The pole like features present in the dataset are lamp posts,
traffic signs, trees and bare poles. The street is curved and fairly flat
(i.e. 2% slope on average), although there are pole-like objects at
different height levels (e.g. four lamp posts are located over a
bridge, 6 m above the ground level of the street).



3.2. Reference data

In both datasets, the reference data (i.e. location and description
of the target poles) was collected in the field, by checking the posi-
tion of the pole-like street furniture objects and their subsequent
identification in the point cloud. The target poles are street furni-
ture pole-like objects located on the streets: all types of lamp posts,
traffic signs, traffic lights, bare poles, trees with a trunk diameter
smaller than 30 cm, and other street furniture objects containing
a pole (i.e. a pole based telephone box in Dataset A). Objects lo-
cated more than 35 m away from the edge of the street were not
considered.

Most of the target poles are detectable through simple visual
inspection of the original point cloud. Nevertheless, the pole-like
part of some objects is not visible, although some other features
allow their identification in the point cloud. For instance: (i) In
Dataset A, the trunk of a tree is completely occluded by a vehicle
(i.e. there are no points of that trunk in the data), however, its
branches are perfectly visible and its position is determinable.
(ii) In Dataset B, a lamp post is surrounded by a bush, and the
pole part of the signal is not identifiable, but the lamp itself is
visible and its position is established analogously to example
(i). In that way, the location of all the target poles detected visu-
ally in the field was determined (i.e. TS-A1: 25 poles, TS-A2: 23,
TS-A3: 23 and TS-B: 122).
3.3. Algorithm settings

The same settings, from now on referred as ‘standard settings’,
were applied to the 4 test sites (Table 2) in order to detect the pole-
like street furniture present in all the point clouds. Applying these
standard settings, the objects which fulfill the following three con-
ditions are expected to be detected: (i) with a diameter smaller
than 30 cm, (ii) a height over 1.2 m and (iii) with not more than
3 sparse points at their surroundings in each horizontal section
(i.e. within a distance to the centroid greater than 15 cm and
smaller than 45 cm).
Table 2
Settings applied to the four test sites.

Voxel size 0.1 m
Max. section area 0.06 m2 (6 voxels)
Inner diameter 0.3 m (3 voxels)
Outer diameter 0.9 m (9 voxels)
Points allowed in the ring 3
Minimum height 1.2 m

Table 3
Compression of the voxelized version (1-number of voxels containing data/number of orig
values show the results obtained using the voxel size applied in the test sites (10 cm).

Voxel size
(cm)

TS A1 Sensor 1 TS A1 Sensor 2 TS A2 Sensor 1
NOP: 4450203 NOP: 4330630 NOP: 4649906

Voxels
�1000

Comp
(%)

Voxels
�1000

Comp
(%)

Voxels
�1000

Co
(%

1 4413 0.8 4306 0.6 4617 0
2 4171 6.3 4108 5.1 4362 6
5 2396 46.1 2453 43.4 2470 46

10 880 80.2 902 79.2 916 80
20 264 94.1 269 93.8 274 94
50 49 98.9 50 98.8 51 98

100 13 99.7 14 99.7 14 99

NOP: number of original points.
Comp: compression.
3.4. Results

In Dataset A, the algorithm was applied to the data from Sensor
1 in the three TS independently. Moreover, in order to compare re-
sults, data from Sensor 2 was also used in TS-A1. In Dataset B (Test
site B), the algorithm was applied to the points from both sensors
at once.

As explained in Section 2, during the voxelization a reduced ver-
sion of the data is created by fitting the original point cloud in a
sparse 3D matrix, where only the cells or voxels containing points
store information. In the three test sites from Dataset A, although
the distributions of the original point clouds are heterogeneous,
the reduction ratio of the voxelized version (i.e. the difference be-
tween the number of points in the original point cloud and the
number of not empty voxels in the reduced version) is similar for
all the test sets (see Table 3). In Dataset B (TS-B), using the data
from both sensors, the reduction ratio of the voxelized version is
similar to the one obtained in the ‘‘A’’ test sites, although this ratio
is slightly smaller using the data from just one of the sensors.
3.4.1. Test site A1
As shown in Fig. 7 and Table 4, using the data from Sensor 1, in

TS-A1, 21 out of 25 pole-like street furniture objects were identi-
fied. In addition to these, six other non-target poles were detected.
All of the six additional poles were inside the footprint of the build-
ings. They were thin columns and/or vertical bars which were vis-
ible through the large windows of the commercial storefronts
located along the street (see Fig. 8B).

