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Resumen

Los sistemas basados en reglas difusas han demostrado una alta capacidad de extracción y repre-
sentación del conocimiento a la hora de modelar problemas de clasificación complejos y no lineales.
Sin embargo, cuando se aplican a conjuntos de datos de alta complejidad, es decir con un gran
número de variables y/o ejemplos, sufren la denominada “maldición de las dimensiones” (curse
of dimensionality). Los métodos de combinación de clasificadores han demostrado ser una buena
técnica para afrontar este tipo de problemas.

En esta tesis doctoral se propone un marco global basado en el enfoque de los métodos de
combinación de clasificadores que permite a los sistemas basados en reglas difusas manejar conjuntos
de datos de alta complejidad evitando el problema anterior. Para conseguir afrontar este objetivo,
el marco de trabajo propuesto incorpora distintos métodos de combinación de clasificadores y
considera algoritmos evolutivos para diseñar métodos de combinación de clasificadores basados en
reglas difusas. Su estructura se basa en dos etapas: 1) Diseño de métodos de combinación de
clasificadores basados en reglas difusas a partir de enfoques clásicos y avanzados, y 2) Diseño de
nuevos métodos de selección y fusión de clasificadores base usando algoritmos evolutivos. Este
enfoque permite diseñar varios métodos espećıficos de combinación de clasificadores basados en
reglas difusas que permiten la mejora de la precisión en los resultados y la obtención de un buen
equilibrio entre precisión y complejidad. Se han realizado experimentos exhaustivos con varios
conjuntos de datos de alta complejidad (en lo que respecta al número de atributos y al número de
ejemplos) procedentes de los repositorios UCI y KEEL que han demostrado el buen comportamiento
de los métodos propuestos.

Además, se ha aplicado con éxito uno de los diseños concretos de combinación de clasifi-
cadores basados en reglas difusas a un problema real consistente en la localización en interiores
utilizando topoloǵıa WiFi. Esta tarea se corresponde con un problema de clasificación de alta
dimensionalidad cuando se trata de un entorno complejo, que presenta la dificultad adicional de la
incertidumbre asociada debido a la naturaleza de las seńales WiFi.





Abstract

Fuzzy rule-based systems have shown a high capability of knowledge extraction and representation
when modeling complex, non-linear classification problems. However, they suffer from the so-called
curse of dimensionality when applied to high complexity datasets, which consist of a large number
of variables and/or examples. Classifier ensembles have shown to be a good approach to deal with
this kinds of problems.

In this PhD dissertation, we propose a classifier ensemble-based global framework allowing
fuzzy rule-based systems to deal with high dimensional datasets avoiding the curse of dimension-
ality. Having this goal in mind, the proposed framework incorporates several classifier ensemble
methodologies as well as evolutionary algorithms to design fuzzy rule-based classifier ensembles.
The proposed framework follows a two-stage structure: 1) fuzzy rule-based classifier ensemble de-
sign from classical and advanced classifier ensemble design approaches, and 2) novel designs of
evolutionary component classifier combination. By using our methodology, different fuzzy rule-
based classifier ensembles can be designed dealing with several aspects such as the improvement
of the performance in terms of accuracy and the obtaining a good accuracy-complexity trade-off.
Exhaustive experiments carried out over several UCI and KEEL datasets with high complexity
(considering both the number of attributes as well as the number of examples) have shown the
good performance of the proposed classifier ensemble-based global framework.

Besides, one of the specific fuzzy rule-based classifier ensemble design approaches obtained
from the proposed framework has been successfully applied to a real-world problem. It consists of
topology-based WiFi indoor localization, which turns into a high dimensional classification problem
when dealing with a complex environment. The complexity of this task is also characterized by the
huge inherent uncertainty coming from the nature of WiFi signals.





Part I. Report

1 Statement

The aim of this section is to bring the main aspects of the current doctoral dissertation
into context. Firstly, a global introduction to the general topic is provided. Then, a list of open
problems being the rationale of the work to be developed is presented. The objectives to be achieved
during the development of the PhD dissertation are later shown. Finally, the global structure of
the dissertation is reported.

1.1 Introduction

Classifier ensembles (CEs), also called multiclassification systems, are machine learning tools capa-
ble to obtain better performance than a single classifier when dealing with complex classification
problems [Kun04]. These kinds of systems are especially useful when the number of dimensions or
the size of the data are really large. The most common base classifiers are decision trees [Ho98]
and neural networks [OM99]. More recently, the use of fuzzy classifiers has also been consid-
ered [CRSH07, PK06, CQS08, CQ10].

Meanwhile, fuzzy rule-based classification systems (FRBCSs) have shown a high capability
of knowledge extraction and representation when modeling complex, non-linear classification prob-
lems. To do so, they consider soft boundaries obtained through the use of a collection of fuzzy rules
that could be understood by a human being [Kun00, INN05]. Interpretability of fuzzy systems is
a characteristic that definitely favors these types of models, as it is often a need to understand the
behavior of the given model [CCHE03, AMGR09, AM10].

FRBCSs, however, have one significant drawback. The main difficulty appears when it comes
to deal with a dataset consisting of a high number of variables and/or examples. In such a case
FRBCS suffers from the so-called curse of dimensionality [INN05]. It occurs due to the exponential
increase of the number of rules and the number of antecedents within a rule with the growth of
the number of inputs of the FRBCS. This issue also causes a scalability problem in terms of the
required run time and the memory consumption and of course makes the FRBCS loose its capacity
to be interpreted by a human being.

The main objective of the current PhD dissertation is to propose a CE-based global frame-
work allowing FRBCSs to deal with high dimensional datasets avoiding the curse of dimensionality.
With this aim, this framework will incorporate several CE design methodologies as well as evo-
lutionary algorithms to generate fuzzy rule-based classifier ensembles (FRBCEs). The proposed
framework follows a two-stage structure: 1) FRBCE design from classical and advanced CE design
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approaches, and 2) Novel methods for evolutionary component classifier combination. These FR-
BCEs will consider several aspects such as improving the performance in terms of accuracy and
obtaining a good complexity-accuracy trade-off.

1.2 Justification

As already mentioned, the main disadvantage of FRBCSs is the well known curse of dimensionality.
This phenomenon is always present when applying such systems to problems involving a large
number of variables [INN05]. It occurs due to the exponential increase of the number of rules
and the number of antecedents within a rule with the growth of the number of inputs of the
FRBCS. Dealing with this issue when designing FRBCSs is the main motivation for the current
PhD dissertation.

Furthermore, we can provide some secondary open problems related to the latter in the
following points:

• No global methodology for FRBCS design has been proposed that might be applied with any
FRBCS design method in order to deal with the curse of dimensionality while obtaining a
good accuracy.

• The literature regarding FRBCEs is not so extensive. CEs usually consider classical machine
learning algorithms as a base classifier, such as decision trees or neural networks. How-
ever, fuzzy classifiers have proven to be competitive with other kinds of pattern recognition
approaches [HH09, HH10]. Hence, we aim to design FRBCEs being competitive or even
outperforming classical CEs in terms of accuracy.

• CEs can significantly increase their size when trying to improve their accuracy. Especially,
that is the case when dealing with high dimensional datasets. Thus, looking for the most
appropriate complexity-accuracy trade-off in CEs has become a crucial topic in the literature.
Multiobjective optimization (MO) [CH83] could be a good approach to deal with this problem
as often complexity and accuracy are conflicting objectives to be optimized. In addition, the
influence of the classifier diversity on the final CE performance is still not clear [TPC05,
RG05, KW03]. Thus, using a measure of this kind as one of the optimization criteria may
lead to a performance improvement.

• Up to our knowledge, no work has been done regarding the “interpretability” of CEs. These
systems are complex and difficult to analyze. Thus, having some linguistic insight of the
ensemble’s operation mode is a very challenging task that can also lead to improved CE
designs.

1.3 Objectives

The main objective of this PhD dissertation is to propose and evaluate a global framework for
FRBCE design dealing with high dimensional and complex datasets. Specifically, this overall goal
can be divided into the following specific objectives:

• To propose a methodology to design FRBCEs using classical CE methods (i.e. bagging [Bre96]
and feature selection [Ho98]) as well as advanced techniques based on diversity induction (i.e.
random oracles (ROs) [KR07, RK07]). We aim to apply the Fuzzy Unordered Rules Induction
Algorithm (FURIA) [HH09, HH10] to derive FRBCSs to be considered as base classifiers in
the CE.
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• To integrate the abovementioned approaches with a multibojective overproduce-and-choose
strategy (OCS) for component classifier selection. We aim to exploit a state-of-the-art evolu-
tionary multiobjective algorithm, namely NSGA-II [DPAM02], to perform component clas-
sifier selection and improve the designed FURIA-based FRBCEs. Our idea is to propose
several multicriteria fitness functions based on three different families of optimization crite-
ria: accuracy, complexity, and diversity [TPC05]. Thanks to the multiobjective approach, a
Pareto set of FRBCE designs could be obtained with different trade-offs among the selected
objectives.

• To propose a fuzzy system-based mechanism to combine the component classifiers with the
aim of improving the performance of FRBCEs, following an approach globally called stack-
ing [Wol92] in the existing literature. We aim to design a novel fuzzy linguistic combination
method to perform joint classifier fusion and classifier selection at class level. By using a
linguistic FRBCS as a combination method, the resulting CE would show a hierarchical
structure and its operation would be transparent to the user.

• To assess the proposed FRBCE design methods and compare them with state-of-the-art
approaches. We aim to analyze all of our FRBCE designs considering performance in terms
of both accuracy and complexity. For that purpose, we will use standard, complex, and
high dimensional datasets from the UCI machine learning [BM98] and the KEEL [AFFL+11]
repositories.

• To validate the FRBCE design methodology on a high dimensional real-world problem. We
aim to solve a topology-based WiFi indoor localization problem [AOS+09] by means of one
of the FRBCEs designed to show the actual efficacy of our methods.

1.4 Structure

This PhD dissertation is divided into two parts. The first one is dedicated to the statement of
the problem, the revision of the current state of the art, the development of our FRBCE design
methodology, the discussion of the results obtained, and the presentation of the lines for future work.
The second one collects the scientific publications obtained as a result of the study developed.

Part I is organized as follows. After the introduction to the problem, we present a set of
open issues justifying this PhD dissertation, as well as its main objectives. Then, in Section 2 we
review the basic concepts about CEs, fuzzy CEs, and the algorithms that will be used as a base
for our proposal. In Section 3 we introduce the proposed global framework for designing FRBCEs,
describing each method in details, while Section 4 discusses the results obtained. Finally, Section 5
shows the future research lines raised from our research work.

The work developed to achieve the stated objectives is described in the five scientific publi-
cations composing Part II of this PhD dissertation:

• K. Trawiński, O. Cordón, and A. Quirin. On Designing Fuzzy Rule-based Multiclassification
Systems by Combining FURIA with Bagging and Feature Selection, International Journal of
Uncertainty Fuzziness, and Knowledge-based Systems, vol. 19, no 4, pp. 589-633, 2011. DOI:
10.1142/S0218488511007155. Impact factor: 1.781. Category: COMPUTER SCIENCE,
ARTIFICIAL INTELLIGENCE. Order: 31/111. Q2.

• K. Trawiński, O. Cordón, and A. Quirin. A Study on the Use of Multiobjetive Genetic
Algorithms for Classifier Selection in FURIA-based Fuzzy Multiclassifiers, International

http://www.worldscientific.com/doi/abs/10.1142/S0218488511007155
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Journal of Computational Intelligence Systems, vol. 4, no 2, pp. 231-253, 2012. DOI:
10.1080/18756891.2012.685272

• K. Trawiński, O. Cordón, A. Quirin, and L. Sánchez. A Genetic Fuzzy Linguistic Combination
Method for Fuzzy Rule-Based Multiclassifiers, IEEE Transactions of Fuzzy Systems, vol. 21,
no 5, pp. 950-965, 2013, 2013. DOI: 10.1109/TFUZZ.2012.2236844. Impact Factor 2012:
5.484. Category: COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE. Order: 1/115.
Q1.

• K. Trawiński, O. Cordón, L. Sánchez, and A. Quirin. Multiobjective Genetic Classifier Selec-
tion for Random Oracles Fuzzy Rule-Based Multiclassifiers: How Beneficial is the Additional
Diversity?, Knowledge-based Systems, In press, 2013. DOI: 10.1016/j.knosys.2013.08.006.
Impact factor 2012: 4.104. Category: COMPUTER SCIENCE, ARTIFICIAL INTELLI-
GENCE. Order: 6/115. Q1.

• K. Trawiński, J. M. Alonso, and N. Hernandez. A Multiclassifier Approach for Topology-
based WiFi Indoor Localization, Soft Computing, vol. 17, no 10, pp. 1817-1831, 2013. DOI
10.1007/s00500-013-1019-5. Impact factor 2012: 1.124. Category: COMPUTER SCIENCE,
ARTIFICIAL INTELLIGENCE. Order: 63/115. Q3.

2 State of the Art

In this section we briefly review CEs and fuzzy CEs. We also recall the basic aspects of FURIA,
a novel and good performing fuzzy rule-based classifier, which will be used as the component
base classifier. Finally, we briefly describe genetic fuzzy systems, which will be a fundamental
tool for development of the component fuzzy classifier combination method presented in this PhD
dissertation.

2.1 Classifier Ensembles

CE design is mainly based on two stages [DS79]: the learning of the component classifiers and
the combination mechanism for the individual decisions provided by them into the global CE
output. Since a CE is the result of the combination of the outputs of a group of individually
trained classifiers, the accuracy of the finally derived CE relies on the performance and the proper
integration of these two tasks. The best possible situation for an ensemble is that where the
individual classifiers are both accurate and fully complementary, in the sense that they make their
errors on different parts of the problem space [OM99]. Hence, CEs rely for their effectiveness on
the “instability” of the base learning algorithm.

On the one hand, the correct definition of the set of base classifiers is fundamental to the
overall performance of CEs. Different approaches have been thus proposed to succeed on generating
diverse component classifiers with uncorrelated errors such as data resampling techniques (mainly,
bagging [Bre96] and boosting [Sch90]), specific diversity induction mechanisms (feature selection
[Ho98], diversity measures [TPC05], use of different parameterizations of the learning algorithm,
use of different learning models, etc.), or combination between the latter two families, as the well
known random forests approach [Bre01].

On the other hand, the research area of combination methods is also very active due to
the influential role of this CE component. It does not only consider the issue of aggregating
the results provided by all the initial set of component classifiers derived from the first learning

http://www.tandfonline.com/doi/abs/10.1080/18756891.2012.685272
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6399459&refinements%3D4279927558%26sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A4358784%29
http://dx.doi.org/10.1016/j.knosys.2013.08.006
http://link.springer.com/article/10.1007%2Fs00500-013-1019-5
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stage to compute the final output (what is usually called classifier fusion [XKS92, WKB97]). It
also involves either locally selecting the best single classifier which will be taken into account to
provide a decision for each specific input pattern (static or dynamic classifier selection [GR01])
or globally selecting the subgroup of classifiers which will be considered for every input pattern
(overproduce-and-choose strategy [PY96]). Besides, hybrid strategies between the two groups have
also been introduced [Kun04]. In any case, the determination of the optimal size of the ensemble
is an important issue for obtaining both the best possible accuracy in the test data set without
overfitting it, and a good accuracy-complexity trade-off [HLnS13].

2.1.1 Classifier Ensemble Design Methodologies

A CE is the result of the combination of the outputs of a group of individually trained classifiers
in order to get a system that is usually more accurate than any of its single components [Kun04].
These kinds of methods have gained a large acceptance in the machine learning community during
the last two decades due to their high performance. Decision trees are the most common classifier
structure considered and much work has been done in the topic [Die00, BHBK07], although they
can be used with any other type of classifiers (the use of neural networks is also very extended, see
for example [OM99]).

There are different ways to design a CE. On the one hand, there is a classical group of
approaches considering data resampling to obtain different training sets to derive each individual
classifier. In bagging [Bre96], they are independently learnt from resampled training sets (“bags”),
which are randomly selected with replacement from the original training data set. Boosting methods
[Sch90] sequentially generate the individual classifiers (weak learners) by selecting the training set
for each of them based on the performance of the previous classifier(s) in the series. Opposed to
bagging, the resampling process gives a higher selection probability to the incorrectly predicted
examples by the previous classifiers 1.

On the other hand, a second group can be found comprised by a more diverse set of ap-
proaches which induct the individual classifier diversity using some ways different from resampling
[Zho05]. Feature selection plays a key role in many of them where each classifier is derived by
considering a different subset of the original features [TPC05, XKS92]. Random subspace (RS)
[Ho98], where each feature subset is randomly generated, is one of the most representative methods
of this kind.

Further, ROs is a CE approach achieving good performance while having several interest-
ing features (a comprehensive study is presented in [KR07, RK07]). It is based on the use of a
miniensemble replacing the component base classifier which is composed of a pair of subclassifiers
with a RO (a random function, e.g. a random hyperplane) choosing between the two of them (dy-
namic classifier selection), when an instance is presented in the input. During the training phase,
RO splits a dataset into two parts and feeds each subclassifier with the data from each half-space,
while during the classification phase it decides which subclassifier makes the final decision to be
further used at the ensemble level.

Finally, there are some advanced proposals that can be considered as a combination of the
two groups, such as random forests [Bre01] and more recently rotation forest [RKA06] and fuzzy
random forest [BCGDV10].

The interested reader is referred to [BHBK07, OM99] for two reviews for the case of decision
tree (both) and neural network ensembles (the latter), including exhaustive experimental studies.

1Both acquired some derivatives e.g. wagging [BK99], AdaBoost.M1 [FS97], and AdaBoost.M2 [SS99], respectively.
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2.1.2 Classifier Ensemble Combination Methods

Two main approaches arise in the literature for the combination of the outputs provided by a
previously generated set of individual classifiers into a single CE output [WKB97]: classifier fusion
and classifier selection.

Classifier fusion relies on the assumption that all ensemble members make independent
errors. Thus, combining the decisions of the ensemble members may lead to increasing the overall
performance of the system. Majority voting, sum, product, maximum and minimum are examples
of functions used to combine their decisions [KHDM98]. However, these family of methods carry the
drawback that there is no guarantee that a particular ensemble generation technique will achieve
the error independence. Thus, it could happen that the combination of the component classifiers’
decisions does not improve the final classification performance. That is the reason for the extended
use of weighted majority voting, which allows to weight the contribution of each individual classifier
to the final decision according to its “classification competence” using coefficients of importance
[BC94, LS97]. There are many different kinds of strategies to determine these combination weights,
with genetic algorithms (GAs) [Gol89] being extensively used [Kun01a, KMH06].

Alternatively, classifier selection is based on the fact that not all the individual classifiers
but only a subset of them will influence on the final decision for each input pattern. There are
different families within this group according to the locality/globality nature and the timing of this
decision within the CE learning process pipeline. On the one hand, a general family of classifier
selection methods assumes that each individual classifier is an expert in some local regions of the
problem space [ZWY04], thereby avoiding the error independence assumption. In this approach,
the accuracy of each classifier surrounding the region of the feature space where the unknown
pattern to be classified is located is previously estimated, and the best one is selected to classify
that specific pattern. Two categories of classifier selection techniques exist: static and dynamic
[WKB97, GR01]. In the former, regions of competence are defined during the training phase, while
in the latter, they are defined during the classification phase taking into account the characteristics
of the sample to be classified. Dos Santos et al. compile an extensive list of dynamic classifier
selection methods [DSM08], reporting their main characteristics. Nevertheless, there is a drawback
to both selection strategies: when the local expert does not classify the test pattern correctly, there
is no way to avoid the misclassification.

On the other hand, there is another family of static classifier selection methods based on
the assumption that candidate classifiers could be redundant because of the difficulty found by
the base learning method to generate actually uncorrelated individual classifiers. In [ZWT02],
Zhou et al. formally showed that finding the most relevant subset of classifiers is more effective in
terms of performance than combining all the available classifiers (i.e, than direct classifier fusion).
These methods are grouped under the name of overproduce-and-choose strategy (OCS) [PY96]
(also known as test-and-select methodology [SS00]). They are based on the fact that a large set of
candidate classifiers is generated and then selected to extract the best performing subset (removing
duplicates and poor-performing candidate classifiers) which composes the final CE used to classify
the whole test set. Diversity measures, accuracy, and ensemble size are frequently employed as
search criteria to determine the selected component classifiers and GAs are commonly used for
that task [RG05, DSM06, CQ10]. Consequently, OCS methods determine the optimal ensemble
size by considering a trade-off between accuracy and complexity. However, OCS could be subject
to overfitting, as a fixed subset of classifiers defined using a training/optimization data set may not
be well adapted for the classification of every pattern in the test set [DSM08].

In order to overcome the problems of each family, hybrid methods between the latter families
have been proposed. That is the case of [DSM08] where a dynamic OCS procedure is introduced
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combining a GA for static classifier selection and a dynamic local selection into a two-level selection
phase. On the other hand, Gabrys and Ruta [GR06] developed a multidimensional GA to optimize
two weight-based models, in which the weights are assigned to each classifier or to each class.
Besides, in [DVA09], the authors proposed a GA selecting the votes of each classifier in an ensemble
for its reliability to classify each class, instead of discarding the classifiers at a whole.

2.1.3 Classifier Ensemble Fuzzy Combination Methods

Fuzzy set theory has been extensively and successfully considered for CE combination, especially
classifier fusion. As mentioned in several papers like [AC03], the latter is a consequence of the
different advantages the use of fuzzy aggregation operators present, mainly their capability to
model the imprecision and uncertainty involved in the CE combination process. The use of fuzzy
connectives to combine the outputs of the component classifiers of an ensemble was first proposed in
[CK95]. Since then, two different groups of fuzzy operators have been considered in the specialized
literature [Kun01a]:

1. the classical simple fuzzy aggregation operators, such as minimum, maximum, simple average,
or product.

2. more advanced fuzzy operators, including the fuzzy integral [Gra95], the BADD defuzzification
strategy [FY89], Zimmermann’s compensatory operator [ZZ80], and other fuzzy combination
operators specifically designed for this task, such as the decision templates model [KBD01].

Some studies have developed experimental comparisons of the performance of different CEs
considering the latter fuzzy connectives as fusion combination operator [VLM+99, Kun02]. Addi-
tionally, in [Kun03] their accuracy was compared to that of seven of the usual crisp (i.e., non-fuzzy)
aggregation operators when considered as combination operators for Boosting CEs. The conclusions
drawn from that experimentation were that fuzzy combination methods outperformed non-fuzzy
ones, and that decision templates based on Euclidean distance and fuzzy integral were the best
methods overall.

Besides, some other works have extended the scope of the latter ones. In [AC03], the authors
focused on analyzing the influence of the choice of the ensemble members (i.e., the impact of the en-
semble sizes and the type of base classifiers considered) in the accuracy of the combination methods
considered. They concluded that fuzzy methods delivered higher accuracy and lower dependency
to the choice of the ensemble members than non-fuzzy methods. On the other hand, Bulacio et
al. [BGTM10] introduced a hybrid classifier selection-fusion strategy, considering Sugeno’s fuzzy
integral [Sug74] as combination method and a greedy heuristic for the ensemble member selection.

Lu and Yamaoka [LY97] introduced a fuzzy combination method specifically designed for
a hybrid ensemble of three classifiers which shows the novel characteristic of allowing the user to
incorporate human expert knowledge on the bias of the component classifiers. This is done by
means of an additional refinement module based on a fuzzy rule-based system (FRBS) comprised
by Mamdani-type fuzzy rules. In this way, Lu and Yamaoka’s fuzzy combination method does not
make use of fuzzy rules but of a complex fuzzy reasoning process where the following components are
considered: a linguistic partition for the ensemble members’ outputs, a fuzzy aggregation of their
membership degrees and a defuzzification method to modify them, and a new (crisp) aggregation
for each class in order to take the final CE decision corresponding to the largest aggregated class
membership value.

As said, the latter procedure can be complemented by expert-defined fuzzy rules to adjust
the importance of the decisions taken for each class according to the nature of the component
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classifiers. Hence, an FRBS is used as a refinement module for the fuzzy combination method deci-
sions. Nevertheless, this strategy shows several problems such as its specificity to the consideration
of a simple three-CE, its highly complex structure composed of two different nature fuzzy reason-
ing modules, the need of manually defining the fuzzy rules in the refinement module 2, and the
impossibility to perform classifier selection (which of course is not required in the simple ensemble
structure considered).

Finally, an interesting and very recent approach for generating FRBSs that combine en-
sembles is presented in [TG13]. The authors use a context-free grammar within a hybrid genetic
programming using a multi-population model to evolve the fuzzy rule base and the composition of
the ensembles over time.

2.2 FURIA

Fuzzy Unordered Rules Induction Algorithm (FURIA) [HH09, HH10] is an extension of the state-
of-the-art rule learning algorithm called RIPPER [Coh95], considering the derivation of simple
and comprehensible fuzzy rule bases, and introducing some new features. FURIA provides three
different extensions of RIPPER:

• It takes an advantage of fuzzy rules instead of crisp ones. Fuzzy rules of FURIA are composed
of a class Cj and a certainty degree CDj in the consequent. The final form of a rule is the
following:

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn then Class Cj with CDj ; j = 1, 2, ..., N.

The certainty degree of a given example x is defined as follows:

CDj =
2D

Cj
T
DT

+
∑

x∈DCj
T

µ
Cj
r (x)

2 +
∑

x∈DT
µ
Cj
r (x)

(I.1)

where DT and DCj

T stands for the training set and a subset of the training set belonging to the
class Cj respectively. In this approach, each fuzzy rule makes a vote for its consequent class.
The vote strength of the rule is calculated as the product of the firing degree µCj

r (x) and the
certainty degree CDj . Hence, the fuzzy reasoning method used is the so-called voting-based
method [INM99, CdJH99].

• It uses unordered rule sets instead of rule lists. This change omits a bias caused by the default
class rule, which is applied whenever there is an uncovered example detected.

• It proposes a novel rule stretching method in order to manage uncovered examples. The
unordered rule set introduces one crucial drawback, there might appear a case when a given
example is not covered. Then, to deal with such situation, one rule is generalized by removing
its antecedents. The information measure is proposed to verify which rule to “stretch”.

The interested reader is referred to [HH09] for a full description of FURIA.
2This could be feasible when using a very small number of component classifiers –only three– but not with dealing

with a more usual larger number. In fact, the FRBSs considered in their experimentation are only composed of a
single rule with three inputs as well as the authors mention they were not able to incorporate expert knowledge to
the Bayesian component classifier.
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2.3 Genetic Fuzzy Systems

Fuzzy systems, which are based on fuzzy logic, became popular in the research community, since
they have ability to deal with complex, non-linear problems being too difficult for the classical
methods [YF94]. Besides, its capability of knowledge extraction and representation allowed them
to become human-comprehensible to some extent (more than classical black-box models) [CCHE03,
AMGR09].

The lack of automatic extraction processes in fuzzy systems attracted the attention of the
computational intelligence community to incorporate learning capabilities to these kinds of systems.
In consequence, a hybridization of fuzzy systems and GAs became one of the most popular ap-
proaches in this field [CHHM01, CGH+04, Her08, Cor11]. In general, genetic fuzzy systems (GFSs)
are fuzzy systems enhanced by a learning procedure coming from evolutionary computation, i.e.
considering any evolutionary algorithm (EA).

FRBSs, which are based on fuzzy “IF-THEN” rules, constitute one of the most important
areas of fuzzy logic applications. Designing FRBSs might be seen as a search problem in a solution
space of different candidate models by encoding the model into the chromosome, as GAs [Gol89]
are well known optimization algorithms capable of searching among large spaces with the aim of
finding optimal (usually nearly optimal) solutions.

The generic coding of GAs provides them with a large flexibility to define which parame-
ters/components of FRBS are to be designed [Her08]. For example, the simplest case would be a
parameter optimization of the fuzzy membership functions. The complete fuzzy rule base can also
be learned. This capability allowed the field of GFSs to grow over two decades and to still be one
of the most important topics in computational intelligence.

In the current PhD dissertation, we will relay on the GFS paradigm to define some of the
proposed FRBCE designs.

2.4 Related Work on Fuzzy Classifier Ensembles and Fuzzy Fusion Methods

Focusing on fuzzy CEs, only a few contributions for bagging fuzzy classifiers have been proposed
considering fuzzy neural networks (together with feature selection) [TH06], neuro-fuzzy systems
[CRSH07], and fuzzy decision trees [BCGDV10, Mar09] as component classifier structures.

Especially worth mentioning is the contribution of Bonissone et al. [BCGDV10]. This ap-
proach hybridizes Breiman’s idea of random forests [Bre01] with fuzzy decision trees [Jan98]. Such
resulting fuzzy random forest combines characteristics of CEs with randomness and fuzzy logic in
order to obtain a high quality system joining robustness, diversity, and flexibility to not only deal
with traditional classification problems but also with imperfect and noisy datasets. The results
show that this approach obtains good performance in terms of accuracy for all the latter problem
kinds.

Some advanced contributions based on GFSs should also be remarked. On the one hand,
an FRBCS ensemble design technique is proposed in [ACdJH07] considering some niching GA to
develop feature selection in order to generate the diverse component classifiers, and another GA for
classifier fusion by learning the combination weights. On the other hand, another interval and fuzzy
rule-based ensemble design method using a single- and multiobjective genetic selection process is
introduced in [NI06, NI07]. In this case, the coding scheme allows an initial set of either interval or
fuzzy rules, considering the use of different features in their antecedents, to be distributed among
different component classifiers trying to make them as diverse as possible by means of two accuracy
and one entropy measures. Besides, the same authors presented a previous proposal in [IN06],
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where an evolutionary multiobjective optimization (EMO) algorithm [CLV07] generated a Pareto
set of FRBCSs with different accuracy-complexity trade-offs to be combined into an ensemble.

3 Development

This section proposes the global framework for FRBCEs design that has been developed in this PhD
dissertation to deal with high dimensional and complex datasets. In addition, it also describes the
use of the general framework to create some specific FRBCE generation methods obtaining good
performance in terms of accuracy and complexity.

3.1 Proposed Methodology

The main objective of this dissertation is to enable FRBCSs to deal with high dimensional datasets
by means of different CE approaches. Thus, we sketched a global framework allowing for several
FRBCEs specific designs. This framework is composed of two stages (see Fig. 1). The first one,
called “component fuzzy classifier design from classical ML approaches”, includes the use of FURIA
to derive the component classifiers considering classical CE design approaches (see Sec. 2.1.1) such
as:

• Static approaches. From this family we incorporate bagging, feature selection, and the com-
bination of bagging and feature selection. Thanks to the intrinsic parallelism of bagging, the
design procedures will also be time efficient.

• Dynamic approaches. From this family we employ the combination of bagging and ROs, since
ROs induce an additional diversity to the base classifiers, the accuracy of the final FRBCEs
is thus improved.

In [HLnS13], a study to determine the size of a parallel ensemble (e.g. bagging) by estimating
the minimum number of classifiers that are required to obtain stable aggregate predictions was
shown. The conclusion drawn was that the optimal ensemble size is very sensitive to the particular
classification problem considered. Thus, the second stage of our framework, called “Evolutionary
component classifier combination”, is related to post-processing of the generated ensemble by means
of EAs to perform component classifier combination. All the approaches used consider classifier
selection and some of them also combine it with classifier fusion.

Of course, the second stage follows the approaches from the first stage. This is indicated
by red arrows in the figure, showing exactly which approach is used for the FRBCE design (Stage
1) together with its corresponding evolutionary post-processing (Stage 2). A dashed red arrow
points out a proposal that, although is included in the general framework, was not developed in
the current PhD dissertation and is left for future works.

The second stage includes the following evolutionary component classifier selection designs:

• Classifier selection. Within this family, we opted for an EMO OCS strategy (see Sec. 2.1.2),
using the state-of-the-art NSGA-II algorithm [DPAM02], in order to obtain a good accuracy-
complexity trade-off.

• Classifier selection and fusion. As a combination method joining both families, classifier
selection and classifier fusion, we proposed the use of a novel GFS, which not only improves
the accuracy while reducing the complexity of the FRBCE but also allows us to benefit from
the key advantage of fuzzy systems, i.e., their interpretability.
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The different specific FRBCE design methods obtained from the general methodology are
introduced and tested in Sections 3.2 and 3.3. Finally, to validate our framework we successfully
applied one of the static FRBCEs to a real-world problem, which consists of topology-based indoor
localization (bottom-left corner in the figure). Section 3.4 presents the latter development.

STAGE 1: FRBCE DESIGN 
FROM CLASSICAL ML 

APPROACH 
 
 
 
 
 
 
 
 
 
 
 
 

STAGE 2: EVOLUTIONARY 
COMPONENT CLASSIFIER 

COMBINATION 
 
 
 
 
 
 
 
 
 
 
 
 

REAL WORLD APPLICATION: 
 

Topology-based WiFi Indoor 
Localization 

STATIC: 
 

Bagging 
F. S.               FURIA 
Bagging + F.S. 

DYNAMIC: 
 

RO   +  FURIA 

CLASSIFIER SELECTION: 
 

EMO       OCS 

CLASSIFIER SELECTION 
AND FUSION: 

 
Interpretable GFS 

Figure 1: The proposed framework is composed of several FRBCEs design methodologies embedded
into two stages: 1) FRBCE design from classical ML approaches, and 2) evolutionary component
classifier combination. It also presents an application of the static FRBCEs to a real-world problem,
involving topology-based indoor localization.

3.2 Stage 1: Design of the Component Classifiers via Diversity Induction

3.2.1 Static Approach: Bagging, feature selection, and Bagging with feature selection

In [PD07, Ste05] it was shown that a combination between bagging and feature selection composed
a general design procedure usually leading to good CE designs, regardless the classifier structure
considered. Hence, we decided to follow that approach by integrating FURIA into a framework
of that kind. Our aim was to combine the diversity induced by the CE design methods and the
robustness of the FURIA method (see Sec. 2.2) in order to derive good performance FURIA-
based FRBCEs for high dimensional problems [TCQ11a, TCQ11b]. We also tried a combination of
FURIA with bagging and feature selection separately in order to analyze which is the best setting
for the design of FURIA-based FRBCEs.
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We considered three different types of feature selection algorithms: random subspace [Ho98],
mutual information-based feature selection (MIFS) [Bat94], and the random-greedy feature selec-
tion based on MIFS and the GRASP approach [FR95].
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… 
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Feature 

selection 
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… 

Figure 2: Our initial framework: after the instance and the feature selection procedures, the
component fuzzy classifiers are derived by the FURIA learning method. Finally, the output is
obtained using a voting-based combination method.

The term bagging is an acronym of bootstrap aggregation and refers to the first successful
method to generate CEs proposed in the literature [Bre96]. This approach was originally designed
for decision tree-based classifiers, however it can be applied to any type of model for classification
and regression problems. Bagging is based on bootstrap and consists of reducing the variance of the
classification by averaging many classifiers that have been individually tuned to random samples
that follow the sample distribution of the training set. The final output of the model is the most
frequent value, called voting, of the learners considered. Bagging is more effective when dealing
with unstable classifiers (the so-called “weak learners”), what means a small change in the training
set can cause a significant change in the final model. In addition, it is recommended when the
given dataset is composed of a small amount of examples. Furthermore, bagging enables a parallel
and independent learning of the learners in the ensemble.

Random subspace is a method in which a subset of features is randomly selected from the
original dataset. Alternatively, the greedy Battiti’s MIFS method [Bat94] is based on a forward
greedy search using the mutual information measure [SW49], with regard to the class. This method
orders a given set S of features by the information they bring to classify the output class considering
the already selected features. The mutual information I(C,F ) for a given feature F is defined as:

I(C,F ) =
∑
c,f

P (c, f) log
P (c, f)
P (c)P (f)

(I.2)

where P (c), P (f) and P (c, f) are respectively the values of the density function for the class,
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the feature variables, and the joint probability density. In the MIFS method, a first feature f
is selected as the one that maximizes I(C, f), and then the features f that maximize Q(f) =
I(C, f) − β

∑
s∈S I(f, s) are sequentially chosen until S reaches the desired size. β is a coefficient

to reduce the influence of the information brought by the already selected features.

Table I.1: Data sets considered

abbrev. Dataset #attr. #examples #classes
aba abalone 4178 7 28
bre breast 700 9 2
gla glass 214 9 7
hea heart 270 13 2
ion ionosphere 352 34 2
let letter 20000 16 26

mag magic 19020 10 2
opt optdigits 5620 64 10
pbl pblocks 5474 10 5
pen pendigits 10992 16 10
pho phoneme 5404 5 2
pim pima 768 8 2
sat sat 6436 36 6
seg segment 2310 19 7
son sonar 208 60 2
spa spambase 4602 57 2
tex texture 5500 40 11
veh vehicle 846 18 4
wav waveform 5000 40 3
win wine 178 13 3
yea yeast 1484 8 10

The random-greedy variant is an approach where the feature subset is generated by iter-
atively adding features randomly chosen from a restricted candidate list (RCL) composed of the
best τ percent features according to the Q measure at each selection step. Parameter τ is used to
control the amount of randomness injected in the MIFS selection. With τ = 0, we get the original
MIFS method, while with τ = 1, we get the random subspace method.

Table I.2: Average and standard deviation values for the different FURIA-based CE approaches
over all the considered datasets

3 Cl. 5 Cl. 7 Cl. 10 Cl. Global

Bagging avg. 0.210 0.201 0.198 0.197 0.202
std. dev. 0.204 0.200 0.198 0.197 0.196

Feat. sel. avg. 0.240 0.229 0.225 0.222 0.229
std. dev. 0.200 0.199 0.200 0.199 0.199

Bag. + Feat. sel. avg. 0.238 0.226 0.220 0.217 0.225
std. dev. 0.200 0.197 0.196 0.195 0.197

FURIA-based FRBCEs are designed as follows. A normalized dataset is split into two
parts, a training set and a test set. The training set is submitted to an instance selection and a
feature selection procedures in order to provide individual training sets (the so-called bags) to train
FURIA classifiers. Let us emphasize that FURIA already incorporates an internal feature selection
algorithm, being one of the features inherently owned from the RIPPER algorithm. The whole
procedure is graphically presented in Fig. 2, which presents FRBCE design approaches tested such
as combination between bagging and feature selection, as well as bagging and feature selection
separately.

An exhaustive study was developed comparing all the variants proposed. We selected 21
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Table I.3: Results for the best choices of each different approach for FURIA-based fuzzy CE for
each dataset

FURIA single classifier - All features
aba bre gla hea ion let mag opt pbl pen pho pim sat seg son spa tex veh wav win yea

tra err. 0.781 0.023 0.336 0.141 0.041 0.038 0.143 0.633 0.018 0.003 0.132 0.193 0.042 0.008 0.154 0.043 0.007 0.331 0.043 0.004 0.433
test err. 0.805 0.049 0.377 0.227 0.163 0.123 0.157 0.683 0.033 0.027 0.160 0.245 0.122 0.042 0.298 0.070 0.055 0.364 0.187 0.056 0.441

FURIA-based CEs obtained from bagging only.
aba bre gla hea ion let mag opt pbl pen pho pim sat seg son spa tex veh wav win yea

tra err. 0.570 0.010 0.096 0.052 0.031 0.016 0.110 0.246 0.015 0.002 0.084 0.075 0.025 0.006 0.018 0.028 0.004 0.051 0.017 0.006 0.223
test err. 0.755 0.044 0.313 0.178 0.152 0.091 0.136 0.641 0.030 0.017 0.138 0.246 0.105 0.035 0.230 0.061 0.036 0.276 0.156 0.060 0.408
nr of cl. 10 7 7 7 10 10 7 10 10 10 7 10 10 10 10 10 10 10 10 10 10

FURIA-based CEs obtained from feature selection only.
aba bre gla hea ion let mag opt pbl pen pho pim sat seg son spa tex veh wav win yea

tra err. 0.754 0.018 0.146 0.113 0.050 0.037 0.139 0.627 0.014 0.002 0.120 0.204 0.052 0.018 0.005 0.075 0.006 0.217 0.089 0.002 0.364
test err. 0.786 0.037 0.316 0.185 0.134 0.101 0.151 0.628 0.028 0.015 0.153 0.244 0.110 0.039 0.198 0.088 0.088 0.310 0.164 0.036 0.432
feat. sel. R R R RG RG RG RG RG R R R RG R RG R RG RG R RG RG R
feat. s.s. L L L M S L L L L L L L L L L L L L M M L
nr of cl. 10 10 10 7 7 10 10 10 10 10 7 7 10 10 10 7 10 10 10 10 10

FURIA-based CEs obtained from bagging and feature selection.
aba bre gla hea ion let mag opt pbl pen pho pim sat seg son spa tex veh wav win yea

tra err. 0.622 0.021 0.087 0.079 0.032 0.026 0.113 0.621 0.015 0.020 0.085 0.109 0.052 0.014 0.018 0.067 0.005 0.076 0.039 0.020 0.257
test err. 0.753 0.039 0.318 0.179 0.143 0.096 0.138 0.630 0.030 0.015 0.136 0.235 0.110 0.037 0.214 0.084 0.041 0.284 0.156 0.036 0.416
feat. sel. G R R RG RG RG RG R R R R RG R RG R G RG R G R G
feat. s.s. L M L L S L L S L L L L L L L L L L L M L
nr of cl. 10 7 7 7 10 7 10 10 10 10 10 10 10 10 7 7 10 10 10 10 10

Table I.4: A comparison of the best choice for different approaches for FURIA-based fuzzy CEs
against the best choice of bagging C4.5 CEs, random forests, and Ishibuchi-based fuzzy CEs

FURIA-based CEs
aba bre gla hea ion let mag opt pbl pen pho pim sat seg son spa tex veh wav win yea

test err. 0.753 0.037 0.313 0.178 0.134 0.091 0.136 0.628 0.028 0.015 0.136 0.235 0.105 0.035 0.198 0.061 0.036 0.276 0.156 0.036 0.408
feat. sel. G R - - RG - - RG R R R RG - - R - - - - RG -
feat. s.s. L L - - S - - L L L L L - - L - - - - M -
nr of cl. 10 10 7 7 7 10 7 10 10 10 10 10 10 10 10 10 10 10 10 10 10

C4.5 ensembles with bagging
aba bre gla hea ion let mag opt pbl pen pho pim sat seg son spa tex veh wav win yea

test err. 0.772 0.043 0.306 0.194 0.149 0.103 0.134 0.697 0.030 0.028 0.131 0.253 0.112 0.042 0.247 0.067 0.051 0.289 0.193 0.097 0.415
nr of cl. 10 7 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

random forests
aba bre gla hea ion let mag opt pbl pen pho pim sat seg son spa tex veh wav win yea

test err. 0.777 0.041 0.282 0.211 0.140 0.080 0.134 0.695 0.031 0.016 0.119 0.264 0.104 0.034 0.239 0.060 0.040 0.269 0.185 0.048 0.438
nr of cl. 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

Ishibuchi-based fuzzy CEs
aba bre gla hea ion let mag opt pbl pen pho pim sat seg son spa tex veh wav win yea

test err. 0.751 0.056 0.379 0.213 0.129 0.420 0.202 0.629 0.075 0.062 0.208 0.238 0.175 0.166 0.245 0.223 0.256 0.398 0.181 0.056 0.482
nr of cl. 3 7 7 10 7 10 7 3 7 10 3 7 7 10 10 10 7 3 7 10 7
feat. sel. R R G R RG RG R R RG R G G RG RG RG G RG RG RG G G

datasets from the UCI machine learning repository [BM98] with different characteristics concerning
the number of examples, features, and classes (see Table I.1). For validation we used Dietterich’s
5×2-fold cross-validation (5×2-cv) [Die98]. Three different feature subsets of different sizes (Small
“S”, Medium “M”, and Large “L”) were tested for the FURIA-based fuzzy CEs using the three
different feature selection algorithms (Greedy “G”, Random-greedy “RG”, and Random subspace
“R”). A small number of component fuzzy classifiers (up to 10) was considered in this study. Finally,
the best choices of FURIA-based FRBCEs were compared to two state-of-the-art CE algorithms
such as bagging decision trees and random forests, as well as with the use of the same methodology
combined with a different fuzzy classifier generation method, Ishibuchi-based fuzzy CE [INN05].

We only report here the most representative results that we have obtained for this part of
the study. The reader is referred to Sec. 1 in Part II of this PhD dissertation for the complete
experiments and analysis of the results. Table I.2 benchmarks average and standard deviation values
computed for each of the FURIA-based fuzzy CEs considering all the parameters selected for the
different ensemble sizes. These two values constitute a measure of the average performance of the
different variants over all considered datasets, where the last column provides global statistics for
each of the approaches. The best result of each approach for each dataset regardless the parameter
choice is presented in Table I.3, which consists of statistics (5x2-cv training and testing errors) and
algorithm parameters (feature selection algorithm “feat. sel.”, feature subset size “feat. s. s.”, and
number of classifiers “nr of cl.”) for each of the twenty one datasets. The best accuracy obtained
for the given dataset is emphasized in bold font. Finally, Table I.4 presents the final comparison of
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the best choices of FURIA-based fuzzy CEs with bagging C4.5 CEs and random forests, as well as
with the use of the same methodology combined with a different fuzzy classifier generation method,
Ishibuchi-based fuzzy CE. For each algorithm, we only show the best obtained result in terms of
accuracy (5×2-cv test error values) for each dataset and highlight the best values in boldface.

The main obtained conclusion is that FURIA-based fuzzy CEs perform better when only
combined with bagging (no additional feature selection is required) and that results are promising
in comparison with state-of-the-art classical CEs.

3.2.2 Dynamic Approach: Bagging with Random Oracles

This section introduces the use of ROs [KR07, RK07] within the bagging CE framework to derive
FURIA-based FRBCEs. Our idea is that, thanks to the additional diversity introduced by ROs
into the base classifiers, the obtained FRBCEs are able to achieve an outstanding performance in
terms of accuracy [TCQS13b, TCQS13a, TCQ13].

An RO (see Sec. 2.1.1) is a structured classifier, also defined as a “mini-ensemble”, encapsu-
lating the base classifier of the CE. It is composed of two subclassifiers and an oracle that decides
which one to use in each case. Basically, the oracle is a random function whose objective is to ran-
domly split the dataset into two subsets by dividing the feature space into two regions. Each of the
two generated regions (together with the corresponding data subset) is assigned to one classifier.
Any shape for the decision surface of the function can be applied as far as it divides the training
set into two subsets at random.

  Random Oracle 1 

Any MCS method deriving individual training sets for the 
component classifiers (bagging in this contribution)

MCS design methodology 

…

FINAL OUTPUT

Any MCS combination technique

(majority voting in this contribution)

FURIA 1
(RO1)

FURIA 2
(RO1)

  Random Oracle 2 

FURIA 1
(RO2)

FURIA 2
(RO2)

  Random Oracle n 

FURIA 1
(ROn)

FURIA 2
(ROn)

Base classifiers

Figure 3: The RO-based framework: after obtaining bootstrapped replicas, the individual compo-
nent classifiers are derived by RO composed of an oracle and two FURIA-based subclassifiers. The
final output is taken by means of the majority voting, an inherent feature of bagging.

Let us emphasize that during the classification phase, the oracle commits an internal dynamic
classifier selection, that is to say it decides which subclassifier makes the final decision for the given
example to be further used at the ensemble level (classifier fusion). Thus, this CE method belongs
to the dynamic family [GR01, DSM08] (see Sec. 2.1.2).

The RO approach owns several interesting features, making it quite unique among the ex-
isting CE solutions:

• It is a generic approach composing a framework in which ROs embed only the base classifier.
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Table I.5: Datasets considered
Dataset #ex. #attr. (R/I/N) cmpl. #classes

abalone 4178 8 (7/0/1) 3.3 28
bioassay 688red 27190 153 (27/126/0) 416.0 2
coil2000 9822 85 (0/85/0) 83.5 2
gas sensor 13910 128 (128/0/0) 178.0 7
isolet 7797 617 (617/0/0) 481.1 26
letter 20000 16 (0/16/0) 32.0 26
magic 19020 10 (10/0/0) 19.0 2
marketing 6876 13 (0/13/0) 8.9 9
mfeat fac 2000 216 (0/216/0) 43.2 10
mfeat fou 2000 76 (76/0/0) 15.2 10
mfeat kar 2000 64 (64/0/0) 12.8 10
mfeat zer 2000 47 (47/0/0) 9.4 10
musk2 6598 166 (0/166/0) 109.5 2
optdigits 5620 64 (0/64/0) 36.0 10
pblocks 5474 10 (4/6/0) 5.5 5
pendigits 10992 16 (0/16/0) 17.6 10
ring norm 7400 20 (20/0/0) 14.8 2
sat 6436 36 (0/36/0) 23.2 6
segment 2310 19 (19/0/0) 4.4 7
sensor read 24 5456 24 (24/0/0) 13.1 4
shuttle 58000 9 (0/9/0) 52.2 7
spambase 4602 57 (57/0/0) 26.2 2
steel faults 1941 27 (11/16/0) 5.2 7
texture 5500 40 (40/0/0) 22.0 11
thyroid 7200 21 (6/15/0) 15.1 3
two norm 7400 20 (20/0/0) 14.8 2
waveform noise 5000 40 (40/0/0) 20.0 3
waveform 5000 21 (21/0/0) 10.5 3
wquality white 4898 11 (11/0/0) 5.4 7

Thus, it allows a design choice at two different levels: i) any CE strategy can be applied;
ii) any classifier learning algorithm can be used. Apart from that, it can be used as the CE
generation method on its own.

• It induces an additional diversity through the randomness coming from the nature of ROs.
Generating a set of diverse base classifiers was shown to be fundamental for the CE overall
performance [OM99, KW03]. Let us emphasize that ROs are applied separately to each of
the base classifiers and no training of the oracle is recommended, as it will strongly diminish
the desired diversity.

• It embeds the two most common and complementary CE combination methods, i.e. classifier
fusion and (dynamic) classifier selection.

• A wide study has been carried out over several CE generation approaches in order to analyze
the influence of ROs on these methods [KR07, RK07]. C4.5 decision trees [Qui93] (in [KR07])
and Näıve Bayes [DP97] (in [RK07]) were the base classifiers used. All the CE approaches took
an advantage of the ROs, outperforming the original CEs in terms of accuracy. Especially,
the highest accuracy improvement was obtained by random subspace and bagging according
to [KR07].

In particular, we considered two versions of ROs: random linear oracle (RLO) [KR07, RK07]
and random spherical oracle (RSO) [RK07]. The former uses a randomly generated hyperplane to
divide the feature space, while the latter does so using a hypersphere. The global framework of
this proposal, namely RO-based bagging FRBCE approach is presented in Fig. 3.

We selected 29 datasets with different characteristics concerning a high number of examples
(see Table I.5), features, and classes from the UCI machine learning [BM98] and KEEL [AFFL+11]
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repositories. For validation, 5×2-cv was used. We studied the performance of both RO-based
bagging FRBCEs in comparison with bagging FRBCEs considering both accuracy and complexity.
Then, the best performing FRBCEs were compared against state-of-the-art RO-based bagging CEs.
By doing so, we wanted to show that RO-based bagging FRBCEs are competitive against the state-
of-the-art RO-based bagging CEs using C4.5 [KR07, RK07] and Näıve Bayes [RK07] as the base
classifiers, when dealing with high dimensional datasets, thanks to the use of the FURIA algorithm.

For an illustrative purpose, we include several tables in this section, reporting the most
significant results obtained (the whole experimentation can be checked in Sec. 4 in Part II of
this PhD dissertation). Table I.6 collects the test errors for for the three FRBCEs considered:
bagging FRBCEs, RLO-based bagging FRBCEs, and RSO-based bagging FRBCEs, considering an
equivalent complexity (see Sec. 4). The best result for a given dataset is presented in bold font.
The average “Avg.” and standard deviation “Std. Dev.” values over the 29 datasets are reported
at the bottom of the table. Tables I.7 and I.8 show the statistical tests carried out for the results
obtained in the previous table. Furthermore, the same study considering complexity is presented
in Tables I.9, I.10, and I.11. Finally, Table I.12 presents the test results achieved by RSO-based
bagging FRBCEs and RSO-based bagging CEs using C4.5 and NB, as well as random forests over
the 29 selected datasets. Tables I.13 and I.14 show the statistical tests carried out for the results
obtained in the previous table. The competitive performance of our proposal can be observed.

Table I.6: A comparison of RO-based bagging FRBCEs (75 classifiers) with bagging FRBCEs (100
classifiers) in terms of accuracy. FURIA serves as the base classifier in the three approaches

BAG BAG+RLO BAG+RSO
Dataset Test err. Test err. Test err.

abalone 0.7455 0.7452 0.7480
0.0090 0.0090 0.0090

coil2000 0.0602 0.0601 0.0601
gas sensor 0.0086 0.0079 0.0078
isolet 0.0774 0.0691 0.0700
letter 0.0778 0.0742 0.0743
magic 0.1325 0.1314 0.1299
marketing 0.6749 0.6673 0.6671
mfeat fac 0.0547 0.0434 0.0431
mfeat fou 0.1992 0.1941 0.1925
mfeat kar 0.0825 0.0699 0.0709
mfeat zer 0.2231 0.2169 0.2181
musk2 0.0338 0.0328 0.0320
optdigits 0.0324 0.0283 0.0282
pblocks 0.0335 0.0353 0.0338
pendigits 0.0155 0.0137 0.0132
ring norm 0.0432 0.0438 0.0315
sat 0.1013 0.1008 0.1001
segment 0.0309 0.0303 0.0295
sensor read 24 0.0222 0.0227 0.0233
shuttle 0.0008 0.0009 0.0009
spambase 0.0663 0.0651 0.0639
steel faults 0.2371 0.2367 0.2361
texture 0.0288 0.0278 0.0274
thyroid 0.0212 0.0215 0.0218
two norm 0.0316 0.0271 0.0276
waveform noise 0.1480 0.1461 0.1457
waveform 0.1480 0.1451 0.1453
wquality white 0.3908 0.3840 0.3803

Avg. 0.1286 0.1259 0.1252
Std. Dev. 0.1833 0.1825 0.1829
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Table I.7: Average Rankings of the Friedman’s test
Algorithm Ranking

FURIA+BAG+RSO 1.552
FURIA+BAG+RLO 1.828

FURIA+BAG 2.621

Table I.8: The adjusted p-values of Shaffer test for the pair-wise comparisons (FURIA is the base
classifier in every case)

Comparison p-value

BAG+RSO vs BAG +(1.41e-4)
BAG+RLO vs BAG +(0.002)
BAG+RSO vs BAG+RLO =(0.293)

Table I.9: A comparison of RO-based bagging FRBCEs (75 classifiers) with bagging CEs (100
classifiers) in terms of complexity (number of rules). FURIA serves as the base classifier in the
three approaches

BAG BAG+RLO BAG+RSO
Dataset # Rules # Rules # Rules

abalone 8369.0 8696.7 9382.8
bioassay 688red 5526.9 4642.8 4780.8
coil2000 4331.9 3804.1 4002.1
gas sensor 8628.3 7091.3 7310.7
isolet 12215.7 10523.6 10828.5
letter 47109.1 39410.5 40972.9
magic 13770.8 13143.0 14556.9
marketing 6418.5 7252.0 7429.1
mfeat fac 3479.9 3050.2 3110.3
mfeat fou 5483.5 4711.4 4886.9
mfeat kar 4953.3 4448.4 4581.0
mfeat zer 5028.3 4349.9 4549.2
musk2 4332.2 3581.1 3582.7
optdigits 7167.3 6352.4 6511.1
pblocks 3201.7 2877.9 2816.4
pendigits 8788.6 7348.0 7491.6
ring norm 7308.9 6205.7 5961.4
sat 8454.4 6956.2 7109.5
segment 2546.3 2201.6 2378.7
sensor read 24 3430.8 3340.4 3428.3
shuttle 1826.2 1723.8 1737.5
spambase 3612.9 3281.9 4181.1
steel faults 5467.3 4799.0 4857.0
texture 6537.2 5305.7 5542.8
thyroid 3299.5 2831.7 2959.8
two norm 6147.5 4973.3 5307.8
waveform noise 7932.6 6729.9 6850.6
waveform 8303.0 7017.3 7115.0
wquality white 13429.3 12134.0 12564.4

Avg. 7831.1 6854.6 7130.6
Std. Dev. 8144.6 6857.3 7156.8

Avg. (Without Letter) 6428.3 5691.9 5921.9
Std. Dev. (Without Letter) 3100.2 2847.3 3030.4

3.3 Stage 2: Evolutionary Component Classifier Combination

3.3.1 Evolutionary Multiobjective Overproduce-and-Choose static classifier selection

In this section, we describe our proposal of an EMO method defining an OCS strategy for the
component classifier selection [TQC12]. Our goal is to obtain a good accuracy-complexity trade-off
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Table I.10: Average Rankings of the Friedman’s test
Algorithm Ranking

FURIA+BAG+RLO 1.138
FURIA+BAG+RSO 2.069

FURIA+BAG 2.793

Table I.11: The adjusted p-values of Shaffer test for the pair-wise comparisons (FURIA is the base
classifier in every case)

Comparison p-value

BAG+RLO vs BAG +(8.77e-10)
BAG+RSO vs BAG +(0.006)
BAG+RLO vs BAG+RSO =+(3.92e-4)

Table I.12: A comparison of RSO-based bagging CEs using FURIA, C4.5 and NB, as well as random
forests in terms of accuracy

FURIA C4.5 NB RF
Dataset Test err. Test err. Test err. Test err.

abalone 0.7480 0.7681 0.7619 0.7536
bioassay 688red 0.0090 0.0090 0.0152 0.0090
coil2000 0.0601 0.0615 0.1847 0.0597
gas sensor 0.0078 0.0089 0.2939 0.0092
isolet 0.0700 0.0788 0.1246 0.0766
letter 0.0743 0.0615 0.2927 0.0701
magic 0.1299 0.1255 0.2391 0.1314
marketing 0.6671 0.6735 0.6864 0.6624
mfeat fac 0.0431 0.0498 0.0659 0.0475
mfeat fou 0.1925 0.1902 0.2221 0.1858
mfeat kar 0.0709 0.0818 0.0593 0.0597
mfeat zer 0.2181 0.2273 0.2464 0.2330
musk2 0.0320 0.0271 0.1107 0.0375
optdigits 0.0282 0.0276 0.0709 0.0277
pblocks 0.0338 0.0327 0.0706 0.0332
pendigits 0.0132 0.0150 0.0864 0.0162
ring norm 0.0315 0.0376 0.0199 0.0587
sat 0.1001 0.0950 0.1720 0.1027
segment 0.0295 0.0328 0.1180 0.0350
sensor read 24 0.0233 0.0234 0.3710 0.0224
shuttle 0.0009 0.0009 0.0143 0.0009
spambase 0.0639 0.0651 0.1788 0.0625
steel faults 0.2361 0.2263 0.3441 0.2517
texture 0.0274 0.0334 0.1384 0.0383
thyroid 0.0218 0.0222 0.0381 0.0221
two norm 0.0276 0.0280 0.0219 0.0389
waveform noise 0.1457 0.1643 0.1668 0.1556
waveform 0.1453 0.1588 0.1534 0.1587
wquality white 0.3803 0.3688 0.5230 0.3864

Avg. 0.1252 0.1274 0.1997 0.1292
Std. Dev. 0.1829 0.1852 0.1890 0.1830

Table I.13: Average Rankings of the Friedman’s test
Algorithm Ranking

FURIA+BAG+RSO 1.793
C4.5+BAG+RSO 2.276

RF 2.345
NB+BAG+RSO 3.586
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Table I.14: The adjusted p-values of Holm test for the pair-wise comparisons where RSO-based
bagging FRBCE (using FURIA) is the control method

Comparison p-value

FURIA+BAG+RSO vs C4.5+BAG+RSO =(0.207)
FURIA+BAG+RSO vs RF =(0.207)
FURIA+BAG+RSO vs NB+BAG+RSO +(3.69e-7)

in the FURIA-based FRBCEs when dealing with high dimensional problems. That is, we aim
to obtain FRBCEs with a low number of base classifiers, which jointly keep a good accuracy,
even better than that of the full original FRBVE in many cases. Thus, we have selected the
state-of-the-art NSGA-II EMO algorithm [DPAM02] in order to generate good quality Pareto set
approximations.

Figure 4: The EMO OCS framework: after the instance and the feature selection procedures, the
component classifiers are derived by the FURIA learning method. Then, the EMO OCS stage takes
place by means of NSGA-II. Finally the output is obtained using a voting-based method.

Table I.15: The five fitness function proposed for the EMO OCS method
1st obj. 2nd obj.

TE Complx
TE θ
TE δ
θ Complx
δ Complx

NSGA-II is based on a Pareto dominance depth approach, where the population is divided
into several fronts and the depth of each front shows to which front an individual belongs to. A
pseudo-dominance rank being assigned to each individual, which is equal to the front number, is
the metric used for the selection of an individual.

We have used a standard binary coding in such a way that a binary digit/gene is assigned
to each classifier. When the variable takes value 1, it means that the current component classifier
belongs to the final ensemble, while when the variable is equal to 0, that classifier is discarded.
This approach provides a low operation cost, which leads to a high speed of the algorithm.

Five different biobjective fitness functions combining the three existing kinds of optimization
criteria (accuracy, complexity, and diversity, see Sec. 2.1.2) are proposed in order to study the
best setting. Fig. 4 shows the final structure of the FURIA-based fuzzy MCS design methodology
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Table I.16: Datasets considered
Data set #examples #attr. #classes
abalone 4178 7 28
breast 700 9 2
glass 214 9 7
heart 270 13 2

ionosphere 352 34 2
magic 19020 10 2

optdigits 5620 64 10
pblocks 5474 10 5

pendigits 10992 16 10
phoneme 5404 5 2

pima 768 8 2
sat 6436 36 6

segment 2310 19 7
sonar 208 60 2

spambase 4602 57 2
texture 5500 40 11

waveform 5000 40 3
wine 178 13 3

vehicle 846 18 4
yeast 1484 8 10

including the OCS stage. We use the following measures: the training error (accuracy), the number
of classifiers (complexity), and the difficulty measure θ and the double fault δ (diversity) [KW03,
TPC05, RG05]. Table I.15 presents the five combinations proposed.

The initial fuzzy CEs are based on applying a bagging approach with the FURIA method
as described in Section 3.2.1. Each FRBCE so generated is composed of 50 weak learners.

Table I.17: Comparison of Pareto fronts using the HVR measure
2a 2b 2c 2d 2e

aba 0.9973 0.5126 0.9973 0.9961 0.9962
bre 0.6632 0.9955 0.3321 0.6627 0.6644
gla 0.8455 0.9867 0.8314 0.8376 0.8469
hea 0.6582 0.9858 0.5915 0.6564 0.6625
ion 0.9437 0.9796 0.5294 0.9416 0.9464
mag 0.9323 0.9988 0.9324 0.9300 0.9307
opt 0.9952 0.3335 0.3335 0.9952 0.9952
pbl 0.8555 0.9983 0.8555 0.8547 0.8553
pen 0.9609 0.9992 0.4307 0.9580 0.9587
pho 0.9267 0.9978 0.9266 0.9224 0.9241
pim 0.8700 0.9944 0.8700 0.8650 0.8730
sat 0.9554 0.9988 0.1738 0.9510 0.9528
seg 0.9483 0.9982 0.3295 0.9452 0.9472
son 0.6544 0.9797 0.3927 0.6492 0.6597
spa 0.9071 0.9978 0.1542 0.9047 0.9060
tex 0.9587 0.9983 0.3518 0.9525 0.9542
veh 0.8523 0.9940 0.8520 0.8459 0.8521
wav 0.9638 0.9984 0.2068 0.9554 0.9585
win 0.9240 0.9893 0.1066 0.9213 0.9265
yea 0.9315 0.9947 0.9311 0.9256 0.9301
avg. 0.8450 0.8920 0.5299 0.8415 0.8870
dev. 0.2202 0.2682 0.3263 0.2194 0.1058

We carried out an experiment comparing all five biobjective fitness functions. We have
selected 20 datasets from the UCI machine learning repository with different characteristics con-
cerning the number of examples, features, and classes (see Table I.16). To compare the Pareto
front approximations of the global learning objectives (i.e. CE test accuracy and complexity),
we considered two of the usual kinds of multiobjective metrics, namely hypervolume ratio (HVR)
[CLV07] and C-measure [ZT99], respectively. We also analyzed single solutions extracted from the
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obtained Pareto front approximations.

(a) (b)

Figure 5: The Pareto front approximations obtained for two datasets using the five fitness functions:
(a) abalone, and (b) waveform. Objective 1 stands for test error and objective 2 for complexity.
The pseudo-optimal Pareto front is also drawn for reference

Table I.18: A comparison of the NSGA-II FURIA-based fuzzy CEs against static FURIA-based
CE

NSGA-II combined with FURIA-based CEs.
aba bre gla hea ion mag opt pbl pen pho pim sat seg son spa tex veh wav win yea

test err. 0.741 0.037 0.283 0.170 0.126 0.132 0.625 0.027 0.014 0.125 0.231 0.101 0.027 0.188 0.056 0.028 0.255 0.146 0.018 0.396
fit. f. 2b 2b 2c 2b 2c 2a 2b 2c 2c 2c 2e 2b 2c 2e 2b 2c 2b 2c 2c 2b
# cl. 18.6 2.7 5.5 2 18.7 5.6 26 4.8 21.8 9 2 14.6 17.6 2 6.8 23.2 7.5 18.7 18.7 7.1

FURIA-based CE algorithms. Small ensemble sizes.
aba bre gla hea ion mag opt pbl pen pho pim sat seg son spa tex veh wav win yea

test err. 0.753 0.037 0.313 0.178 0.134 0.136 0.628 0.028 0.015 0.136 0.235 0.105 0.035 0.198 0.061 0.036 0.276 0.156 0.036 0.408
# cl. 10 10 7 7 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10 10

FURIA-based CE algorithms. Ensemble size 50.
aba bre gla hea ion mag opt pbl pen pho pim sat seg son spa tex veh wav win yea

test err. 0.748 0.041 0.287 0.182 0.145 0.135 0.630 0.028 0.016 0.135 0.241 0.102 0.034 0.226 0.059 0.031 0.275 0.149 0.035 0.400
C4.5 ensembles with bagging. Small ensemble sizes.

aba bre gla hea ion mag opt pbl pen pho pim sat seg son spa tex veh wav win yea
test err. 0.772 0.043 0.306 0.194 0.149 0.134 0.697 0.03 0.028 0.131 0.253 0.112 0.042 0.247 0.067 0.051 0.289 0.193 0.097 0.415
# cl. 10 7 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

Random forests. Small ensemble sizes.
aba bre gla hea ion mag opt pbl pen pho pim sat seg son spa tex veh wav win yea

test err. 0.777 0.041 0.282 0.211 0.14 0.134 0.695 0.031 0.016 0.119 0.264 0.104 0.034 0.239 0.06 0.04 0.269 0.185 0.048 0.438
# cl. 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

We show some representative results for this study in the current section (the remainder can
be referred to Sec. 2 in Part II of this PhD dissertation). In Table I.17, we present the HVR metric
results. For illustration purposes, the aggregated Pareto fronts are represented graphically for the
abalone and waveform datasets in Figures 5a and 5b, which allows an easy visual comparison of the
performance of the different EMO OCS-based FRBCE variants. Finally, Table I.18 benchmarks
the performance of the EMO OCS proposal in terms of individual results.. FURIA-based fuzzy
CEs are comprised by 7 or 10 classifiers, the small ensemble sizes providing the best results in our
previous contribution [TCQ11b] (see Section 3.2.1), and with 50 classifiers, the initial structure of
the EMO-selected fuzzy CEs. We also compare them with two state-of-the-art algorithms, random
forests [Bre01] and bagging C4.5 CEs [Qui93], comprised by 7 or 10 classifiers [TCQ11b]. An
accurate performance with a small number of classifiers is obtained.
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3.3.2 Joint Classifier Selection and Fusion via an Interpretable Genetic Fuzzy System

The aim of the current section is to present a fuzzy linguistic rule-based classification system
playing the role of CE combination method (a FRBCS-CM) [SCQT10, TCSQ13]. Our design
fulfills several requirements, namely: i) showing a human-understandable structure; ii) being able
to deal with high dimensional problems avoiding the curse of dimensionality; iii) having the chance
to be automatically learned from training data; and iv) being able to perform both classifier fusion
and selection in order to derive low complexity FRBCEs with a good accuracy-complexity trade-off
(see Fig. 6) 3.

Using the novel FRBCS-CM together with a FRBCE, we have the additional advantage of
handling a two-level hierarchical structure composed of the individual classifiers in the first level and
the FRBCS-CM in the second. These kinds of hierarchical structures [Tor02, GF95, Yag98, CHZ03]
are well known in the area as they allow fuzzy systems to properly deal with high-dimensional
problems while maintaining their descriptive power, especially when considering the single-winner
rule fuzzy reasoning method [CdJH99, INN05] in the component fuzzy classifiers as done in our
case.

One step further, using it in combination with a bagging strategy as done in this proposal,
we can also benefit from some collateral advantages for the overall design of the FRBCE: a) the
simplicity of the implicit parallelism of bagging, which allows for an easy parallel implementation;
and b) the problem partitioning due to the internal feature selection at the component classifier
level and the classifier selection capability of the fuzzy linguistic combination method, resulting
in a tractable dimension for learning fuzzy rules for each individual classifier and for achieving a
compact FRBCE. These characteristics make the fuzzy ensemble using the FRBCS-CM specially
able to deal with the curse of dimensionality.

Our approach might thus be assigned to the stacking (or stacked generalization) group
[Wol92], which after bagging and boosting is probably the most popular approach in the literature.
Its basis lay in the definition of the meta-learner, playing a role of (advanced) CE combination
method, giving a hierarchical structure of the ensemble. Its task is to gain knowledge of whether
training data have been properly learned and to be able to correct badly trained base classifiers.
The proposed FRBCS-CM acts as the meta-learner, by discarding the rule subsets in the base fuzzy
classifiers providing incorrect decisions at individual class level and promoting the ones leading to
a correct classification.

Moreover, fuzzy classification rules with a class and a certainty degree in the conse-
quent [CdJH99, INN05] used in FRBCS-CM allows the user to get an understandable insight
to the CE considered, namely bagging FURIA FRBCE. This means that this approach allows
interpretability (to some extent) of such complicated system.

The proposed FRBCS-CM is built under the GFS approach (see Sec. 2.3) (in particular,
being an interpretable GFS). A specific GA, which uses a sparse matrix to codify features and
linguistic terms in the antecedent parts of the rules and a fitness function based on three accuracy
components performs both classifier fusion and classifier selection at class level. The complexity
of the final ensemble is defined by the number of terms in the sparse matrix different than zero
(“nonzero value”), which is a designed parameter provided by the user as a percentage reduction.

To evaluate the performance of the FRBCS-CM in the ensembles generated, 20 popular
datasets from the UCI machine learning repository have been selected with a number of features
varying from a small value (i.e., 5) to a large one (i.e., 64), while the number of examples scales

3We should mention that the proposed combination method can be applied to any CE with the only restriction
that the component classifiers must additionally provide certainty degrees associated to each class in the dataset.
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Any MCS method deriving component classifiers with a certainty 
degree (bagging FURIA-based fuzzy MCS in this contribution)
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Figure 6: The FRBCS-CM framework: after the instance selection, the component classifiers are
derived by the FRBCS learning method (or by any method deriving component classifiers with a
certainty degree). Then, the fuzzy linguistic rule-based classification system playing the role of
MCS combination method (a FRBCS-CM) selects rules with a proper behavior in order to obtain
a good interpretability-accuracy trade-off. Finally, the output is obtained using the FRBCS-CM
fuzzy reasoning mechanism.

Table I.19: Datasets considered
Data set #examples #attr. #classes

Low dimensional:
abalone 4178 7 28
breast 700 9 2
glass 214 9 7
heart 270 13 2
magic 19020 10 2

pblocks 5474 10 5
phoneme 5404 5 2

pima 768 8 2
wine 178 13 3
yeast 1484 8 10

High dimensional:
ionosphere 352 34 2

letter 20000 16 26
optdigits 5620 64 10
pendigits 10992 16 10

sat 6436 36 6
segment 2310 19 7
sonar 208 60 2

spambase 4602 57 2
texture 5500 40 11
vehicle 846 18 4

waveform 5000 40 3

from 208 to 19 020 (see Table I.19). In order to compare the accuracy of the considered classifiers,
we used 5×2-cv. This study was carried in a three-fold manner. Firstly, we compared bagging FR-
BCEs combined with our interpretable GFS performing classifier selection and fusion over bagging
FRBCEs with the full ensemble using standard majority voting (MV). Secondly, we compared the
novel interpretable GFS with state-of-the-art crisp and fuzzy CE combination methods, as well as
with a hybrid method based on GA considering both classifier selection and classifier fusion [DVA09]
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Table I.20: Accuracy of the original FRBCEs, FRBCS-CM, and the other CE combination methods
in terms of test error

fuzzy FRBCS-CM Greedy FS Greedy BS GA
Dataset CEs 10% 25% 50% 75% 90% MV AVG DT MV AVG DT Dimil.
Low dim.:
abalone 0.7458 0.7581 0.7537 0.7493 0.7470 0.7461 0.7524 0.7582 0.7610 0.7484 0.7524 0.7511 0.7494
breast 0.0409 0.0472 0.0469 0.0452 0.0438 0.0432 0.0455 0.0418 0.0398 0.0412 0.0386 0.0372 0.0409
glass 0.2822 0.3159 0.2879 0.2832 0.2692 0.2710 0.2981 0.3271 0.3000 0.2832 0.2720 0.2776 0.3131
heart 0.1822 0.1785 0.1733 0.1719 0.1696 0.1696 0.1859 0.2015 0.1874 0.1778 0.1770 0.1674 0.1726
magic 0.1346 0.1340 0.1314 0.1309 0.1302 0.1300 0.1329 0.1328 0.1323 0.1338 0.1326 0.1298 0.1336
pblocks 0.0288 0.0285 0.0265 0.0271 0.0268 0.0261 0.0282 0.0302 0.0296 0.0286 0.0269 0.0263 0.0402
phoneme 0.1332 0.1277 0.1252 0.1261 0.1256 0.1264 0.1260 0.1232 0.1258 0.1291 0.1271 0.1248 0.1301
pima 0.2385 0.2492 0.2484 0.2411 0.2432 0.2424 0.2503 0.2516 0.2596 0.2385 0.2375 0.2414 0.2398
wine 0.0393 0.0461 0.0382 0.0303 0.0404 0.0393 0.0629 0.0551 0.0607 0.0393 0.0371 0.0360 0.0348
yeast 0.4008 0.4155 0.4054 0.3985 0.4034 0.4013 0.4116 0.4142 0.4189 0.4011 0.3978 0.4018 0.4116
Avg. Low 0.2227 0.2301 0.2237 0.2204 0.2199 0.2196 0.2294 0.2336 0.2315 0.2221 0.2199 0.2193 0.2266
High dim.:
ionosphere 0.1459 0.1527 0.1413 0.1458 0.1430 0.1430 0.1584 0.1532 0.1646 0.1476 0.1430 0.1413 0.1464
optdigits 0.0329 0.0337 0.0327 0.0327 0.0318 0.0313 0.0367 0.0352 0.0351 0.0329 0.0284 0.0279 0.0721
pendigits 0.0156 0.0174 0.0152 0.0140 0.0140 0.0138 0.0171 0.0150 0.0162 0.0156 0.0129 0.0126 0.0160
sat 0.1021 0.1067 0.1027 0.0997 0.0986 0.1005 0.1044 0.1010 0.1005 0.1022 0.0967 0.0971 0.1040
segment 0.0336 0.0334 0.0319 0.0304 0.0316 0.0302 0.0318 0.0326 0.0336 0.0330 0.0309 0.0306 0.0345
sonar 0.2269 0.2404 0.2183 0.2077 0.2077 0.2058 0.2163 0.2337 0.2452 0.2260 0.2183 0.2163 0.2231
spambase 0.0587 0.0569 0.0559 0.0555 0.0539 0.0546 0.0576 0.0573 0.0574 0.0579 0.0554 0.0549 0.0574
texture 0.0307 0.0343 0.0312 0.0304 0.0291 0.0285 0.0343 0.0330 0.0336 0.0308 0.0268 0.0270 0.0325
vehicle 0.2726 0.2773 0.2664 0.2690 0.2664 0.2674 0.2671 0.2690 0.2693 0.2723 0.2641 0.2600 0.2721
waveform 0.1492 0.1554 0.1490 0.1503 0.1489 0.1479 0.1508 0.1535 0.1533 0.1498 0.1468 0.1472 0.1532
Avg. High 0.1068 0.1108 0.1045 0.1036 0.1025 0.1023 0.1075 0.1084 0.1109 0.1068 0.1023 0.1015 0.1111
Avg. All 0.1647 0.1704 0.1641 0.1620 0.1612 0.1609 0.1684 0.1710 0.1712 0.1644 0.1611 0.1604 0.1689

(see Secs. 2.1.2 and 2.1.3). Finally, we showed some interpretability aspects of the proposed fuzzy
linguistic combination method.

For the comparison, apart from the standard MV, we selected average (AVG) [Kun04] and
decision templates (DT) [KBD01] based on Euclidean distance, as crisp and fuzzy fusion methods
respectively, being the best methods of each group according to Kuncheva [Kun03]. Since the
proposed FRBCS-CM includes classifier selection and classifier fusion, we also applied classifier
selection with the mentioned classifier fusion methods in order to make a fair comparison. To select
classifiers we used two standard greedy approaches, Greedy Forward Selection (FS) and Greedy
Backward Selection (BS) [RG05], which consider the abovementioned classifier fusion methods
(these methods are also used to guide the search of the greedy algorithms). The hybrid method
based on GA proposed in [DVA09] (GA-Dimililer) embeds both classifier selection and classifier
fusion, thus we directly apply it without any modifications.

For illustrative purpose, Tables I.20 and I.21 present a comparison between FRBCS-CM
(interpretable GFS) and the other CE combination methods in terms of accuracy and complexity,
respectively. The whole study described can be found in Sec. 3 in Part II of this PhD dissertation.
Table I.20 shows the test error obtained for MV (operating on the full original ensemble), FRBCS-
CM (nonzero values= 10%, 25%, 50%, 75%, and 90%), Greedy FS with MV, AVG, and DT, Greedy
BS with MV, AVG, and DT, and GA-Dimililer. Then, Table I.21 reports the total number of rules
in the ensembles considering the same approaches. The comparison was conducted with respect to
a similar complexity in the obtained FRBCEs. For example, FRBCS-CM with nonzero values 10%
and 25% were compared to Greedy FS with MV, AVG, and DT, clearly outperforming them.

Finally, to illustrate the interpretability capabilities of FRBCS-CM, we show how it works on
the wine dataset. The fuzzy rule base obtained with FRBCS-CM 10% on this dataset is presented
in Figure 7.
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Table I.21: Complexity of the original FRBCEs, FRBCS-CM, and the other CE combination
methods in terms of the number of rules

fuzzy FRBCS-CM Greedy FS Greedy BS GA
Dataset CEs 10% 25% 50% 75% 90% MV AVG DT MV AVG DT Dimil.
Low dim.:
abalone 3990.9 398.2 995.7 1996.9 2983.6 3578.4 1211.0 1047.6 1037.7 2711.3 3306.9 3398.7 2391.9
breast 435.2 46.1 110.9 217.0 326.2 391 33.0 25.7 24.1 415.9 426.6 427.4 221.1
glass 590.3 57.4 140.6 289.9 434.4 528 88.7 43.6 54.7 560.5 576.4 577.5 173.8
heart 466.0 49.4 120.3 235.3 352.6 421 48.9 35.7 33.4 444.6 455.7 454.7 221.1
magic 3882.1 421.0 968.3 1965.6 2969.9 3475.8 528.2 424.6 417.3 2247.8 3203.6 3319 2123.6
pblocks 1329.4 131.2 328.9 628.1 967.8 1182.2 248.2 108.9 106.1 1259 1288 1297.3 314.1
phoneme 2197.3 241.7 587.8 1132.5 1679.0 2000 493.2 381.1 339.4 1442.8 2046 2049.4 996.9
pima 1050.9 110.9 260.7 530.1 782.4 946 239.3 149.4 118.1 957 1025 1027.7 530
wine 231.4 23.7 57.9 116.4 172.7 208 9.1 6.8 6.2 222.4 226.9 226.9 71.2
yeast 2449.0 260.8 630.9 1198.4 1825.1 2198.4 511.5 389.5 434.9 1901.3 2296.7 2291.9 902.4
Avg. Low 1662.3 174.0 420.2 831.0 1249.4 1492.8 341.1 261.3 257.2 1216.3 1485.2 1507.1 794.6
High dim.:
ionosphere 367.7 37.8 95.4 211.0 279.8 334 27.0 22.2 24.4 353.3 361.2 360.6 190.3
optdigits 3584.6 359.2 893.5 1787.7 2678.8 3227.2 652.7 428.7 423.7 3398.5 3513.8 3513.1 661.5
pendigits 4395.3 448.8 1098.1 2208.7 3299.9 3964.3 892.1 569.8 470.8 4167.2 4306.4 4307.5 1874.6
sat 4207.2 427.2 1046.9 2107.2 3128.1 3762.8 1214.0 728.7 800.6 3575.2 4006.8 4055 1431.9
segment 1175.3 130.1 290.9 593.4 876.9 1051.4 165.6 109.2 86.7 1100.5 1151.3 1151.4 414.2
sonar 319.3 32.4 80.4 162.0 240.0 288 24.4 22.9 19.8 306.4 312.1 311.9 158.8
spambase 2220.9 229.0 557.2 1115.5 1661.7 2002.6 340.7 286.1 292.8 2135.5 2152.4 2139.8 1026
texture 2912.2 300.1 716.6 1458.8 2175.0 2610.9 433.6 333.8 352.5 2759.8 2852.9 2852.8 1240.4
vehicle 1415.3 154.3 380.4 735.3 1075.3 1283 364.1 173.3 193.4 1304.7 1387.6 1380 425.7
waveform 3484.3 354.0 861.5 1749.8 2601.2 3137.6 1355.9 753.1 727.1 3125.9 3408.3 3381.1 828.9
Avg. High 2408.2 247.3 602.1 1212.9 1801.7 2166.1 547.0 342.8 339.2 2222.7 2345.3 2345.3 825.2
Avg. All 2035.2 210.7 511.1 1022.0 1525.5 1829.4 444.1 302.0 298.2 1719.5 1915.2 1926.2 809.9

  

(c,k) w

(1,4) 0.558
(1,13) 0.72
(1,23) 0.356
(1,24) 0.748
(1,48) 0.044

(2,2) 0.382
(2,3) 0.504
(2,5) 0.586
(2,15) 0.388
(2,17) 0.643

(3,10) 0.703
(3,22) 0.619
(3,32) 0.204
(3,40) 0.221
(3,48) 0.458

FRBCS-CM 
(sparse matrix 

obtained by the GFS)

Class1:
R 1,4 If x is and A7 x isA 1 then Class is 1 with CF=0.96
R 1,13 If x is A13 and x is A5 then Class is 1 with CF=0.96
R 1,23 If x is A13 then Class is1 with CF=0.94
R 1,23 If x is A3 then Class is1 with CF=0.64
R 1,24 If x is A13 and x is A7 then Class is 1 with CF=0.95
R 1,48 If x is A13 and x is A1 then Class is 1 with CF=0.96
R 1,48 If x is A5 and x is A1 then Class is 1 with CF=0.74
Class2:
R 2,2 If x is A10 then Class is 2 with CF=0.96
R 2,2 If x is A2 and x is A5 then Class is 2 with CF=0.94
R 2,3 If x is A10 then Class is 2 with CF=0.97
R 2,3 If x is A2 and x is A3 then Class is 2 with CF=0.8
R 2,5 If x is A1 and x is A7 then Class is 2 with CF=0.97
R 2,5 If x is A5 and x is A1 then Class is 2 with CF=0.82
R 2,15 If x is A10 then Class is 2 withCF=0.97
R 2,15 If x is A2 and x is A4 then Class is 2 withCF=94
R 2,17 If x is A10 then Class is 2 withCF=0.96
R 2,17 If x is A2 and x is A3 then Class is 2withCF=0.9
Class3:
R 1,10 If x is A12 and x is A7 then Class is 3 with CF=0.94
R 1,10 If x is A10 then Class is 3 with CF=0.91
R 1,22 If x is A11 and x is A3 then Class is 3 with CF=0.94
R 1,22 If x is A7 then Class is 3 with CF=0.9
R 1,32 If x is A11 then Class is 3 with CF=0.93
R 1,40 If x is A11 then Class is 3 with CF=0.95
R 1,48 If x is A7 then Class is 3 with CF=0.95

FURIA 
(selected fuzzy rules of component classifiers)

R 1 :
If member4 0.558 says that Class is 1 or
member13 0.72 says that Class is 1 or
member23 0.356  says that Class is 1 or
member24 0.748  says that Class is 1 or
member48 0.044 says that Class is 1
R 2 :
If member2 0.382 says that Class is 2 or
member3 0.504 says that Class is 2 or
member5 0.586 says that Class is 2 or
member15 0.388 says that Class is 2 or
member17 0.643  says that Class is 2
R 3 :
If member10 0.703 says that Class is 3 or
member22 0.619  says that Class is 3 or
member32 0.204  says that Class is 3 or
member40 0.221 says that Class is 3 or
member48 0.458 says that Class is 3

FRBCS-CM 
(Fuzzy rule base for component 

classifier fusion)

Figure 7: An example showing how FRBCS-CM selects and combines fuzzy rules of the selected
component FURIA-based fuzzy classifiers. The wine dataset was used for illustration with FRBCS-
CM considering 10% of the non-zero values.

3.3.3 Evolutionary Multiobjective Overproduce-and-Choose dynamic classifier selec-
tion

This section presents an OCS strategy for the classifier selection of our dynamic FRBCEs, the
RO-based bagging FRBCEs (see Section 3.2.2). On the one hand, the main aim is again to refine
the accuracy-complexity trade-off in the RO-based bagging FRBCEs when dealing with high di-
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mensional and complex classification problems. On the other hand, an other interesting objective
is to study whether the additional diversity induced by ROs is beneficial for the EMO OCS-based
FRBCEs. Thus, we have again chosen the state-of-the-art NSGA-II EMO algorithm in order to
generate good quality Pareto set approximations. In this approach, we propose a specific design
customized to the RO characteristics.