All the four non-detected poles are trees. Three of them were
not identified because of the occlusion by vehicles and bins. Due
to this, the length of the part of the pole still detectable by the sen-
sor was smaller than the threshold (i.e. <1.20 m) in two of those
cases, and in the other one the pole was not visible at all
(Fig. 8A). The remaining non-detected pole was affected by the
presence of a pedestrian at its close surroundings, so too many
points were detected inside the outer ring of some of its horizontal
sections (see Fig. 8C).

Using the data from Sensor 2, two more street furniture objects
were identified in the TS-A1. The rest of the detected features in
this case were the same as for Sensor 1. Those two objects were
not occluded by vehicles from Sensor 2, but two other trees were
still undetected: (i) the one completely hidden (for both sensors)
by a vehicle and (ii) the one affected by the presence of a pedes-
trian. As a result of the angle and point of view change from one
sensor to the other, three more non-target poles were detected
through the windows of the commercial storefronts comparing
to Sensor 1.
inal points) % after voxelization using different voxel sizes for all the test sites. Bold

TS A3 Sensor 1 TS B Sensor 1 TS B Sensor 1 + 2
NOP: 3988431 NOP: 21486735 NOP: 41541540

mp
)

Voxels
�1000

Comp
(%)

Voxels
�1000

Comp
(%)

Voxels
�1000

Comp
(%)

.7 3965 0.6 20032 6.8 38244 7.9

.2 3802 4.7 19016 11.5 33317 19.8
.9 2222 44.3 12182 43.3 17892 56.9
.3 831 79.2 6563 69.5 9184 77.9
.1 245 93.9 3357 84.4 4292 89.7
.9 46 98.9 1018 95.3 1125 97.3
.7 13 99.7 302 98.6 304 99.3
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Fig. 7. Results of the application of the algorithm in the four test sites.
3.4.2. Test site A2
From a total of 23 pole-like street furniture objects, 21 were de-

tected. The two non-detected objects (i.e. a traffic sign and a tree)
were occluded by a bin and a vehicle respectively (see Fig. 8D).

Another two poles were detected within the limits of the build-
ings footprint, with the same characteristics as the non-target
poles detected in Test Site A1 (see Fig. 7 and Table 4).
3.4.3. Test site A3
All the 23 pole-like street furniture objects located in Test Site

A3 were successfully identified (see Fig. 7 and Table 4). Five non-
target poles were detected within the surrounding buildings, under
the same conditions as the ones detected in TS-A1 and TS-A2.
3.4.4. Test site B
Using the data from both sensors at once, and the standard set-

tings (see Section 3.3), 115 out of 122 target poles were detected in
TS-B (see Fig. 7 and Table 4). The pole of a lamp post, located over a
bridge, was occluded for both sensors by the parapet of the bridge.
Two traffic signs were too close to the guardrail, and the isolated
pole-like part of them was not big enough to be detected using
the standard settings (see Fig. 8E). Another traffic sign was not de-
tected by the algorithm because it was too close to the wall of a
bridge (see Fig. 8G). A bare pole and a lamp post (see Fig. 8F) were
surrounded by bushes, and a tree had its trunk covered with ivy,
thus the points from their sections were not isolated, and therefore
not detected (see Section 2.2). In addition, five non-target poles
were detected. All of them were long bare branches of big trees
(see Fig. 8H for a graphic example).
3.5. Discussion

3.5.1. Setting parameters
The setting parameters for the proposed algorithm are configu-

rable, and the correct selection of them directly influences the reli-
ability of the results and the speed of the data processing. The
voxel size is the most important parameter, since it directly affects
the compression of the voxelized version (see Table 3), and the
other configurable settings indirectly, as they are set forth in voxel
units. The voxel size is the minimum unit that can be used when
the settings are established. In fact, the values of the parameters
have to be integer multiples of the voxel size (e.g. if the voxel size
is 0.5 m, the minimum height of a pole could be set as 0.5 or 1 m,
but not 0.7 m, as 0.5 m is the minimum unit). For these specific test
cases, the voxel size was established at 0.1 m as (i) it produces a
high reduction ratio of the voxelized version (70–80%. See Table 3),
and (ii) it is small enough to allow the correct configuration of the
rest of the parameters. Even using a large voxel size, a minimum of
four voxels is needed in each inner horizontal section in order to
ensure the inclusion of all the points from a section of a pole,
and the outer diameter has to be at least two voxels bigger than
the inner one. In that way, using, for instance, a voxel size of
0.3 m, the inner and outer diameters should be at least 0.6 m and
1.2 m respectively.