Training 
Dataset

Test 
Dataset

EMO 
Selection

Dataset
(normalized)

…

Bagging

Instance
selection

(resampling)

50%

50%

RSO 2

RSO n

RSO

…

RSO 2

RSO n

RSO 1

Validation:
• Ensemble Training Error
• Ensemble Test Error
• Complexity

Final Set of
Classifiers

Classical validation:
• GA Training Error
• GA Test Error
• Complexity

Three-objective Fitness:
• Training Error
• Complexity 
• Variance (Diversity)

RSO 1

RSO...

BAG n

BAG 2

BAG 1
FURIA 1

FURIA 2

FURIA 1

FURIA 2

FURIA 1

FURIA 2

FURIA 1

FURIA 2

Figure 8: The dynamic EMO OCS framework: after obtaining bootstrapped replicas, the com-
ponent classifiers are derived by the specific RO method (either RLO or RSO) using FURIA as
subclassifiers. Then, the OCS takes place by means of NSGA-II with a three-objective fitness
function providing a Pareto set of simplified FRBCEs. In every case, the output is obtained using
a voting-based method.

In this study [TCQS13a], we take one step further and use a three-objective fitness function
combining the three existing kinds of optimization criteria for classifier selection: accuracy, com-
plexity, and diversity. We use the following measures: an advanced accuracy measure based on
three different components (accuracy), the total number of fuzzy rules in the ensemble (complex-
ity), and the difficulty measure θ (diversity) [TPC05, RG05, KW03]. Notice that, in order to make
a fair comparison, we consider the final complexity in terms of the total number of rules instead
of the total number of classifiers, since RO-based classifiers produce twice as much classifiers and
usually they are less complex than a standard base classifier.

Table I.22: The different variants resulting from the three EMO approaches used for the classifier
selection

abbreviation base classifier CE methodology OCS strategy mut. type

BAS-BAG FURIA bagging standard NSGA-II standard
BAS-RLO RLO (2×FURIA+oracle) bagging+RLO standard NSGA-II standard
ADV-RLO RLO (2×FURIA+oracle) bagging+RLO specific RO NSGA-II standard

ADV-BI-RLO RLO (2×FURIA+oracle) bagging+RLO specific RO NSGA-II biased
BAS-RSO RSO (2×FURIA+oracle) bagging+RSO standard NSGA-II standard
ADV-RSO RSO (2×FURIA+oracle) bagging+RSO specific RO NSGA-II standard

ADV-BI-RSO RSO (2×FURIA+oracle) bagging+RSO specific RO NSGA-II biased

RO offers a tremendous advantage over a standard component classifier since each classifier
can be independently selected within each pair component. Because of that, our classifier selection
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is done at the level of the component classifiers and not at the whole pair of classifiers. A specific
coding scheme, which permits that none, one, or both FURIA fuzzy subclassifiers can be selected,
is introduced. We also develop a reparation operator, whose objective is to correct the unfeasible
solutions. Fig. 8 shows the final structure of the RO-based bagging FRBCE design methodology
including the OCS stage.

We have considered two different mutation operator settings. The first one is the stan-
dard bit-flip mutation, while the second is the bit-flip mutation with biased probabilities proposed
in [INN05]. The aim of the latter is to positively bias the complexity reduction in the classifier
selection process.

Table I.23: Comparison of Pareto fronts using the HVR measure
BAS-BAG BAS-RLO ADV-RLO ADV-BI-RLO BAS-RSO ADV-RSO ADV-BI-RSO

aba 0.8248 0.8594 0.6399 0.8878 0.8378 0.7305 0.8500
bio 0.8343 0.9073 0.8059 0.9825 0.9115 0.9118 0.9678
coi 0.6929 0.7419 0.5687 0.7548 0.7251 0.6497 0.6477
gas 0.8590 0.9404 0.6876 0.9771 0.9382 0.8435 0.9642
iso 0.8611 0.9118 0.7661 0.9534 0.9074 0.8571 0.9155
let 0.9127 0.9477 0.7961 0.9726 0.9626 0.8945 0.9727
mag 0.7970 0.8423 0.6444 0.9061 0.8433 0.8119 0.8737
mar 0.7214 0.8217 0.6569 0.8689 0.8170 0.7994 0.8225
mfa 0.8874 0.9463 0.7886 0.9763 0.9439 0.8717 0.9600
mfo 0.8373 0.8838 0.7145 0.9322 0.8809 0.8040 0.8931
mka 0.8661 0.9227 0.7643 0.9631 0.9091 0.8418 0.9211
mze 0.8041 0.8650 0.6498 0.9183 0.8560 0.7702 0.8660
mus 0.7112 0.8098 0.6161 0.8779 0.8172 0.7071 0.8122
opt 0.8721 0.9316 0.7662 0.9669 0.9322 0.8411 0.9415
pbl 0.7487 0.7794 0.6038 0.7231 0.8052 0.7764 0.8421
pen 0.8617 0.9375 0.6873 0.9752 0.9419 0.8106 0.9609
rin 0.8187 0.8526 0.6878 0.8803 0.9221 0.8954 0.9222
sat 0.8436 0.9219 0.7196 0.9613 0.9284 0.8296 0.9468
seg 0.8551 0.9081 0.7621 0.9358 0.9080 0.8172 0.8417
sen 0.8597 0.9234 0.6630 0.9644 0.9228 0.8043 0.9503
shu 0.9347 0.9192 0.7051 0.9645 0.9176 0.7858 0.9661
spa 0.8196 0.8932 0.6805 0.9343 0.8690 0.8535 0.9109
ste 0.8206 0.8836 0.6620 0.9264 0.8877 0.7998 0.9053
tex 0.8713 0.9308 0.7769 0.9614 0.9288 0.8388 0.9444
thy 0.8368 0.9084 0.6804 0.9560 0.9025 0.8303 0.9487
two 0.8774 0.9558 0.7478 0.9814 0.9392 0.8880 0.9565
wan 0.8566 0.8881 0.7335 0.9397 0.8873 0.8400 0.8890
wav 0.8426 0.9033 0.7163 0.9300 0.8989 0.8367 0.9192
wqu 0.7914 0.8567 0.6973 0.9098 0.8724 0.8119 0.8881

avg. 0.8317 0.8894 0.7031 0.9269 0.8901 0.8191 0.9035
dev. 0.0562 0.0522 0.0608 0.0618 0.0524 0.0564 0.0681

We compared the proposed NSGA-II for RLO- and RSO-based bagging FRBCEs classifier
selection with the standard NSGA-II using two different approaches from the first stage, namely
RLO- and RSO-based bagging FRBCEs as well as bagging FRBCEs. Table I.22 summarizes the
seven resulting EMO OCS-based FRBCE design approaches.

We conducted exhaustive experiments considering 29 datasets with different characteristics
concerning a high number of examples, features, and classes from the UCI [BM98] machine learning
and KEEL [AFFL+11] repositories (see Table I.5 in Sec. 3.2.2). For validation we used 5×2-cv. To
compare the Pareto front approximations of the global learning objectives (i.e. CE test accuracy
and complexity) we considered the most common multiobjective metric, HVR [CLV07]. We also
analyzed single solutions extracted from the obtained Pareto front approximations. We compared
the three EMO variants in order to check whether the additional diversity induced by the RO is
beneficial to the performance of the final FRBCE selected by NSGA-II.

To give a brief view to the results obtained, we present the most representative ones as
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(a) (b)

(c) (d)

Figure 9: Graphical representations of the Pareto front approximations obtained from the three
EMO approaches for two datasets: (a) letter, (b) letter (zoom), (c) sensor read 24, and (d) sen-
sor read 24 (zoom). Objective 1 stands for test error and objective 2 for complexity in terms of
the number of rules. The pseudo-optimal Pareto front is also drawn for reference.

Table I.24: A comparison of the averaged performance of the four single solutions selected from
the obtained Pareto sets

Best complx Best diversity Best train Best trade-off
(tra-div-cmpl)

Cmpl Div Tra Tst Cmpl Div Tra Tst Cmpl Div Tra Tst Cmpl Div Tra Tst
avg. BAS-BAG 445 0.1392 0.0694 0.1399 558 0.1371 0.0695 0.1396 2003 0.2173 0.0506 0.1306 647 0.1554 0.0640 0.1317

BAS-RLO 202 0.0874 0.0983 0.1736 303 0.0842 0.0962 0.1726 1748 0.2176 0.0436 0.1301 404 0.1151 0.0667 0.1381
ADV-RLO 1058 0.0203 0.0525 0.1314 3044 0.0165 0.0476 0.1268 2663 0.0172 0.0435 0.1267 2078 0.0172 0.0473 0.1235
ADV-BI-RLO 90 0.0390 0.0916 0.1680 1606 0.0163 0.0474 0.1271 1269 0.0173 0.0426 0.1276 480 0.0185 0.0489 0.1264
BAS-RSO 205 0.0904 0.0926 0.1688 308 0.0874 0.0905 0.1682 1883 0.2243 0.0420 0.1292 402 0.1201 0.0646 0.1384
ADV-RSO 587 0.2633 0.0523 0.1307 778 0.1818 0.0514 0.1290 2164 0.6111 0.0409 0.1271 836 0.2228 0.0501 0.1248
ADV-BI-RSO 115 0.1180 0.1417 0.2114 670 0.0542 0.0628 0.1446 1463 0.3331 0.0392 0.1308 414 0.0624 0.0635 0.1380

dev. BAS-BAG 512 0.0987 0.1500 0.1858 687 0.0987 0.1495 0.1852 3505 0.1539 0.1390 0.1832 731 0.1088 0.1478 0.1833
BAS-RLO 222 0.0668 0.1511 0.1925 496 0.0640 0.1418 0.1881 2976 0.1565 0.1213 0.1821 541 0.0845 0.1396 0.1832
ADV-RLO 1267 0.0230 0.1319 0.1845 4234 0.0203 0.1274 0.1831 3508 0.0210 0.1206 0.1828 2745 0.0209 0.1276 0.1812
ADV-BI-RLO 96 0.0395 0.1535 0.1928 2218 0.0202 0.1272 0.1830 1645 0.0211 0.1196 0.1829 542 0.0221 0.1309 0.1818
BAS-RSO 205 0.0688 0.1472 0.1906 499 0.0662 0.1366 0.1867 3461 0.1622 0.1194 0.1820 454 0.0878 0.1372 0.1837
ADV-RSO 686 0.1195 0.1303 0.1845 927 0.0871 0.1307 0.1842 3269 0.3958 0.1156 0.1829 989 0.1020 0.1288 0.1818
ADV-BI-RSO 120 0.0665 0.1462 0.1870 764 0.0483 0.1287 0.1833 2235 0.2822 0.1135 0.1839 519 0.0517 0.1375 0.1838
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Table I.25: Average Rankings of the Friedman’s test
Algorithm Ranking

ADV-RLO 1.603
ADV-RSO 2.138

ADV-BI-RLO 3.345
BAS-BAG 3.707
BAS-RSO 5.603
BAS-RLO 5.638

ADV-BI-RSO 5.966

Table I.26: The adjusted p-values of Holm test for the pair-wise comparisons where RSO-based
bagging FRBCE is the control method (FURIA is the base classifier in every case)

Comparison p-value

ADV-RLO vs ADV-BI-RSO 8.89e-014
ADV-RLO vs BAS-RLO 5.73e-012
ADV-RLO vs BAS-RSO 7.11e-012
ADV-RLO vs BAS-BAG 0.0006
ADV-RLO vs ADV-BI-RLO 0.0043
ADV-RLO vs ADV-RSO 0.3461

Table I.27: A comparison of RLO-based bagging CEs using FURIA, C4.5 and NB, as well as
random forests in terms of accuracy

ADV-RLO FURIA+BAG+RLO C4.5+BAG+RLO RF
Dataset Test err. Test err. Test err. Test err.

abalone 0.7425 0.7452 0.7666 0.7536
bioassay 688red 0.0091 0.0090 0.0090 0.0090
coil2000 0.0603 0.0601 0.0612 0.0597
gas sensor 0.0075 0.0079 0.0097 0.0092
isolet 0.0693 0.0691 0.0803 0.0766
letter 0.0852 0.0742 0.1559 0.0701
magic 0.1285 0.1314 0.1254 0.1314
marketing 0.6620 0.6673 0.6728 0.6624
mfeat fac 0.0427 0.0434 0.0484 0.0475
mfeat fou 0.1825 0.1941 0.1932 0.1858
mfeat kar 0.0655 0.0699 0.0766 0.0597
mfeat zer 0.2108 0.2169 0.2285 0.2330
musk2 0.0297 0.0328 0.0271 0.0375
optdigits1 0.0270 0.0283 0.0290 0.0277
pblocks 0.0336 0.0353 0.0333 0.0332
pendigits 0.0127 0.0137 0.0155 0.0162
ring norm 0.0409 0.0438 0.0558 0.0587
sat 0.0980 0.1008 0.0953 0.1027
segment 0.0263 0.0303 0.0338 0.0350
sensor read 24 0.0218 0.0227 0.0228 0.0224
shuttle 0.0006 0.0009 0.0009 0.0009
spambase 0.0604 0.0651 0.0650 0.0625
steel faults 0.2293 0.2367 0.2265 0.2517
texture 0.0262 0.0278 0.0348 0.0383
thyroid 0.0218 0.0215 0.0222 0.0221
two norm 0.0260 0.0271 0.0266 0.0389
waveform 0.1422 0.1461 0.1630 0.1556
waveform1 0.1430 0.1451 0.1599 0.1587
wquality white 0.3762 0.3840 0.3714 0.3864

avg. 0.1235 0.1259 0.1314 0.1292
dev. 0.1812 0.1825 0.1844 0.1830

follows (the whole study is reported in Sec. 4 of Part II). Table I.23 shows the results using the
HVR metric, while the average and standard deviation values for the four different solutions selected
from each Pareto front approximation in the 29 problems are shown in Table I.24. Statistical tests
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for those results are presented in Tables I.25 and I.26. Besides, the aggregated Pareto fronts for
the letter and sensor read 24 datasets are represented graphically in Figure 9, which allows an
easy visual comparison of the performance of the different EMO OCS-based FRBCEs variants.
Finally, Table I.27 reports a final comparison, where the ADV-RLO variant is compared to RO-
based bagging FRBCEs (full original ensemble) as well as to the classical RO-based bagging CE
approaches using C4.5 and random forests. The statistical tests carried out for the results obtained
in the previous table are shown in Tables I.28 and I.29.

From this study two main conclusions can be emphasized. Firstly, the competitive perfor-
mance in terms of accuracy obtained by the proposed NSGA-II cand be observed. Secondly, the
additional diversity induced by the ROs to the base classifier is beneficial for the final performance
of the FRBCEs designed.

Table I.28: Average Rankings of the Friedman’s test
Algorithm Ranking

ADV-RLO 1.586
FURIA+BAG+RLO 2.534

RF 2.879
C4.5+BAG+RLO 3.000

Table I.29: The adjusted p-values of Holm test for the pair-wise comparisons where RLO-based
bagging FRBCE (using FURIA) is the control method

Comparison p-value

ADV-RLO vs C4.5+BAG+RLO 9.13e-005
ADV-RLO vs RF 2.73e-004
ADV-RLO vs FURIA+BAG+RLO 0.0051

3.4 Topology-based WiFi Indoor Localization - a Real World Application

People localization is required for many novel applications like for instance proactive care for the
elders or people suffering degenerative dementia such as Alzheimer’s disease. In this section, we
introduce a system for people localization in indoor environments. It is based on a topology-
based WiFi signal strength fingerprint approach. Accordingly, it is a robust, cheap, ubiquitous
and nonintrusive system which does require neither the installation of extra hardware nor prior
knowledge about the structure of the environment under consideration. The localization task thus
turns into a high dimensional classification task. The well-known curse of dimensionality critically
emerges when dealing with complex environments like the current one. Therefore, the core of the
proposed framework [TAH13] is a FRBCE considering fuzzy logic to deal with the huge uncertainty
that is characteristic of WiFi signals, and based on the classical methodologies for CE design as
bagging and random subspace.

The main goal is to obtain a scalable and accurate localization system which can estimate
the closest reference location to the actual user location using received signal strength in a rela-
tively short time. To do so, we considered a generic CE approach, using both classical and fuzzy
base classifiers. Two different methodologies, bagging [Bre96] and bagging combined with random
subspace [PD07], are exploited to design the final CE-based localization system (as it is detailed in
Section 3.2.1). First, the base classifiers are learnt off-line from a fingerprint database previously
generated, and then the CE-based framework is run on-line.

A flow of our design is as follows. The training set is submitted to an instance selection
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procedure, and (optionally) to a feature selection procedure, in order to provide individual training
sets (bags) to train the base classifiers (in off-line mode).

The combination of classifier members within the ensemble (on-line mode) is made by the
so-called classifier fusion method [WKB97], which aggregates the results provided by the set of
component classifiers to calculate the final output, assuming that all classifiers are trained over the
entire feature space. The Decision Profile (DP) represents the outputs of all the classifiers in the
ensemble [Kun01b, Kun04]:

DP (x) =

D1(x)
...

DL(x)

 =

d1,1(x) · · · d1,c(x)
...

...
dL,1(x) · · · dL,c(x)

 (I.3)

where c is the number of classes; L is the number of classifiers; and di,j(x) are the confidence
degrees for the classes given an example x. Considering L classifiers, the combined output is usually
computed by an algebraic function [KHDM98, Kun02] such as maximum, minimum, product, mean,
median, etc.

To deal with the inherent noise that characterizes the WiFi signal in indoor environments,
we propose an elaborated framework encapsulating a CE in order to improve the robustness of
the whole system. A global schema of the proposed framework is made up of the three following
phases:

• Phase1 - Classification process of each classifier component.

In this phase the classification task of each CE components is carried out. Each classifier
for each instance from 1 to N outputs confidence degrees dmij for each class. Thus, the N
matrices, namely DPs, are generated to be provided as the input required for the Phase 2.

• Phase2 - Filtering (Aggregation 1).

The filtering phase takes place at the classifier output level. The confidence degrees dmij of N
instances are aggregated for each classifier d∗ij . The aggregation is done by means of one of
the (algebraic) functions mentioned above. Then, the aggregated DP of the CE is provided
as an output. Notice that, the filtering follows the “moving average” fashion, in every step
the DP of the next example is included in the aggregation of DPs, while excluding the first
DP appeared in the given period of time.

• Phase3 - Classifier fusion (Aggregation 2).

In the last phase, a second aggregation is performed. The aggregated DP is combined by
means of one of the abovementioned algebraic functions (mean, median, etc.). As a result,
the outputs of all the individual classifiers d∗ij are merged into one final decision c′.

It is worth noting that, the framework described above is only applicable for the on-line
execution mode of our WiFi location system, while the core of the CE is trained in an off-line
mode, starting from a fingerprint database previously generated.

Our design (considering both J48G [Web99] CEs and FURIA FRBCEs) is composed of 10
classifiers (because in some preliminary trials on Scenario 1, we observed that considering a larger
number of classifiers was not yielding a significant increase of accuracy for the analyzed problem),
while RS selects a subset of features containing 25%, 50%, or 75% of the initial feature set. It is
compared with the classical k-Nearest Neighbor (k-NN) classification technique [CH67].
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In addition, we chose mean as the most common aggregation method in both stages (Aggr1
and Aggr2). The second aggregation stage (Aggr2) only takes place in the case of the designed CEs,
where the 10 individual classifier outputs are fused. The final decision is done using the maximum
activation degree. Notice that, with the structure of basic k-NN method Aggr2 makes no sense.

In this approach, we took an advantage of the time-dependent characteristics of the data,
namely the signals of APs being obtained in a consecutive order for each location. In our scenario,
the user stops for a few seconds to acquire several consecutive WiFi measures with the aim of getting
better estimation of its current position, which is the global task of the classification process. In
order to avoid any loss or distortion of the data, for the identification of a given position we consider
a consecutive block of samples.

Table I.30: Accuracy results for different classification and aggregation methods in Scenario 2 (UAH
environment)

Algorithm N1 N4 N7 N10

1-NN 0.490 0.501 0.523 0.536

J48G 0.566 0.578 0.586 0.589

FURIA 0.534 0.564 0.581 0.595

J48G CEs

Bag 0.644 0.679 0.690 0.694
Bag + RS (75%) 0.657 0.697 0.711 0.720
Bag + RS (50%) 0.697 0.735 0.749 0.757
Bag + RS (25%) 0.731 0.776 0.789 0.797

FURIA CEs

Bag 0.624 0.667 0.680 0.688
Bag + RS (75%) 0.675 0.715 0.726 0.734
Bag + RS (50%) 0.723 0.769 0.785 0.794
Bag + RS (25%) 0.733 0.790 0.803 0.809

FURIA MCSs Bag + RS (25%)

FURIA MCSs Bag + RS (50%)

FURIA MCSs Bag + RS (75%)

FURIA MCSs Bag

J48G MCSs Bag + RS (25%)

J48G MCSs Bag + RS (50%)

J48G MCSs Bag + RS (75%)

J48G MCSs Bag

FURIA

J48G

1−NN

0 10 20 30 40

meters

(a) Block size N10

FURIA MCSs Bag + RS (25%)

FURIA MCSs Bag + RS (50%)

FURIA MCSs Bag + RS (75%)

FURIA MCSs Bag

J48G MCSs Bag + RS (25%)

J48G MCSs Bag + RS (50%)

J48G MCSs Bag + RS (75%)

J48G MCSs Bag

FURIA

J48G

1−NN

2 4 6 8 10 12 14 16

meters

(b) Block size N10 (zoomed)

Figure 10: Reported results (considering block size N10) in terms of error distances (in meters) for
the misclassified positions in Scenario 2 (UAH test-bed environment).
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Figure 11: Comparison of algorithms used in Scenario 2 (UAH test-bed environment). Accuracy
(y-axis) versus Median Error Distance (x-axis).

Several values of the block size N were selected, i.e. 1, 4, 7, and 10 corresponding to around
1, 4, 7, and 10 seconds respectively because our WiFi acquisition frequency was 1Hz.

We have conducted a comprehensive experiment on two real test-bed environments: a sim-
ple scenario considering only one corridor at the European Centre for Soft Computing, which is
composed of 39,000 instances, 4 features, and 13 classes (locations). The second scenario, which
considers the second and the third floors of the Polytechnic School at the University of Alcalá, is
much more realistic (also more complex) composed of 8,520 instances, 143 (134) features, and 71
classes (locations).

To give a brief view to the results obtained, we present those obtained for Scenario 2 (see
Sec. 5 in Part II for the whole study). Table I.30 reports the achieved results in terms of accuracy
for all the selected block sizes. Then, Figure 10 depicts a dispersion of the error distance (in
meters) for each algorithm evaluated by means of boxplots (the possible outliers are represented
by circles), while Figure 11 presents the median values of the error distances represented in Fig. 10
(x-axis) against the accuracy values reported in Table I.30 (y-axis), for all the eleven algorithms
evaluated in the experiments. Overall, the FURIA FRBCE proposed in Sec. 3.2.1 provides the best
performance.

4 Discussion of the Results Obtained

The current section summarizes the main results obtained in this PhD dissertation. The next six
subsections will be devoted to analyze the main outcomes derived from the work developed.
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4.1 Static Fuzzy Rule-Based Classifier Ensembles Design from Classical Data
Mining Approaches

As our aim was to obtain FRBCEs dealing with high dimensional datasets, we have proposed
a methodology in which a bagging approach is used together with a feature selection technique
to train FURIA-based fuzzy component classifiers for a FRBCE. We used a single winner-based
classifier fusion method on top of the base classifiers. We tested FURIA-based FRBCEs with
bagging, feature selection, and the combination of both of them. The main conclusions obtained
are as follows:

• The proposed FURIA-based FRBCEs showed to be accurate and capable to directly be
applied on high dimensional datasets (high in terms of large number of attributes, number
of instances, and/or number of classes) thanks to the fact we use FURIA to design the weak
learners.

• The application of bagging for the CE design resulted in an approach being able to generate
the classifiers in parallel, thus being time efficient.

• FURIA-based FRBCEs with bagging clearly outperformed FURIA-based FRBCEs with fea-
ture selection and FURIA-based FRBCEs with bagging and feature selection. Thus, it is the
recommended FRBCE design approach. It seems that the feature selection capability direcly
incorporated by the FURIA method makes a good combination with the bagging approach.

• A FRBCE framework based on a quick and accurate fuzzy classification rule learning al-
gorithm, namely FURIA, proved to be competitive if not better than two state-of-the-art
classical CEs such as random forests and bagging C4.5 decision trees.

This study has resulted in the following scientific publications:

• K. Trawiński, O. Cordón, and A. Quirin. A First Study on a Fuzzy Rule-Based Multi-
classification System Framework Combining FURIA with Bagging and Feature Selection, In
Proceedings of the World Conference on Soft Computing (WConSC), San Francisco (USA),
pp. 167-175, 2011.

• K. Trawiński, O. Cordón, and A. Quirin. On Designing Fuzzy Rule-based Multiclassification
Systems by Combining FURIA with Bagging and Feature Selection, International Journal of
Uncertainty Fuzziness, and Knowledge-based Systems, vol. 19, no 4, pp. 589-633, 2011. DOI:
10.1142/S0218488511007155. Impact factor: 1.781. Category: COMPUTER SCIENCE,
ARTIFICIAL INTELLIGENCE. Order: 31/111. Q2.

4.2 Dynamic Fuzzy Rule-Based Classifier Ensembles Design from Advanced
Data Mining Approaches

Taking the general FRBCE design methodology as a base, we have integrated two ROs, namely
the RLO and RSO approaches, into the bagging FURIA-based FRBCEs. By doing so we aimed
to improve the diversity of the FRBCEs and thus increase their accuracy thanks to the appealing
characteristics of that dynamic CE design approach. The following outcomes were obtained from
this study:

• Both RO-based bagging FRBCEs outperform bagging FRBCEs in terms of accuracy and
complexity.

http://www.worldscientific.com/doi/abs/10.1142/S0218488511007155
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• Comparing the two different RO approaches, RSO obtains slightly higher accuracy but also
a higher complexity, while RLO does the opposite (slightly lower accuracy and slightly lower
complexity).

• RSO-based bagging FRBCEs outperform classical RSO-based bagging CEs using C4.5 and
NB.

The work carried out resulted in a JCR journal paper and two conference articles:

• K. Trawiński, O. Cordón, and A. Quirin. Random oracles fuzzy rule-based multiclassifiers for
high complexity datasets. In IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
Hyderabad (India), pp. 1-8, 2013.

• K. Trawiński, O. Cordón, and A. Quirin. On Applying Random Oracles to Fuzzy Rule-
Based Classifier Ensembles for High Complexity Datasets. The 8th conference of the Eu-
ropean Society for Fuzzy Logic and Technology (EUSFLAT), Milan (Italy), 2013. DOI:
10.2991/eusflat.2013.92.

• K. Trawiński, O. Cordón, L. Sánchez, and A. Quirin. Multiobjective Genetic Classifier Selec-
tion for Random Oracles Fuzzy Rule-Based Multiclassifiers: How Beneficial is the Additional
Diversity?, Knowledge-based Systems, In press, 2013. DOI: 10.1016/j.knosys.2013.08.006.
Impact factor 2012: 4.104. Category: COMPUTER SCIENCE, ARTIFICIAL INTELLI-
GENCE. Order: 6/115. Q1.

4.3 Static Evolutionary Multi Objective Overproduce-and-Choose Strategy

We have introduced a two-stage method to design FRBCEs based on the use of bagging FURIA-
based FRBCEs and an EMO-OCS method for classifier selection by means of NSGA-II. Five dif-
ferent biobjective fitness functions were tested, considering the three existing sets of optimization
criteria for classifier selection: accuracy, complexity, and diversity. We summarize the most impor-
tant conclusions obtained point by point below:

• Comparing the obtained Pareto Front approximations using the HVR metric, the fitness
function composed of training error (accuracy) and variance (diversity) clearly reported the
best performance. Meanwhile, the combinations of variance (diversity) with the number of
classifiers (complexity) and double fault (diversity) with the number of classifiers (complexity)
turned out to be deceptive.

• NSGA-II bagging FURIA-based FRBCEs showed to be competitive with the static bagging
FURIA-based FRBCEs and classical CEs such as random forests and bagging C4.5 decision
trees in terms of accuracy.

• In addition, the proposed method proved to be a good approach to obtain high quality,
well performing ensembles with a good accuracy-complexity trade-off when dealing with high
dimensional datasets.

The scientific article associated to this part are listed as follows:

• K. Trawiński, A. Quirin, and O. Cordón. On the Combination of Accuracy and Diversity
Measures for Genetic Selection of Bagging Fuzzy Rule-Based Multiclassification Systems. 9th
International Conference on Intelligent Systems Design and Applications (ISDA), Pisa (Italy),
pp. 121-127, 2009.

http://dx.doi.org/10.2991/eusflat.2013.92
http://dx.doi.org/10.1016/j.knosys.2013.08.006
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• K. Trawiński, O. Cordón, and A. Quirin. A Study on the Use of Multiobjetive Genetic
Algorithms for Classifier Selection in FURIA-based Fuzzy Multiclassifiers, International
Journal of Computational Intelligence Systems, vol. 4, no 2, pp. 231-253, 2012. DOI:
10.1080/18756891.2012.685272

4.4 Interpretable Genetic Fuzzy System for Joint Classifier Selection and Fu-
sion

A novel CE combination method was developed based on the use of an FRBCS automatically
derived by means of a GA. This new GFS-based fuzzy linguistic combination method shows very
interesting characteristics, especially its transparency and its capability to jointly perform classifier
fusion and selection. In addition, when combined with a FRBCE, the overall system shows a
hierarchical structure (called stacking in the literature).

This study was carried in a three-fold manner. Firstly, as a preliminary analysis we compared
bagging FRBCEs combined with interpretable FRBCS-CM with the whole initial FRBCEs using
a greedy classifier selection algorithm abd standard MV as fusion method. Secondly, we compared
the novel interpretable GFS with state-of-the-art crisp and fuzzy CE combination methods, as
well as with a hybrid method based on GAs considering both classifier selection and classifier
fusion [DVA09]. Finally, we showed some interpretability aspects of the proposed fuzzy linguistic
combination method. This study led us to very interesting outcomes:

• Bagging FRBCEs combined with FRBCS-CM obtained good results in comparison with bag-
ging FRBCEs with the full ensemble using standard MV. Apart from obtaining good perfor-
mance in terms of accuracy, it was also very competitive in terms of complexity reduction,
after the selection of the component classifiers. We noticed that the final results highly de-
pended on the value of the parameter defining the complexity of the FRBCS-CM, which leads
to different complexity-accuracy trade-offs.

• The proposal allows the user to specify the reduction of the complexity of the final CE a
priori by selecting the desired non zero parameter value. This high flexibility, an a priori
choice of how simple the obtained CE will be, constitutes an advantage over the compared
approaches.

• The proposed fuzzy linguistic combination method provides a good degree of interpretabil-
ity to the CE, making the combination method operation more transparent for the user.
Furthermore, when combined with a FRBCE, the whole system takes a hierarchical fuzzy
classification system structure (in the sense that the weak learners constitute individual FR-
BCSs becoming the input to the FRBCS-based combination method). The type of rules with
a a class and a certainty degree in the consequent used in our FRBCS-CM allows the user to
get an understandable insight to the CE, thus providing interpretability of such complicated
system to some extent.

The developments in this research line has been published in a JCR journal paper and an
international conference article:

• L. Sánchez, O. Cordón, A. Quirin, K. Trawiński, Introducing a Genetic Fuzzy Linguistic Com-
bination Method for Bagging Fuzzy Rule-Based Multiclassification Systems. Fourth IEEE
International Workshop on Genetic and Evolving Fuzzy Systems (GEFS), Mieres (Spain),
pp. 75-80, 2010.

http://www.tandfonline.com/doi/abs/10.1080/18756891.2012.685272
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• K. Trawiński, O. Cordón, A. Quirin, and L. Sánchez. A Genetic Fuzzy Linguistic Combination
Method for Fuzzy Rule-Based Multiclassifiers, IEEE Transactions of Fuzzy Systems, vol. 21,
no 5, pp. 950-965, 2013, 2013. DOI: 10.1109/TFUZZ.2012.2236844. Impact Factor 2012:
5.484. Category: COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE. Order: 1/115.
Q1.

4.5 Dynamic Evolutionary Multi Objective Overproduce-and-Choose Strategy

We have designed an EMO OCS method for dynamic RO-based bagging FRBCEs. We used
NSGA-II with a specific binary coding for the RO-based classifier selection. A three-objective
fitness function was used composed of three different optimization criteria: accuracy (considering
an advanced accuracy measure), complexity, and diversity metrics.

We have conducted exhaustive experiments comparing seven EMO variants in order to
check whether the additional diversity induced by the RO is beneficial to the performance of the
final FRBCE selected by the NSGA-II-based OCS method (see Table I.22 in Sec. 3.3.3 for the
abbreviations of the seven EMO OCS-based FRBCE design approaches tested). We employed two
RO approaches, RLO and RSO to test the new proposal. From the results obtained we drew the
following conclusions:

• The results obtained with the HVR metric corroborated the initial assumption that the
additional diversity provided by the RO approach is beneficial for the FRBCEs designed.
The best performing approaches were based on both RLO and RSO (ADV-BI-RLO and
ADV-BI-RSO) using specific NSGA-II and biased mutation. Notice that, the HVR metric
considered in the comparison measures the overall quality of the Pareto front approximations
obtained with respect to the two global learning goals, accuracy and complexity. Hence, the
EMO OCS methods performing a stronger component classifier reduction are promoted.

• The ADV-RLO, ADV-RSO, and ADV-BI-RLO variants outperformed the standard BAS-
BAG variant considering test accuracy, which showed a good behavior of the proposed ap-
proach.

• The biased mutation obtained very good results in terms of complexity, as it significantly
reduced the number of rules in the final FRBCEs. Considering the best complexity it managed
to significantly decrease the number of rules by more than 90% on average for both ADV-BI-
RLO and ADV-BI-RSO.

• In general, the proposed NSGA-II approaches with three learning objectives derived good
quality solutions, which were widely spread among the Pareto front. They reached both
extents acquiring high performance for the two main learning goals: accuracy (ADV-RSO
and ADV-RLO) and complexity (ADV-BI-RSO and ADV-BI-RLO).

• The best individual performance in terms of test accuracy was obtained by the ADV-RLO
variant, even though it obtained quite weak Pareto front approximations. This fact is justified
by the HVR metric nature, as already mentioned.

• When comparing the ADV-RLO variants with non-selected CEs, that is RLO-based bag-
ging FRBCEs (the full original ensemble) and the classical RLO-based bagging CEs using
C4.5 decision trees and Random Forests, the proposed approaches turned out to be the best
performing, while strongly reducing the complexity.

The obtained results were disclosed in a paper published in a JCR journal:

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6399459&refinements%3D4279927558%26sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A4358784%29


5. Final Conclusions and Future Works 43

• K. Trawiński, O. Cordón, L. Sánchez, and A. Quirin. Multiobjective Genetic Classifier Selec-
tion for Random Oracles Fuzzy Rule-Based Multiclassifiers: How Beneficial is the Additional
Diversity?, Knowledge-based Systems, In press, 2013. DOI: 10.1016/j.knosys.2013.08.006.
Impact factor 2012: 4.104. Category: COMPUTER SCIENCE, ARTIFICIAL INTELLI-
GENCE. Order: 6/115. Q1.

4.6 A real-world application: A Topology-Based WiFi Indoor Localization
Problem

The last step made in this research line concerning FRBCE design for high dimensional classification
problems was to apply at least one of the proposed approaches into a real-world problem. This
goal was achieved by using bagging FURIA-based FRBCEs, optionally combined with RS feature
selection, to two different scenarios of a topology-based WiFi indoor localization problem: 1) a
simple but highly illustrative case, and 2) a realistic high dimensional case. Its performance was
tested in comparison with some classical CEs. Overall, we concluded that:

• In Scenario 1, the goal was to check the proposed framework in the context of a rather simple
case as the one defined in the selected corridor of the European Centre for Soft Computing
premises. Most of the evaluated algorithms were able to achieve very high accuracy. Consid-
ering different combinations of parameters, it was hard to point out a single one. Anyway, we
could appreciate how the proposed framework achieved very good results for all the classifiers
used. This fact is due to the inherent simplicity of the analyzed scenario.

• Considering Scenario 2, which considers the second and the third floors of the Polytechnic
School at the University of Alcalá, we noticed that the reported accuracy significantly de-
creased in comparison with the results obtained in Scenario 1. FURIA-based FRBCEs with
bagging and RS (25%) outperformed the other algorithms for this high dimensional dataset.
From these facts, we could confirm the need of adopting the CE-based approach in order to
properly deal with high dimensional problems arising from complex environments like this
scenario. Moreover, fuzzy methods like FURIA exhibited all their potential in the context
of very noisy problems where classical methods did not perform so well. This is due to the
appealing characteristics of the fuzzy rules generated by FURIA.

This study contributed in a JCR journal paper and conference article:

• P. Menendez, C. Campomanes, K. Trawiński, J. M. Alonso. Topology-based indoor localiza-
tion by means of WiFi fingerprinting with a computational intelligent classifier. In Proceed-
ings of the 11th IEEE International Conference on Intelligent System Design and Applications
(ISDA), Córdoba (Spain), pp. 1020-1025, 2011.

• K. Trawiński, J. M. Alonso, and N. Hernandez. A Multiclassifier Approach for Topology-
based WiFi Indoor Localization, Soft Computing, vol. 17, no 10, pp. 1817-1831, 2013. DOI
10.1007/s00500-013-1019-5. Impact factor 2012: 1.124. Category: COMPUTER SCIENCE,
ARTIFICIAL INTELLIGENCE. Order: 63/115. Q3.

5 Final Conclusions and Future Works

In this PhD dissertation, we have proposed a global framework for FRBCE design in order to allow
FRBCSs to deal with high dimensional datasets. Our proposal is composed of different methods

http://dx.doi.org/10.1016/j.knosys.2013.08.006
http://link.springer.com/article/10.1007%2Fs00500-013-1019-5
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for component fuzzy classifier derivation, which consider several classical and recently proposed
CE methodologies, as well as EAs for classifier selection and fusion. In addition, we proposed a
linguistic FRBCS-CM based on GFSs, which jointly develop classifier selection and fusion, allowing
interpretability of FRBCEs to some extent.

We have carried out exhaustive experiments for each specific FRBCE design derived from
our framework. Furthermore, we have applied one of those designs on a topology-based WiFi
indoor localization real-world problem involving a high dimensional classification task. The results
obtained showed that we have reached the global goal. Besides, we also achieved the different
subobjectives defined at the beginning of this PhD dissertation such as improvement of the FRBCE
performance in terms of accuracy and accuracy-complexity trade-off. The good outcomes obtained
are reflected in five scientific journal publications and several conference papers.

In addition, the emerged research line during the development of this PhD dissertation and
the promising results obtained lead to several interesting future works that could be elaborated:

• A straightforward future work is to combine Bagging RO-based FRBCEs with the inter-
pretable FRBCS-CM proposed. This challenging task would consist of a dynamic FRBCE
in the first stage and a combined classifier selection and fusion by means of an interpretable
GFS in the second stage.

• Another interesting way to follow is to incorporate an EMO algorithm, that determines the
complexity of the generated FRBCEs, to the FRBCS-CM. The behavior of this combination
method strongly depends on a single parameter, whose value is set by the user in advance.
To avoid this problem, an EMO algorithm, e.g. the well known NSGA-II, could be applied.
Therefore, the user will obtain a Pareto set of FRBCE designs with different complexity-
accuracy trade-offs as the final output.

• The topology-based WiFi indoor localization is a demanding task. It turns into a high
dimensional classification problem when dealing with complex environments. Furthermore,
WiFi signals are characterized by a huge uncertainty. Thus, we think that applying the
remaining FRBCE design methods could improve the performance of the results obtained
and extend the development of this research line.

• FRBCEs could be applied to some other real-world problems. For example, an interesting field
growing in the literature, where the proposed FRBCE designs fit, is imbalanced classification.
The class-imbalance problem [CJA04], also named as learning with imbalanced datasets in
the literature, basically characterizes a significant difference between the number of examples
of one class in comparison to the number of examples from the other classes. Typically a
minority class is much more difficult to be correctly classified as well as it is of special interest
not to commit errors on this class. Imbalanced datasets commonly arise in applications such
as risk management [HHJ06], medical diagnosis [MHZ+08], and face recognition [LC07].

• There are many general CE techniques from different families such as dynamic classifier
selection, classifier fusion, stacking, mixture of experts, or diversity induction methods that
could be combined with FRBCSs in order to both allow FRBCSs to deal with high dimensional
datasets and to improve their performance.

6 Conclusiones Finales y Trabajos Futuros

En esta tesis doctoral, se ha propuesto un marco global de diseño de FRBCEs para permitir a los
FRBCSs manejar conjuntos de datos de alta dimensionalidad. Nuestra metodoloǵıa se compone de
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diferentes métodos para generar FRBCSs, que consideran varias metodoloǵıas clásicas y recientes
de diseño de CEs, aśı como de técnicas basadas en EAs para la selección y fusión de los clasifi-
cadores base. Además, hemos propuesto un FRBCS-CM lingúıstico basado en GFSs que realiza
conjuntamente la selección y la fusión de clasificadores base y permite dotar de interpretabilidad a
los FRBCEs en cierta medida.

Hemos desarrollado experimentos exhaustivos para cada diseño espećıfico de FRBCE
derivado de nuestro marco de trabajo. Además, hemos aplicado uno de esos diseños a un problema
real, consistente en la localización en interiores utilizando topoloǵıa WiFi, que se corresponde con
un problema de clasificación de alta dimensionalidad.

Los resultados obtenidos demuestran que hemos tenido éxito en el objetivo global planteado
en esta tesis doctoral. Además, también se han alcanzado los distintos subobjetivos definidos al
inicio de la misma, como la mejora del rendimiento de los FRBCEs en términos tanto de precisión
como de un equilibrio adecuado entre precisión y complejidad. Los buenos resultados obtenidos se
reflejan en cinco publicaciones en revistas cient́ıficas y varios art́ıculos en congresos.

Además, la ĺınea de investigación que ha surgido con el desarrollo de esta tesis doctoral
conduce a una serie de nuevos desarrollos interesantes que podŕıan ser desarrollados en un futuro
próximo:

• Una extensión sencilla seŕıa combinar FRBCEs basados en ROs con el método FRBCS-CM
interpretable propuesto. Esta tarea consistiŕıa en considerar un FRBCE dinámico en la
primera etapa y una combinación de selección y fusión de clasificadores mediante un GFS
interpretable en la segunda.

• Otra idea interesante seŕıa incorporar un algoritmo EMO al FRBCS-CM para determinar
la complejidad de los FRBCEs generados de forma automática. El comportamiento de este
método de combinación depende en gran medida de un único parámetro, cuyo valor es fijado
por el usuario con antelación. Para evitar este problema, se podŕıa aplicar un algoritmo
EMO, por ejemplo, el conocido NSGA-II. De este modo, el usuario obtendŕıa un conjunto de
Pareto de diseños de FRBCEs con distintos equilibrios entre complejidad y precisión en cada
ejecución del método.

• La localización indoor WiFi basada en topoloǵıa es una tarea exigente. Cuando se afronta un
entorno complejo, se corresponde con un problema de clasificación de alta dimensionalidad.
Además, presenta la dificultad adicional de la incertidumbre asociada a la naturaleza de las
señales WiFi considerada. Por lo tanto, creemos que la aplicación del resto de métodos de
diseño de FRBCEs podŕıa mejorar los resultados obtenidos y ampliar el desarrollo de esta
ĺınea de investigación.

• Nuestros FRBCEs podŕıan aplicarse también a otros problemas reales. Por ejemplo, un campo
interesante de la literatura en el que podŕıan encajar los diseños de FRBCEs propuestos es la
clasificación no balanceada. El problema del desbalanceo de clases [CJA04], también llamado
clasificación con conjuntos de datos no balanceados, básicamente caracteriza una diferencia
significativa entre el número de ejemplos de una clase en comparación con el número de
ejemplos de las clases restantes. Normalmente, una clase minoritaria es mucho más dif́ıcil de
clasificar correctamente, al igual que es de especial interés no cometer errores en dicha clase.
Los conjuntos de datos no balanceados surgen en aplicaciones como la gestión de riesgos
[HHJ06], el diagnóstico médico [MHZ+08] y el reconocimiento de caras [LC07].

• Hay muchas otras técnicas genéricas englobadas en diferentes familias de métodos clásicos
de diseño de CEs como la selección dinámica de clasificadores, la fusión de clasificadores,
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el stacking, la mezcla de expertos o los métodos de inducción de diversidad que podŕıan
combinarse con FRBCSs con el fin de permitir a los FRBCSs tratar con conjuntos de datos
de alta dimensión y mejorar su rendimiento.
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In this work, we conduct a study considering a fuzzy rule-based multiclassification sys-
tem design framework based on Fuzzy Unordered Rule Induction Algorithm (FURIA).
This advanced method serves as the fuzzy classification rule learning algorithm to de-
rive the component classifiers considering bagging and feature selection. We develop
an exhaustive study on the potential of bagging and feature selection to design a final
FURIA-based fuzzy multiclassifier dealing with high dimensional data. Several parame-
ter settings for the global approach are tested when applied to twenty one popular UCI
datasets. The results obtained show that FURIA-based fuzzy multiclassifiers outperform
the single FURIA classifier and are competitive with C4.5 multiclassifiers and random
forests.

Keywords: Multiclassification systems; classifier ensembles; fuzzy rule-based classifi-
cation systems; fuzzy rule-based multiclassification systems; FURIA; bagging, feature
selection; MIFS.

1. Introduction

Multiclassification systems (MCSs) (also called multiclassifiers or classifier ensem-
bles) have been shown as very promising tools to improve the performance of single
classifiers when dealing with complex, high dimensional classification problems in
the last few years.29 This research topic has become especially active in the classical
machine learning area, considering decision trees or neural networks to generate the
component classifiers, but also some work has been done recently using different
kinds of fuzzy classifiers.4,9,30,32,37,45,52

589
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Fuzzy Unordered Rule Induction Algorithm (FURIA)23,24 is a powerful fuzzy
classification rule learning algorithm that can deal with a very common problem of
fuzzy rule-based classification systems (FRBCSs), the so-called curse of dimension-
ality.26 By combining advantages of the RIPPER algorithm10 with fuzzy logic, this
algorithm is able to generate simple and compact sets of fuzzy classification rules,
even when tackling datasets with a large amount of features. Apart from its ability
to deal with high dimensional datasets, this approach has shown a performance ad-
vantage in comparison to classical machine learning methods such like RIPPER10

and C4.5.38

An individual classifier must provide different patterns of generalization in order
to obtain a diverse set of classifiers composing a highly accurate ensemble.29,51

Otherwise, the ensemble would be composed of the same or similar classifiers and
would provide a similar accuracy to the single one. There are several techniques
in order to obtain diversity among the classifiers. Bagging7 and boosting41 are the
two most popular generic approaches to do so.19 There are also other more recent
proposals considering other ways to promote disagreement between the component
classifiers, with feature selection being an extended strategy.20 All in all, it turned
out that a combination between bagging and feature selection is a generic approach
leading to good MCS designs for any kind of classifier learning method.34,44

In this paper we aim to study the performance of FURIA-based fuzzy MCSs, and
propose a new framework being able to deal with high dimensional datasets. Our
proposal focuses on the combination of a quick FRBCS design method with bagging
and a quick feature selection method. We will show how this combination is both
efficient, due to its inherent parallelism, and accurate, thanks to the high quality of
the base classifier. Several FURIA-based fuzzy MCS composition designs are tested
including bagging, feature selection, and the combination of bagging and feature se-
lection. We considered three different types of feature selection algorithms: random
subspace,20 mutual information-based feature selection (MIFS),3 and the random-
greedy feature selection based on MIFS and the GRASP approach,18 although the
methodology is flexible to incorporate any other feature selection approach.

In order to test the accuracy of the proposed fuzzy MCSs, we conduct com-
prehensive experiments with 21 datasets taken from the UCI machine learning
repository and provide a deep study of the results obtained. Finally, our approach
is compared against two state-of-the-art MCS algorithms (bagging decion trees17

and random forests8) and also with an application of the fuzzy MCS generation
approach13,14 with other, less powerful fuzzy classifier derivation method.26

This paper is structured as follows. The next section presents a state of the
art about MCSs and fuzzy MCSs. In Sec. 3 the FURIA algorithm is described,
while Sec. 4 recalls our approach for designing FURIA-based fuzzy MCSs. The
experiments developed and their analysis are shown in Sec. 5. Finally, Sec. 6 collects
some concluding remarks and future research lines.
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2. Background and Related Work

This section explores the current literature related to the generation of fuzzy rule-
based multiclassification systems (FRBMCSs). The techniques used to generate
MCSs and fuzzy MCSs are described in Secs. 2.1 and 2.2, respectively.

2.1. Related work on MCSs

A MCS is the result of the combination of the outputs of a group of individually
trained classifiers in order to get a system that is usually more accurate than any
of its single components.29 These kinds of methods have gained a large acceptance
in the machine learning community during the last two decades due to their high
performance. Decision trees are the most common classifier structure considered
and much work has been done in the topic,2,17 although they can be used with any
other type of classifiers (the use of neural networks is also very extended, see for
example Ref. 33).

There are different ways to design a classifier ensemble. On the one hand, there
is a classical group of approaches considering data resampling to obtain different
training sets to derive each individual classifier. In bagging,7 they are independently
learnt from resampled training sets (“bags”), which are randomly selected with
replacement from the original training data set. Boosting methods41 sequentially
generate the individual classifiers (weak learners) by selecting the training set for
each of them based on the performance of the previous classifier(s) in the series.
Opposed to bagging, the resampling process gives a higher selection probability to
the incorrectly predicted examples by the previous classifiers.

On the other hand, a second group can be found comprised by a more diverse
set of approaches which induct the individual classifier diversity using some ways
different from resampling.54 Feature selection plays a key role in many of them
where each classifier is derived by considering a different subset of the original
features.51,53 Random subspace,20 where each feature subset is randomly generated,
is one of the most representative methods of this kind.

Finally, there are some advanced proposals that can be considered as combina-
tions of the two groups. The most extended one could be random forests,8 where the
individual classifiers are decision trees learnt from a resampled “bag” of examples,
a subset of random variables is selected at each construction step, and the best split
for those selected variables is chosen for that node.

The interested reader is referred to2,33 for two surveys for the case of decision
tree (both) and neural network ensembles (the latter), including exhaustive exper-
imental studies.

2.2. Previous work on fuzzy MCSs

The use of boosting for the design of fuzzy classifier ensembles has been considered
in some works, taking the weak learners as fuzzy variants of neural networks:36,52

as granular models,37 as neuro-fuzzy systems,42 as well as single fuzzy rules.15,21,39
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However, only a few contributions for bagging fuzzy classifiers have been
proposed considering, fuzzy adaptive neural networks,36 fuzzy neural networks
(together with feature selection),46 fuzzy clustering-based classifiers,50 neuro-fuzzy
systems,9 and fuzzy decision trees4,30 as component classifier structures.

Especially worth mentioning is the contribution of Bonissone et al.4 This ap-
proach hybridizes Breimann’s idea of random forests8 with fuzzy decision trees.28

Such resulting fuzzy random forest combines characteristics of MCSs with random-
ness and fuzzy logic in order to obtain a high quality system joining robustness,
diversity, and flexibility to not only deal with traditional classification problems
but also with imperfect and noisy datasets. The results show that this approach
obtains good performance in terms of accuracy for all the latter problem kinds.

In our previous studies,12,13,48,49 we proposed a MCS methodology based on
classical MCS design techniques such as bagging and feature selection with a fuzzy
rule-based classification system (FRBCS) as a base classifier. The fuzzy classifica-
tion rule learning algorithm considered was the basic heuristic method proposed by
Ishibuchi.26 A multicriteria genetic algorithm (GA) was used for a static compo-
nent classifier selection from FRBMCSs guided by several fitness functions based on
training error and likelihood, as well as bicriteria fitness functions based on training
error and likelihood or diversity measures.

Some other contributions based on the use of GAs should also be remarked.
On the one hand, an FRBCS ensemble design technique is proposed in Ref. 1 con-
sidering some niching GA-based feature selection methods to generate the diverse
component classifiers, and another GA for classifier fusion by learning the combi-
nation weights. On the other hand, another interval and fuzzy rule-based ensemble
design method using a single- and multiobjective genetic selection process is intro-
duced in.31,32 In this case, the coding scheme allows an initial set of either interval
or fuzzy rules, considering the use of different features in their antecedents, to be
distributed among different component classifiers trying to make them as diverse
as possible by means of two accuracy and one entropy measures. Besides, the same
authors presented a previous proposal in Ref. 27, where an EMO algorithm gen-
erated a Pareto set of FRBCSs with different accuracy-complexity trade-offs to be
combined into an ensemble.

3. FURIA

Fuzzy Unordered Rules Induction Algorithm (FURIA)23,24 is an extension of the
state-of-the-art rule learning algorithm called RIPPER,10 having its advantages
such like simple and comprehensible fuzzy rule base, and introducing new features.
FURIA provides three different extensions of RIPPER: i) it takes an advantage
of fuzzy rules instead of crisp ones, ii) it applies unordered rule sets instead of
rule lists, and iii) it proposes a novel rule stretching method in order to manage
uncovered examples. Below the said features of FURIA are reviewed.
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3.1. Unordered rule base instead of the list of rules

The first extension of FURIA is the following. It deals with a standard unordered
rule base (RB) instead of a decision list, as the latter provides one crucial disad-
vantage. Particularly, a list of rules favors a default class, that introduces a bias.
Here, for each class, a set of rules is generated using the one-vs.-rest strategy. Thus,
FURIA separates each class from the other classes. In consequence, there is no
default rule and the order of the rules is not important.

However, this new approach has two drawbacks. The first one concerns a conflict
which arises when having the same coverage of several rules from different classes.
The second one may take place when an example is not covered by any of the rules.
The first drawback is rather unlikely to occur, even though in case it occurs, it may
be resolved easily. The latter issue is solved by introducing a novel rule stretching
method as described below.

3.2. Fuzzification of the RIPPER rules

The fuzzification of the RIPPER (crisp) rules corresponds to the transformation
of the crisp values into the fuzzy ones, that is fuzzy sets with trapezoidal mem-
bership functions. Based on the training set the best fuzzy interval is generated.
Considering the intervals of the crisp rules Ii as the cores [bi, ci] of the fuzzy rule,
a learning process aims at determining the optimal size of the supports of each of
the antecedents [ai, di]. It must be pointed that only the subset Di

T of the training
set DT that have not been already covered by any of the antecedents (Aj ∈ FIj ,
j 6= i) is considered in order to build a single antecedent (Ai ∈ Ii):

Di
T = {x = (x1 · · ·xk) ∈ DT |FIj(xj) > 0for all j 6= i} ⊆ DT (1)

Then, the Di
T is divided into two subsets, the positive subset Di

T+ and the
negative subset Di

T− . The following measure, called rule purity, is used in order to
check the quality of the fuzzification:

pur =
pi

pi + ni
(2)

where

pi =
∑

x∈Di
T+

µAi(x) ; ni =
∑

x∈Di
T−

µAi(x)

The rule fuzzification procedure is greedy and it iterates over all antecedents
calculating the best fuzzification in terms of purity (see Eq. (2)). The candidate
values for a are those values laying on the left side from b belonging to Di

T , and
are expressed as: xi|x = (x1, . . . , xk) ∈ Di

T , xi < b. The candidate values for d are
those values laying on the right side from c belonging to Di

T , and are expressed
as: xi|x = (x1, . . . , xk) ∈ Di

T , xi > c. In case of a tie, the larger fuzzy set, the one
having a larger distance from the core, is selected. Then, the antecedent with the
highest purity value is selected to be fuzzified. The whole process ends up when



June 24, 2011 8:37 WSPC/118-IJUFKS S0218488511007155
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all antecedents are fuzzified. This procedure is repeated only once, as it has been
noticed that in almost all cases convergence is obtained after the first iteration.

3.3. Fuzzy classification rule structure and fuzzy reasoning method

Fuzzy rules of FURIA are composed of a class Cj and a certainty degree CDj in
the consequent, the most extended fuzzy classification rule structure.11,26 The final
form of a rule is the following:

Rj : If x1 is Aj1 and . . . and xn is Ajn

then Class Cj with CDj ; j = 1, 2, . . . , N .

The certainty degree of a given example x is defined as follows:

CDj =
2 |DCj

T |
|DT | +

∑
x∈D

Cj
T

µ
Cj
r (x)

2 +
∑

x∈DT
µ

Cj
r (x)

(3)

where D
Cj

T stands for a subset of the training set in which the instances are affected
to the class Cj . The fuzzy reasoning method used is the so-called voting-based
method.11,25 In this approach, each fuzzy rule makes a vote for its consequent
class. The vote strength of the rule is calculated as the product of the firing degree
µ

Cj
r (x) and the certainty degree CDj . The final decision given as the output is the

class with the largest value of the accumulated vote, which is calculated as follows:

Vh =
∑

Rj∈RB
Cj=h

µCj
r (x) ∗ CDj (4)

where h is the class for which the accumulated vote is computed. In this approach,
all compatible fuzzy rules are responsible for the classification, which should provide
a higher robustness. It must be pointed that when there is no rule of any class
covering a given example x, a rule stretching procedure, explained in Sec. 3.4, is
executed.

3.4. Rule stretching

In case some examples of the training dataset not covered by any rule exist, a
procedure, called rule stretching or rule generalisation, is applied. This algorithm
enlarges the covering surface of the rules by deleting at least one antecedent from
each of the rules. The generalization procedure aims to reach a minimal state i.e.
only the minimal amount of antecedents are removed. In FURIA, rule stretching
treats antecedents in the same order in which they were learned. Thus, it intro-
duces implicitly a degree of importance among the antecedents, which decreases
the complexity of the approach. The final list is then obtained by cutting the entire
antecedents list at the point where an antecedent not satisfying a given example
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is encountered. To check that general rules are obtained, the following measure is
used:

p + 1
p + n + 2

× k + 1
m + 2

where p and n are respectively the number of positive and negative examples covered
by the rule, while m is the size of the entire antecedents list and k is the size of
the generalized list. Note that the second part of the measure aims at discarding
heavily pruned rules, as pruning is rather decreasing the relevance of the rule.

The interested reader is referred to23,24 for more details regarding the description
of FURIA and its improvements with respect to the RIPPER algorithm.

4. Bagging FURIA-Based Fuzzy MCSs

In this section we will detail how the FURIA fuzzy MCSs are designed. A normalized
dataset is split into two parts, a training set and a test set. The training set is
submitted to an instance selection and a feature selection procedures in order to
provide individual training sets (the so-called bags) to train FURIA classifiers.
After the training, we get a FURIA-based fuzzy MCS, which is validated using the
training and the test errors, as well as a measure of complexity based on the total
number of component classifiers obtained from FURIA. The whole procedure is
graphically presented in Fig. 1.
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Fig. 1. Our framework: after the instance and the feature selection procedures, the component
fuzzy classifiers are derived by the FURIA learning method. Finally, the output is obtained using
a voting-based combination method.
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4.1. FURIA-based fuzzy MCS design approaches

In Refs. 34 and 44, it was shown that a combination between bagging and feature
selection composed a general design procedure which usually leads to good MCS
designs, regardless the classifier structure considered. Hence, we decided to follow
that idea and we integrate FURIA into a framework of that kind. We aim to com-
bine the diversity induced by the MCS design methods and the robustness of the
FURIA method in order to derive good performance fuzzy rule-based MCSs for
high dimensional problems. We also try a combination of FURIA with bagging and
feature selection separately in order to analyze which is the best setting for the
design of FURIA-based fuzzy MCSs.

The term bagging is an acronym of bootstrap aggregation and refers to the
first successful method proposed to generate MCSs.7 This approach was originally
designed for decision tree-based classifiers, however it can applied to any type of
model for classification and regression problems. Bagging is based on bootstrap and
consists of reducing the variance of the classification by averaging many classifiers
that have individually been tuned to random samples that follow the sample distri-
bution of the training set. The final output of the model is the most frequent value,
called voting, of the learners considered. Bagging is the most effective when dealing
with unstable classifiers, what means a small change in the training set can cause a
significant change in the final model. In addition, it is recommended when a given
dataset is composed of small amount of examples. Furthermore, bagging enables a
parallel and independent learning of the learners in the ensemble.

In this contribution, the bags are generated with the same size as the original
training set, as commonly done. Three different feature selection methods, random
subspace,20 mutual information-based feature selection (MIFS),3 and a random-
greedy feature selection method based on MIFS and the GRASP approach,18 are
considered. For each feature selection algorithm three different feature subsets of
different sizes, which are based on the initial number of features in the classification
problem, are tested.

Random subspace is a method in which a subset of features is randomly selected
from the original dataset. Alternatively, the greedy Battiti’s MIFS method is based
on a forward greedy search using the mutual information measure,43 with regard
to the class. This method orders a given set S of features by the information they
bring to classify the output class considering the already selected features. The
mutual information I(C, F ) for a given feature F is defined as:

I(C, F ) =
∑
c,f

P (c, f) log
P (c, f)

P (c)P (f)
(5)

where P (c), P (f) and P (c, f) are respectively the values of the density function
for the class, the feature variables, and the joint probability density. In the MIFS
method, a first feature f is selected as the one that maximizes I(C, f), and then the
features f that maximize Q(f) = I(C, f) − β

∑
s∈S I(f, s) are sequentially chosen
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until S reaches the desired size. β is a coefficient to reduce the influence of the
information brought by the already selected features.

The random-greedy variant is an approach where the set is generated by it-
eratively adding features randomly chosen from a restricted candidate list (RCL)
composed of the best τ percent features according to the Q measure at each selec-
tion step. Parameter τ is used to control the amount of randomness injected in the
MIFS selection. With τ = 0, we get the original MIFS method, while with τ = 1,
we get the random subspace method.

Random search such as random subspace for feature selection is a well-known
approach in the multiclassifiers research field.4,5,8,17,20 Nevertheless, the use of a
heuristic such as a randomized variant of greedy Battiti’s MIFS3 combined with
FURIA, which is a tree-based fuzzy rule generation approach, may lead to a perfor-
mance improvement. Note that the greedy Battiti’s MIFS leads always to the same
subset of features, thus this approach fails to provide MCSs with enough diver-
sity when considered as the only MCS approach, i.e., without being combined with
bagging. No matter which its size is, such ensemble will always provide the same re-
sult and will be skipped in the experimentation part regarding FURIA-based fuzzy
MCSs combined with feature selection.

Finally, no weights are considered to combine the outputs of the component
classifiers to take the final MCS decision, but a pure voting combination method is
applied: the ensemble class prediction will directly be the most voted class in the
component classifiers output set.

5. Experiments and Analysis of Results

This section presents all the experiments performed. Section 5.1 introduces the ex-
perimental setup. In Sec. 5.2 we check the good quality of single FURIA dealing
with high dimensional problems with many features. Section 5.3 presents the com-
bination of FURIA-based fuzzy MCSs with bagging, but without feature selection.
Section 5.4 is devoted to the construction of FURIA-based fuzzy MCSs combined
with feature selection only. Then, Sec. 5.5 shows results of FURIA-based fuzzy
MCSs combined with bagging and feature selection. Section 5.6 summarizes all the
experiments developed reporting an advantage of our FURIA-based fuzzy MCS
with bagging and compares them against some other well established MCS design
methodologies such as bagging decision trees, random forests, and Ishibuchi-based
fuzzy MCSs, which is based on the same fuzzy MCS design methodology but with
a different fuzzy classifier design method.

5.1. Experimental setup

To evaluate the performance of the generated FURIA-based fuzzy MCSs, we have
selected twenty one datasets with different characteristics concerning the number
of examples, features, and classes from the UCI machine learning repository (see
Table 1). In order to compare the accuracy of the considered classifiers, we used
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Table 1. Datasets considered.

Abbrev. Dataset #Examples #Attr #Classes

aba abalone 4178 7 28

bre breast 700 9 2

gla glass 214 9 7

hea heart 270 13 2

ion ionosphere 352 34 2

let letter 20000 16 26

mag magic 19020 10 2

opt optdigits 5620 64 10

pbl pblocks 5474 10 5

pen pendigits 10992 16 10

pho phoneme 5404 5 2

pim pima 768 8 2

sat sat 6436 36 6

seg segment 2310 19 7

son sonar 208 60 2

spa spambase 4602 57 2

tex texture 5500 40 11

veh vehicle 846 18 4

wav waveform 5000 40 3

win wine 178 13 3

yea yeast 1484 8 10

Dietterich’s 5×2-fold cross-validation (5×2-cv), which is considered to be superior
to paired k-fold cross validation in classification problems.16

Three different feature subsets of different sizes (called Small, Medium, and
Large), which are relative with respect to the initial size of features of the classifi-
cation problem, are tested for the FURIA-based fuzzy MCSs using feature selection.
The considered rule to select a feature subset size is following: if the size of an initial
feature set is smaller than 10, then the Small feature subset size is equal to 3, the
Medium feature subset size is equal to 4, and the Large feature subset size is equal
to 5. If the size of an initial feature set is between 10 and 20, then the Small feature
subset size is equal to 5, the Medium feature subset size is equal to 7, the Large
feature subset size is equal to 9. Finally, if a size of an initial feature set is larger
than 30, then the Small feature subset size is roughly equal to 10% of the initial
set, the Medium feature subset size is roughly equal to 20% of the initial set, and
the Large feature subset size is roughly equal to 30% of the initial set (see Table 2).

As described in Sec. 4.1, these features are to be selected by means of three
different approaches: the greedy Battiti’s MIFS filter feature selection method,3

the Battiti’s method with GRASP (with τ equal to 0.5, see Sec. 4.1), and random
subspace.20 Battiti’s method has been run by considering a discretization of the
real-valued attribute domains in ten parts and setting the β coefficient to 0.1.

The FURIA-based fuzzy MCSs generated are initially comprised by 3, 5, 7, and
10 classifiers in order to evaluate the impact of the ensemble size in the accuracy
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Table 2. Feature subset sizes for each of the datasets considered.

Dataset #Attr. Small feat. subset size Medium feat. subset size Large feat. subset size

abalone 7 3 4 5

breast 9 3 4 5

glass 9 3 4 5

heart 13 5 7 9

ionosphere 34 5 7 9

letter 16 5 7 9

magic 10 5 7 9

optdigits 64 6 12 18

pblocks 10 5 7 9

pendigits 16 5 7 9

phoneme 5 3 4 5

pima 8 3 4 5

sat 36 4 8 12

segment 19 5 7 9

sonar 60 6 12 18

spambase 57 6 12 18

texture 40 4 8 12

vehicle 18 5 7 9

waveform 40 4 8 12

wine 13 5 7 9

yeast 8 3 4 5

of the obtained MCS. A small number of component fuzzy classifiers (up to 10) is
considered in this first study. Larger numbers are left for future works as well as
the consideration of a classifier selection mechanism.

All the experiments have been run in a cluster at the University of Granada
on Intel quadri-core Pentium 2.4 GHz nodes with 2 GBytes of memory, under the
Linux operating system.

As there are many different variants and parameter values to be tested, analysis
of the obtained results will be performed in parts and following an incremental
approach for the sake of comprehensibility.

Despite of accuracy, which is not always believed to be the best choice, more
advanced metrics are considered. From a confusion matrix presented in Table 3,
which considers independently positive and negative class examples, one can obtain
four performance metrics considering positive and negative classes independently:

• True positive rate. It is defined as the percentage of positive examples correctly
classified as being of the positive class TPr = TP

TP+FN .
• True negative rate. It is defined as the percentage of negative examples correctly

classified as being of the negative class TNr = TN
FP+TN .

• False positive rate. It is defined as the percentage of negative examples incorrectly
classified as being of the positive class FPr = FP

FP+TN .
• False negative rate. It is defined as the percentage of positive examples incorrectly

classified as being of the negative class FNr = FN
TP+FN
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Table 3. Confusion matrix representing the metrics assessing a binary classification problem.

Prediction

Positive Class Negative Class

Real value
Positive Class True Positive (TP) False Negative (FN)

Negative Class False Positive (FP) True Negative (TN)

A well-known method of presenting the performance of classification is the
Receiver Operating Characteristic (ROC) curve,6 showing a trade-off between the
benefits (TPr) and costs (FPr) of a classifier. From that, the Area Under the ROC
Curve (AUC)22 can be obtained, which summarizes the performance of the classi-
fier. The AUC is calculated as follows:

AUC =
1 + TPr − FPr

2
(6)

Since we deal with multi-class problems in opposite to what the AUC metric was
designed for (in principle, it only serves for binary problems), we use the well-known
one-versus-all strategy. In this case, for each class we calculate the AUC treating
all the examples belonging to the given class as positive ones and the examples
belonging to any other class as the negative ones. In the final results we consider
the average AUC value.

We use this metric to perform the final comparison between the best choices
of FURIA-based fuzzy MCSs against some other well established MCS design
methodologies such as bagging decision trees and random forests, as well as against
Ishibuchi-based fuzzy MCSs.

5.2. Single FURIA-based fuzzy classifier for high dimensional

problems

In the first place, we have conducted experiments on a single FURIA-based fuzzy
classifier without feature selection in order to observe its behavior on the different
datasets selected. Notice that, some of them can be considered to be high dimen-
sional, either with respect to the number of features or with respect to the number
of examples.

We may observe that FURIA in isolation is able to deal with high dimensional
datasets with many features (for instance optdigits, which has 64 features) as well
as with many examples (for instance letter, which has 20.000 examples), providing
good quality results (see Table 4). Our aim in the reminder of this section is to
check if the use of fuzzy MCSs based on FURIA allows us to improve the latter
capability by obtaining a more accurate classification system.

5.3. Bagging FURIA-based fuzzy MCSs

In this subsection, we would like to analyze the behavior of bagging FURIA-based
fuzzy MCSs composed of a small number of classifiers. As said, ensembles of sizes
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Table 4. Results for a single FURIA-based fuzzy classifier without feature selection.

(a) First subset of datasets

FURIA single classifier — All features

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.781 0.023 0.336 0.141 0.041 0.038 0.143 0.633 0.018 0.003

test err. 0.805 0.049 0.377 0.227 0.163 0.123 0.157 0.683 0.033 0.027

(b) Second subset of datasets

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.132 0.193 0.042 0.008 0.154 0.043 0.007 0.331 0.043 0.004 0.433

test err. 0.160 0.245 0.122 0.042 0.298 0.070 0.055 0.364 0.187 0.056 0.441

3, 5, 7, and 10 are considered. Table 5 collects the obtained results (the best result
for each dataset is shown in boldface). As expected, it can be seen how the use
of bagging outperforms the single FURIA-based fuzzy classifier (Table 4) in 19
out of 21 cases for all sizes of the ensembles in terms of testing error. Overall, it
outperforms a single FURIA-based fuzzy classifier in 76 out of 84 cases (4 ensemble
sizes × 21 datasets). Pima and wine are the only datasets where the single FURIA-
based fuzzy classifier turned out to be a better choice.

Thus, we may conclude that FURIA-based fuzzy MCSs with bagging only is a
good approach.

Moreover, we would like to provide an analysis of the influence of the ensemble
size on the test error. We will compare the following ensemble size parameters in a
pairwise manner: 3 vs. 5; 5 vs. 7; and 7 vs. 10. Comparing the ensemble size of 3
against 5, it can be noticed that bagging FURIA-based fuzzy MCSs composed of
5 classifiers obtain the best results in 20 out of 21 cases (+1 tie). Then, comparing
the ensemble size of 5 against 7, it can be noticed that bagging FURIA-based fuzzy
MCSs composed of 7 classifiers obtain the best results in 15 out of 21 cases (+5
ties). Finally, comparing the ensemble size of 7 against 10, it can be noticed that
bagging FURIA-based fuzzy MCSs composed of 10 classifiers obtain the best results
in 15 out of 21 cases (+2 ties). It can be seen that globally, the larger the number
of classifiers, the lower the test error. However, in some cases (4 out of 21, +2
ties) bagging FURIA-based fuzzy MCSs composed of 7 classifiers outperform those
composed of 10 classifiers. Hence, the optimal number of component classifiers for
the bagging FURIA-based fuzzy MCSs seem to be an important parameter to keep
in mind when designing a classifier system of this kind. As said, we will consider
this issue in future works.

5.4. Comparison of two feature selection approaches for the

generation of FURIA-based fuzzy MCSs

In this subsection we present results from the experiment conducted concerning
the use of two different feature selection approaches to generate FURIA-based fuzzy



June 24, 2011 8:37 WSPC/118-IJUFKS S0218488511007155
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Table 5. Results for FURIA-based fuzzy MCSs with bagging.

(a) First subset of datasets

FURIA — Bagging with all features

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.617 0.013 0.140 0.078 0.041 0.040 0.114 0.321 0.015 0.006

test err. 0.771 0.045 0.362 0.204 0.156 0.119 0.139 0.664 0.031 0.024

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.586 0.012 0.111 0.057 0.035 0.027 0.111 0.286 0.014 0.004

test err. 0.760 0.044 0.325 0.189 0.156 0.103 0.136 0.652 0.030 0.019

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.578 0.010 0.096 0.052 0.038 0.021 0.110 0.270 0.014 0.003

test err. 0.756 0.044 0.313 0.178 0.156 0.096 0.136 0.648 0.030 0.019

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.570 0.009 0.091 0.059 0.031 0.016 0.113 0.246 0.015 0.002

test err. 0.755 0.046 0.318 0.189 0.152 0.091 0.138 0.641 0.030 0.017

(b) Second subset of datasets

FURIA — Bagging with all features

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.090 0.115 0.037 0.013 0.069 0.032 0.012 0.098 0.044 0.018 0.252

test err. 0.144 0.259 0.115 0.041 0.249 0.064 0.050 0.294 0.171 0.067 0.439

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.085 0.098 0.029 0.009 0.049 0.028 0.008 0.080 0.030 0.014 0.235

test err. 0.141 0.253 0.108 0.039 0.238 0.062 0.039 0.284 0.164 0.061 0.426

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.084 0.092 0.026 0.007 0.035 0.026 0.006 0.063 0.024 0.011 0.229

test err. 0.138 0.250 0.106 0.036 0.232 0.061 0.037 0.282 0.158 0.069 0.416

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.086 0.075 0.025 0.006 0.018 0.028 0.004 0.051 0.017 0.006 0.223

test err. 0.141 0.246 0.105 0.035 0.230 0.061 0.036 0.276 0.156 0.060 0.408

MCSs, namely random and randomized greedy feature selection (see Sec. 4.1). Note
that, as mentioned in that section, greedy feature selection is not considered due
to its lack of diversity.

Tables 6, 9 and 12 presents a set of FURIA-based fuzzy MCSs based on Random-
greedy feature selection with Small, Medium, and Large feature subset sizes respec-
tively, while Tables 7, 10 and 13 present a set of FURIA-based fuzzy MCSs based on
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Table 6. Results for FURIA MCSs with Random-Greedy feature selection. Small feature subsets.

(a) First subset of datasets

FURIA — Random-greedy feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.779 0.027 0.274 0.124 0.048 0.265 0.170 0.628 0.018 0.065

test err. 0.804 0.044 0.389 0.198 0.147 0.301 0.179 0.628 0.032 0.110

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.781 0.027 0.256 0.118 0.051 0.181 0.168 0.628 0.018 0.053

test err. 0.803 0.041 0.377 0.189 0.142 0.222 0.178 0.628 0.032 0.092

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.778 0.026 0.231 0.121 0.050 0.174 0.167 0.628 0.018 0.048

test err. 0.802 0.040 0.366 0.192 0.134 0.213 0.176 0.628 0.032 0.085

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.784 0.027 0.225 0.122 0.043 0.154 0.169 0.628 0.018 0.048

test err. 0.806 0.043 0.352 0.188 0.140 0.193 0.178 0.628 0.032 0.088

(b) Second subset of datasets

FURIA — Random-greedy feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.203 0.216 0.142 0.027 0.108 0.139 0.118 0.298 0.241 0.005 0.478

test err. 0.217 0.252 0.166 0.059 0.264 0.149 0.175 0.351 0.271 0.065 0.544

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.199 0.215 0.129 0.026 0.083 0.133 0.075 0.286 0.206 0.008 0.468

test err. 0.212 0.248 0.150 0.059 0.254 0.143 0.124 0.350 0.240 0.055 0.539

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.199 0.215 0.123 0.024 0.084 0.132 0.071 0.280 0.188 0.006 0.448

test err. 0.212 0.248 0.143 0.055 0.252 0.144 0.119 0.349 0.219 0.059 0.525

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.200 0.215 0.118 0.026 0.065 0.135 0.057 0.285 0.158 0.004 0.434

test err. 0.214 0.248 0.138 0.056 0.249 0.145 0.100 0.349 0.196 0.055 0.509

Random subspace feature selection with Small, Medium, and Large feature subset
sizes respectively (the best result for each dataset is shown in boldface). Each table
shows different sizes of MCSs from 3 to 10, namely 3, 5, 7, and 10.

A comparison between FURIA-based fuzzy MCSs based on Random-greedy fea-
ture selection and FURIA-based fuzzy MCSs based on Random subspace feature
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Table 7. Results for FURIA MCSs with Random subspace feature selection. Small feature subsets.

(a) First subset of datasets

FURIA — Random subspace feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.792 0.031 0.265 0.147 0.053 0.416 0.178 0.630 0.021 0.053

test err. 0.815 0.047 0.395 0.228 0.163 0.446 0.186 0.631 0.035 0.096

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.792 0.026 0.212 0.142 0.049 0.311 0.169 0.628 0.020 0.029

test err. 0.814 0.041 0.363 0.244 0.159 0.347 0.179 0.628 0.035 0.062

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.787 0.026 0.207 0.138 0.048 0.282 0.166 0.628 0.022 0.021

test err. 0.809 0.039 0.384 0.235 0.157 0.315 0.175 0.628 0.034 0.047

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.783 0.027 0.204 0.129 0.041 0.252 0.201 0.628 0.021 0.020

test err. 0.808 0.039 0.380 0.217 0.154 0.285 0.207 0.628 0.035 0.045

(b) Second subset of datasets

FURIA — Random subspace feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.183 0.223 0.174 0.064 0.145 0.180 0.141 0.284 0.354 0.011 0.489

test err. 0.200 0.255 0.200 0.114 0.291 0.187 0.203 0.375 0.385 0.064 0.527

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.174 0.221 0.129 0.034 0.120 0.170 0.097 0.279 0.343 0.005 0.458

test err. 0.193 0.254 0.149 0.073 0.292 0.177 0.151 0.361 0.370 0.054 0.513

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.170 0.218 0.119 0.036 0.092 0.160 0.082 0.271 0.321 0.003 0.505

test err. 0.189 0.259 0.140 0.076 0.271 0.164 0.132 0.354 0.349 0.040 0.554

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.177 0.211 0.116 0.030 0.060 0.165 0.061 0.264 0.247 0.003 0.517

test err. 0.195 0.249 0.135 0.071 0.246 0.171 0.108 0.343 0.275 0.042 0.573

selection with Small, Medium, and Large feature subset sizes respectively in is
presented in Tables 8, 11 and 14. These tables are formulated in terms of a sum-
marized matrix showing the number of wins, ties, and loses obtained for the two
feature selection algorithms for each ensemble size.
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Table 8. Comparison of results for each of the feature selection approaches for Small feature

subset size of FURIA-based fuzzy MCSs generated with feature selection only in the form of a
summarized matrix.

Random-greedy vs. Random

# Classif. W T L

3 17 0 4

5 13 2 6

7 14 1 6

10 13 1 7

Overall 57 4 23

We will do three types of analyses of the obtained results. In the first analysis,
we will compare the two different feature selection algorithms between them, in the
second we will compare the different sizes of feature selection subsets considered,
and finally we will benchmark the FURIA-based fuzzy MCS derived by the best
previous feature selection approach against the single FURIA-based fuzzy classifier.

5.4.1. Feature selection approaches

In our first analysis, we are analyzing the influence of the use of the two different
feature selection algorithms. We will consider Small, Medium, and Large feature
subsets separately. We will first focus on Small feature subsets (Table 8). From this
table, it can be noticed that the Random-greedy approach seems to perform better
when considering Small feature subsets overall.

Let us consider now the analysis of Medium feature subsets (Table 11). From this
table, it can be noticed that the conclusion drawn in the previous paragraph is not as
clear as in the previous case. Notice that, the performance of the Random subspace
approach improves as long as the number of component classifiers is increased
obtaining better results when considering the ensemble size 10.

Finally, let us consider Large feature subsets (Table 14). From this table, it can
be noticed that the Random subspace approach again performs better as long as
the ensemble size is increased.

In summary, taking into account all the ensemble sizes, the Random-greedy
approach obtains the best results in 139 out of 252 cases (+24 ties), while Random
subspace does so in 89 cases (+24 ties). The summary of the results is presented in
Table 15 in terms of a summarized matrix showing the number of wins, ties, and
loses obtained for the two feature selection algorithms for each ensemble size. In
view of these results, we will consider Random-greedy as the best choice from now
on.

5.4.2. Feature selection subset sizes

In our second analysis, we are comparing the different sizes (Small, Medium,
and Large) for the considered feature selection subsets in order to determine the
influence of this parameters. From the results reported in Table 16, it can be
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Table 9. Results for FURIA MCSs with Random-Greedy feature selection. Medium feature

subsets.

(a) First subset of datasets

FURIA — Random-greedy feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.786 0.029 0.209 0.118 0.042 0.092 0.163 0.630 0.016 0.014

test err. 0.812 0.043 0.373 0.198 0.160 0.155 0.174 0.631 0.029 0.050

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.785 0.025 0.192 0.117 0.037 0.080 0.164 0.628 0.016 0.011

test err. 0.810 0.040 0.352 0.193 0.154 0.139 0.175 0.629 0.029 0.045

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.779 0.022 0.190 0.113 0.037 0.068 0.163 0.628 0.016 0.013

test err. 0.805 0.042 0.353 0.185 0.142 0.124 0.174 0.628 0.029 0.046

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.781 0.021 0.199 0.118 0.037 0.064 0.164 0.628 0.017 0.012

test err. 0.807 0.043 0.363 0.196 0.145 0.119 0.175 0.628 0.029 0.045

(b) Second subset of datasets

FURIA — Random-greedy feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.159 0.208 0.083 0.022 0.052 0.102 0.029 0.260 0.118 0.008 0.400

test err. 0.184 0.244 0.129 0.051 0.272 0.114 0.087 0.336 0.187 0.059 0.481

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.154 0.212 0.077 0.030 0.045 0.098 0.022 0.252 0.105 0.005 0.398

test err. 0.182 0.247 0.123 0.062 0.252 0.111 0.069 0.331 0.176 0.063 0.481

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.155 0.213 0.075 0.019 0.046 0.097 0.016 0.245 0.095 0.004 0.398

test err. 0.183 0.245 0.119 0.045 0.249 0.110 0.058 0.332 0.169 0.062 0.480

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.157 0.213 0.073 0.019 0.033 0.099 0.013 0.243 0.089 0.004 0.400

test err. 0.184 0.247 0.117 0.041 0.252 0.111 0.051 0.328 0.164 0.065 0.482

noticed that the Large feature subsets for generating FURIA-based fuzzy MCSs
significantly outperform the other sizes. This is a sensible result keeping in mind
that FURIA incorporates an advanced feature selection criterion based on an infor-
mation gain measure. This conclusion is confirmed in Table 17 showing average and
standard deviation values computed for each of the feature selection approaches for
the different ensemble sizes.
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Table 10. Results for FURIA MCSs with Random subspace feature selection. Medium feature

subsets.

(a) First subset of datasets

FURIA — Random subspace feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.804 0.030 0.216 0.138 0.054 0.260 0.154 0.628 0.018 0.010

test err. 0.825 0.043 0.372 0.227 0.170 0.324 0.164 0.628 0.032 0.046

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.787 0.028 0.200 0.140 0.046 0.154 0.154 0.628 0.017 0.006

test err. 0.810 0.043 0.361 0.244 0.161 0.216 0.164 0.628 0.030 0.030

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.783 0.027 0.196 0.121 0.038 0.143 0.147 0.628 0.016 0.004

test err. 0.807 0.042 0.363 0.213 0.156 0.203 0.158 0.628 0.029 0.023

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.767 0.027 0.179 0.130 0.036 0.115 0.158 0.628 0.016 0.003

test err. 0.795 0.043 0.346 0.218 0.153 0.173 0.167 0.628 0.029 0.021

(b) Second subset of datasets

FURIA — Random subspace feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.157 0.225 0.088 0.029 0.042 0.133 0.027 0.268 0.268 0.004 0.466

test err. 0.182 0.259 0.132 0.069 0.235 0.144 0.085 0.338 0.311 0.060 0.510

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.155 0.216 0.077 0.025 0.025 0.103 0.019 0.251 0.204 0.004 0.451

test err. 0.181 0.257 0.122 0.066 0.228 0.112 0.069 0.328 0.247 0.049 0.503

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.148 0.214 0.074 0.022 0.013 0.101 0.015 0.244 0.185 0.003 0.438

test err. 0.173 0.257 0.119 0.057 0.208 0.110 0.059 0.326 0.226 0.044 0.493

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.149 0.213 0.072 0.020 0.004 0.101 0.012 0.244 0.171 0.002 0.421

test err. 0.176 0.254 0.117 0.054 0.198 0.110 0.053 0.322 0.215 0.036 0.475

Considering the conclusions obtained in the first analysis (see previous subsec-
tion) and the current ones, from now on we will select the Random-greedy feature se-
lection approach with Large feature subsets when dealing with FURIA-based fuzzy
MCSs with feature selection in isolation. In Table 17 it can be seen that FURIA-
based fuzzy MCSs based on Random-greedy outperform FURIA-based fuzzy MCSs
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Table 11. Comparison of results for each of the feature selection approaches for Medium feature

subset size of FURIA-based fuzzy MCSs generated with feature selection only in the form of a
summarized matrix.