The other setting parameters shown in Table 2 are aimed at
detecting street furniture objects which either contain or are
shaped like a pole, avoiding the detection of false positives. There-
fore, (i) a minimum height of 1.2 m was set, eluding to the selec-
tion of small pole like objects, such as small bars from rail guards
or bollards, (ii) an inner diameter of 0.3 m and a maximum surface
of 0.06 m2 (see Section 2), which delimitates the horizontal section



Fig. 8. A: Total occlusion of a pole (TS-1). B: Features detected inside the buildings through big windows in Dataset A. C: Pedestrian close to a tree (TS-A1). D: Partial occlusion
from bins (TS-A2). E: Sign post close to the guardrail in TS-B. F: Lamp post surrounded by a bush. G: Sign post close to a wall. H: Almost-vertical bare branches of a tree in
Dataset B.

Fig. 9. Slanting pole-like object detected in TS-A1.
and prevents the selection of wider features like bins, street bill-
boards or pedestrians, and (iii) an outer diameter of 0.9 m that is
set out in order to extract the isolated objects, and to avoid the
selection of small patches from large features (e.g. walls or vehi-
cles) affected by occlusions.

3.5.2. Performance of the algorithm
Using the proposed settings, all the pole-like street furniture

objects are detected, with the only exception of those which are
affected by (i) severe occlusions from large objects (i.e. poles
occluded by vehicles or large bins in Dataset A, and a lamp post
which was not visible because of the parapet of a bridge in Dataset
B), or by (ii) the existence of other features in their close surround-
ings (i.e. a tree undetected in TS-A1 because of the presence of a
pedestrian nearby, and some poles in TS-B surrounded by bushes
or too close to guardrails or walls). In addition to these, no non-
target poles were detected within the street limits in Dataset A.
The only poles detected in the test sites from Dataset A, which
were not a target (i.e. street furniture pole-like objects), were lo-
cated inside the footprint of the buildings on both sides of the
street. Note that these objects are, in all the cases, pole-shaped
and they were detected exclusively through the large windows of
commercial storefronts, and no other non-target objects were de-
tected outside the buildings footprint. Consequently, the detected
poles which are not street furniture objects, can be automatically
eliminated by delimitating the buildings footprint. Some methods
for automatic building footprint extraction from MLS data have al-
ready been developed (Rutzinger et al., 2011).

In Dataset B, five almost-vertical bare branches from trees were
identified as poles (see Fig. 8H). The detection of those non-target
pole-like objects could be avoided by using a larger outer diameter,
although it could imply the misdetection of some target poles
which are close to other features.

Alternatively, the general parameters could be changed and
adapted to the datasets. For instance, lowering the minimum
height, more target poles would be identified, but making the con-
ditions less restrictive, more small poles would be detected
through the windows of buildings in Dataset A. The number of
undetected street furniture objects can be reduced by using a smal-
ler outer diameter. For instance, the tree which was undetected be-
cause of the proximity of a pedestrian in TS-A1 could be separated
from it (Fig. 8C). However, in Dataset B, another pole would remain
undetected as it is completely surrounded by bushes.
The length of the horizontal footprint of the detected poles can
be restricted in order to avoid the detection of slanting objects.
However, in this test case, this restriction was not applied because
we aimed to detect even inclined poles such as, for example, the
tree trunk shown in Fig. 9.
3.5.3. Comparison with previous methods
Comparing the results with those obtained using other methods

is not straightforward: (i) the targets of some of the previous meth-
ods are not exactly the same. For instance, (Wu et al., 2013)
searched exclusively for trees, and the targets for (Golovinskiy
et al., 2009) were all kind of urban features (not only pole-like ob-
jects). (ii) Some of them analyzed separately different kinds of
poles and were focused in recognition and classification
(Pu et al., 2011), and (iii) the test sites and the sensors are different
(i.e. the point and pole distribution and density are different in all
the datasets).

In (Lehtomäki et al., 2010, 2011), considering reference data (i.e.
obtained exclusively through visual inspection of the point cloud),
the completeness of the detection ranged between 69.7% and 77.7%
for pole-like objects closer than 30 m to the MLS system, and be-
tween 71.6% and 83.5% for those closer than 12.5. The detection
rates were lower considering visual field inspection (67.1% and
76.4% respectively). The correctness of the method was 86.5–
95.1% for poles closer than 12.5 m to the trajectory and 81–86.5%
for those up to 30 m away from the sensors.



Table 4
Number and type of poles detected in the four test sites (A1-3 and B).