Random-greedy vs. Random

# Classif. W T L

3 13 1 7

5 11 2 8

7 10 5 6

10 7 4 10

Overall 41 12 31

based on Random subspace for all the feature subset sizes. Notice that, the global
average and standard deviation values, which are presented in the last column of
the table, also show how Random-greedy presents an advantage over the latter
approach.

5.4.3. Benchmarking against the single FURIA-based fuzzy classifier

In our third analysis, we are comparing the FURIA-based fuzzy MCS derived by
the best previous feature selection approach against the single FURIA-based fuzzy
classifier. In view of Table 18, it can be noticed that the performance of FURIA-
based fuzzy MCS derived by the Random-greedy is lower than those obtained by the
bagging FURIA-based fuzzy MCS without feature selection (see Sec. 5.3). While
the latter approach outperformed the single classifier in 76 out of 84 cases, the
former one only does so in 64 cases. This performance decrease is related to the
already mentioned inner feature selection mechanism on FURIA, which could make
bagging better than an additional feature selection approach to induce diversity in
a FURIA-based fuzzy MCS. This issue will be analyzed more deeply in Sec. 5.6.

5.5. Combination of FURIA with bagging and feature selection

In this subsection, we present the results of the FURIA-based fuzzy MCSs obtained
from the combination of bagging and the three feature selection algorithms consid-
ered (see Sec. 4.1). In the previous subsection we have skipped Greedy Battiti’s
MIFS because of its inability to induce an appropriate diversity, however here it
could become a good choice when combined with bagging. This experiment is made
with the aim to check if, as expected, the additional diversity induced when com-
bining both MCS design methodologies allows us to generate the most accurate
ensembles as happened with other kinds of classifiers.13,14

Each table (Tables from 19 to 29) presents a set of FURIA-based fuzzy MCSs
with different ensemble sizes. The combination of each feature selection algorithm
with a different feature subset size is shown in a different table.

A comparison between FURIA-based fuzzy MCSs based on bagging and each
feature selection algorithm with Small, Medium, and Large feature subset sizes
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Table 12. Results for FURIA MCSs with Random-Greedy feature selection. Large feature subsets.

(a) First subset of datasets

FURIA — Random-greedy feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.772 0.023 0.196 0.104 0.041 0.052 0.140 0.629 0.015 0.006

test err. 0.797 0.040 0.356 0.200 0.150 0.121 0.153 0.632 0.030 0.036

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.770 0.021 0.198 0.105 0.042 0.041 0.139 0.628 0.015 0.004

test err. 0.796 0.041 0.363 0.204 0.152 0.105 0.152 0.630 0.029 0.030

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.761 0.020 0.204 0.108 0.039 0.039 0.139 0.628 0.015 0.004

test err. 0.789 0.043 0.361 0.206 0.152 0.102 0.151 0.629 0.028 0.027

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.757 0.018 0.208 0.107 0.036 0.037 0.139 0.627 0.015 0.003

test err. 0.787 0.043 0.364 0.202 0.149 0.101 0.151 0.628 0.028 0.026

(b) Second subset of datasets

FURIA — Random-greedy feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.133 0.205 0.063 0.019 0.034 0.084 0.010 0.229 0.074 0.004 0.362

test err. 0.161 0.246 0.121 0.043 0.247 0.098 0.054 0.322 0.174 0.058 0.438

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.131 0.203 0.057 0.018 0.032 0.078 0.007 0.227 0.067 0.003 0.362

test err. 0.160 0.245 0.114 0.040 0.255 0.091 0.046 0.313 0.169 0.050 0.447

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.132 0.204 0.055 0.017 0.025 0.075 0.006 0.228 0.065 0.004 0.358

test err. 0.160 0.244 0.113 0.039 0.245 0.088 0.044 0.316 0.167 0.048 0.446

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.135 0.205 0.053 0.018 0.022 0.079 0.006 0.223 0.062 0.004 0.361

test err. 0.163 0.246 0.110 0.039 0.250 0.091 0.041 0.311 0.165 0.056 0.448

respectively in terms of a summarized matrix showing the number of wins, ties,
and loses obtained for the three feature selection algorithms for each ensemble size
is presented in Tables from 22, 26, and 30 to 33.

We will do three types of analyses taking into account the test errors ob-
tained. In the first analysis, we will compare the performance of the three different
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Table 13. Results for FURIA MCSs with Random subspace feature selection. Large feature

subsets.

(a) First subset of datasets

FURIA — Random subspace feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.772 0.024 0.163 0.129 0.035 0.115 0.142 0.629 0.015 0.005

test err. 0.804 0.046 0.341 0.229 0.161 0.195 0.157 0.631 0.029 0.031

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.760 0.022 0.142 0.108 0.029 0.057 0.140 0.628 0.014 0.003

test err. 0.792 0.042 0.320 0.206 0.152 0.127 0.153 0.628 0.028 0.022

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.759 0.021 0.142 0.110 0.033 0.051 0.139 0.628 0.014 0.002

test err. 0.793 0.037 0.324 0.204 0.147 0.119 0.152 0.628 0.028 0.018

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.754 0.018 0.146 0.107 0.029 0.042 0.140 0.628 0.014 0.002

test err. 0.786 0.037 0.316 0.206 0.147 0.105 0.153 0.628 0.028 0.015

(b) Second subset of datasets

FURIA — Random subspace feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.123 0.207 0.063 0.015 0.030 0.086 0.011 0.234 0.161 0.007 0.426

test err. 0.155 0.251 0.125 0.048 0.233 0.099 0.060 0.318 0.225 0.059 0.503

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.122 0.213 0.058 0.013 0.013 0.077 0.007 0.222 0.131 0.007 0.380

test err. 0.153 0.256 0.116 0.042 0.214 0.089 0.047 0.315 0.201 0.061 0.454

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.120 0.213 0.055 0.015 0.010 0.074 0.005 0.220 0.119 0.005 0.370

test err. 0.153 0.254 0.114 0.046 0.206 0.089 0.044 0.316 0.190 0.057 0.438

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.123 0.207 0.052 0.015 0.005 0.075 0.005 0.217 0.102 0.002 0.364

test err. 0.156 0.253 0.110 0.044 0.198 0.090 0.041 0.310 0.180 0.054 0.432

feature selection algorithms, in the second analysis we will compare the different
sizes (Small, Medium, and Large) for the feature selection subsets, and finally we
will benchmark the FURIA-based fuzzy MCS derived by the best previous feature
selection approach against the single FURIA-based fuzzy classifier.
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Table 14. Comparison of results for each of the feature selection approaches for Large feature

subset size of FURIA-based fuzzy MCSs generated with feature selection only in the form of a
summarized matrix.

Random-greedy vs. Random

# Classif. W T L

3 14 0 7
5 12 1 8
7 9 3 9

10 6 4 11

Overall 41 8 35

Table 15. Comparison of results for each of the feature selection approaches for all feature subset
sizes of FURIA-based fuzzy MCSs generated with feature selection only in the form of a summa-
rized matrix.

Random-greedy vs. Random

# Classif. W T L

3 44 1 18
5 36 5 22
7 33 9 21

10 26 9 28

Overall 139 24 89

Table 16. Comparison of results for each of the feature subset sizes of FURIA-based fuzzy MCSs
generated with feature selection only in the form of a summarized matrix.

Small Medium Large

# Classif. W T L W T L W T L

3 2 1 39 5 1 36 34 0 8
5 5 1 36 5 1 36 31 1 10
7 3 2 37 2 2 38 34 1 7

10 6 3 33 2 3 37 31 3 8

Overall 16 7 145 14 7 147 130 5 33

Table 17. Average results for each of the feature selection approaches of FURIA-based fuzzy
MCSs generated with feature selection only.

F.S. approach 3 Cl. 5 Cl. 7 Cl. 10 Cl. Global

Random-greedy avg. 0.232 0.225 0.222 0.221 0.225
std. dev. 0.199 0.200 0.200 0.200 0.200

Random avg. 0.249 0.234 0.229 0.223 0.234
std. dev. 0.202 0.200 0.202 0.201 0.201

Table 18. Comparison of results for the Random-greedy feature selection approach for Large
feature subset size of FURIA-based fuzzy MCSs generated with feature selection only compared
with single FURIA in the form of a summarized matrix.

Random-greedy vs. Single

# Classif. W T L

3 15 0 6
5 16 2 3
7 17 2 2

10 16 1 4

Overall 64 5 15



June 24, 2011 8:37 WSPC/118-IJUFKS S0218488511007155
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Table 19. FURIA-based fuzzy MCSs for small ensemble sizes with bagging and Greedy feature

selection. Small feature subsets.

(a) First subset of datasets

FURIA — Greedy feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.735 0.030 0.197 0.136 0.044 0.254 0.162 0.532 0.018 0.061

test err. 0.790 0.051 0.375 0.209 0.155 0.300 0.176 0.662 0.034 0.113

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.697 0.027 0.170 0.124 0.045 0.243 0.158 0.529 0.018 0.051

test err. 0.764 0.049 0.360 0.196 0.157 0.290 0.174 0.653 0.034 0.103

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.690 0.025 0.140 0.107 0.050 0.239 0.156 0.532 0.018 0.047

test err. 0.764 0.047 0.337 0.187 0.155 0.286 0.171 0.645 0.033 0.101

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.684 0.025 0.136 0.098 0.047 0.235 0.158 0.538 0.018 0.044

test err. 0.759 0.047 0.337 0.191 0.152 0.281 0.171 0.637 0.033 0.099

(b) Second subset of datasets

FURIA — Greedy feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.176 0.160 0.128 0.019 0.084 0.125 0.095 0.208 0.165 0.028 0.417

test err. 0.204 0.250 0.155 0.044 0.268 0.142 0.166 0.346 0.237 0.074 0.519

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.172 0.157 0.123 0.016 0.059 0.122 0.085 0.194 0.156 0.014 0.408

test err. 0.203 0.244 0.151 0.040 0.249 0.140 0.156 0.340 0.230 0.058 0.515

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.168 0.158 0.121 0.015 0.045 0.122 0.079 0.187 0.154 0.009 0.400

test err. 0.200 0.241 0.149 0.038 0.251 0.139 0.150 0.340 0.227 0.055 0.509

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.168 0.156 0.118 0.014 0.038 0.121 0.079 0.183 0.153 0.003 0.392

test err. 0.199 0.241 0.147 0.037 0.253 0.140 0.149 0.329 0.228 0.045 0.511

5.5.1. Feature selection approaches

In our first analysis, we are comparing the three different feature selection algo-
rithms among them.

Looking at all Small, Medium, and Large feature subsets (Tables 22, 26, and 30)
it can be noticed the same conclusion. The three different feature selection ap-
proaches perform quite similarly.
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Table 20. FURIA-based fuzzy MCSs for small ensemble sizes with with bagging and Random–

greedy feature selection. Small feature subsets.

(a) First subset of datasets

FURIA — Random-greedy feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.779 0.028 0.162 0.116 0.042 0.227 0.156 0.588 0.018 0.065

test err. 0.804 0.045 0.371 0.202 0.152 0.278 0.171 0.650 0.034 0.110

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.781 0.026 0.139 0.103 0.038 0.151 0.154 0.587 0.018 0.053

test err. 0.803 0.044 0.351 0.195 0.147 0.203 0.169 0.640 0.034 0.092

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.778 0.023 0.131 0.096 0.035 0.137 0.154 0.594 0.017 0.048

test err. 0.802 0.042 0.345 0.189 0.143 0.188 0.168 0.633 0.033 0.085

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.784 0.024 0.123 0.100 0.032 0.120 0.157 0.605 0.019 0.048

test err. 0.806 0.043 0.334 0.197 0.143 0.167 0.171 0.630 0.035 0.088

(b) Second subset of datasets

FURIA — Random-greedy feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.175 0.165 0.142 0.033 0.080 0.139 0.118 0.195 0.241 0.005 0.391

test err. 0.204 0.253 0.166 0.069 0.283 0.149 0.175 0.337 0.271 0.065 0.494

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.171 0.163 0.129 0.028 0.058 0.133 0.075 0.172 0.206 0.008 0.387

test err. 0.202 0.245 0.150 0.065 0.281 0.143 0.124 0.325 0.240 0.055 0.490

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.166 0.160 0.123 0.022 0.049 0.132 0.071 0.159 0.188 0.006 0.369

test err. 0.197 0.245 0.143 0.059 0.265 0.144 0.119 0.318 0.219 0.059 0.483

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.166 0.151 0.118 0.022 0.028 0.135 0.057 0.151 0.158 0.004 0.358

test err. 0.197 0.240 0.138 0.060 0.254 0.145 0.100 0.321 0.196 0.055 0.476

In view of the results obtained it is rather hard to point out one of the so-
lutions. Table 31 summarizes the obtained results in the form of a summarized
matrix showing the number of wins, ties, and loses for three feature selection algo-
rithms for each ensemble size. In view of the overall results, collected in the best
row of the table, we can maybe highlight the performance of the Greedy feature



June 24, 2011 8:37 WSPC/118-IJUFKS S0218488511007155
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Table 21. FURIA-based fuzzy MCSs for small ensemble sizes with with bagging and Random

subspace feature selection. Small feature subsets.

(a) First subset of datasets

FURIA — Random subspace feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.792 0.028 0.210 0.125 0.056 0.384 0.160 0.620 0.021 0.053

test err. 0.815 0.050 0.418 0.226 0.175 0.431 0.176 0.649 0.037 0.096

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.792 0.027 0.169 0.111 0.046 0.272 0.153 0.618 0.018 0.029

test err. 0.814 0.046 0.361 0.223 0.160 0.323 0.167 0.639 0.035 0.062

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.787 0.026 0.161 0.096 0.044 0.233 0.148 0.620 0.017 0.021

test err. 0.809 0.041 0.358 0.210 0.156 0.283 0.163 0.632 0.035 0.047

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.783 0.026 0.134 0.101 0.038 0.200 0.181 0.621 0.018 0.020

test err. 0.808 0.041 0.346 0.203 0.149 0.251 0.195 0.630 0.036 0.045

(b) Second subset of datasets

FURIA — Random subspace feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.159 0.194 0.174 0.047 0.073 0.180 0.141 0.188 0.354 0.011 0.472

test err. 0.191 0.270 0.200 0.106 0.309 0.187 0.203 0.367 0.385 0.064 0.554

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.157 0.179 0.129 0.028 0.053 0.170 0.097 0.165 0.343 0.005 0.405

test err. 0.187 0.262 0.149 0.075 0.270 0.177 0.151 0.348 0.370 0.054 0.495

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.148 0.180 0.119 0.026 0.028 0.160 0.082 0.163 0.321 0.003 0.409

test err. 0.180 0.266 0.140 0.075 0.250 0.164 0.132 0.334 0.349 0.040 0.506

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.152 0.165 0.116 0.018 0.013 0.165 0.061 0.143 0.247 0.003 0.412

test err. 0.183 0.261 0.135 0.066 0.258 0.171 0.108 0.322 0.275 0.042 0.500

selection approach to generate FURIA-based fuzzy MCSs when combined with bag-
ging. Nevertheless, the results are still not so conclusive. We will try to draw more
categorical conclusions in the next subsection.
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Table 22. Comparison of results for each of the feature selection approaches for Small feature

subset size of FURIA-based fuzzy MCSs generated with bagging and feature selection in the form
of a summarized matrix.

Greedy Random-greedy Random

# Classif. W T L W T L W T L

3 9 1 11 7 1 13 4 0 17

5 6 1 14 7 1 13 7 0 14

7 6 1 14 6 1 14 8 0 13

10 7 1 13 7 2 12 5 1 15

Overall 28 4 52 27 5 52 24 1 59

5.5.2. Feature selection subset sizes

In our second analysis, we are comparing different sizes (Small, Medium, and Large)
for feature selection subsets. From results reported in Table 32, it can be noticed
that the use of Large feature subsets for generating FURIA-based fuzzy MCSs
considering both bagging and feature selection allows us to significantly outperform
the other feature subset sizes.

Considering a comparison between these three feature selection approaches for
Large feature subsets (i.e., recalling Table 30) it is still ambiguous to determine
which approach is the best one. Although the Greedy feature selection approach
seems to obtain the best performance, this conclusion is deceptive as it is strongly
biased by the combinations with the smallest number of classifiers, which are the
worst performing ones overall.

Because of all the latter facts, let us examine the best overall results for all the
combinations (Tables 19 to 21, 23 to 25, 27 to 29, best result for each dataset shown
in boldface). Both FURIA-based fuzzy MCSs considering bagging with Random-
greedy feature selection and bagging with Random subspace feature selection ob-
tained the best overall performance in 6 out of 21 cases (+4 ties), whereas FURIA-
based fuzzy MCSs considering bagging and Greedy feature selection does so 4 times
(+3 ties). In view of this analysis and that developed in the previous subsection,
from now on we will take into account only the Random-greedy feature selection
with Large feature subsets, when dealing with FURIA-based fuzzy MCSs with bag-
ging and feature selection.

This conclusion is confirmed in Table 33 presenting average and standard de-
viation values computed for each of the feature selection approaches for different
ensemble sizes. It can be seen that FURIA-based fuzzy MCSs based on Random-
greedy outperform FURIA-based fuzzy MCSs based on the other two feature selec-
tion approaches in all the cases. Considering the global average and standard devi-
ation values, which are presented in the last column of the table, Random-greedy
also presented advantage over the other two approaches, although the differences
with respect to the Greedy method are not very significant.
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Table 23. FURIA-based fuzzy MCSs for small ensemble sizes with bagging and Greedy feature

selection. Medium feature subsets.

(a) First subset of datasets

FURIA — Greedy feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.690 0.023 0.184 0.112 0.045 0.117 0.144 0.505 0.017 0.025

test err. 0.779 0.045 0.366 0.190 0.167 0.192 0.167 0.660 0.034 0.067

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.665 0.021 0.150 0.093 0.042 0.103 0.143 0.493 0.015 0.019

test err. 0.763 0.045 0.338 0.185 0.158 0.180 0.164 0.652 0.034 0.062

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.659 0.021 0.132 0.088 0.039 0.097 0.141 0.495 0.014 0.017

test err. 0.760 0.043 0.331 0.181 0.152 0.175 0.162 0.642 0.033 0.059

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.659 0.021 0.132 0.088 0.039 0.097 0.141 0.495 0.014 0.017

test err. 0.760 0.043 0.331 0.181 0.152 0.175 0.162 0.642 0.033 0.059

(b) Second subset of datasets

FURIA — Greedy feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.130 0.137 0.068 0.018 0.073 0.093 0.029 0.148 0.079 0.027 0.332

test err. 0.167 0.256 0.127 0.045 0.263 0.113 0.080 0.329 0.187 0.079 0.482

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.125 0.133 0.062 0.015 0.054 0.091 0.021 0.126 0.067 0.008 0.307

test err. 0.166 0.245 0.122 0.042 0.251 0.110 0.074 0.321 0.180 0.062 0.472

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.120 0.136 0.058 0.014 0.047 0.088 0.018 0.110 0.061 0.009 0.302

test err. 0.163 0.244 0.118 0.039 0.252 0.109 0.070 0.321 0.177 0.059 0.471

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.121 0.124 0.055 0.013 0.032 0.090 0.016 0.103 0.057 0.003 0.302

test err. 0.162 0.243 0.117 0.038 0.260 0.109 0.068 0.317 0.175 0.055 0.466
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Table 24. FURIA-based fuzzy MCSs for small ensemble sizes with with bagging and Random–

greedy feature selection. Medium feature subsets.

(a) First subset of datasets

FURIA — Random-greedy feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.786 0.019 0.163 0.095 0.040 0.089 0.144 0.496 0.016 0.014

test err. 0.812 0.045 0.380 0.203 0.161 0.164 0.166 0.661 0.032 0.050

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.785 0.017 0.126 0.082 0.042 0.067 0.142 0.478 0.015 0.011

test err. 0.810 0.044 0.364 0.198 0.155 0.139 0.164 0.650 0.032 0.045

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.779 0.014 0.121 0.077 0.039 0.052 0.141 0.486 0.014 0.013

test err. 0.805 0.042 0.340 0.194 0.148 0.121 0.163 0.642 0.031 0.046

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.781 0.017 0.112 0.079 0.031 0.044 0.142 0.486 0.015 0.012

test err. 0.807 0.043 0.321 0.185 0.146 0.112 0.163 0.636 0.031 0.045

(b) Second subset of datasets

FURIA — Random-greedy feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.133 0.135 0.083 0.023 0.073 0.102 0.029 0.148 0.118 0.008 0.325

test err. 0.169 0.251 0.129 0.053 0.260 0.114 0.087 0.325 0.187 0.059 0.465

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.128 0.127 0.077 0.025 0.054 0.098 0.022 0.120 0.105 0.005 0.304

test err. 0.166 0.246 0.123 0.058 0.256 0.111 0.069 0.312 0.176 0.063 0.459

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.123 0.125 0.075 0.019 0.032 0.097 0.016 0.104 0.095 0.004 0.292

test err. 0.162 0.247 0.119 0.044 0.245 0.110 0.058 0.304 0.169 0.062 0.453

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.126 0.120 0.073 0.016 0.024 0.099 0.013 0.098 0.089 0.004 0.292

test err. 0.163 0.240 0.117 0.044 0.245 0.111 0.051 0.309 0.164 0.065 0.453
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Table 25. FURIA-based fuzzy MCSs for small ensemble sizes with with bagging and Random

subspace feature selection. Medium feature subsets.

(a) First subset of datasets

FURIA — Random subspace feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.804 0.027 0.187 0.093 0.039 0.233 0.134 0.529 0.016 0.010

test err. 0.825 0.048 0.379 0.222 0.166 0.324 0.154 0.657 0.035 0.046

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.787 0.023 0.138 0.076 0.032 0.121 0.134 0.517 0.015 0.006

test err. 0.810 0.044 0.339 0.221 0.157 0.210 0.152 0.645 0.034 0.030

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.783 0.021 0.126 0.058 0.032 0.096 0.127 0.519 0.015 0.004

test err. 0.807 0.039 0.333 0.215 0.151 0.185 0.146 0.640 0.033 0.023

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.767 0.022 0.101 0.056 0.028 0.073 0.139 0.514 0.015 0.003

test err. 0.795 0.041 0.330 0.203 0.148 0.159 0.156 0.634 0.033 0.021

(b) Second subset of datasets

FURIA — Random subspace feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.122 0.162 0.088 0.026 0.071 0.133 0.027 0.141 0.268 0.004 0.469

test err. 0.166 0.277 0.132 0.074 0.274 0.144 0.085 0.321 0.311 0.060 0.555

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.117 0.155 0.077 0.018 0.040 0.103 0.019 0.110 0.204 0.004 0.396

test err. 0.163 0.253 0.122 0.066 0.243 0.112 0.069 0.311 0.247 0.049 0.494

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.107 0.148 0.074 0.016 0.025 0.101 0.015 0.091 0.185 0.003 0.371

test err. 0.155 0.255 0.119 0.056 0.235 0.110 0.059 0.299 0.226 0.044 0.483

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.111 0.139 0.072 0.013 0.020 0.101 0.012 0.080 0.171 0.002 0.328

test err. 0.155 0.248 0.117 0.055 0.216 0.110 0.053 0.289 0.215 0.036 0.456
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Table 26. Comparison of results for each of the feature selection approaches for Medium feature

subset size of FURIA-based fuzzy MCSs generated with bagging and feature selection in the form
of a summarized matrix.

Greedy Random-greedy Random

# Classif. W T L W T L W T L

3 7 2 12 7 2 12 5 0 16

5 6 1 14 5 2 14 7 3 11

7 7 0 14 6 0 15 8 0 13

10 3 2 16 8 2 11 8 1 12

Overall 23 5 56 26 6 52 28 4 52

5.5.3. Benchmarking against the single FURIA-based fuzzy classifier

In our third analysis, we are comparing the FURIA-based fuzzy MCSs derived by
the best previous feature selection approach combined with bagging against the
single FURIA-based fuzzy classifier. In view of Table 34, it can be noticed that
overall, FURIA-based fuzzy MCSs generated from Bagging and Random-greedy
feature selection outperform the single classifier in 70 out of 84 cases (+3 ties),
an intermediate number between those of the other two variants analyzed in the
previous Secs. 5.3 (bagging only, 76) and 5.4 (feature selection only, 64).

5.6. Final comparison of FURIA-based fuzzy MCSs

This subsection presents a joint comparison of all the FURIA-based fuzzy MCSs
variants proposed. The main aim of this contribution is to obtain FURIA-based
fuzzy MCSs which, apart from improving the accuracy of the single FURIA-based
fuzzy classifier, are able to be competitive with the state-of-the-art MCSs when
dealing with high dimensional datasets. In principle, it seems that the best choice
is a combination between bagging and a feature selection algorithm to obtain well-
performing FURIA-based fuzzy MCS, as it should induce a high amount of diversity
into the base classifiers.34,44 In order to test that assumption we will compare this
FURIA-based fuzzy MCS approach, that from now on will be called the reference
approach, against the remaining variants resulting from FURIA-based fuzzy MCS
generation methodology, i.e. the use of bagging and feature selection in isolation.

In addition, in order to test the performance of our approach, we compare it
with two state-of-the-art algorithms: C4.5 decision tree38 MCSs generated from
bagging,17 and random forests.8 Moreover, we compare it against an application of
the fuzzy MCS design approach with other, less powerful, fuzzy classifier deriva-
tion method.13,14 For that we choose Ishibuchi’s fuzzy classification rule generation
method.26

We will therefore develop two different types of analyses, a first one comparing
the different proposed approaches to generate FURIA-based fuzzy MCSs in order
to determine the best performing one, and a second one comparing the best choices
of FURIA-based fuzzy MCSs with C4.5 decision tree ensembles, random forests,
and Ishibuchi-based fuzzy MCSs.
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Table 27. FURIA-based fuzzy MCSs for small ensemble sizes with bagging and Greedy feature

selection. Large feature subsets.

(a) First subset of datasets

FURIA — Greedy feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.657 0.020 0.163 0.095 0.039 0.053 0.115 0.511 0.015 0.015

test err. 0.769 0.051 0.360 0.199 0.161 0.124 0.140 0.664 0.031 0.049

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.642 0.018 0.123 0.090 0.040 0.039 0.114 0.499 0.014 0.011

test err. 0.762 0.047 0.348 0.196 0.157 0.111 0.139 0.654 0.031 0.044

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.625 0.017 0.116 0.073 0.038 0.034 0.114 0.502 0.014 0.009

test err. 0.756 0.044 0.337 0.187 0.153 0.104 0.139 0.643 0.030 0.043

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.622 0.017 0.114 0.074 0.035 0.029 0.116 0.501 0.014 0.008

test err. 0.753 0.045 0.335 0.184 0.147 0.100 0.140 0.639 0.030 0.041

(b) Second subset of datasets

FURIA — Greedy feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.085 0.135 0.049 0.020 0.070 0.072 0.017 0.123 0.058 0.022 0.278

test err. 0.141 0.254 0.121 0.045 0.248 0.091 0.053 0.318 0.169 0.070 0.432

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.085 0.124 0.043 0.017 0.051 0.069 0.012 0.099 0.048 0.009 0.270

test err. 0.137 0.246 0.115 0.043 0.263 0.087 0.048 0.309 0.162 0.057 0.423

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.085 0.117 0.040 0.015 0.037 0.067 0.010 0.080 0.044 0.007 0.263

test err. 0.136 0.243 0.112 0.039 0.239 0.084 0.046 0.303 0.157 0.052 0.418

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.086 0.109 0.038 0.014 0.026 0.068 0.009 0.071 0.039 0.002 0.257

test err. 0.138 0.240 0.111 0.039 0.242 0.087 0.045 0.300 0.156 0.049 0.416
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Table 28. FURIA-based fuzzy MCSs for small ensemble sizes with with bagging and Random–

greedy feature selection. Large feature subsets.

(a) First subset of datasets

FURIA — Random-greedy feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.772 0.016 0.155 0.094 0.041 0.054 0.114 0.446 0.015 0.006

test err. 0.797 0.043 0.368 0.200 0.152 0.128 0.141 0.666 0.031 0.036

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.770 0.016 0.132 0.084 0.044 0.037 0.114 0.423 0.014 0.004

test err. 0.796 0.044 0.348 0.198 0.147 0.108 0.139 0.656 0.030 0.030

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.761 0.014 0.122 0.079 0.040 0.031 0.113 0.421 0.014 0.004

test err. 0.789 0.042 0.344 0.179 0.146 0.102 0.138 0.646 0.030 0.027

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.757 0.014 0.106 0.077 0.035 0.026 0.115 0.410 0.014 0.003

test err. 0.787 0.043 0.334 0.187 0.145 0.096 0.139 0.640 0.030 0.026

(b) Second subset of datasets

FURIA — Random-greedy feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.088 0.123 0.063 0.020 0.072 0.084 0.010 0.125 0.074 0.004 0.286

test err. 0.141 0.256 0.121 0.046 0.255 0.098 0.054 0.318 0.174 0.058 0.436

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.087 0.122 0.057 0.015 0.056 0.078 0.007 0.098 0.067 0.003 0.269

test err. 0.139 0.245 0.114 0.042 0.250 0.091 0.046 0.310 0.169 0.050 0.431

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.084 0.115 0.055 0.013 0.032 0.075 0.006 0.081 0.065 0.004 0.263

test err. 0.138 0.246 0.113 0.040 0.241 0.088 0.044 0.300 0.167 0.048 0.425

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.086 0.109 0.053 0.014 0.027 0.079 0.006 0.072 0.062 0.004 0.249

test err. 0.139 0.235 0.110 0.037 0.246 0.091 0.041 0.292 0.165 0.056 0.423
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Table 29. FURIA-based fuzzy MCSs for small ensemble sizes with with bagging and Random

subspace feature selection. Large feature subsets.

(a) First subset of datasets

FURIA — Random subspace feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.772 0.017 0.139 0.080 0.043 0.102 0.120 0.444 0.016 0.005

test err. 0.804 0.043 0.375 0.202 0.165 0.202 0.145 0.665 0.033 0.031

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.760 0.017 0.099 0.073 0.041 0.047 0.115 0.417 0.015 0.003

test err. 0.792 0.040 0.339 0.199 0.158 0.132 0.139 0.656 0.031 0.022

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.759 0.015 0.087 0.066 0.035 0.034 0.114 0.420 0.014 0.002

test err. 0.793 0.040 0.318 0.195 0.157 0.116 0.139 0.644 0.030 0.018

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.754 0.015 0.075 0.062 0.026 0.025 0.117 0.410 0.015 0.002

test err. 0.786 0.041 0.319 0.191 0.147 0.103 0.140 0.638 0.030 0.015

(b) Second subset of datasets

FURIA — Random subspace feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.093 0.134 0.063 0.019 0.070 0.086 0.011 0.117 0.161 0.007 0.365

test err. 0.146 0.269 0.125 0.050 0.258 0.099 0.060 0.312 0.225 0.059 0.479

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.086 0.126 0.058 0.014 0.037 0.077 0.007 0.101 0.131 0.007 0.314

test err. 0.139 0.257 0.116 0.045 0.231 0.089 0.047 0.298 0.201 0.061 0.446

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.084 0.117 0.055 0.015 0.018 0.074 0.005 0.083 0.119 0.005 0.305

test err. 0.138 0.253 0.114 0.051 0.214 0.089 0.044 0.290 0.190 0.057 0.436

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.085 0.095 0.052 0.011 0.016 0.075 0.005 0.076 0.102 0.002 0.290

test err. 0.136 0.253 0.110 0.047 0.216 0.090 0.041 0.284 0.180 0.054 0.431

For our first analysis, we benchmark the average and standard deviation values
as well as the best individual results for each dataset computed for the results
obtained by the reference approach against all FURIA-based fuzzy MCS variants
presented above.
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Table 30. Comparison of results for each of the feature selection approaches for Large feature

subset size of FURIA-based fuzzy MCSs generated with bagging and feature selection in the form
of a summarized matrix.

Greedy Random-greedy Random

# Classif. W T L W T L W T L

3 13 3 5 2 4 15 2 1 18

5 7 1 13 8 1 12 5 1 15

7 9 1 11 5 2 14 5 2 14

10 6 1 14 5 3 13 7 3 11

Overall 35 6 43 20 10 54 19 7 58

Table 31. Comparison of results for each of the feature selection approaches for all feature subset
sizes of FURIA-based fuzzy MCSs generated with bagging and feature selection in the form of a
summarized matrix.

Greedy Random-greedy Random

# Classif. W T L W T L W T L

3 29 6 28 16 7 40 11 1 51

5 19 3 41 20 4 39 19 3 41

7 22 2 39 17 3 43 21 2 40

10 16 4 43 20 7 36 20 5 38

Overall 86 15 151 73 21 158 71 11 170

Table 32. Comparison of results for each of the feature subset sizes of FURIA-based fuzzy MCSs
generated with bagging and feature selection in the form of a summarized matrix.

Small Medium Large

# Classif. W T L W T L W T L

3 5 1 57 4 0 59 53 1 9

5 6 4 53 7 2 54 45 5 13

7 7 1 55 8 1 54 47 1 15

10 7 4 52 7 4 52 44 4 15

Overall 25 10 217 26 7 219 189 7 56

Table 33. Average results for each of the feature selection approaches of FURIA-based fuzzy
MCSs generated with bagging and feature selection.

Bag. + F.S. 3 Cl. 5 Cl. 7 Cl. 10 Cl. Global

Greedy avg. 0.231 0.224 0.220 0.218 0.223

std. dev. 0.197 0.194 0.193 0.192 0.194

Random-gredy avg. 0.231 0.223 0.217 0.214 0.221

std. dev. 0.200 0.199 0.198 0.198 0.199

Random avg. 0.253 0.231 0.224 0.218 0.232

std. dev. 0.206 0.201 0.200 0.198 0.201
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Table 34. Comparison of results for the Random-greedy feature selection approach for Large

feature subset size of FURIA-based fuzzy MCSs generated with feature selection only compared
with single FURIA in the form of a summarized matrix.

Random-greedy vs. Single

# Classif. W T L

3 15 0 6

5 17 1 3

7 18 1 2

10 19 1 1

Overall 69 3 12

Table 35. Average and standard deviation values for the different FURIA-based MCS approaches
over all the considered datasets.

3 Cl. 5 Cl. 7 Cl. 10 Cl. Global

Bagging avg. 0.210 0.201 0.198 0.197 0.202

std. dev. 0.204 0.200 0.198 0.197 0.196

Feat. sel. avg. 0.240 0.229 0.225 0.222 0.229

std. dev. 0.200 0.199 0.200 0.199 0.199

Bag. + Feat. sel. avg. 0.238 0.226 0.220 0.217 0.225

std. dev. 0.200 0.197 0.196 0.195 0.197

Firstly, we are comparing average and standard deviation values computed for
each of the FURIA-based fuzzy MCSs considering all the parameters selected for
the different ensemble sizes. These two values constitute a measure of the aver-
age performance of the different variants over all considered datasets. Table 35
collects these results where the last column provides global statistics for each of
the approaches. Considering all the ensemble sizes and also the global average
values, bagging FURIA-based fuzzy MCSs significantly outperform the other two
approaches. From this comparison, it seems that the use of the bagging approach
in isolation is the best choice. As it has been already mentioned, this could be due
to the internal feature selection provided by FURIA. In that case, inducing diver-
sity by an external feature selection is not a good option, since it decreases the
information provided to the classifier.

Secondly, in order to compare FURIA-based approaches, we gather the best
result of each approach for each dataset independently of the parameter choice
such as number of classifiers, feature subset size, and feature selection method. The
results are presented in Table 36, which consists of statistics (5× 2-cv training and
testing errors) and algorithm parameters (feature selection algorithm — feat. sel.,
feature subset size — feat. subset. size, number of classifiers — nr of cl.) for each
of the twenty one datasets. The three feature selection algorithms are considered,
Greedy — G, Random-greedy — RG, and Random subspace — R, where the feature
subset size may be Small — S, Medium — M, and Large — L. The best accuracy
obtained for each given dataset is emphasized in bold font.
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Table 36. Results for the best choices of each different approach for FURIA-based fuzzy MCS

for each dataset.

(a) First subset of datasets

FURIA single classifier — All features

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.781 0.023 0.336 0.141 0.041 0.038 0.143 0.633 0.018 0.003
test err. 0.805 0.049 0.377 0.227 0.163 0.123 0.157 0.683 0.033 0.027

FURIA-based MCSs obtained from bagging only.

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.570 0.010 0.096 0.052 0.031 0.016 0.110 0.246 0.015 0.002
test err. 0.755 0.044 0.313 0.178 0.152 0.091 0.136 0.641 0.030 0.017
nr of cl. 10 7 7 7 10 10 7 10 10 10

FURIA-based MCSs obtained from feature selection only.

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.754 0.018 0.146 0.113 0.050 0.037 0.139 0.627 0.014 0.002
test err. 0.786 0.037 0.316 0.185 0.134 0.101 0.151 0.628 0.028 0.015
feat. sel. R R R RG RG RG RG RG R R
feat. sub. size L L L M S L L L L L
nr of cl. 10 10 10 7 7 10 10 10 10 10

FURIA-based MCSs obtained from bagging and feature selection.

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.622 0.021 0.087 0.079 0.032 0.026 0.113 0.621 0.015 0.020
test err. 0.753 0.039 0.318 0.179 0.143 0.096 0.138 0.630 0.030 0.015
feat. sel. G R R RG RG RG RG R R R
feat. sub. size L M L L S L L S L L
nr of cl. 10 7 7 7 10 10 7 10 10 10

(b) Second subset of datasets

FURIA single classifier — All features

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.132 0.193 0.042 0.008 0.154 0.043 0.007 0.331 0.043 0.004 0.433
test err. 0.160 0.245 0.122 0.042 0.298 0.070 0.055 0.364 0.187 0.056 0.441

FURIA-based MCSs obtained from bagging only.

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.084 0.075 0.025 0.006 0.018 0.028 0.004 0.051 0.017 0.006 0.223
test err. 0.138 0.246 0.105 0.035 0.230 0.061 0.036 0.276 0.156 0.060 0.408
nr of cl. 7 10 10 10 10 10 10 10 10 10 10

FURIA-based MCSs obtained from feature selection only.

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.120 0.204 0.052 0.018 0.005 0.075 0.006 0.217 0.089 0.002 0.364
test err. 0.153 0.244 0.110 0.039 0.198 0.088 0.041 0.310 0.164 0.036 0.432
feat. sel. R RG R RG R RG RG R RG R R
feat. sub. size L L L L L L L L M M L
nr of cl. 7 7 10 10 10 7 10 10 10 10 10

FURIA-based MCSs obtained from bagging and feature selection.

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.085 0.109 0.052 0.014 0.018 0.067 0.005 0.076 0.039 0.020 0.257
test err. 0.136 0.235 0.110 0.037 0.214 0.084 0.041 0.284 0.156 0.036 0.416
feat. sel. R RG R RG R G RG R G R G
feat. sub. size L L L L L L L L L M L
nr of cl. 10 10 10 10 7 7 10 10 10 10 10
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In view of those results, FURIA-based MCSs obtained from bagging obtain
the best global result in 10 out of 21 cases (+1 tie), placing FURIA-based MCSs
obtained from feature selection in the second place with 5 out of 21 best results
(+2 ties). Finally, FURIA-based MCSs obtained from bagging and feature selection
outperformed the other two FURIA-based approaches in only 3 out of 21 cases (+3
ties).

Hence, it seems that FURIA-based MCSs obtained from bagging is the best
choice, especially when dealing with high dimensional datasets such like letter,
magic, sat, segment, spambase, texture, and waveform. However, it is difficult to say
that only bagging FURIA-based MCSs deals well with high dimensional datasets,
since FURIA-based MCSs obtained from feature selection obtains the best results
for optdigits and pendigits. FURIA-based MCSs obtained from joint bagging and
feature selection, which was originally considered as the reference approach, turned
out to be a rather secondary choice performing well only with a few datasets (e.g.
pendigits, and waveform).

Finally, let us develop here a comparison between FURIA-based fuzzy MCSs
and the single FURIA classifier. It can be noticed that, in every case, FURIA-
based MCSs overcome the single classifier. Besides, each of the three variants does
so in 19 out of 21 cases.

In our second analysis, we are comparing the best choices of FURIA-based fuzzy
MCSs with two state-of-the-art algorithms, bagging C4.5 MCSs and random forests,
as well as with the use of the same methodology combined with a different fuzzy
classifier generation method, Ishibuchi-based fuzzy MCS. The obtained results are
presented in Table 37, which consists of 5 × 2-cv train and test error values. In all
algorithms, we only consider the best obtained result in terms of accuracy for each
dataset and highlighted the best values in boldface.

The following conclusions arise comparing FURIA-based fuzzy MCSs to C4.5
MCSs, random forests, and Ishibuchi-based fuzzy MCS: our approach outperforms
the other algorithms in 11 out of 21 cases, while random forests obtains the best
result in the 7 cases (+1 tie). Ishibuchi-based fuzzy MCSs obtain the best result
twice, while C4.5 MCSs only obtains one tie. Note that our approach shows the best
performance in 5 out of 10 high dimensional datasets (sonar, optdigits, pendigits,
texture, waveform).

We were also interested in answering the question: would another evaluation
metric change the latter conclusion? To do so, Table 38 shows a comparison of the
same four methods based on the AUC metric values. In view of those results, similar
observations are found. FURIA-based fuzzy MCSs outperform the other algorithms
in 9 out of 21 cases (+2 ties), while random forests obtains the best result in the 7
cases (+2 tie). C4.5 MCSs achieve the best result four times, while Ishibuchi-based
fuzzy MCSs do so only once.
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Table 37. A comparison of the best choice for different approaches for FURIA-based fuzzy MCSs

against the best choice of bagging C4.5 MCSs, random forests, and Ishibuchi-based fuzzy MCSs.

(a) First subset of datasets

FURIA-based MCSs

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.622 0.018 0.096 0.052 0.050 0.016 0.110 0.627 0.014 0.002

test err. 0.753 0.037 0.313 0.178 0.134 0.091 0.136 0.628 0.028 0.015

feat sel. G R — — RG — — RG R R

feat. sub. size L L — — S — — L L L

nr of cl. 10 10 7 7 7 10 7 10 10 10

C4.5 ensembles with bagging

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.118 0.017 0.075 0.053 0.021 0.018 0.052 0.105 0.012 0.005

test err. 0.772 0.043 0.306 0.194 0.149 0.103 0.134 0.697 0.030 0.028

nr of cl. 10 7 10 10 10 10 10 10 10 10

random forests

tra. err. 0.002 0.001 0.001 0.001 0.001 0.000 0.003 0.003 0.002 0.000

test err. 0.777 0.041 0.282 0.211 0.140 0.080 0.134 0.695 0.031 0.016

nr of cl. 7 7 10 10 10 10 10 10 10 10

Ishibuchi-based fuzzy MCSs

tra. err. 0.732 0.010 0.279 0.093 0.047 0.411 0.199 0.612 0.073 0.054

test err. 0.751 0.056 0.379 0.213 0.129 0.420 0.202 0.629 0.075 0.062

nr of cl. 3 7 7 10 7 10 7 3 7 10

feat. sel. R R G R RG RG R R RG R

(b) Second subset of datasets

FURIA-based MCSs

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.085 0.109 0.025 0.006 0.005 0.028 0.004 0.051 0.017 0.002 0.223

test err. 0.136 0.235 0.105 0.035 0.198 0.061 0.036 0.276 0.156 0.036 0.408

feat sel. R RG — — R — — — — RG —

feat. sub. size L L — — L — — — — M —

nr of cl. 10 10 10 10 10 10 10 10 10 10 10

C4.5 ensembles with bagging

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.044 0.056 0.021 0.009 0.024 0.025 0.007 0.047 0.015 0.020 0.119

test err. 0.131 0.253 0.112 0.042 0.247 0.067 0.051 0.289 0.193 0.097 0.415

nr of cl. 10 10 10 10 10 10 10 10 10 10 10

random forests

tra. err. 0.001 0.003 0.002 0.001 0.002 0.001 0.000 0.002 0.001 0.000 0.005

test err. 0.119 0.264 0.104 0.034 0.239 0.060 0.040 0.269 0.185 0.048 0.438

nr of cl. 10 10 10 10 10 10 10 10 10 10 10

feat. sel. R R G R RG RG R R RG R

Ishibuchi-based fuzzy MCSs

tra. err. 0.197 0.181 0.172 0.163 0.065 0.221 0.248 0.335 0.166 0.021 0.442

test err. 0.208 0.238 0.175 0.166 0.245 0.223 0.256 0.398 0.181 0.056 0.482

nr of cl. 3 7 7 10 0 10 7 3 7 10 7

feat. sel. G G RG RG RG G RG RG RG G G
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Table 38. A comparison of the best choice for different approaches for FURIA-based fuzzy MCSs

against the best choice of bagging C4.5 MCSs, random forests, and Ishibuchi-based fuzzy MCSs
in terms of AUC.

(a) First subset of datasets

FURIA-based MCSs

aba bre gla hea ion let mag opt pbl pen

train AUC 0.693 0.993 0.895 0.927 0.999 0.991 0.802 0.724 0.950 0.999
test AUC 0.548 0.970 0.770 0.785 0.875 0.951 0.772 0.476 0.874 0.991
feat. sub. size — L L — M — — — L L
nr of cl. 7 7 7 7 7 10 5 3 7 10
feat. sel. — R R — RG — — — R R
approach bag FS B.+FS bag FS bag bag bag FS B.+FS

C4.5 ensembles with bagging

aba bre gla hea ion let mag opt pbl pen

train AUC 0.866 0.990 0.925 0.931 0.986 0.990 0.912 0.757 0.948 0.997
test AUC 0.545 0.955 0.771 0.782 0.831 0.945 0.797 0.485 0.876 0.984
nr of cl. 10 7 7 7 7 10 7 3 3 7

random forests

aba bre gla hea ion let mag opt pbl pen

train AUC 0.999 0.998 0.998 0.962 0.997 1.000 0.994 0.930 0.994 1.000
test AUC 0.543 0.962 0.771 0.756 0.822 0.957 0.809 0.488 0.868 0.991
nr of cl. 10 5 7 3 5 10 7 3 10 10

Ishibuchi-based fuzzy MCSs

AUC train 0.475 0.953 0.766 0.905 0.967 0.833 0.929 0.837 0.855 0.976
AUC test 0.487 0.939 0.684 0.783 0.822 0.737 0.779 0.516 0.683 0.965
nr of cl. 3 7 7 10 7 10 7 3 7 10

feat. sel. R R G R RG RG R R RG R

(b) Second subset of datasets

FURIA-based MCSs

pho pim sat seg son spa tex veh wav win yea

train AUC 0.872 0.917 0.975 0.996 0.994 0.960 0.998 0.955 0.934 0.998 0.838
test AUC 0.804 0.877 0.907 0.978 0.874 0.915 0.982 0.765 0.909 0.970 0.705
feat. sub. size L S — — M — — — S M
nr of cl. 7 7 10 10 7 7 10 10 10 10 10
feat. sel. G R — — R — — — RG R
approach B.+FS FS — — FS — — — FS B.+FS

C4.5 ensembles with bagging

pho pim sat seg son spa tex veh wav win yea

train AUC 0.942 0.950 0.981 0.994 0.969 0.968 0.996 0.952 0.986 0.981 0.874
test AUC 0.833 0.748 0.906 0.973 0.752 0.924 0.973 0.761 0.866 0.903 0.732
nr of cl. 7 7 10 10 7 7 10 7 7 10 10

random forests

pho pim sat seg son spa tex veh wav win yea

train AUC 0.997 0.997 0.999 1.000 0.998 0.998 1.000 0.998 0.998 1.000 0.996
test AUC 0.843 0.744 0.912 0.978 0.778 0.924 0.980 0.775 0.871 0.954 0.701
nr of cl. 7 7 10 10 7 7 10 10 7 10 10

Ishibuchi-based fuzzy MCSs

pho pim sat seg son spa tex veh wav win yea

AUC train 0.801 0.567 0.912 0.847 0.790 0.997 0.820 0.827 0.688 0.974 0.693
AUC test 0.749 0.708 0.847 0.871 0.744 0.624 0.859 0.737 0.791 0.960 0.674
nr of cl. 7 7 7 10 10 5 10 10 7 10 7
feat. sel. G G RG RG RG G RG RG RG G G
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5.7. Overall conclusions

From the results obtained in the developed experiments we may conclude that
the design of FURIA-based fuzzy MCSs is a competitive approach with respect
to the classical state-of-the-art MCS design methods. Note that the same fuzzy
MCS design methodology with a poor fuzzy classifier generation method does not
provide good results. Hence, further research in this topic could lead to a promising
methodology to design accurate fuzzy MCSs.

Basically, the global insights of our proposal are:

• A framework based on a quick and accurate fuzzy classification rule learning
algorithm, namely FURIA, can be competitive if not better than two state-of-
the-art machine learning classifier ensembles.

• The proposed FURIA-based fuzzy MCSs are accurate and can be directly applied
on high dimensional datasets, high in terms of large number of attributes, number
of instances, and/or number of classes, thanks to the fact we use FURIA as a
component classifier.

• Due to the application of bagging to the MCSs, we obtained an approach being
able to run the classifiers in parallel, thus being time efficient.

• FURIA-based fuzzy MCSs with bagging clearly outperform FURIA-based fuzzy
MCSs with feature selection and FURIA-based fuzzy MCSs with bagging and
feature selection. Thus, it is the recommended MCSs combination method.

• From the feature selection approaches Random-greedy turned out to be the
best approach. This conclusion is not so clear, though. Notice that, considering
FURIA-based fuzzy MCSs with bagging and feature selection average results for
Greedy feature selection are not much worst than the ones with Random-greedy
feature selection.

• Overall, it can be noticed that the larger the number of classifiers forming the
fuzzy MCS, the lower the test error. Mostly, MCSs composed of 10 classifiers
obtain the lowest test error, although in some cases MCSs composed of 7 classifiers
outperformed the ones composed of 10.

6. Concluding Remarks

In this study, we proposed a methodology in which a bagging approach together
with a feature selection technique is used to train FURIA-based fuzzy classifiers in
order to obtain a fuzzy rule-based MCS. We used a single winner-based method on
top of the base classifiers. This design allows our system to be both efficient by its
inherent parallelism and accurate by the high quality of the base classifier when
dealing with high dimensional datasets.

We tested FURIA-based fuzzy MCSs with bagging, feature selection, and the
combination of both of them. By using the abovementioned techniques, we aimed
to obtain fuzzy MCSs dealing with high dimensional data.
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We have conducted comprehensive experiments over 21 datasets taken from the
UCI machine learning repository. It turned out that FURIA-based fuzzy MCSs
was the best performing approach from all the methods considered. Moreover, we
showed that the obtained results are promising and provide a performance advan-
tage in comparison with two state-of-the-art algorithms.

One of the next steps we will consider in the short future is to develop classi-
fier selection using evolutionary multiobjective optimization algorithms to look for
an optimal size of the ensemble. This MCS design approach, called overproduce-
and-choose strategy (OCS)35,40 is based on the generation of a large number of
component classifiers and of the subsequent selection of the subset of them best
cooperating. By doing so, the performance of FURIA-based fuzzy MCSs could be
improved, while decreasing the number of classifiers in the ensemble, thus obtain-
ing different trade-offs between accuracy and complexity.47 The other extension
to follow is to study alternative fuzzy reasoning methods to combine the results
of the individual members of the ensemble, trying to combine classifiers in a dy-
namic manner,40 in a way that a classifier or a set of them is responsible just for a
particular data region.
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• K. Trawiński, O. Cordón, and A. Quirin. A Study on the Use of Multiobjetive Genetic
Algorithms for Classifier Selection in FURIA-based Fuzzy Multiclassifiers, International
Journal of Computational Intelligence Systems, vol. 4, no 2, pp. 231-253, 2012. DOI:
10.1080/18756891.2012.685272

– State: Published.

– In 2012 removed from the JCR list.

http://www.tandfonline.com/doi/abs/10.1080/18756891.2012.685272




This article was downloaded by: [Krzysztof Trawinski]
On: 23 April 2012, At: 07:35
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Computational Intelligence
Systems
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tcis20

A Study on the Use of Multiobjective Genetic
Algorithms for Classifier Selection in FURIA-based
Fuzzy Multiclassifiers
Krzysztof Trawiński, Oscar Cordón & Arnaud Quirin
a European Centre for Soft Computing, Mieres, Spain
b Edificio Científico-Tecnológico, Calle Gonzalo Gutiérrez Quirós S/N, 33600, Mieres, Asturias

Available online: 23 Apr 2012

To cite this article: Krzysztof Trawiński, Oscar Cordón & Arnaud Quirin (2012): A Study on the Use of Multiobjective Genetic
Algorithms for Classifier Selection in FURIA-based Fuzzy Multiclassifiers, International Journal of Computational Intelligence
Systems, 5:2, 231-253

To link to this article:  http://dx.doi.org/10.1080/18756891.2012.685272

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to
anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should
be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims,
proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in
connection with or arising out of the use of this material.



A Study on the Use of Multiobjective Genetic Algorithms for Classifier
Selection in FURIA-based Fuzzy Multiclassifiers
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Abstract

In a preceding contribution, we conducted a study considering a fuzzy multiclassifier system (MCS)
design framework based on Fuzzy Unordered Rule Induction Algorithm (FURIA). It served as the fuzzy
rule classification learning algorithm to derive the component classifiers considering bagging and feature
selection. In this work, we integrate this approach under the overproduce-and-choose strategy. A state-of-
the-art evolutionary multiobjective algorithm, namely NSGA-II, is used to provide a component classifier
selection and improve FURIA-based fuzzy MCS. We propose five different fitness functions based on
three different optimization criteria, accuracy, complexity, and diversity. Twenty UCI high dimensional
datasets were considered in order to conduct the experiments. A combination between accuracy and
diversity criteria provided very promising results, becoming competitive with classical MCS learning
methods.

Keywords: Fuzzy rule-based multiclassification systems, bagging, FURIA, genetic selection of individual
classifiers, diversity measures, evolutionary multiobjective optimization, NSGA-II

1. Introduction

Multiclassification systems (MCSs) (also called
multiclassifiers or classifier ensembles) have been
shown as very promising tools to improve the perfor-
mance of single classifiers when dealing with com-
plex, high dimensional classification problems in the
last few years [1]. This research topic has become
especially active in the classical machine learning
area, considering decision trees or neural networks
to generate the component classifiers, but also some
work has been done recently using different kinds of
fuzzy classifiers [2, 3, 4, 5, 6, 7, 8].

In our previous studies [9, 10, 11, 12], we pro-

posed a MCS methodology based on classical MCS
design techniques such as bagging and feature se-
lection with a fuzzy rule-based system (FRBCS) as
a base classifier. As a consequence, fuzzy rule-
based multiclassification systems (FRBMCSs) were
incorporated into an overproduce-and-choose strat-
egy (OCS) [13]. This MCS desing algorithm is
based on the generation of a large number of com-
ponent classifiers, and a subsequent selection of the
subset of them best cooperating. As the main tool we
used a multicriteria genetic algorithm (GA) for static
component classifier selection guided by several fit-
ness functions based on training error and likeli-
hood, as well as bicriteria fitness functions based on
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K. Trawiński et al.

training error and likelihood or diversity measures.
The resulting FRBMCS design approach thus be-
long to the genetic fuzzy systems (GFSs) family, one
of the most successful approaches to hybridize fuzzy
systems with learning and adaptation methods in the
last fifteen years [14, 15, 16].

In [17] we extended our previous developments
by proposing a fuzzy MCS framework based on
Fuzzy Unordered Rule Induction Algorithm (FU-
RIA) [18, 19] as the fuzzy rule classification learn-
ing algorithm to derive the component classifiers
considering bagging and feature selection. We con-
ducted comprehensive experiments with 20 datasets
taken from the UCI machine learning repository
and provided a deep study of the results obtained.
Several FURIA-based fuzzy MCS composition de-
signs were tested including bagging, feature selec-
tion, and the combination of bagging and feature
selection. We considered three different types of
feature selection algorithms: random subspace [20],
mutual information-based feature selection (MIFS)
[21], and the random-greedy feature selection based
on MIFS and the GRASP approach [22]. Finally,
our approach was compared against two state-of-
the-art MCS algorithms (random forests and bag-
ging decion trees) and also with an application of
the fuzzy MCS generation approach with other, less
powerful fuzzy classifier derivation method [23, 9].
From the obtained results, we drew the conclusion
that FURIA-based fuzzy MCSs were a very power-
ful tool for dealing with high dimensional classifica-
tion problems.

Even so, we think that the performance of the
latter FURIA-based MCS framework can be im-
proved with an OCS approach based on an evolu-
tionary multiobjective (EMO) algorithm [24] con-
sidering diversity measures. In the current work we
integrate FURIA-based fuzzy MCSs within the OCS
strategy. Since there are many optimization criteria
considered for MCS design such as accuracy, com-
plexity, and diversity measures [1, 25, 26, 27], the
use of a EMO algorithm came naturally to our mind.

In this paper, we study the behavior of FURIA-
based fuzzy MCSs with large size ensembles. To
do so, we consider the state-of-the-art NSGA-II al-
gorithm [28] to perform classifier selection. In-

troducing diversity and complexity measures com-
bined with error measures is an interesting ap-
proach, which has led to promising results in the
area [12, 25, 26, 27, 29, 30]. Hence, we have em-
bedded three measures of this kind in the objective
space of the fitness function combining them with
an accuracy index, which resulted in five different
bicriteria fitness functions.

We think that such GFS may lead to high quality
fuzzy MCSs with a good accuracy-complexity trade-
off. To check this assumption, we present experi-
ments on twenty high dimensional datasets from the
UCI machine learning repository.

This paper is set up as follows. In the next sec-
tion, a state of the art about MCSs, fuzzy MCSs, and
MCS selection is presented. Sec. 3 recalls FURIA
and our approach for designing FURIA-based fuzzy
MCSs, while Sec. 4 describes the proposed NSGA-
II for component classifier selection focusing on the
different two-objective fitness functions to be con-
sidered. The experiments developed and their anal-
ysis are shown in Sec. 5. Finally, Sec. 6 collects
some concluding remarks and future research lines.

2. Background and related work

This section explores the current literature related to
the generation of a FRBMCS. The techniques used
to generate MCSs and fuzzy MCSs are described in
Sec. 2.1 and 2.2, respectively. Some ways to reduce
the size of the ensembles are described in Sec. 2.3.
The use of GAs for this purpose is then explored in
Sec. 2.4.

2.1. Related work on MCSs

A MCS is the result of the combination of the out-
puts of a group of individually trained classifiers
in order to get a system that is usually more accu-
rate than any of its single components [1]. These
kinds of methods have gained a large acceptance in
the machine learning community during the last two
decades due to their high performance. Decision
trees are the most common classifier structure con-
sidered and much work has been done in the topic
[31, 32], although they can be used with any other
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Multiobjective GAs for Classifier Selection in FURIA fuzzy MCSs

type of classifiers (the use of neural networks is also
very extended, see for example [33]).

There are different ways to design a classifier en-
semble. On the one hand, there is a classical group
of approaches considering data resampling to ob-
tain different training sets to derive each individual
classifier. In bagging [34], they are independently
learnt from resampled training sets (“bags”), which
are randomly selected with replacement from the
original training data set. Boosting methods [35] se-
quentially generate the individual classifiers (weak
learners) by selecting the training set for each of
them based on the performance of the previous clas-
sifier(s) in the series. Opposed to bagging, the re-
sampling process gives a higher selection probabil-
ity to the incorrectly predicted examples by the pre-
vious classifiers.

On the other hand, a second group can be found
comprised by a more diverse set of approaches
which induct the individual classifier diversity using
some ways different from resampling [36]. Feature
selection plays a key role in many of them where
each classifier is derived by considering a different
subset of the original features [27, 37]. Random sub-
space [20], where each feature subset is randomly
generated, is one of the most representative methods
of this kind.

Finally, there are some advanced proposals that
can be considered as combinations of the two
groups, such as random forests [38].

The interested reader is referred to [32, 33] for
two reviews for the case of decision tree (both) and
neural network ensembles (the latter), including ex-
haustive experimental studies.

2.2. Previous Work on Fuzzy MCSs

Focusing on fuzzy MCSs, the use of boosting for
the design of fuzzy classifier ensembles has been
considered in some works [2, 3, 39, 40]. However,
only a few contributions for bagging fuzzy clas-
sifiers have been proposed considering fuzzy neu-
ral networks (together with feature selection) [41],
neuro-fuzzy systems [5], and fuzzy decision trees
[8, 7] as component classifier structures.

Especially worth mentioning is the contribution
[8]. This approach hybridizes Breimann’s idea of

random forests [38] with fuzzy decision trees [42].
Such resulting fuzzy random forest combines char-
acteristics of MCSs with randomness and fuzzy
logic in order to obtain a high quality system joining
robustness, diversity, and flexibility to not only deal
with traditional classification problems but also with
imperfect and noisy datasets. The results show that
this approach obtains good performance in terms of
accuracy for all the latter problem kinds.

Some advanced GFS-based contributions should
also be remarked. On the one hand, an FRBCS en-
semble design technique is proposed in [43] con-
sidering some niching GA-based feature selection
methods to generate the diverse component classi-
fiers, and another GA for classifier fusion by learn-
ing the combination weights. On the other hand,
another interval and fuzzy rule-based ensemble de-
sign method using a single- and multiobjective ge-
netic selection process is introduced in [44, 6]. In
this case, the coding scheme allows an initial set
of either interval or fuzzy rules, considering the use
of different features in their antecedents, to be dis-
tributed among different component classifiers try-
ing to make them as diverse as possible by means
of two accuracy and one entropy measures. Besides,
the same authors presented a previous proposal in
[45], where an EMO algorithm generated a Pareto
set of FRBCSs with different accuracy-complexity
tradeoffs to be combined into an ensemble.

2.3. Determination of the Optimal Set of
Component Classifiers in the MCS

Typically, an ensemble of classifiers is post-
processed in such a way only a subset of them are
kept for the final decision. It is a well known fact
that the size of this MCS is an important issue for its
tradeoff between accuracy and complexity [32, 33]
and that most of the error reduction occurs with the
first few additional classifiers [34, 33]. Furthermore,
the selection process also participates in the elimina-
tion of the duplicates or the poor-performing classi-
fiers.

While in the first studies on MCSs a very small
number (around ten) of component classifiers was
considered as appropriate to sufficiently reduce the
test set prediction error, later research on boosting
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(that also holds for bagging) suggested that error can
be significantly reduced by largely exceeding this
number [46]. This has caused the use of very large
ensemble sizes (for example comprised by 1,000 in-
dividual classifiers) in the last few years [32].

Hence, the determination of the optimal size of
the ensemble is an important issue for obtaining both
the best possible accuracy in the test data set without
overfitting it, and a good accuracy-complexity trade-
off. In pure bagging and boosting approaches, the
optimal ensembles are directly composed of all the
individual classifiers generated until a specific stop-
ping point, which is determined according to dif-
ferent means (validation data set errors, likelihood,
...). For example, in [32] it is proposed an heuristic
method to determine the optimal number guided by
the out-of-bag error.

However, there is the chance that the optimal en-
semble is not comprised by all the component clas-
sifiers first generated but on a subset of them carry-
ing a larger degree of disagreement/diversity. This is
why different classifier selection methods [47] have
been proposed. GAs have been commonly used for
this task as we will show in the following subsection.

2.4. Related work on genetic selection of MCSs

In general, the selection of a subset of classifiers is
done using the OCS strategy [13, 30], in which a
large set of classifiers is produced and then selected
to extract the best performing subset. GAs are a
popular technique within this strategy. In the liter-
ature, performance, complexity and diversity mea-
sures are usually considered as search criteria. Com-
plexity measures are employed to simplify the sys-
tem, whereas diversity measures are used to avoid
overfitting. The reader is referred to [10] for a re-
view on these genetic MCS selection approaches.

Among the different genetic OCS methods, we
can remark these most related to the current pro-
posal. On the one hand, we find EMO-based ap-
proaches such as that in [48], a hierarchical multiob-
jective GA algorithm, performing feature selection
at the first level and classifier selection at the sec-
ond level, is presented which outperforms classical
methods for two handwritten recognition problems.
The multiobjective GA allows both performance and

diversity to be considered for MCS selection. An-
other EMO proposal for classifier selecion is pre-
sented in [29]. In that contribution, a comparison of
a single-objective GA and the NSGA-II EMO algo-
rithm for 14 different objective functions of the men-
tioned three families of criteria (12 diversity mea-
sures, the training error, and the number of classi-
fiers as a complexity measure). The authors applied
their study on only one dataset, a digit handwritten
recognition problem with 10 classes and 118,735 in-
stances. They concluded saying that the training er-
ror is the best criterion for a single GA and a combi-
nation of training error and one diversity measure is
the best criterion for an EMO algorithm, which sup-
ports the developments in the current contribution
(see Sec. 6). On the other hand, in [26] a genetic
classifier selection method was considered based on
a single performance index, either the diversity, in-
cluding 16 different measures, or the ensemble er-
ror. The best results were obtained with the accuracy
measure and a specific kind of diversity measures
correlated with the error.

3. Bagging FURIA-based fuzzy MCSs

In this section we will detail how the FURIA fuzzy
MCSs are designed [17]. A normalized dataset is
split into two parts, a training set and a test set.
The training set is submitted to an instance selec-
tion and a feature selection procedures in order to
provide individual training sets (the so-called bags)
to train FURIA classifiers. After the training, we get
an initial FURIA-based fuzzy MCS, which is vali-
dated using the training and the test errors, as well
as a measure of complexity based on the total num-
ber of component classifiers obtained from FURIA.
The whole procedure is graphically presented in Fig.
1. FURIA is reviewed in Sec. 3.1, while the instance
selection procedure is described in Sec. 3.2.

3.1. FURIA

Fuzzy Unordered Rules Induction Algorithm (FU-
RIA) [18, 19] is an extension of the state-of-the-art
rule learning algorithm called RIPPER [49], having
its advantages such like simple and comprehensible
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Multiobjective GAs for Classifier Selection in FURIA fuzzy MCSs

Figure 1: Our framework: after the instance and the feature selection procedures, the component classifiers
are derived by the FURIA learning method. Finally, the output is obtained using a voting-based combination
method.

fuzzy rule base, and introducing new features. FU-
RIA provides three different extensions of RIPPER:

• It takes an advantage of fuzzy rules instead of
crisp ones. Fuzzy rules of FURIA are composed
of a class C j and a certainty degree CD j in the
consequent. The final form of a rule is the follow-
ing:

Rule R j : If x1 is A j1 and . . . and xn is A jn

then Class C j with CD j; j = 1,2, ...,N.

The certainty degree of a given example x is de-
fined as follows:

CD j =
2 D

Cj
T

DT
+∑

x∈D
Cj
T

µC j
r (x)

2+∑x∈DT µC j
r (x)

(1)

where DT and DC j
T stands for the training set and

a subset of the training set belonging to the class
C j respectively. In this approach, each fuzzy rule

makes a vote for its consequent class. The vote
strength of the rule is calculated as the product of
the firing degree µC j

r (x) and the certainty degree
CD j. Hence, the fuzzy reasoning method used is
the so-called voting-based method [50, 51].

• It uses unordered rule sets instead of rule lists.
This change ommits a bias caused by the default
class rule, which is applied whenever there is an
uncovered example detected.

• It proposes a novel rule stretching method in order
to manage uncovered examples. The unordered
rule set introduces one crucial drawback, there
might appear a case when a given example is not
covered. Then, to deal with such situation, one
rule is generalized by removing its antecedents.
The information measure is proposed to verify
which rule to ”stretch”.

The interested reader is referred to [18] for a full de-
scription of FURIA.
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3.2. FURIA-based fuzzy MCS design approaches

In our previous contribution [17] we conducted com-
prehensive experiments considering FURIA-based
fuzzy MCSs. Since in [52] it was shown that a com-
bination between bagging and feature selection usu-
ally leads to good MCS designs, we decided to fol-
low that idea and we integrated FURIA into a frame-
work of that kind. We aimed to combine the diver-
sity induced by the MCS algorithms and the robust-
ness of the FURIA method in order to desing good
performance fuzzy MCS for high dimensional prob-
lems. By doing so, we wanted to obtain FURIA-
based fuzzy MCSs with a good accuracy-complexity
tradeoff. We also tried a combination of FURIA
with bagging and feature selection separately.

Three different feature selection methods, ran-
dom subspace [20], mutual information-based fea-
ture selection (MIFS) [21], and the random-greedy
feature selection based on MIFS and the GRASP ap-
proach [22], were considered. For each feature se-
lection algorithm three different feature subsets of
different sizes, which were based on the initial num-
ber of features in the classification problem, were
tested. Finally, our experiments showed that out of
the three following MCS methodologies, that is bag-
ging, feature selection, and bagging with feature se-
lection, the former (see Fig. 1) obtained the best per-
formance when combined with FURIA-based FR-
BCSs.

Thus, in this contribution we are applying di-
rectly a bagging approach in order to generate the
initial FURIA-based fuzzy MCSs, which will be
later selected by the EMO algorithm. Considering
this approach, the bags are generated with the same
size as the original training set, as commonly done.

Finally, no weights are considered to combine
the outputs of the component classifiers to take the
final MCS decision, but a pure voting combination
method is applied: the ensemble class prediction
will directly be the most voted class in the compo-
nent classifiers output set.

4. EMO-based MCS selection method

The second stage of our methodology is to con-
sider the OCS strategy. Our aim is to obtain a good

accuracy-complexity tradeoff in the FURIA-based
fuzzy MCSs when dealing with high dimensional
problems. That is, we aim to obtain fuzzy MCS
with a low number of base classifiers, which keep
a good accuracy. Thus, we have selected the state-
of-the-art NSGA-II EMO algorithm in order to gen-
erate good quality Pareto set approximations. Five
different biobjective fitness functions combining the
three existing kinds of optimization criteria (accu-
racy, complexity, and diversity) are proposed in or-
der to study the best setting. Fig. 2 shows the fi-
nal structure of the FURIA-based fuzzy MCS design
methodology including the OCS stage. The two sub-
sections below presents briefly the algorithm opera-
tion mode and its main components.

4.1. Components of NSGA-II

NSGA-II [28] is based on a Pareto dominance depth
approach, where the population is divided into sev-
eral fronts and the depth of each front shows to
which front an individual belongs to. A pseudo-
dominance rank being assigned to each individual,
which is equal to the front number, is a metric used
for the selection of an individual.

We have used a standard binary coding in such
a way that a binary digit/value/gene is assigned to
each classifier. Then, when the variable takes value
1, it means that the current component classifier be-
longs to the final ensemble, while when the variable
is equal to 0, that classifier is discarded. This ap-
proach provides a low operation cost, which leads to
the high speed of the algorithm.

We have used a generational approach and elitist
replacement strategy. The initial population is com-
posed of randomly generated individuals, keeping
one of them with the original fuzzy MCS composed
of all the existing classifiers. In each generation, to
introduce a high amount of diversity, a binary tour-
nament is performed. That means that two individ-
uals are randomly picked from the current popula-
tion and the best one is selected. The two winners
are crossed over to obtain a single offspring that di-
rectly substitutes the loser. We have considered the
classical two-point crossover and the simple bit-flip
mutation. Both operators crossover and mutation are
applied with different pre-specified probabilities.
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Multiobjective GAs for Classifier Selection in FURIA fuzzy MCSs

Figure 2: Our framework: after the instance and the feature selection procedures, the component classifiers are
derived by the FURIA learning method. Finally, the output is obtained using a voting-based method.

4.2. The four used evaluation criteria for
two-objective NSGA-II

In this subsection we describe all the considered
optimization criteria. We will utilize measures of
three different kinds combined into five different
two-objective fitness functions:

• Accuracy. We use a standard accu-
racy measure, the training error (TE).
TE is computed as follows. Let h1(x), . . . ,hl(x)
be the outputs of the component classifiers
of the selected ensemble E for an input
value x = (x1, . . . ,xn). For a given sample
{(xk,Ck)}k∈{1...m}, the TE of that MCS is:

T E =
1
m
·#{k |Ck 6= arg max

j∈{1...|E|}
h j(xk)} (2)

with |E| being the number of classifiers in the se-
lected ensemble.

• Complexity. The complexity of the ensemble is
directly accounted by the number of classifiers in

the ensemble:

Complx = |E| (3)

• Diversity. It seems that obtaining a high diver-
sity between classifiers is the goal to be reached,
when aiming to achieve performance improve-
ment of MCSs. In the last few years, a group of
researchers devoted their attention to the diversity
measures [25, 26, 27]. Two measures can be high-
lighted from the large amount of proposals in this
group: the difficulty (θ ) and the double fault (δ ):

1. The difficulty measure θ is computed as fol-
lows. Let X = {i/|E|}i∈{0,...,|E|} and Xk ∈ X
be the proportions of classifiers classifying
correctly the instance xk. Then, θ is:

θ = Var({X1, . . . ,Xk, . . . ,Xm}) (4)

2. The pairwise measure δ for two classifiers
hi and h j shows the following expression:

δi, j =
N00

i j

m
(5)
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with N00
i j being the number of examples

missclassified by both hi and h j. The global
value of the measure for the whole selected
ensemble is computed as:

δavg =
2

L(L−1)

L−1

∑
i=1

L

∑
j=i+1

δi, j (6)

with L = |E| being the number of component
classifiers in the ensemble.

From these four criteria we have formed five dif-
ferent two-objective fitness functions. A first option
is a standard combination of TE with Complx (from
now on called fitness function 2a).

In addition, the use of biobjective functions
based on diversity measures is justified by previous
findings in the specialized literature. Diversity mea-
sures have been deeply studied in [25, 26, 27, 29,
30]. The relationship between diversity measures
and accuracy is not clear. In [25], it was shown
how the ensemble accuracy and diversity is not as
strongly correlated as it could be expected. The au-
thors concluded that accuracy estimation can not be
substituted by diversity during the MCS design pro-
cess. These results were confirmed in [26] in our
same framework, classifier selection. In the experi-
mental study developed, the authors drew the con-
clusion that the use of a single-objective function
based on a diversity measure does not outperform
the direct use of an error rate. Hence, the combined
action of both kinds of measures can lead to a better
fuzzy MCS performance in our case. In particular,
we combined accuracy measures with the said two
diversity measures in [12], obtaining promising re-
sults. Hence, in this contribution we will use the
combination of TE with θ and δ (fitness functions
2b and 2c respectively) in the current contribution,
as in our opinion this may lead to an accuracy im-
provement, when keeping a low number of classi-
fiers.

Finally, we would like to put more stress on the
complexity aspect as proposed in [29, 30], so we
join diversity measures with complexity into the two
remaining two-objective fitness functions (2d and
2e). By doing so we would like to obtain simple

ensembles still having high quality in terms of per-
formance.

Table 1 summarizes the composition of the five
biobjective fitness functions proposed.

Table 1. The five fitness function proposed.

abbreviation 1st obj. 2nd obj.
2a TE Complx
2b TE θ
2c TE δ
2d θ Complx
2e δ Complx

5. Experiments and analysis of results

This section reports all the experiments per-
formed. Firstly, we introduce the experimental setup
(Sec. 5.1). Then, in Sec. 5.2 the performance of
NSGA-II with the considered five two-objective fit-
ness functions when tackling the classifier selection
tasks for FURIA-based fuzzy MCSs is analyzed.
Two multiobjective metrics, one unary and one bi-
nary [24, 53], are considered to do so. We also show
graphs of the obtained Pareto front approximations.
Furthermore, we study some representative individ-
ual solutions selected from the obtained Pareto sets
in Sec. 5.3. Finally, we compare the best single
values obtained against the result from the previ-
ous stage, that is FURIA-based fuzzy MCSs with
bagging not considering classifier selection, as well
as against two state-of-the-art algorithms, random
forests [38] and bagging C4.5 MCSs [54], in Sec.
5.4.

5.1. Experimental setup

To evaluate the performance of the generated
FURIA-based fuzzy MCSs, we have selected 20
datasets with different characteristics concerning the
number of examples, features, and classes from
the UCI machine learning repository (see Table 2).
In order to compare the accuracy of the consid-
ered classifiers, we used Dietterichs 5×2-fold cross-
validation (5×2-cv), which is considered to be supe-
rior to paired k-fold cross validation in classification
problems [55].
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Multiobjective GAs for Classifier Selection in FURIA fuzzy MCSs

Table 2. Data sets considered

Data set #examples #attr. #classes
abalone 4178 7 28
breast 700 9 2
glass 214 9 7
heart 270 13 2

ionosphere 352 34 2
magic 19020 10 2

optdigits 5620 64 10
pblocks 5474 10 5

pendigits 10992 16 10
phoneme 5404 5 2

pima 768 8 2
sat 6436 36 6

segment 2310 19 7
sonar 208 60 2

spambase 4602 57 2
texture 5500 40 11

waveform 5000 40 3
wine 178 13 3

vehicle 846 18 4
yeast 1484 8 10

The FURIA-based fuzzy MCSs generated are
initially comprised by 50 classifiers. NSGA-II for
the component classifier selection works with a pop-
ulation of 50 individuals and runs during 1000 gen-
erations. The crossover probability considered is 0.6
and the mutation probability is 0.1. A different run
is developed with each of the five fitness function
variants for each initial fuzzy MCS, thus resulting
in 10 different runs per dataset as a consequence of
the 5×2-cv cross validation procedure. All the ex-
periments have been run in a cluster at the Univer-
sity of Granada, Spain, on Intel quadri-core Pentium
2.4 GHz nodes with 2 GBytes of memory, under the
Linux operating system.

To compare the Pareto front approximations of
the global learning objectives (i.e. MCS test accu-
racy and complexity) we consider the two of usual
kinds of multiobjective metrics [24, 53]. The first
group measures the quality of a single nondominated
solution set returned by a multiobjective algorithm,
while the second group compares the performance
of two different multiobjective algorithms. We have
selected one metric for each group, hypervolume ra-
tio (HVR) [24] and C-measure [53], respectively.

An useful unary metric to compare Pareto sets
is the S metric, proposed by Zitzler [53], and called
hypervolume. It measures the volume enclosed by
the Pareto front Y ′. When there are only two objec-
tives, S(Y ′) measures the area covered by the Pareto

front by adding the areas covered by each individual
nondominated point. In the case of a minimization
problem, as ours, there is a need to define a refer-
ence point. Nevertheless, the relative value of the S
metric usually depends upon an arbitrary choice of
this point, getting unexpected metric values if it is
not correctly fixed [56]. Besides, when the dimen-
sion of the objectives is large, it is interesting to nor-
malise them. Alternatively, the hypervolume ratio
(HV R) [24] can be considered to avoid these draw-
backs. HV R is a very powerful metric, as it both
measures diversity and closeness. The HV R can be
simply calculated as follows:

HV R =
H1

H2
(7)

where H1 and H2 are the volume (S metric value) of
the Pareto front approximation and the true Pareto
front, respectively. When HV R equals 1, then the
Pareto front approximation and the true one are
equal. Thus, HV R values lower than 1 indicate a
generated Pareto front that is not as good as the true
Pareto front. In our case, as the truen Pareto fronts
are not known, we will consider an approximation (a
pseudo-optimal Pareto front) obtained by fusing all
the (approximate) Pareto fronts generated for each
problem instance by any algorithm variant in any
run.

As binary metric we will use the coverage, pro-
posed by Zitzler et al. in [53], which compares a pair
of non-dominated sets by computing the fraction of
each set that is covered by the other:

C(X ′,X ′′) =
|{∀a′′ ∈ X ′′ ; ∃a′ ∈ X ′ : a′ ≺ a′′}|

|X ′′| (8)

where a′ ≺ a′′ indicates that the solution a′ domi-
nates the solution a′′ in a minimization problem and
Y ′,Y ⊆Y are the sets of objective vectors that corre-
spond to X ′ and X (non-dominated decision vectors),
respectively.

Hence, the value C(X ′,X ′′) = 1 means that all the
solutions in X ′′ are dominated by or equal to solu-
tions in X ′. The opposite, C(X ′,X ′′) = 0, represents
the situation where none of the solutions in X ′′ are
covered by the set X ′. Note that both C(X ′,X ′′) and
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K. Trawiński et al.

C(X ′′,X ′) have to be considered, since C(X ′,X ′′) is
not necessarily equal to 1−C(X ′′,X ′).

Let us call P j
i the non-dominated solution set

returned by NSGA-II usign the variant of fitness
function i in the j-th run for a specific problem in-
stance; Pi = P1

i
⋃

P2
i

⋃
. . .

⋃
P10

i , the union of the so-
lution sets returned by the ten runs obtained from
5x2cv of algorithm i, and finally Pi the set of all
non-dominated solutions in the Pi set∗(aggregated
Pareto fronts). As a complement to the analysis
of the results obtained in the two different multiob-
jective metrics, we will provide graphical represen-
tations of some of those aggregated Pareto fronts.
When graphically represented, these graphics offers
a visual information, not measurable, but sometimes
more useful than numeric values.

5.2. Analysis and comparison of the obtained
Pareto front approximations

This section is devoted to analyze the performance
of the proposed NSGA-II-based approach to classi-
fier selection in FURIA-based fuzzy MCS. First, the
quality of the obtained Pareto front approximations
considering the five fitness functions defined in Sec.
4.2 will be studied in Sec. 5.2.1. Then, a global com-
parison among the five methods is made by analyz-
ing their performance on the satisfaction of the two
final learning problem goals, the test accuracy and
the complexity of the obtained fuzzy MCSs.

On the one hand, regarding the former analy-
sis we draw a table with the minimum, maximum,
mean, and standard deviation values obtained for
each objective in the Pareto set derived for each of
the five fitness functions considered. On the other
hand, to compare the Pareto front approximations of
the global objectives we consider a table with the
same structure as above as well as statistics related
to the selected multiobjective metrics, HVR and C.
We also plot some of the aggregated Pareto front ap-
proximations in order to have a taste of their trends,
as drawing all of them would not be feasible.

5.2.1. Analysis of the original Pareto front
approximations

As the five two-objective fitness functions consid-
ered handle three different types of measures: accu-
racy, complexity, and diversity, its direct comparison
is practically impossible. Instead, in order to give a
flavor of the Pareto fronts obtained, we present their
characteristic values. We first gather them for all of
the folds out of 5x2cv and average them. We show
the statistics for each dataset in a different row in
Tables 3 to 5. For each fitness function we show
the cardinality of the Pareto set (called Car.) and
for each objective we present the minimum (called
Min.), maximum (called Max.), mean (called Avg.),
and standard deviation (called Dev.) of the averaged
5x2cv values. Let us recall the objectives of the all
fitness functions. Function 2a is composed of train-
ing error and complexity, while 2b and 2c combine
training error and the diversity measures, variance
and double fault, respectively. Finally, 2d and 2e as-
semble complexity with variance and double fault,
respectively. Furthermore, we show a visual repre-
sentation of the aggregated Pareto front approxima-
tions for one selected dataset. Figures 3 to 5 rep-
resent a visualization of the fronts obtained for the
abalone dataset by the five fitness functions.

A first very important conclusion is that, while
the first three fitness function variants, 2a, 2b, and
2c, work properly as they allow the multiobjective
genetic classifier selection method to derive a signif-
icant number of solutions in the Pareto set approx-
imations (cardinal), the other two, 2d and 2e, show
a deceptive behavior. On the one hand, function 2d
provided a single solution in 10 out of 20 cases and
1.1 solutions in another 5 out of 20 cases. On the
other hand, although function 2e allows us to ob-
tain many different solutions in the solution space
(Pareto set), all of them correspond to exactly the
same objective values (Pareto front). Thus, the latter
two fitness functions are not adequate for generating
diverse Pareto front approximations.