Test
site

Sensor Traffic
lights

Traffic
signs

Trees Lamp
posts

Telephone
boxes

Bare
poles

Total detection (ratio and
completeness [%])

Non-target poles (number and
correctness [%])

(objects in the TS/detected objects)

A1 1 �/� 4/4 17/21 �/� �/� �/� 21/25 (84.0) 6 (77.8)
A1 2 �/� 4/4 19/21 �/� �/� �/� 23/25 (92.0) 9 (71.9)
A2 1 1/1 6/7 13/14 1/1 �/� �/� 21/23 (91.3) 2 (91.3)
A3 1 3/3 7/7 6/6 6/6 1/1 �/� 23/23 (100) 5 (82.1)

B 1 + 2 �/� 20/23 31/32 55/57 �/� 9/10 115/122 (94.3) 5 (95.8)

Average: 92.3 83.8

Completeness (%): [Target poles detected]/[Total number of target poles].
Correctness (%): [Target poles detected ]/([Target poles detected]+[Non target poles detected]).
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A combined identification and recognition study of different
categories was performed in two test sites in (Pu et al., 2011).
The detection rate using one of the datasets was 86.9% for the pole
category, and 63.5% for the trees, and 60.8% of poles and 29.5% of
the trees in the other test site. The percentage of false positives
ranged from 14.9 to 63.9 for the poles, and from 14.3 to 15.4 for
the trees. In (Yokoyama et al., 2011), the recognition rate of target
pole-like objects was 63.9%, and (Golovinskiy et al., 2009) detected
65% of the reference objects. The algorithm from (Wu et al., 2013)
detected all the trees except one in two test sites. Correctness was
higher than 98%, and the completeness was 100%.

Although the results comparison is quite complex, the values of
completeness and correctness obtained with our algorithm are sig-
nificantly higher than those from most of the previous methods
(see Table 4). Only (Wu et al., 2013) detection rates (where the tar-
gets were exclusively trees) are higher. However, (i) their method
designed for its use in flat terrain, although they mention an alter-
native for non-flat terrain, based on the transformation of the ver-
tical trajectory into a flat line, and (ii) all the trees must be at the
same height from the ground (even using above alternative).

In addition to the aforementioned comparison, the algorithm
detects poles despite the presence of large structures attached to
them, or the connection of the structures joined to the poles. Many
target poles which were successfully detected in the two datasets
were joined together (mainly through the branches of the trees).
Some previous methods, such as (Pu et al., 2011; Yokoyama
et al., 2011) seem unable to detect connected poles, as they use tri-
dimensional connected components labeling before the pole iden-
tification. Furthermore, the method is fully automatic, thus no
previous collection of training data is needed, whereas methods
like (Golovinskiy et al., 2009) require a set of training objects.

Although the two datasets used in order to test the algorithm
had the same scanning geometry (i.e. same sensors and scanning
parameters were used in both cases), given the nature of the pro-
posed algorithm, there is no reason why the method would not
be able to work and achieve good results with any scanning geom-
etry. The algorithm is completely independent of the angle of the
sweeps, and does not need any indexation or special order of the
points, as it works with the raw point cloud and only the XYZ coor-
dinates are needed. However, (Lehtomäki et al., 2010, 2011) (i)
have certain restrictions regarding the tilt angle of the sensors
(i.e. it is based on the analysis of the sections of vertical poles),
and (ii) requires the identification of the different sweeps and
the order of each point within them.
4. Conclusions

In this study, a new algorithm for automatic identification and
extraction of pole-like street furniture objects from MLS data is
developed and subsequently tested in four test sites (TS). An initial
simplification process is performed by fitting the original point
cloud in a regular voxel space. This simplification method allows
the use of data from almost any MLS system, as it transforms the
original point cloud and fits it in a regular grid, thus avoiding irreg-
ularities produced due to point density differences within the point
cloud. A two-dimensional analysis is then applied in order to de-
tect pole-like sections according to their shape and area. Finally,
the pole-like objects are reconstructed in 3D.

The method was tested in four test sites from two different
datasets in urban and peri-urban environments. An average com-
pleteness of 92.3% (ranging from 84 to 100 in the four TS), and a
correctness of 83.8% (from 71.9 to 95.8%) were achieved. Only
some pole-like objects occluded by large features, or too close to
other objects, remained undetected.

From both the results obtained in the test sites and the thor-
ough analysis of the methods, we can conclude that this algorithm
is more general and improves the performance of the existing
methods by: (i) Detecting pole-like objects joined to other features
or connected to other poles, (ii) it is fully automatic and does not
require the use of training data, (iii) no initial assumptions about
the relative location of the poles are needed, and (iv) it is indepen-
dent of the scanning geometry and it only needs the XYZ coordi-
nates of the original points.
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