∗Notice that the pseudo-optimal Pareto front is the fusion of the Pi sets generated by every variant of the fitness function in all runs
developed.
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Multiobjective GAs for Classifier Selection in FURIA fuzzy MCSs

Table 3: Statistics of the Pareto front approximations with the original objectives.
2a 2b

Obj. 1 - TE Obj. 2 - Complx Obj. 1 - TE Obj. 2 - θ
Car. Min. Max. Avg. Dev. Min. Max. Avg. Dev. Car. Min. Max. Avg. Dev. Min. Max. Avg. Dev.

abalone 14.5 0.505 0.605 0.532 0.029 2.000 17.700 8.821 4.757 58.6 0.509 0.599 0.546 0.025 0.113 0.128 0.119 0.004
breast 7.0 0.000 0.007 0.002 0.003 2.000 3.000 2.701 0.458 6.3 0.000 0.009 0.005 0.004 0.009 0.038 0.025 0.011
glass 8.9 0.004 0.113 0.034 0.036 2.000 6.800 4.395 1.631 11.1 0.007 0.113 0.060 0.036 0.100 0.410 0.258 0.087
heart 8.8 0.001 0.050 0.018 0.020 2.000 4.500 3.372 0.972 9.5 0.001 0.057 0.029 0.019 0.053 0.230 0.143 0.055

ionosphere 6.8 0.003 0.008 0.005 0.002 2.000 2.800 2.504 0.374 5.2 0.003 0.027 0.015 0.010 0.026 0.083 0.054 0.024
magic 4.3 0.097 0.113 0.102 0.008 2.000 6.600 4.250 2.024 11.1 0.098 0.107 0.102 0.003 0.096 0.189 0.152 0.026

optdigits 142.0 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000 196.7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
pblocks 8.2 0.006 0.016 0.009 0.003 2.000 11.200 6.018 3.295 15.8 0.007 0.015 0.010 0.003 0.015 0.055 0.035 0.011

pendigits 17.2 0.000 0.010 0.002 0.002 2.000 9.300 5.839 2.169 22.7 0.000 0.011 0.004 0.003 0.011 0.082 0.040 0.017
phoneme 7.8 0.058 0.086 0.065 0.010 2.000 9.800 5.990 2.864 14.9 0.059 0.083 0.068 0.008 0.076 0.226 0.163 0.039

pima 10.6 0.022 0.084 0.044 0.021 2.000 10.200 5.568 2.875 19.3 0.024 0.100 0.057 0.023 0.090 0.382 0.239 0.074
sat 13.2 0.010 0.049 0.019 0.011 2.000 16.600 8.013 4.646 38.0 0.011 0.049 0.023 0.010 0.047 0.235 0.148 0.044

segment 14.2 0.000 0.012 0.003 0.004 2.000 6.600 4.782 1.534 12.8 0.000 0.015 0.007 0.005 0.014 0.070 0.041 0.017
sonar 7.9 0.000 0.037 0.011 0.016 2.000 3.300 2.853 0.565 7.5 0.000 0.062 0.029 0.023 0.058 0.220 0.148 0.058

spambase 7.8 0.015 0.033 0.020 0.007 2.000 9.400 5.141 2.703 17.3 0.015 0.029 0.020 0.004 0.029 0.122 0.078 0.024
texture 18.3 0.000 0.020 0.003 0.005 2.000 8.000 5.641 1.867 22.3 0.000 0.021 0.006 0.006 0.020 0.127 0.071 0.025
vehicle 17.0 0.002 0.099 0.023 0.026 2.000 13.400 7.669 3.536 24.9 0.003 0.104 0.043 0.029 0.093 0.421 0.277 0.083

waveform 22.8 0.001 0.059 0.011 0.014 2.000 21.000 10.311 5.517 53.3 0.002 0.067 0.021 0.016 0.062 0.411 0.232 0.081
wine 5.3 0.000 0.001 0.000 0.001 2.000 2.100 2.069 0.048 4.6 0.000 0.006 0.004 0.003 0.006 0.020 0.011 0.008
yeast 9.9 0.156 0.250 0.182 0.029 2.000 11.100 5.950 2.956 28.1 0.158 0.254 0.199 0.029 0.189 0.402 0.324 0.051

Table 4: Statistics of the Pareto front approximations with the original objectives.
2c 2d

Obj. 1 - TE Obj. 2 - δ Obj. 1 - θ Obj. 2 - Complx
Car. Min. Max. Avg. Dev. Min. Max. Avg. Dev. Car. Min. Max. Avg. Dev. Min. Max. Avg. Dev.

abalone 29.3 0.506 0.622 0.538 0.030 0.428 0.460 0.448 0.008 8.3 0.113 0.151 0.122 0.013 2.000 9.400 5.664 2.561
breast 6.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.3 0.018 0.018 0.018 0.000 2.000 2.000 2.000 0.000
glass 8.3 0.005 0.162 0.054 0.058 0.009 0.038 0.025 0.010 1.1 0.158 0.158 0.158 0.000 2.000 2.000 2.000 0.000
heart 6.8 0.000 0.064 0.019 0.024 0.000 0.009 0.005 0.003 1.1 0.093 0.093 0.093 0.000 2.000 2.000 2.000 0.000

ionosphere 57.9 0.004 0.004 0.004 0.000 0.000 0.000 0.000 0.000 1.2 0.045 0.045 0.045 0.000 2.000 2.000 2.000 0.000
magic 8.1 0.097 0.115 0.102 0.007 0.067 0.072 0.070 0.002 1.0 0.124 0.124 0.124 0.000 2.000 2.000 2.000 0.000

optdigits 196.7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 145.7 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000
pblocks 10.8 0.006 0.020 0.010 0.005 0.004 0.007 0.006 0.001 1.0 0.022 0.022 0.022 0.000 2.000 2.000 2.000 0.000

pendigits 83.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.0 0.020 0.020 0.020 0.000 2.000 2.000 2.000 0.000
phoneme 10.0 0.058 0.097 0.068 0.013 0.035 0.044 0.040 0.003 1.0 0.114 0.114 0.114 0.000 2.000 2.000 2.000 0.000

pima 11.7 0.021 0.103 0.046 0.026 0.018 0.037 0.029 0.006 1.0 0.145 0.145 0.145 0.000 2.000 2.000 2.000 0.000
sat 2.8 0.010 0.010 0.010 0.000 0.000 1.031 0.323 0.530 1.0 0.079 0.079 0.079 0.000 2.000 2.000 2.000 0.000

segment 69.9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.1 0.024 0.024 0.024 0.000 2.000 2.000 2.000 0.000
sonar 4.5 0.000 0.011 0.003 0.003 0.000 0.001 0.001 0.000 1.1 0.101 0.101 0.101 0.000 2.000 2.000 2.000 0.000

spambase 2.4 0.015 0.015 0.015 0.000 0.000 0.550 0.110 0.246 1.1 0.046 0.046 0.046 0.000 2.000 2.000 2.000 0.000
texture 99.8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.0 0.037 0.037 0.037 0.000 2.000 2.000 2.000 0.000
vehicle 15.2 0.002 0.118 0.030 0.031 0.015 0.034 0.027 0.005 1.0 0.155 0.155 0.155 0.000 2.000 2.000 2.000 0.000

waveform 19.3 0.001 0.001 0.001 0.000 0.000 0.643 0.214 0.371 1.0 0.108 0.108 0.108 0.000 2.000 2.000 2.000 0.000
wine 54.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.8 0.010 0.010 0.010 0.000 2.000 2.000 2.000 0.000
yeast 15.5 0.156 0.282 0.188 0.034 0.109 0.134 0.123 0.007 1.0 0.246 0.246 0.246 0.000 2.000 2.000 2.000 0.000

Table 5: Statistics of the Pareto front approximations with the original objectives.
2e

Obj. 1 - δ Obj. 2 - Complx
Car. Min. Max. Avg. Dev. Min. Max. Avg. Dev.

abalone 120.5 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000
breast 86.1 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000
glass 102.3 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000
heart 94.5 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000

ionosphere 89.0 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000
magic 136.9 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000

optdigits 145.7 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000
pblocks 132.5 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000

pendigits 136.7 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000
phoneme 137.1 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000

pima 124.6 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000
sat 133.8 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000

segment 124.8 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000
sonar 99.0 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000

spambase 132.1 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000
texture 142.2 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000
vehicle 126.9 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000

waveform 135.9 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000
wine 73.3 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000
yeast 131.4 0.000 0.000 0.000 0.000 2.000 2.000 2.000 0.000
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K. Trawiński et al.

Fig. 3. The Pareto front approximation obtained for abalone
using fitness function 2a (objective 1 stands for training er-
ror and objective 2 for complexity) on the top, and fitness
function 2b (Objective 1 stands for training error and objec-
tive 2 for variance) on the bottom.

It can be noticed that the ranges of the objectives
vary depending on the dataset given. The training
error, which is the first objective of 2a, 2b, and 2c,
converges to 0 for several datasets, while growing up
to 0.605 overall. The complexity, which is the sec-
ond objective of 2a, 2d, and 2e lays in the range be-
tween 2 and 21, thus showing significant reduction
obtained by the multiobjective genetic component
classifier selection method (recall that the original
number of classifiers is 50). Besides, the variance,
being the second objective of 2b and the first of 2d,
obtains a minimum value equal to 0 and grows up to
1.202.

Fig. 4. The Pareto front approximation obtained for abalone
using fitness function 2c (objective 1 stands for training er-
ror and objective 2 for double fault) on the top, and fitness
function 2d (Objective 1 stands for variance and objective 2
for complexity) on the bottom.

Fig. 5. The Pareto front approximation obtained for abalone
using fitness function 2e (objective 1 stands for double fault
and objective 2 for complexity).
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Multiobjective GAs for Classifier Selection in FURIA fuzzy MCSs

The double fault, which is the second objective
of 2c and the first of 2e, lays in the range between 0
and 4.722. In addition, the standard deviation values
of the training error vary for each fitness function,
2a, 2b, and 2c variants, depending on the dataset and
it is hard to point the one being the most stable. On
the other hand, considering the standard deviation of
complexity, the lowest values are obtained by both
2d and 2e variants, thus showing the already men-
tioned deceptive behavior. The same results were
obtained for diversity measures.

The combination of double fault and complexity
seems to be a special case to be considered. It is
a deceptive measure because either the two objec-
tives are not conflicting or there is a specific limit
condition where an optimal tradeoff is obtained. For
all the datasets, a single optimum of the biobjective
function was generated where complexity obtained
value 2 and double fault took value 0. Such pair of
values could be reasonable, since double fault is a
pair-wise metric and in general tends to small en-
semble sizes, the same as complexity. Nevertheless,
it clearly shows this biobjective fitness function def-
inition is not appropriate for the considered learning
task.

A similar case is the 2d variant combining vari-
ance with complexity, as for almost all datasets, 19
ouf of 20, it obtained complexity equal to 2. Be-
sides, apart from two datasets, abalone and optdigits,
it obtained cardinality equal or close to 1, as already
mentioned.

5.2.2. Perfomance analysis of the five variants in
the two global learning objectives

Since the individual objectives of the Pareto front
approximations presented in the previous subsection
are not comparable, we have considered two com-
mon objectives, namely test error and complexity,
in order to compare the results obtained by the five
fitness functions proposed. Notice that, these are
the actual learning goals that will be considered by
the designer in order to choose the final fuzzy MCS
structure.

The characteristic values of the Pareto front ap-
proximations of the two global learning goals are
presented in Tables 6 and 7. The structure of these

tables is similar to the ones in the previous subsec-
tion. The results are gathered for all of the folds out
of 5x2cv and averaged. We show the statistics for
each dataset and each fitness function in a different
row. For each fitness function we show cardinality
(called Car.) and for each objective we present min-
imum (called Min.), maximum (called Max.), mean
(called Avg.), and standard deviation (called Dev.) of
the averaged 5x2cv values.

Table 6. Statistics of the Pareto front approximations with the
global learning objectives.

Obj. 1 - test error Obj. 2 - Complx
Car. Min. Max. Avg. Dev. Min. Max. Avg. Dev.

aba 2a 14.5 0.746 0.777 0.758 0.009 2.0 17.7 8.8 4.8
2b 58.6 0.741 0.763 0.752 0.005 9.3 25.0 17.2 4.2
2c 29.3 0.745 0.783 0.758 0.009 2.0 16.9 8.5 4.4
2d 8.3 0.752 0.791 0.767 0.013 2.0 9.4 5.7 2.6
2e 120.5 0.759 0.803 0.781 0.009 2.0 2.0 2.0 0.0

bre 2a 7.0 0.038 0.060 0.048 0.008 2.0 3.0 2.7 0.5
2b 6.3 0.037 0.057 0.046 0.007 1.0 3.7 2.5 1.1
2c 6.0 0.037 0.051 0.045 0.005 3.0 3.4 3.1 0.2
2d 1.3 0.050 0.051 0.051 0.001 2.0 2.0 2.0 0.0
2e 86.1 0.037 0.091 0.061 0.012 2.0 2.0 2.0 0.0

gla 2a 8.9 0.286 0.390 0.330 0.033 2.0 6.8 4.4 1.6
2b 11.1 0.288 0.396 0.331 0.033 1.0 8.9 4.0 2.3
2c 8.3 0.283 0.403 0.333 0.041 2.1 7.2 4.3 1.9
2d 1.1 0.360 0.363 0.361 0.002 2.0 2.0 2.0 0.0
2e 102.3 0.305 0.517 0.400 0.046 2.0 2.0 2.0 0.0

hea 2a 8.8 0.172 0.233 0.202 0.021 2.0 4.5 3.4 1.0
2b 9.5 0.170 0.231 0.200 0.020 1.0 5.6 3.0 1.4
2c 6.8 0.178 0.235 0.203 0.021 2.2 4.8 3.3 1.0
2d 1.1 0.201 0.203 0.202 0.001 2.0 2.0 2.0 0.0
2e 94.5 0.155 0.299 0.224 0.031 2.0 2.0 2.0 0.0

ion 2a 6.8 0.144 0.187 0.164 0.015 2.0 2.8 2.5 0.4
2b 5.2 0.145 0.191 0.166 0.020 1.0 3.0 2.0 0.9
2c 57.9 0.126 0.170 0.148 0.010 13.4 28.1 20.9 3.6
2d 1.2 0.156 0.160 0.158 0.003 2.0 2.0 2.0 0.0
2e 89.0 0.129 0.248 0.181 0.026 2.0 2.0 2.0 0.0

mag 2a 4.3 0.132 0.144 0.136 0.005 2.0 6.6 4.2 2.0
2b 11.1 0.132 0.143 0.136 0.003 1.0 8.2 4.1 2.1
2c 8.1 0.132 0.145 0.136 0.005 2.0 6.8 4.0 1.8
2d 1.0 0.146 0.146 0.146 0.000 2.0 2.0 2.0 0.0
2e 136.9 0.142 0.159 0.150 0.003 2.0 2.0 2.0 0.0

opt 2a 142.0 0.655 0.703 0.678 0.009 2.0 2.0 2.0 0.0
2b 196.7 0.625 0.641 0.633 0.003 18.0 37.0 25.9 3.3
2c 196.7 0.625 0.641 0.633 0.003 18.0 37.0 25.9 3.3
2d 145.7 0.654 0.704 0.678 0.009 2.0 2.0 2.0 0.0
2e 145.7 0.654 0.704 0.678 0.009 2.0 2.0 2.0 0.0

pbl 2a 8.2 0.028 0.035 0.031 0.003 2.0 11.2 6.0 3.3
2b 15.8 0.027 0.034 0.030 0.002 1.0 8.8 4.1 2.1
2c 10.8 0.027 0.038 0.031 0.003 2.0 10.9 5.6 3.0
2d 1.0 0.034 0.034 0.034 0.000 2.0 2.0 2.0 0.0
2e 132.5 0.031 0.047 0.038 0.003 2.0 2.0 2.0 0.0

pen 2a 17.2 0.016 0.032 0.020 0.004 2.0 9.3 5.8 2.2
2b 22.7 0.016 0.034 0.022 0.005 1.0 11.3 4.4 2.5
2c 83.0 0.014 0.018 0.016 0.001 15.8 26.7 21.5 2.5
2d 1.0 0.032 0.032 0.032 0.000 2.0 2.0 2.0 0.0
2e 136.7 0.029 0.042 0.035 0.003 2.0 2.0 2.0 0.0

pho 2a 7.8 0.125 0.152 0.133 0.009 2.0 9.8 6.0 2.9
2b 14.9 0.127 0.151 0.135 0.007 1.0 8.8 4.3 2.1
2c 10.0 0.125 0.160 0.136 0.011 2.0 10.0 5.2 2.7
2d 1.0 0.153 0.153 0.153 0.000 2.0 2.0 2.0 0.0
2e 137.1 0.144 0.183 0.162 0.008 2.0 2.0 2.0 0.0

In general, the highest cardinality is obtained by
the 2e variant, which combines double fault and
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K. Trawiński et al.

complexity objectives. However, we have consid-
ered it as a deceptive fitness function in the previous
subsection. On the other hand, the 2d variant, which
is composed of variance and complexity objectives,
almost always provides cardinality equal to 1 and
was also categorized as deceptive. Thus, both vari-
ants are tricky and do not constitute good approach
to provide high quality Pareto front approximations.

Table 7. Statistics of the Pareto front approximations with the
global learning objectives.(cont.)

Obj. 1 - test error Obj. 2 - Complx
Car. Min. Max. Avg. Dev. Min. Max. Avg. Dev.

pim 2a 10.6 0.235 0.291 0.256 0.018 2.0 10.2 5.6 2.9
2b 19.3 0.233 0.296 0.261 0.016 1.0 11.6 4.4 2.7
2c 11.7 0.236 0.290 0.257 0.016 2.0 11.0 5.8 3.0
2d 1.0 0.277 0.277 0.277 0.000 2.0 2.0 2.0 0.0
2e 124.6 0.231 0.318 0.274 0.018 2.0 2.0 2.0 0.0

sat 2a 13.2 0.102 0.130 0.110 0.008 2.0 16.6 8.0 4.6
2b 38.0 0.101 0.132 0.111 0.007 1.0 17.2 6.3 3.8
2c 2.8 0.102 0.104 0.103 0.001 20.2 22.7 21.3 1.4
2d 1.0 0.129 0.129 0.129 0.000 2.0 2.0 2.0 0.0
2e 133.8 0.119 0.140 0.129 0.004 2.0 2.0 2.0 0.0

seg 2a 14.2 0.029 0.048 0.036 0.006 2.0 6.6 4.8 1.5
2b 12.8 0.029 0.051 0.038 0.006 1.0 6.8 3.4 1.6
2c 69.9 0.027 0.037 0.032 0.002 14.4 26.1 19.8 2.9
2d 1.1 0.047 0.047 0.047 0.000 2.0 2.0 2.0 0.0
2e 124.8 0.037 0.070 0.052 0.006 2.0 2.0 2.0 0.0

son 2a 7.9 0.203 0.284 0.245 0.031 2.0 3.3 2.9 0.6
2b 7.5 0.217 0.289 0.252 0.026 1.0 3.7 2.5 1.0
2c 4.5 0.213 0.271 0.242 0.022 2.8 3.3 3.0 0.1
2d 1.1 0.269 0.274 0.272 0.003 2.0 2.0 2.0 0.0
2e 99.0 0.188 0.406 0.292 0.047 2.0 2.0 2.0 0.0

spa 2a 7.8 0.057 0.072 0.061 0.005 2.0 9.4 5.1 2.7
2b 17.3 0.056 0.070 0.061 0.004 1.0 9.8 4.7 2.4
2c 2.4 0.056 0.058 0.057 0.001 11.9 13.8 12.8 1.1
2d 1.1 0.072 0.072 0.072 0.000 2.0 2.0 2.0 0.0
2e 132.1 0.065 0.090 0.077 0.005 2.0 2.0 2.0 0.0

tex 2a 18.3 0.032 0.065 0.040 0.009 2.0 8.0 5.6 1.9
2b 22.3 0.033 0.067 0.043 0.009 1.0 9.2 4.2 1.9
2c 99.8 0.028 0.035 0.032 0.001 17.2 30.4 23.8 3.0
2d 1.0 0.067 0.067 0.067 0.000 2.0 2.0 2.0 0.0
2e 142.2 0.058 0.087 0.071 0.005 2.0 2.0 2.0 0.0

veh 2a 17.0 0.257 0.302 0.275 0.012 2.0 13.4 7.7 3.5
2b 24.9 0.255 0.316 0.282 0.015 1.0 13.4 5.4 3.2
2c 15.2 0.260 0.308 0.278 0.014 2.0 14.1 7.0 3.6
2d 1.0 0.307 0.307 0.307 0.000 2.0 2.0 2.0 0.0
2e 126.9 0.270 0.350 0.310 0.017 2.0 2.0 2.0 0.0

wav 2a 22.8 0.148 0.195 0.158 0.011 2.0 21.0 10.3 5.5
2b 53.3 0.146 0.199 0.163 0.012 1.0 23.1 7.1 4.8
2c 19.3 0.146 0.152 0.149 0.002 24.0 29.3 26.5 1.8
2d 1.0 0.197 0.197 0.197 0.000 2.0 2.0 2.0 0.0
2e 135.9 0.181 0.213 0.196 0.006 2.0 2.0 2.0 0.0

win 2a 5.3 0.051 0.100 0.076 0.019 2.0 2.1 2.1 0.0
2b 4.6 0.054 0.091 0.074 0.014 1.0 2.3 1.6 0.7
2c 54.5 0.018 0.063 0.038 0.013 15.2 33.8 24.4 4.6
2d 1.8 0.065 0.076 0.071 0.006 2.0 2.0 2.0 0.0
2e 73.3 0.037 0.231 0.125 0.046 2.0 2.0 2.0 0.0

yea 2a 9.9 0.404 0.453 0.423 0.015 2.0 11.1 5.9 3.0
2b 28.1 0.396 0.467 0.424 0.016 1.0 10.9 4.8 2.6
2c 15.5 0.405 0.472 0.426 0.019 2.0 12.5 6.3 3.0
2d 1.0 0.445 0.445 0.445 0.000 2.0 2.0 2.0 0.0
2e 131.4 0.421 0.495 0.458 0.014 2.0 2.0 2.0 0.0

The other variants, 2a, 2b, and 2c, combining
training error with complexity, variance, and double
fault, respectively, seem to be performing well.

Having an insight to the results, we may empha-
size the 2c variant, as the one having the lowest Avg.
test error value for 10 out of 20 cases (+2 ties). No-
tice that the 2a variant is just slightly worse than the
other two approaches. Considering the complexity,
we may see that the 2e variant obtained the lowest
value in all of the cases, while the 2d variant was
not much worse with 19 out of 20 best values (19
ties with the 2e variant). The 2a and 2b variants ob-
tained only one best result (both ties with the 2d and
2e variants), placing the 2c variant in the last posi-
tion with no best value obtained.

Table 8. Comparison of Pareto fronts using HVR measure.
2a 2b 2c 2d 2e

aba 0.9973 0.5126 0.9973 0.9961 0.9962
bre 0.6632 0.9955 0.3321 0.6627 0.6644
gla 0.8455 0.9867 0.8314 0.8376 0.8469
hea 0.6582 0.9858 0.5915 0.6564 0.6625
ion 0.9437 0.9796 0.5294 0.9416 0.9464
mag 0.9323 0.9988 0.9324 0.9300 0.9307
opt 0.9952 0.3335 0.3335 0.9952 0.9952
pbl 0.8555 0.9983 0.8555 0.8547 0.8553
pen 0.9609 0.9992 0.4307 0.9580 0.9587
pho 0.9267 0.9978 0.9266 0.9224 0.9241
pim 0.8700 0.9944 0.8700 0.8650 0.8730
sat 0.9554 0.9988 0.1738 0.9510 0.9528
seg 0.9483 0.9982 0.3295 0.9452 0.9472
son 0.6544 0.9797 0.3927 0.6492 0.6597
spa 0.9071 0.9978 0.1542 0.9047 0.9060
tex 0.9587 0.9983 0.3518 0.9525 0.9542
veh 0.8523 0.9940 0.8520 0.8459 0.8521
wav 0.9638 0.9984 0.2068 0.9554 0.9585
win 0.9240 0.9893 0.1066 0.9213 0.9265
yea 0.9315 0.9947 0.9311 0.9256 0.9301
avg. 0.8450 0.8920 0.5299 0.8415 0.8870
dev. 0.2202 0.2682 0.3263 0.2194 0.1058

Table 8 presents the results using the HVR met-
ric. Besides, we have used box-plots based on the
C metric that calculates the dominance degree of the
Pareto front approximations of every pair of algo-
rithms (see Fig. 6). Each rectangle contains ten
box-plots representing the distribution of the C val-
ues for a certain ordered pair of fitness functions in
the 20 problem instances (from abalone to yeast in
alphabetical order). Each box refers to algorithm A
in the corresponding row and algorithm B in the cor-
responding column and gives the fraction of B cov-
ered by A (C(A,B)). Consider for instance the top
right boxplots, which represent the fraction of so-
lutions of the 2e variant, considering the joint op-
timization of double fault and complexity, covered
by the non-dominated sets produced by the 2a vari-
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Multiobjective GAs for Classifier Selection in FURIA fuzzy MCSs

Figure 6: Comparison of the Pareto fronts using C-measure by means of box-plots.

ant, composed of the training error and complexity
measures. In each box, the minimum and maximum
values are the lowest and highest lines, the upper

and lower ends of the box are the upper and lower
quartiles, and a thick line within the box shows the
median.

Published by Atlantis Press 
      Copyright: the authors 
                   245

D
ow

nl
oa

de
d 

by
 [

K
rz

ys
zt

of
 T

ra
w

in
sk

i]
 a

t 0
7:

35
 2

3 
A

pr
il 

20
12

 



K. Trawiński et al.

Our analysis of the HVR measure clearly points
out the best performing fitness function for the final
learning goal. The 2b variant, considering the joint
optimization of training error and variance, obtained
the highest value in 18 out of 20 cases. Neverthe-
less, it provided some instability for two remaining
datasets and thus a high standard deviation value.
For abalone and optdigits it obtained the worst val-
ues among the five fitness function designs. Func-
tion 2a, optimizing training error and complexity,
obtained two ties. Even being a deceptive fitness
function, the 2d, which joins variance and complex-
ity as objectives, and 2e variant, which combines
double fault and complexity, obtained one tie as well
as fitness function 2c, jointly optimizing training er-
ror and double fault.

Concerning the average value on the twenty
datasets considered, the order is 2b, 2e, 2a, 2d, 2c. It
is a surprising fact that the two deceptive functions
are not located in the two last positions but are able
to overcome almost all variants for 2e, and one other
variant for 2d. It seems that, although they are not
able to derive a diverse set of solutions, the selected
fuzzy MCSs obtained show a good performance in
the global learning objectives tradeoff curve. Any-
way, from all the latter analysis we may conclude
that the 2b fitness function seems to be the best per-
forming variant.

The analysis of the C-measure (see Fig. 6) high-
lights the 2a and the 2b variants, which clearly out-
perform the other fitness functions, especially the
latter. When comparing these two approaches be-
tween them, the 2b fitness function obtains better re-
sults. Notice that, comparisons with either 2d or 2e
variants provide deceptive results due to the small
number of solutions contained in their Pareto front
approximations.

Hence, considering the information provided by
the two multiobjective metrics we may clearly draw
the conclusion that the 2b fitness function is the best
performing approach.

Finally, in order to complement the latter analy-
sis, the aggregated Pareto fronts will be represented
graphically for three of the datasets: abalone, wave-
form, and magic (see Figs. 7, 8, and 9, respectively)
in order to allow an easy visual comparison of the

performance of the different variants of the fitness
functions.

Fig. 7. The Pareto front approximations obtained for
abalone using the five fitness functions. Objective 1 stands
for test error and objective 2 for complexity. The pseudo-
optimal Pareto front is also drawn for reference.

Fig. 8. The Pareto front approximations obtained for wave-
form using the five fitness functions. Objective 1 stands
for test error and objective 2 for complexity. The pseudo-
optimal Pareto front is also drawn for reference.
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Multiobjective GAs for Classifier Selection in FURIA fuzzy MCSs

Fig. 9. The Pareto front approximations obtained for magic
using the five fitness functions. Objective 1 stands for test
error and objective 2 for complexity. The pseudo-optimal
Pareto front is also drawn for reference.

It can be seen how the graphs corroborate the
conclusions of the metrics analysis: the 2b fitness
function obtained the worst HVR metric value for
the abalone dataset, while it obtained the best perfor-
mance, which is close to the pseudo-optimal Pareto
front, when looking at the waveform and magic
datasets. Notice how, the 2e variant obtains a sin-
gle nondominated solution in the three problems but
in all of them this solution is included in the pseudo-
optimal Pareto front, thus justifying the good values
obtained in the HVR and C metrics. That is not the
case for function 2d whose small number of non-
dominated solutions are usually far from the pseudo-
optimal front. The bad performance of the 2c variant
is also clearly observed.

5.3. Analysis and comparison of single solutions
selected from the obtained Pareto front
approximations

In this section, we aim to analyze the final perfor-
mance of our proposal by imitating the process a
human designer will develop in order to select a de-
sired FURIA-based fuzzy MCS structure from those
available in the obtained accuracy-complexity non-
dominated fronts.

From each Pareto front approximation we have
selected four different solutions, the one having the

best value in the first objective in the considered fit-
ness function, the one with the best value in the sec-
ond objective in the considered fitness function, the
one with the best tradeoff value, and the one with
the best test error value. The tradeoff solution is se-
lected as follows: we compute 1000 random weights
w1 ∈ [0,1], take the average value of the aggrega-
tion function of both objectives Ob j1 and Ob j2:
(w1 ∗Ob j1 + (1−w1) ∗Ob j2), and select the so-
lution with the highest aggregated value. For each
solution we present the values of three global learn-
ing objectives, Training error (Tra), test error (Tst),
and complexity (Cmpl) in Tables 9 and 10. The av-
erage and standard deviation value for each of four
different solutions in the 20 problems is also pre-
sented in Table 11. We do not show the two diversity
measures values, since that was not the final learn-
ing objective. Note that we used diversity measures
combined with accuracy and complexity measures
in order to improve the accuracy-complexity trade-
off in the obtained FURIA-based fuzzy MCS.

From the results obtained we may draw follow-
ing conclusions:

• The best performance in terms of test accuracy
was obtained by the 2c variant. It outperforms
the other approaches in 6 out of 20 cases (+7 ties)
and also obtains the best average value. The 2b
approach was one step behind obtaining 5 best re-
sults (+6 ties) and the second best average value.
Of course, the 2d and 2e variants obtained the
worst results, since they directly do not include
accuracy in the objective space.

• Considering the complexity criterion the best re-
sults were obtained by 2a, 2d, and 2e variants. For
all datasets they obtained the lowest number of
classifiers equal to 2 and the lowest average value.
Note that we discard 2b as the best value, which
obtained number of classifiers equal to 1 15 times,
since it is not considered as a MCS, but as a single
classifier.

• It is rather hard to point a single approach finding
the best accuracy-complexity tradeoff. The 2d and
2e approaches should be rather discarded, since
for all of the solutions out of all datasets they pro-
vided the same complexity (equal to 2). Although
the 2c fitness function provided the best averaged
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K. Trawiński et al.

Table 9: Statistics of four single solutions selected from the Pareto fronts.
Best of 1st obj. Best of 2nd obj. Best tradeoff Best test

Tra Tst Cmpl Tra Tst Cmpl Tra Tst Cmpl Tra Tst Cmpl
aba 2a 0.505 0.751 17.700 0.605 0.776 2.000 0.605 0.776 2.000 0.512 0.746 14.400

2b 0.509 0.750 22.300 0.599 0.756 9.400 0.509 0.750 22.000 0.536 0.741 18.600
2c 0.506 0.750 16.800 0.622 0.780 2.000 0.506 0.750 20.000 0.511 0.745 13.900
2d 0.599 0.756 9.400 0.689 0.791 2.000 0.689 0.791 2.000 0.606 0.752 8.000
2e 0.611 0.773 2.000 0.611 0.773 2.000 0.611 0.773 2.000 0.649 0.759 2.000

bre 2a 0.000 0.039 3.000 0.007 0.054 2.000 0.007 0.054 2.000 0.001 0.038 2.900
2b 0.000 0.045 3.600 0.009 0.045 1.000 0.000 0.045 6.000 0.005 0.037 2.700
2c 0.000 0.038 3.000 0.000 0.038 3.000 0.000 0.038 3.000 0.000 0.037 3.000
2d 0.014 0.051 2.000 0.014 0.051 2.000 0.014 0.051 2.000 0.014 0.050 2.000
2e 0.010 0.052 2.000 0.010 0.052 2.000 0.010 0.052 2.000 0.023 0.037 2.000

gla 2a 0.004 0.309 6.800 0.113 0.364 2.000 0.113 0.364 2.000 0.015 0.286 5.600
2b 0.007 0.325 8.700 0.113 0.359 1.000 0.063 0.348 15.000 0.052 0.288 4.700
2c 0.005 0.300 7.200 0.162 0.397 2.100 0.066 0.323 7.000 0.021 0.283 5.500
2d 0.142 0.360 2.000 0.142 0.360 2.000 0.142 0.360 2.000 0.142 0.360 2.000
2e 0.133 0.372 2.000 0.133 0.372 2.000 0.133 0.372 2.000 0.193 0.305 2.000

hea 2a 0.001 0.184 4.500 0.050 0.199 2.000 0.050 0.199 2.000 0.013 0.172 3.700
2b 0.001 0.197 5.500 0.057 0.215 1.000 0.001 0.198 3.000 0.030 0.170 2.900
2c 0.000 0.185 4.800 0.064 0.214 2.200 0.000 0.185 5.000 0.010 0.178 3.900
2d 0.074 0.201 2.000 0.074 0.201 2.000 0.074 0.201 2.000 0.074 0.201 2.000
2e 0.059 0.204 2.000 0.059 0.204 2.000 0.059 0.204 2.000 0.100 0.155 2.000

ion 2a 0.003 0.153 2.800 0.008 0.149 2.000 0.008 0.149 2.000 0.006 0.144 2.500
2b 0.003 0.162 3.000 0.027 0.169 1.000 0.003 0.162 3.000 0.013 0.145 2.300
2c 0.004 0.126 18.700 0.004 0.126 18.700 0.004 0.126 16.000 0.004 0.126 18.700
2d 0.024 0.156 2.000 0.024 0.156 2.000 0.024 0.156 2.000 0.024 0.156 2.000
2e 0.014 0.162 2.000 0.014 0.162 2.000 0.014 0.162 2.000 0.034 0.129 2.000

mag 2a 0.097 0.133 6.600 0.113 0.144 2.000 0.113 0.144 2.000 0.097 0.132 5.600
2b 0.098 0.132 8.200 0.107 0.143 1.000 0.100 0.135 3.000 0.098 0.132 7.400
2c 0.097 0.133 6.600 0.115 0.144 2.000 0.108 0.140 2.000 0.098 0.132 5.600
2d 0.118 0.146 2.000 0.118 0.146 2.000 0.118 0.146 2.000 0.118 0.146 2.000
2e 0.116 0.145 2.000 0.116 0.145 2.000 0.116 0.145 2.000 0.119 0.142 2.000

opt 2a 0.401 0.686 2.000 0.401 0.686 2.000 0.401 0.686 2.000 0.452 0.655 2.000
2b 0.175 0.632 30.200 0.175 0.632 30.200 0.175 0.632 37.000 0.198 0.625 26.000
2c 0.175 0.632 30.200 0.175 0.632 30.200 0.175 0.632 37.000 0.198 0.625 26.000
2d 0.400 0.685 2.000 0.400 0.685 2.000 0.400 0.685 2.000 0.451 0.654 2.000
2e 0.400 0.685 2.000 0.400 0.685 2.000 0.400 0.685 2.000 0.451 0.654 2.000

pbl 2a 0.006 0.029 11.200 0.016 0.035 2.000 0.016 0.035 2.000 0.007 0.028 6.800
2b 0.007 0.028 8.600 0.015 0.032 1.000 0.010 0.030 3.000 0.009 0.027 4.800
2c 0.006 0.028 10.900 0.020 0.037 2.000 0.013 0.034 3.000 0.007 0.027 7.600
2d 0.017 0.034 2.000 0.017 0.034 2.000 0.017 0.034 2.000 0.017 0.034 2.000
2e 0.016 0.033 2.000 0.016 0.033 2.000 0.016 0.033 2.000 0.020 0.031 2.000

pen 2a 0.000 0.017 9.300 0.010 0.031 2.000 0.010 0.031 2.000 0.000 0.016 8.200
2b 0.000 0.017 11.300 0.011 0.033 1.000 0.005 0.024 2.000 0.000 0.016 8.700
2c 0.000 0.014 21.800 0.000 0.014 21.800 0.000 0.014 24.000 0.000 0.014 21.800
2d 0.011 0.032 2.000 0.011 0.032 2.000 0.011 0.032 2.000 0.011 0.032 2.000
2e 0.010 0.032 2.000 0.010 0.032 2.000 0.010 0.032 2.000 0.013 0.029 2.000

pho 2a 0.058 0.126 9.800 0.086 0.151 2.000 0.086 0.151 2.000 0.059 0.125 9.000
2b 0.059 0.127 8.800 0.083 0.150 1.000 0.059 0.127 9.000 0.061 0.127 7.600
2c 0.058 0.126 10.000 0.097 0.160 2.000 0.080 0.145 9.000 0.059 0.125 9.400
2d 0.089 0.153 2.000 0.089 0.153 2.000 0.089 0.153 2.000 0.089 0.153 2.000
2e 0.090 0.152 2.000 0.090 0.152 2.000 0.090 0.152 2.000 0.097 0.144 2.000

test accuracy, it should also be skipped, as this
good performance is obtained at the cost of the
highest complexity, with a very significant differ-
ence. Thus, the two left fitness functions are 2a
and 2b. The first one provides rather lower com-
plexity on average, whereas the latter one obtains
better averaged accuracy with a slightly higher
complexity.

To conclude, let us try to have an insight into
the influence of the relation between the two ob-
jectives and the final success in the learning prob-
lem. Combination of diversity measures with com-
plexity tends to produce small ensemble sizes. The
two fitness functions obtained ensembles composed

of only two classifiers. Consequently, these ensem-
bles do not have a high quality, they obtained rather
low accuracy. Combination of the training error with
complexity seems to be a good way to look for the
good balance between performance and the number
of classifiers in the ensemble. However, it seems to
overfit quite often. Our last proposal was a combi-
nation of training error with two diversity measures.
Such two fitness functions, 2b and 2c, lead to fi-
nally selected high quality ensembles with a good
accuracy-complexity tradeoff, as the ensembles are
kept quite small in most of the cases. Thus, we may
conclude that the combination of training error and
diversity measures for genetic classifier selection in
FURIA-based fuzzy classifiers leads to the obtaining
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Multiobjective GAs for Classifier Selection in FURIA fuzzy MCSs

Table 10: Statistics of four single solutions selected from the Pareto fronts.(cont.)
Best of 1st obj. Best of 2nd obj. Best tradeoff Best test

Tra Tst Cmpl Tra Tst Cmpl Tra Tst Cmpl Tra Tst Cmpl
pim 2a 0.027 0.245 10.200 0.087 0.283 2.000 0.087 0.283 2.000 0.033 0.235 6.900

2b 0.024 0.245 11.600 0.100 0.285 1.000 0.070 0.267 2.000 0.041 0.233 6.800
2c 0.021 0.247 11.000 0.103 0.287 2.000 0.054 0.266 12.000 0.033 0.236 7.000
2d 0.103 0.277 2.000 0.103 0.277 2.000 0.103 0.277 2.000 0.103 0.277 2.000
2e 0.090 0.279 2.000 0.090 0.279 2.000 0.090 0.279 2.000 0.128 0.231 2.000

sat 2a 0.010 0.103 16.600 0.049 0.130 2.000 0.049 0.130 2.000 0.013 0.102 11.600
2b 0.011 0.103 17.200 0.049 0.132 1.000 0.011 0.103 15.000 0.012 0.101 14.600
2c 0.010 0.102 21.400 0.010 0.102 21.600 0.010 0.102 17.000 0.010 0.102 21.200
2d 0.053 0.129 2.000 0.053 0.129 2.000 0.053 0.129 2.000 0.053 0.129 2.000
2e 0.050 0.130 2.000 0.050 0.130 2.000 0.050 0.130 2.000 0.060 0.119 2.000

seg 2a 0.000 0.031 6.600 0.012 0.047 2.000 0.012 0.047 2.000 0.001 0.029 5.500
2b 0.000 0.033 6.700 0.015 0.043 1.000 0.004 0.036 6.000 0.002 0.029 5.100
2c 0.000 0.027 17.600 0.000 0.027 17.600 0.000 0.027 20.000 0.000 0.027 17.600
2d 0.017 0.047 2.000 0.017 0.047 2.000 0.017 0.047 2.000 0.017 0.047 2.000
2e 0.013 0.048 2.000 0.013 0.048 2.000 0.013 0.048 2.000 0.019 0.037 2.000

son 2a 0.000 0.212 3.300 0.037 0.253 2.000 0.037 0.253 2.000 0.005 0.203 3.000
2b 0.000 0.228 3.700 0.062 0.252 1.000 0.000 0.228 3.000 0.015 0.217 3.200
2c 0.000 0.222 3.300 0.011 0.232 2.800 0.000 0.222 3.000 0.002 0.213 3.000
2d 0.064 0.274 2.000 0.064 0.274 2.000 0.064 0.274 2.000 0.065 0.269 2.000
2e 0.042 0.262 2.000 0.042 0.262 2.000 0.042 0.262 2.000 0.081 0.188 2.000

spa 2a 0.015 0.058 9.400 0.033 0.071 2.000 0.033 0.071 2.000 0.016 0.057 7.600
2b 0.015 0.057 9.800 0.029 0.070 1.000 0.015 0.057 11.000 0.018 0.056 6.800
2c 0.015 0.056 12.800 0.015 0.056 12.200 0.015 0.056 11.000 0.015 0.056 12.800
2d 0.034 0.072 2.000 0.034 0.072 2.000 0.034 0.072 2.000 0.034 0.072 2.000
2e 0.034 0.072 2.000 0.034 0.072 2.000 0.034 0.072 2.000 0.040 0.065 2.000

tex 2a 0.000 0.033 8.000 0.020 0.064 2.000 0.020 0.064 2.000 0.000 0.032 7.300
2b 0.000 0.034 9.200 0.021 0.062 1.000 0.001 0.035 14.000 0.001 0.033 7.800
2c 0.000 0.028 23.200 0.000 0.028 23.200 0.000 0.028 21.000 0.000 0.028 23.200
2d 0.024 0.067 2.000 0.024 0.067 2.000 0.024 0.067 2.000 0.024 0.067 2.000
2e 0.021 0.062 2.000 0.021 0.062 2.000 0.021 0.062 2.000 0.025 0.058 2.000

veh 2a 0.002 0.267 13.400 0.099 0.290 2.000 0.099 0.290 2.000 0.011 0.257 9.500
2b 0.003 0.272 13.400 0.104 0.303 1.000 0.058 0.289 2.000 0.023 0.255 7.500
2c 0.002 0.271 14.000 0.118 0.302 2.000 0.058 0.287 7.000 0.015 0.260 8.600
2d 0.112 0.307 2.000 0.112 0.307 2.000 0.112 0.307 2.000 0.112 0.307 2.000
2e 0.107 0.300 2.000 0.107 0.300 2.000 0.107 0.300 2.000 0.139 0.270 2.000

wav 2a 0.001 0.150 21.000 0.059 0.194 2.000 0.059 0.194 2.000 0.003 0.148 17.400
2b 0.002 0.149 23.100 0.067 0.192 1.000 0.010 0.159 7.000 0.003 0.146 18.700
2c 0.001 0.146 26.200 0.001 0.146 26.400 0.001 0.146 29.000 0.001 0.146 26.400
2d 0.064 0.197 2.000 0.064 0.197 2.000 0.064 0.197 2.000 0.064 0.197 2.000
2e 0.061 0.194 2.000 0.061 0.194 2.000 0.061 0.194 2.000 0.072 0.181 2.000

win 2a 0.000 0.052 2.100 0.001 0.054 2.000 0.001 0.054 2.000 0.000 0.051 2.100
2b 0.000 0.072 1.700 0.006 0.057 1.000 0.000 0.072 2.000 0.004 0.054 1.400
2c 0.000 0.021 17.400 0.000 0.021 17.400 0.000 0.021 17.000 0.000 0.018 18.700
2d 0.007 0.066 2.000 0.007 0.066 2.000 0.007 0.066 2.000 0.007 0.065 2.000
2e 0.007 0.058 2.000 0.007 0.058 2.000 0.007 0.058 2.000 0.022 0.037 2.000

yea 2a 0.156 0.406 11.100 0.250 0.452 2.000 0.250 0.452 2.000 0.158 0.404 10.100
2b 0.158 0.410 10.900 0.254 0.464 1.000 0.158 0.410 11.000 0.188 0.396 7.100
2c 0.156 0.412 12.500 0.282 0.467 2.000 0.156 0.412 13.000 0.159 0.405 10.800
2d 0.281 0.445 2.000 0.281 0.445 2.000 0.281 0.445 2.000 0.281 0.445 2.000
2e 0.260 0.453 2.000 0.260 0.453 2.000 0.260 0.453 2.000 0.291 0.421 2.000

Table 11: A comparison of the averaged performance of the four single solutions selected from the obtained
Pareto sets.

Best of 1st obj. Best of 2nd obj. Best tradeoff Best test
Tra Tst Cmpl Tra Tst Cmpl Tra Tst Cmpl Tra Tst Cmpl

2a avg. 0.064 0.199 8.770 0.103 0.221 2.000 0.103 0.221 2.000 0.047 0.193 7.085
dev. 0.140 0.207 5.373 0.152 0.210 0.000 0.152 0.210 0.000 0.116 0.202 4.135

2b avg. 0.054 0.201 10.875 0.095 0.220 2.880 0.063 0.205 8.800 0.056 0.191 8.235
dev. 0.120 0.200 7.337 0.134 0.202 6.698 0.118 0.201 8.752 0.122 0.197 6.411

2c avg. 0.053 0.193 14.470 0.090 0.210 10.660 0.062 0.198 13.800 0.047 0.189 13.235
dev. 0.119 0.203 7.681 0.148 0.214 10.212 0.118 0.204 9.518 0.116 0.200 7.878

2d avg. 0.112 0.223 2.370 0.117 0.225 2.000 0.117 0.225 2.000 0.083 0.221 2.300
dev. 0.150 0.206 1.655 0.166 0.211 0.000 0.166 0.211 0.000 0.064 0.202 1.342

2e avg. 0.107 0.223 2.000 0.107 0.223 2.000 0.107 0.223 2.000 0.000 0.200 2.000
dev. 0.153 0.210 0.000 0.153 0.210 0.000 0.153 0.210 0.000 0.000 0.203 0.000

good results and is a promising approach. Never-
theless, this is a quite subjective and user-dependent
decision.

5.4. Comparison between EMO-selected and
non-selected FURIA-based fuzzy MCSs

This subsection presents a final benchmarking of the
performance of NSGA-II combined with FURIA-
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Table 12: A comparison of the NSGA-II FURIA-based fuzzy MCSs against static FURIA-based MCS.
NSGA-II combined with FURIA-based MCSs.

aba bre gla hea ion mag opt pbl pen pho pim sat seg son spa tex veh wav win yea
test err. 0.741 0.037 0.283 0.170 0.126 0.132 0.625 0.027 0.014 0.125 0.231 0.101 0.027 0.188 0.056 0.028 0.255 0.146 0.018 0.396
fitness
func.

2b 2b 2c 2b 2c 2a 2b 2c 2c 2c 2e 2b 2c 2e 2b 2c 2b 2c 2c 2b

nr of cl. 18.6 2.7 5.5 2 18.7 5.6 26 4.8 21.8 9 2 14.6 17.6 2 6.8 23.2 7.5 18.7 18.7 7.1
FURIA-based MCSs algorithms Small ensemble sizes.

aba bre gla hea ion mag opt pbl pen pho pim sat seg son spa tex veh wav win yea
test err. 0.753 0.037 0.313 0.178 0.134 0.136 0.628 0.028 0.015 0.136 0.235 0.105 0.035 0.198 0.061 0.036 0.276 0.156 0.036 0.408
nr of cl. 10 10 7 7 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10 10

FURIA-based MCSs algorithms. Ensemble size 50.
aba bre gla hea ion mag opt pbl pen pho pim sat seg son spa tex veh wav win yea

test err. 0.748 0.041 0.287 0.182 0.145 0.135 0.630 0.028 0.016 0.135 0.241 0.102 0.034 0.226 0.059 0.031 0.275 0.149 0.035 0.400
C4.5 ensembles with bagging. Small ensemble sizes.

aba bre gla hea ion mag opt pbl pen pho pim sat seg son spa tex veh wav win yea
test err. 0.772 0.043 0.306 0.194 0.149 0.134 0.697 0.03 0.028 0.131 0.253 0.112 0.042 0.247 0.067 0.051 0.289 0.193 0.097 0.415
nr of cl. 10 7 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

Random forests. Small ensemble sizes.
aba bre gla hea ion mag opt pbl pen pho pim sat seg son spa tex veh wav win yea

test err. 0.777 0.041 0.282 0.211 0.14 0.134 0.695 0.031 0.016 0.119 0.264 0.104 0.034 0.239 0.06 0.04 0.269 0.185 0.048 0.438
nr of cl. 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

based fuzzy MCSs. The aim of this work is to
propose an advanced OCS framework, embedding
NSGA-II with five different two-objective fitness
function designs into FURIA-based fuzzy MCS. By
doing so, we would like to obtain a good accuracy-
complexity tradeoff. We present a comparison be-
tween the best results obtained from the geneti-
cally selected FURIA-based fuzzy MCSs, against
these ensembles obtained with a fixed ensemble
size. FURIA-based fuzzy MCSs are comprised by
7 or 10 classifiers, the small ensemble sizes provid-
ing the best results in our previous contribution [17],
and with 50 classifiers, the original structure of the
EMO-selected fuzzy MCSs in the previous sections.
We also compare it with two state-of-the-art algo-
rithms, random forests [38] and bagging C4.5 MCSs
[54], comprised by 7 or 10 classifiers [17].

Table 12 presents test errors for all the datasets.
It may be clearly seen that our new approach ob-
tained the best performance overall. It outperformed
the others in 18 out of 20 cases (+1 tie). Considering
complexity, EMO-selected fuzzy MCSs keep a rea-
sonably low number of classifiers, obtaining value
2 (3 times) in the best case and value 26 (for the
optdigits dataset) in the worst case. Comparing to
the original small ensemble sizes it is enough to in-
crease the amount of classifier up to 2.5 times in
the worst case in order to obtain good performance.
Notice that in 11 out of 20 cases the EMO-selected
fuzzy MCSs obtained the lowest complexity of the
five MCS design variants considered. Thus, we may

draw the conclusion that NSGA-II combined with
FURIA-based fuzzy MCSs is a good approach to
obtain high quality, well performing ensembles with
a good accuracy-complexity tradeoff, when dealing
with high dimensional datasets.

6. Conclusions and future works

In this study, we proposed a methodology in which
a bagging approach together with a feature selection
technique is used to train Fuzzy Unordered Rules
Induction Algorithm (FURIA) in order to obtain a
Fuzzy Multiclassifier System. We used a single
winner-based method on top of the base classifiers.
We proved that a single FURIA classifier performs
well and is able to provide instability capabilities to
some extent. Then, we tested FURIA Multiclassifier
Systems with bagging, feature selection, and combi-
nation of both of them. By using the said techniques,
we aimed to obtain FURIA-based fuzzy MCSs prop-
erly dealing with high dimensional data.

We have conducted comprehensive experiments
over 21 datasets taken from the UCI machine learn-
ing repository. It turned out that the combination
of bagging with FURIA turned out to be the best
from among proposed ones. This approach provided
promising results in comparison to the two state-of-
the-art algorithms.

One of the next steps we will consider in the fu-
ture line is to employ a search algorithm such like
single and multiobjective metaheuristics, greedy al-
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gorithms, local search, etc. to look for an optimal
size of the ensemble. The other way to follow is
to try to combine classifiers in a dynamic manner,
in a way that a classifier or a set of them is responsi-
ble just for a particular data region. Furthermore, we
would like to study the influence of other parameters
(FURIA parameters, MCS parameters, etc.).
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A Genetic Fuzzy Linguistic Combination Method
for Fuzzy Rule-Based Multiclassifiers

Krzysztof Trawiński, Oscar Cordón, Senior Member, IEEE, Luciano Sánchez, Member, IEEE, and Arnaud Quirin

Abstract—Fuzzy set theory has been widely and successfully
used as a mathematical tool to combine the outputs provided by
the individual classifiers in a multiclassification system by means
of a fuzzy aggregation operator. However, to the best of our knowl-
edge, no fuzzy combination method has been proposed, which is
composed of a fuzzy rule-based system. We think this can be a
very promising research line as it allows us to benefit from the
key advantage of fuzzy systems, i.e., their interpretability. By us-
ing a fuzzy linguistic rule-based classification system as a com-
bination method, the resulting classifier ensemble would show a
hierarchical structure, and the operation of the latter component
would be transparent to the user. Moreover, for the specific case
of fuzzy multiclassification systems, the new approach could also
become a smart way to allow standard fuzzy classifiers to deal
with high-dimensional problems, avoiding the curse of dimension-
ality, as the chance to perform classifier selection at class level
is also incorporated, into the method. We conduct comprehensive
experiments considering 20 UCI datasets with different dimension-
ality, where our approach improves or at least maintains accuracy,
while reducing complexity of the system, and provides some in-
terpretability insight into the multiclassification system reasoning
mechanism. The results obtained show that this approach is able
to compete with the state-of-the-art multiclassification system se-
lection and fusion methods in terms of accuracy, thus providing a
good interpretability–accuracy tradeoff.

Index Terms—Bagging, classifier fusion, classifier selection,
fuzzy rule-based multiclassification systems, genetic fuzzy systems,
interpretability–accuracy tradeoff, linguistic selection and fusion
of individual classifiers.

I. INTRODUCTION

MULTICLASSIFICATION systems (MCSs), which are
also called classifier ensembles, are machine learning

tools capable of obtaining better performance than a single clas-
sifier when dealing with complex classification problems, espe-
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K. Trawiński is with the European Centre for Soft Computing, 33600 Mieres,
Spain (e-mail: krzysztof.trawinski@softcomputing.es).

O. Cordón is with the European Centre for Soft Computing, 33600 Mieres,
Spain, and also with the Department of Computer Science and Artificial
Intelligence and the Research Center on Information and Communication
Technologies, University of Granada, 18071 Granada, Spain (e-mail: oscar.
cordon@softcomputing.es).

L. Sánchez is with the Department of Computer Science, University of
Oviedo, 33203 Gijón, Spain (e-mail: luciano@uniovi.es).

A. Quirin was with the European Centre for Soft Computing, 33600
Mieres, Spain. He is now with Gradiant, 36310 Vigo, Spain (e-mail: arnaud.
quirin@softcomputing.es).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TFUZZ.2012.2236844

cially when the number of dimensions or the size of the data
is really large [1]. The most common base classifiers are de-
cision trees [2], neural networks [3], and, more recently, fuzzy
classifiers [4]–[8].

MCS design is mainly based on two stages [9]: the learning
of the component classifiers and the combination mechanism
for the individual decisions provided by them into the global
MCS output. Since an MCS is the result of the combination
of the outputs of a group of individually trained classifiers, the
accuracy of the finally derived MCS relies on the performance
and the proper integration of these two tasks. The best possible
situation for an ensemble is where the individual classifiers are
both accurate and diverse, in the sense that they make their er-
rors on different parts of the problem space [3]. Hence, MCSs
rely for their effectiveness on the “instability” of the base learn-
ing algorithm. On the one hand, the correct definition of the
set of base classifiers is fundamental to the overall performance
of MCSs. Different approaches have been, thus, proposed to
succeed on generating diverse component classifiers with un-
correlated errors such as data resampling techniques (mainly,
bagging [10] and boosting [11]), specific diversity induction
mechanisms (feature selection [2], diversity measures [12], use
of different learning models, etc.), or combinations between
the latter two families (data resampling and specific diversity
induction mechanisms) [13].

On the other hand, the research area of combination methods
is also very active. It does not only consider the issue of aggre-
gating the results provided by all the initial set of component
classifiers derived from the first learning stage to compute the
final output (what is usually called classifier fusion [14], [15]).
It also involves either locally selecting the best single classi-
fier which will be taken into account to provide a decision for
each specific input pattern (static or dynamic classifier selec-
tion [16]) or globally selecting the subgroup of classifiers which
will be considered for every input pattern (overproduce-and-
choose strategy (OCS) [17]). Besides, hybrid strategies between
the two groups have also been introduced [1].

While the weighted majority voting (MV) could be consid-
ered as the most extended fusion-based combination method
[18], many other proposals have been developed in the spe-
cialized literature [19], including several successful procedures
based on the use of fuzzy set theory and, specifically, of fuzzy ag-
gregation operators [20], [21]. However, up to our knowledge,
there has not been any previous proposal of an MCS combi-
nation method considering the use of a fuzzy linguistic system
(specifically, a fuzzy rule-based classification system (FRBCS))
to accomplish this task.

To our mind, that alternative constitutes a very smart design
as it carries several advantages. First, it provides the MCS with

1063-6706 © 2013 IEEE
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a higher degree of interpretability, making the combination
method operation more transparent for the user. In the same way,
the resulting MCS design takes a pure hierarchical structure, as
in other classical approaches such as stacking [22]. Besides, by
using an advanced learning technique incorporating the feature
selection capability to derive the FRBCS implementing the
combination method, it can deal with both classifier fusion and
selection, thus allowing us to reduce the MCS complexity while
improving its generalization ability. Finally, by combining a set
of component fuzzy classifiers by means of an FRBCS-based
combination method (FRBCS-CM), we will come up with a
proper approach to deal with the curse of dimensionality always
present when applying a fuzzy system to a high-dimensional
problem [23]. This issue is addressed by means of a genetic
fuzzy system (GFS) [24]–[27] in recent studies [28], [29].

In this paper, we introduce a framework to derive an FRBCS
playing the role of the MCS combination method. This fuzzy
linguistic combination method can be applied to any classifier
ensemble structure with the only restriction that the component
classifiers must additionally provide certainty degrees associ-
ated with each class in the dataset. The fuzzy linguistic combi-
nation method presents an interpretable structure as it is based
on the use of a single disjunctive fuzzy classification rule per
problem class, as well as on the classical single-winner fuzzy
reasoning method [23], [30]. The antecedent variables corre-
spond to the component (fuzzy) classifier (and thus, its number
is bounded by the existing component classifiers), and each of
them has a weight associated, representing the certainty degree
of each ensemble member in the classification of each class. A
specific genetic algorithm (GA) to design such an FRBCS-CM
will be proposed with the ability of selecting features and lin-
guistic terms in the antecedent parts of the rules. In such a way, it
will perform both classifier fusion and classifier selection at class
level. The resulting system is, thus, GFS (in particular, a genetic
fuzzy rule-based classification system (GFRBCS)), dealing with
the interpretability–accuracy tradeoff in fuzzy MCS design in a
proper way [31].

In this paper, the novel FRBCS-CM will be applied on fuzzy
rule-based multiclassification systems (FRBMCSs) generated
from bagging [8], where the base classifier (an FRBCS) di-
rectly incorporates the feature selection ability. Therefore, the
resulting FRBMCS will show a clear hierarchical structure com-
posed of two levels of fuzzy classifiers, allowing it to deal with
high-dimensional problems: a first lower level with the fuzzy
classifier composing the FRBMCS and a second upper level
integrated by the FRBCS-CM combining the outputs of the lat-
ter. A comprehensive study will be conducted on 20 datasets of
different dimensions from the UCI machine learning repository
to test the accuracy and complexity of the derived FRBMCSs.
First, we will analyze the introduced fuzzy linguistic combi-
nation method. Then, we compare the novel FRBCS-CM with
the state-of-the-art crisp and fuzzy multiclassification combina-
tion methods, as well as with a hybrid method based on a GA,
considering both classifier selection and classifier fusion [32].
Finally, we will show some interpretability aspects of the pro-
posed FRBCS-CM.

This paper is organized as follows. In the next section, the
preliminaries that are required for a good understanding of our

work (i.e., MCS combination methods, fuzzy MCS combina-
tion methods, and our approach to design FRBMCSs consider-
ing bagging) are reviewed. Section III describes the proposed
FRBCS-CM framework and structure, as well as the GA consid-
ered to design it. The experiments developed and their analysis
are shown in Section IV. Finally, Section VI collects some con-
cluding remarks.

II. PRELIMINARIES

This section explores the current literature related to classi-
fier ensemble combination methods and reviews our generation
method for FRBMCSs.

A. Multiclassification System Combination Methods

Two main approaches arise in the literature for the combi-
nation of the outputs provided by a previously generated set of
base classifiers into a single MCS output [15]: classifier fusion
and classifier selection.

Classifier fusion relies on the assumption that all ensemble
members make independent errors. Thus, combining the deci-
sions of the ensemble members may lead to increasing the over-
all performance of the system (MV, sum, product, maximum,
and minimum are commonly used functions [19]). However,
this family of methods carries the following drawback: There
is no guarantee that a particular ensemble generation technique
will achieve the error independence, and thus, it does not im-
prove the final classification performance. That is the reason for
the extended use of weighted MV [18], [33]–[35].

Alternatively, classifier selection is based on the fact that
not all the individual classifiers but only a subset of them will
influence on the final decision for each input pattern. On the
one hand, a general family of classifier selection methods as-
sumes that each individual classifier is an expert in some local
regions of the problem space [36], thereby avoiding the error in-
dependence assumption. In this approach, the accuracy of each
classifier surrounding the region of the feature space, where
the unknown pattern to be classified is located, is previously
estimated, and the best one is selected to classify that specific
pattern. Two categories of classifier selection techniques exist:
static and dynamic [15], [16]. In the first case, regions of compe-
tence are defined during the training phase, while in the second
case, they are defined during the classification phase based on
the attributes of the sample to be classified (for dynamic clas-
sifier selection, see [37]). Nevertheless, there is a drawback to
both selection strategies: When the local expert does not classify
the test pattern correctly, misclassification cannot be avoided.

On the other hand, there is another family of static classi-
fier selection methods based on the assumption that candidate
classifiers could be redundant. In [38], it was formally shown
that finding the most relevant subset of classifiers leads to better
performance than combining all the available classifiers. These
methods are grouped under the name of OCS [17] (also known
as test-and-select methodology [39]). They are based on the fact
that a large set of candidate classifiers is generated and then
selected (removing duplicates and poor-performing candidate
classifiers) to extract the best performing subset which com-
poses the final MCS used to classify the whole test set. GAs are
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commonly used for this task [7], [40], [41], [42]. Consequently,
OCS methods determine the optimal ensemble size by consider-
ing a tradeoff between accuracy and complexity. However, OCS
could be subject to overfitting, as a fixed subset of classifiers
that is defined using a training/optimization dataset may not be
well adapted for the classification of every pattern in the test
set [37].

In order to overcome the problems of each family in isolation,
hybrid methods between both families have been proposed [32],
[37], [43]. The latter approach is worth mentioning, as the au-
thors proposed a GA selecting the contribution of the component
classifiers for the final decision at each specific class level (i.e.,
the decision of a weak learner can be considered to classify class
A and not considered to classify class B).

In this paper, we will follow the latter approach since our
FRBCS-CM belongs to static OCS being able to either com-
pletely remove a whole candidate classifier or to reduce its role
to only some specific classes with a specific weight measuring
our confidence in the base classifier for that specific class. All
of that will be performed using a human-interpretable structure
generated by means of a GFRBCS.

B. Multiclassification System Fuzzy Combination Methods

Fuzzy set theory has been extensively and successfully con-
sidered for MCS combination, especially classifier fusion, as
fuzzy aggregation operators are able to model the imprecision
and uncertainty involved in the MCS combination process [44].
Two different groups of fuzzy operators have been considered
in the literature [34]: 1) the classical simple fuzzy aggrega-
tion operators, such as minimum, maximum, simple average,
or product; and 2) more advanced fuzzy operators, including
the fuzzy integral [45], the BAsic Defuzzification Distributions
(BADD) defuzzification strategy [46], Zimmermann’s compen-
satory operator [47], and the decision templates [48].

Some studies have developed experimental comparisons of
the performance of different MCSs considering the latter fuzzy
connectives as fusion combination operator [20], [21]. Addi-
tionally, in [21], it was shown that fuzzy combination methods
outperformed nonfuzzy ones and that decision templates based
on Euclidean distance and fuzzy integral were the best methods
overall, when applied with boosting.

Besides, some other works have extended the scope of the
latter [44], [49], [50]. For example, Lu and Yamaoka [50] intro-
duced a fuzzy combination method based on a complex fuzzy
reasoning process. Although this method uses an FRBS as a re-
finement module for the fuzzy combination method decisions,
this strategy shows several problems such as its specificity to
the consideration of a simple three-classifier ensemble, its highly
complex structure composed of two different nature fuzzy rea-
soning modules, the need of manually defining the fuzzy rules
in the refinement module,1 and the impossibility to perform

1This could be feasible when using a very small number of component
classifiers—only three—but not dealing with a more usual larger number. In
fact, the FRBSs considered in their experimentation are only composed of a
single rule with three inputs, and the authors mention that they were not able to
incorporate expert knowledge to the Bayesian component classifier.

classifier selection (which, of course, is not required in the sim-
ple ensemble structure considered).

The proposal made in this paper is aimed to solve all the latter
drawbacks by designing a single fuzzy linguistic combination
method in the form of a fully understandable FRBCS, automat-
ically derived by a GFRBCS, which shows the capability of
performing both classifier fusion and selection.

C. Bagging Fuzzy Multiclassification Systems

In this paper, we will follow a methodology for component
fuzzy classifier generation that we previously presented in [8].
To generate FRBCMSs, we embedded fuzzy unordered rules
induction algorithm (FURIA) [51], [52] into an MCS framework
based on classical MCS design approaches [2], [10], [53]. We
concluded that pure bagging without additional feature selection
obtained the best performance when combined with FURIA-
based FRBCSs. Thus, we consider the use of bagging with the
entire feature set to generate initial FURIA-based fuzzy MCSs.

In order to build these FRBMCSs, a normalized dataset is
split into two parts: a training set and a test set. The training
set is submitted to an instance selection procedure in order to
provide the K individual training sets (the so-called bags) to
train the K FURIA-based fuzzy FRBCSs. In every case, the
bags are generated with the same size as the original training
set, as commonly done.

The fuzzy classification rules Rk
j considered show a class

Ck
j and a certainty degree CFk

j in the consequent: If xk
1 is Ak

j1

and . . . and xk
n is Ak

jn , then Class Ck
j with CFk

j , j = 1, 2, . . . ,
N, k = 1, 2, . . . ,K.

After performing the training stage on all the bags in parallel,
we get an initial FRBMCS, which is validated using training
and test errors as well as a complexity measure based on the
total number of rules in the FRBCSs. The voting-based fuzzy
reasoning method is used to take the decision provided by each
weak learner. Thus, the class with the highest accumulated de-
gree is the one assigned to each component classifier. Finally,
the MV is applied as a fusion method: The class with the most
votes among all the classifiers is selected as the final output. The
lowest order class is taken in the case of a tie.

Regardless of the fuzzy rule generation method considered
to derive the component FRBCSs (in this paper, we use FURIA
due to its capability to generate accurate and compact fuzzy
classifiers for high-dimensional datasets, but any method gen-
erating fuzzy classification rules with a certainty degree could
be used), the two-level hierarchical structure composed of the
individual classifiers in the first level and the proposed FRBCS-
CM in the second will be maintained, allowing the system to
deal with high-dimensional problems in a proper way, while
maintaining their descriptive power.

III. GENETIC FUZZY CLASSIFIER SYSTEM TO DESIGN A FUZZY

LINGUISTIC COMBINATION METHOD FOR (FUZZY)
CLASSIFIER ENSEMBLES

The next sections will, respectively, introduce the global
framework of our novel fuzzy linguistic combination method
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Fig. 1. Our framework: After the instance selection, the component classi-
fiers are derived by the FRBCS learning method (or by any method deriv-
ing component classifiers with a certainty degree). Then, the fuzzy linguistic
rule-based classification system playing the role of MCS combination method
(an FRBCS-CM) selects rules with a proper behavior in order to obtain a
good interpretability–accuracy tradeoff. Finally, the output is obtained using the
FRBCS-CM fuzzy reasoning mechanism.

and provide a detailed description of the FRBCS-CM structure
and of the composition of the GFS designed to derive its fuzzy
knowledge base.

A. Framework

As mentioned previously, the aim of this paper is to design
a fuzzy linguistic rule-based classification system playing the
role of MCS combination method (an FRBCS-CM). Our de-
sign must fulfill several requirements, namely, 1) showing a
human-understandable structure; 2) being able to deal with high-
dimensional problems avoiding the curse of dimensionality; 3)
having the chance to be automatically learned from training data;
and 4) being able to perform both classifier fusion and selection
in order to derive low complexity fuzzy classifier ensembles
with a good accuracy–complexity tradeoff (see Fig. 1).2

Using the novel FRBCS-CM together with a fuzzy classifier
ensemble, we will have the additional advantage of handling
a two-level hierarchical structure composed of the individual
classifiers in the first level and the FRBCS-CM in the second.
These kinds of hierarchical structures [56]–[59] are well known
in the area as they allow fuzzy systems to properly deal with
high-dimensional problems, while maintaining their descriptive
power, especially when considering the single-winner rule fuzzy
reasoning method in the component fuzzy classifiers as done in
our case. One step further, using it in combination with a bag-
ging fuzzy classifier ensemble strategy, as done in this paper,

2We should remind that the proposed combination method can be applied
to any MCS with the only restriction that the component classifiers must ad-
ditionally provide certainty degrees associated with each class in the dataset.
For example, one of the novel approaches to design fuzzy classifiers proposed
in [54] and [55] could be used.

we can also benefit from some collateral advantages for the
overall design of the FRBMCS: 1) the simplicity of the implicit
parallelism of bagging, which allows for an easy parallel imple-
mentation; and 2) the problem partitioning due to the internal
feature selection at the component classifier level and the clas-
sifier selection capability of the fuzzy linguistic combination
method, resulting in a tractable dimension for learning fuzzy
rules for each individual classifier and for achieving a compact
fuzzy classifier ensemble. These characteristics will make the
fuzzy ensemble using the FRBCS-CM especially able to deal
with the curse of dimensionality.

Our approach might, thus, be assigned to the stacking (or
stacked generalization) group [22], which after bagging and
boosting is probably the most popular approach in the litera-
ture. Its basis lies in the definition of the metalearner, playing a
role of the (advanced) MCS combination method, giving a hier-
archical structure of the ensemble. Its task is to gain knowledge
of whether training data have been properly learned and to be
able to correct badly trained base classifiers. The FRBCS-CM
proposed in this paper acts as the metalearner, by discarding the
rule subsets in the base fuzzy classifiers providing incorrect de-
cisions at individual class level and promoting the ones leading
to a correct classification.

Moreover, fuzzy classification rules with a class and a cer-
tainty degree in the consequent used in the FRBCS-CM allow
the user to get an understandable insight into the MCS. This
means that this approach will allow interpretability (to some
extent) of such a complicated system.

The proposed FRBCS-CM is built under the GFS approach. A
specific GA, which uses a sparse matrix to codify features and
linguistic terms in the antecedent parts of the rules, performs
both classifier fusion and classifier selection at class level.

B. Fuzzy Linguistic Combination

As described in Section II-C, the FRBCSs considered in the
ensemble will be based on fuzzy classification rules with a class
and a certainty degree in the consequent. Let Rk

j be the jth rule
of the kth member of an ensemble of K components:

if x is Ak
j , then Class Ck

j with CFk
j

where Ck
j ∈ {1, . . . , nc}, and nc is the number of classes.

We will use the expression Gk = {Rk
1 , . . . , Rk

Nk
} to denote

the list of fuzzy rules comprising the kth ensemble member.
Let us partition each one of these lists into so many sublists Gk

c

as classes existing in the problem. Gk
c contains the rules of Gk

whose consequent is the class c.
Let us also define Rk (x) as the intermediate output of the kth

ensemble member, which is the fuzzy subset of the set of class
labels computed as follows:

Rk (x)(c) =
∨

{j |C k
j =c}

CFk
j ·Ak

j (x). (1)

Each component of the FRBCS maps an input value x to
so many degrees of membership as the number of classes
in the problem. The highest of these memberships deter-
mines the classification of the pattern. That is to say, the kth
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FRBCS classifies an object x as being of class FRBCSk (x) =
arg maxc∈{1,...,nc }R

k (x)(c). Observe also that Rk (x)(c) is the
result of applying the fuzzy reasoning mechanism to the knowl-
edge base defined by the sublist Gk

c .
The simplest linguistic combination of the component FR-

BCSs consists of stacking a selection of some of the rules
Rk

j into a single large rule base. Let us define a binary ma-
trix [bck ] ∈ {0, 1}nc ×K , and let us agree that if bck is zero, then
Gk

c is removed from the ensemble, and Rk (x)(c) = 0. This se-
lection is equivalent to an hierarchical FRBCS comprising nc

expressions of the form:

if (member1 says that class is c) or . . .

or (memberK says that class is c), then class is c

where the asserts “(memberk says that class is c)” have a degree
of certainty bck determined by the rules in the sublist Gk

c , and
those asserts for which bck is zero are omitted. The fuzzy output
of this selected ensemble is

RI (x)(c) =
∨

{(j,k)|C k
j =c}

bck · CFk
j ·Ak

j (x). (2)

We can define more powerful linguistic selections which ex-
tend this basic fuzzy reasoning schema. In this paper, we will
use a sparse matrix of weights [wck ] ∈ [0, 1]nc ×K and operate
as follows:

RII (x)(c) =
∨

{(j,k)|C k
j =c}

wck · CFk
j ·Ak

j (x). (3)

Thus, the selected ensemble can be seen as a hierarchical
knowledge base with nc fuzzy classification rules with weights
in the antecedent part

if (member1(wc1) says that class is c) or . . . (memberK (wcK )

says that class is c), then class is c

where the asserts “(memberk (wck ) says that class is c)” have a
certainty determined by the rules in the sublist Gk

c , after multi-
plying their confidence degrees by the same factor wck :

if x is Ak
j , then Class Ck

j with wC k
j k · CFk

j .

Again, those rules where wC k
j k = 0 are omitted.

In this case, any of these hierarchical rule bases that we have
introduced is univocally determined by a matrix [wck ]. There-
fore, the genetic search of the best selection involves finding the
best matrix [wck ] according to certain criteria that will be defined
next. Notice that this search is a selection, because [wck ] is a
sparse matrix. As we will explain later, in this paper, the number
of terms of wck different from zero is a design parameter.

C. Fitness Function

We propose that the quality of a selected and combined
fuzzy ensemble is defined by three components (e,m1 ,m2)
(see Fig. 2); thus, the fitness of a possible FRBCS-CM design
is a triplet comprising three real numbers:

1) Training error e: We compute the error of each ensem-
ble for a large number of bootstrapped resamples of the

Fig. 2. Fitness of an ensemble has three components. (a) Quantile of the
bootstrap estimation of the training error, (b) the largest distance between a
misclassified example and the decision surface, and (c) the smallest distance
between a correctly classified example and the decision surface.

training set and use a quantile of the distribution of these
errors as the first term of the fitness. This is intended to
avoid overfitting when there are outliers in the training
set, as well as to detect the most robust selections, which
are expected to generalize better. The issue of dealing with
overfitting handling in the accuracy measure has also been
considered in [60], [61].

2) Error margin m1 : The second component of the fitness
function depends on the distance between the misclassi-
fied examples and their nearest decision surface. Given an
example x, we have approximated this value by the differ-
ence between the highest and the second highest term of
RII (x)(c), and defined that the error margin of an ensem-
ble is the worst (i.e., the highest) value of this difference
for any example x in the training set.

3) Classification margin m2 : The third component depends
on the distance between the correctly classified instances
and their nearest decision surface, which is approximated
as before, by the difference between the highest and the
second highest terms in RII (x)(c). In this case, however,
the margin of an ensemble is the lowest value of this
difference for all the examples of the training set; we seek
a decision surface with the highest margin.

Given an instance x, let us define “winner rule” as the rule
with highest activation and “most promising rule” to classify this
pattern as the rule with highest activation among those whose
consequent is different from that of the winner rule.

The decision surface is formed by the points for which there
is a tie between the activations of the winner rule and the most
promising rule. In this respect, if an instance is close to the
decision surface, the difference between these two activations
will be small. If the instance is moved toward the decision
surface, this difference will be further decreased. The opposite is
also true: If the instance is separated from the decision surface,
this difference will increase. In this respect, we can take this
difference as a measure of distance between the instance and
the nearest decision surface.
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Fig. 3. Coding scheme and crossover operation: An individual is a sparse matrix, which is represented by a list of indices and a list of values.

A lexicographical ordering is defined between two triplets:

(e,m1 ,m2) ≺ (e′,m′
1 ,m

′
2) ⇐⇒⎧⎪⎨⎪⎩

(e < e′)

(e = e′) and m1 < m′
1

(e = e′) and (m1 = m′
1) and (m2 > m′

2).

(4)

D. Coding Scheme, Genetic Operators, and Evolutionary
Scheme

An individual is an sparse matrix [wck ], which will be stored
as two fixed-length ordered lists of indexes (c, k) and their cor-
responding values wck , as displayed in Fig. 3. The chromo-
some length is defined according to the maximum percentage
of nonzero values in the matrix, which is a parameter whose
value is set by the user in advance. The initial population is
randomly generated. We have decided to apply an arithmetic
crossover [62] between the lists of values of both individuals,
leaving the lists of indices unchanged. The mutation operator
randomly alternates a nonuniform mutation of an element of the
list of values [63] and the random generation of a completely
new individual.

Finally, since the fitness function is not scalar, we have de-
cided to implement a tournament-based steady-state GA [64],
where at each generation, the two last elements in each tour-
nament are replaced by the offspring of the two winners. This
offspring is the result of the application of the crossover oper-
ator mentioned before, followed by a mutation with a certain
probability.

IV. EXPERIMENTS AND ANALYSIS OF RESULTS

This section is devoted to validate our new fuzzy linguistic
combination method. While Section IV-A introduces the exper-
imental setup considered, the following ones show the results
obtained in the experiments developed and their analysis. In the
first place, we compare the performance of FRBCS-CM com-
bined with FURIA-based fuzzy MCSs with bagging with the
full ensemble using standard MV in Section IV-B. Then, Sec-
tion IV-C shows a comparison of the novel FRBCS-CM with the
state-of-the-art crisp and fuzzy multiclassification combination
methods, as well as with a hybrid method based on GA con-
sidering both classifier selection and classifier fusion [32]. For
that comparison, apart from the standard MV, we select average
(AVG) [1] and decision templates (DT) [48] based on Euclidean

TABLE I
DATASETS CONSIDERED

distance, as crisp and fuzzy fusion methods, respectively, being
the best methods of each group according to Kuncheva [21].
Since the proposed FRBCS-CM includes classifier selection
and classifier fusion, we also apply classifier selection with the
mentioned classifier fusion methods in order to make a fair com-
parison. To select classifiers, we will use two standard greedy
approaches, i.e., Greedy Forward Selection (FS) and Greedy
Backward Selection (BS) [40], which will use the aforemen-
tioned classifier fusion methods (these methods are also used to
guide the search of the greedy algorithms). The hybrid method
based on GA proposed in [32] (GA-Dimililer) embeds both clas-
sifier selection and classifier fusion; thus, we directly apply it
with no modifications. Then, we will show some interpretability
aspects of the fuzzy linguistic combination method proposed in
Section IV-D Finally, the runtime values for the fuzzy MCSs,
FRBCS-CM, and the other combination methods are presented
in Section IV-E.

A. Experimental Setup

To evaluate the performance of the FRBCS-CM in the en-
sembles generated, 20 popular datasets from the UCI machine
learning repository have been selected (see Table I). In all of
them, every attribute is continuous. As can be seen, the number



956 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 21, NO. 5, OCTOBER 2013

of features ranges from a small value (i.e., 5) to a large one (i.e.,
64), while the number of examples does so from 208 to 19 020.
We divided them into two groups with low dimensionality (with
< 15 attr.) and with high dimensionality (with≥ 15 attr.), as can
be seen in Table I.

In order to compare the accuracy of the considered classifiers,
we used Dietterich’s 5×2-fold cross-validation (5×2-cv) [65].
The bagging FRBMCSs generated are initially comprised by 50
classifiers.

The steady-state GA for the FRBCS-CM derivation works
with a population of 100 individuals and runs for 1000 genera-
tions (the equivalent to 20 generations in a usual GA with gen-
erational replacement and crossover probability equal to 1). The
tournament size is 5, and the mutation probability considered is
0.1. Five different values have been tested for the chromosome
size: 10%, 25%, 50%, 75%, and 90% of the terms of the original
[wck ] matrix were allowed to be nonzero, thus corresponding to
a maximum reduction of the 90%, 75%, 50%, 25%, and 10%
of the original FRBMCS size, respectively. The combination
methods based on AVG and DT do not require any predefined
parameters. The former is a mathematical function averaging
all the component classifier votes for each class, while the latter
is based on learning specific characteristics of examples of the
given class by taking an average of them during the learning
phase. Then, in the test phase, the final decision is based on
a distance of the given examples to the obtained templates for
each class.

In order to make a fair comparison, we use the same parame-
ters for GA-Dimililer as for our GA to obtain the FRBCS-CM.
GA-Dimililer is based on a binary coding, where crisp votes
of each component classifier for each class are assigned one
binary value. When a binary value is equal to 1, it means that
a corresponding vote of the given component classifier is ac-
tivated during the testing phase. The fitness function uses a
well-known F-score in order to guide the genetic search. The
final decision is taken based on weighted MV. For more details,
see [32].

The Wilcoxon Signed-rank test has been used for a deeper
insight of the results. Unlike the commonly used t-test, the
Wilcoxon test does not assume normality of the samples [66],
which would be unrealistic in the case of the UCI datasets. The
confidence level considered for the null hypothesis rejection is
5%.

All the experiments have been run in a cluster at the University
of Granada on Intel quadri-core Pentium 2.4 GHz nodes with
2 GB of memory, under the Linux operating system.

Since there are several parameter values and aspects to be
tested, the analysis of the obtained results will be performed
in parts and following an incremental approach for the sake of
comprehensibility.

B. Analysis of Fuzzy Rule-Based Classification System-Based
Combination Method Combined With Fuzzy Multiclassification
System Design Approach

In the first place, we have conducted experiments on the
FRBCS-CM combined with FURIA-based fuzzy MCSs with
bagging. We aim to test the performance of the novel fuzzy

linguistic combination method in comparison with the whole
initial fuzzy classifier ensemble. The results are presented in
Table II (the best result for a given dataset is presented in bold
font), showing the test error obtained for MV (operating on the
full original ensemble) and FRBCS-CM (nonzero values: 10%,
25%, 50%, 75%, and 90%), as well as the accuracy improvement
percentage for each of the five different parameters considered
for FRBCS-CM with respect to the accuracy of MV.

From the viewpoint of Table II, it can be noticed that in
almost all cases, FRBCS-CMs show an accuracy improvement
of FURIA-based fuzzy MCSs with bagging with respect to MV.
Only for 10% of nonzero values, the average improvement was
negative, considering both low- and high-dimensional datasets.
It also happens for 25% of nonzero values, considering low-
dimensional datasets. Considering the datasets separately, the
FRBCS-CM outperforms MV in 17 out of 20 cases in at least
one of the FRBCS-CMs designed. Breast, pima, and abalone
are the only three datasets, where MV showed performance
advantage in comparison with the FRBCS-CMs.

From the viewpoint of Table III, it can be noticed that FURIA-
based fuzzy MCSs with bagging obtain roughly 2035 overall
average number of rules for the full ensemble, while the FRBCS-
CM combined with FURIA-based fuzzy MCSs with bagging
obtains much less rules, roughly 211, 511, 1033, 1525, and 1829
overall average number of rules for 10%, 25%, 50%, 75%, and
90% of nonzero values, respectively. As expected, the nonzero
value parameter is strongly correlated (namely, it is an inverse
correlation) with the reduction of the number of rules.

In conclusion, the FRBCS-CM with 75% and 90% of nonzero
values is not only able to outperform MV fusion mechanism
operating on the full original ensemble (which is not the aim
in itself) but is also very competitive in terms of complexity
reduction, after the selection of the component classifiers. Even
when considering a nonzero parameter with low values (such
as 10% or 25%), it results in a strong complexity reduction
(roughly 90% and 75% less rules than a full ensemble), while our
approach is able to maintain the original accuracy. Moreover,
it allows the user to get some insights of the MCS reasoning
mechanism, which increases interpretability of the generated
MCSs (as will be seen in Section IV-D). In this study, we are
looking for a good interepretability–accuracy tradeoff through
the proposed MCS combination method.

To confirm the latter assumptions, Table IV presents the p-
values of the statistical tests performed in order to check if the
Wilcoxon test shows significant differences between FRBCS-
CM (nonzero values: 10%, 25%, 50%, 75%, and 90%) and the
full ensemble with MV in terms of accuracy (while reducing
complexity). The results showing a significant differences be-
tween both algorithms are presented in bold font. For all the
nonzero values considered apart from 10%, the Wilcoxon test
shows that the FRBCS-CM is at least significantly not different
from the full ensemble with MV. Even more, for 50%, 75%,
and 90%, significant differences are shown in favor of the
FRBCS-CM. Excluding the FRBCS-CM with 10%, which pro-
vides roughly ten times simpler fuzzy MCSs, the FRBCS-CM
is able to maintain accuracy (and in some cases even improve),
while obtaining the complexity reduction.
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TABLE II
ACCURACY OF FRBCS-CM COMBINED WITH FURIA-BASED FUZZY MCSS WITH BAGGING

TABLE III
COMPLEXITY OF FRBCS-CM COMBINED WITH FURIA-BASED FUZZY MCSS WITH BAGGING

C. Comparison of Fuzzy Rule-Based Classification
System-Based Combination Method and Other
Multiclassification System Combination Methods

In this section, we compare the novel FRBCS-CM with some
state-of-the-art crisp and fuzzy multiclassification combination
methods, as well as with a hybrid method based on GA, con-
sidering both classifier selection and classifier fusion [32]. In

TABLE IV
WILCOXON SIGNED-RANK TEST FOR THE COMPARISON OF FRBCS-CM

AND THE FULL ENSEMBLE WITH MV
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TABLE V
COMPARISON OF FRBCS-CM (10% AND 25%) AND GREEDY FS APPROACHES (MV, AVG, AND DT) IN TERMS OF ACCURACY AND COMPLEXITY

order to make a fair study, we will do three different compar-
isons, which will be structured taking the complexity (number
of rules) of the fuzzy MCSs obtained as a base.

In the first study, we will compare the FRBCS-CM with 10%
(FRBCS-CM 10%) and 25% (FRBCS-CM 25%) of nonzero
values with Greedy FS combined with MV (Greedy FS MV),
AVG (Greedy FS AVG), and DT (Greedy FS DT). The operation
of Greedy FS approach leads to the selection of small MCSs with
a large complexity (number of rules) reduction. For that reason,
we have selected FRBCS-CM 10% and 25%, which show the
same tendency.

The opposite situation takes place for the Greedy BS ap-
proach, which tends to obtain large MCSs with a small com-
plexity (number of rules) reduction. The same happens with the
FRBCS-CM with 75% (FRBCS-CM 75%) and 90% (FRBCS-
CM 90%) of nonzero values. Hence, we will compare these
FRBCS-CMs with Greedy BS combined with MV (Greedy BS
MV), AVG (Greedy BS AVG), and DT (Greedy BS DT) in the
second study.

Finally, GA-Dimililer [32] is an approach that can be consid-
ered in between Greedy FS and Greedy BS concerning complex-
ity reduction. This genetic search obtains medium size MCSs
with an intermediate complexity (number of rules) reduction.
Thus, in the third study, we will consider FRBCS-CM variants,
providing a similar complexity, namely, FRBCS-CM 25% and
FRBCS-CM with 50% (FRBCS-CM 50%) of nonzero values
for a comparison.

Notice that FRBCS-CM allows the user to estimate the re-
duction of the complexity of the final MCS a priori by selecting
the appropriate nonzero parameter value. This high flexibility,
an a priori choice of how simple will the MCS obtained be,
constitutes an advantage over the aforementioned approaches.

The three experiments developed are described as follows.

TABLE VI
WILCOXON SIGNED-RANK TEST FOR THE COMPARISON OF FRBCS-CM
(10% AND 25%) AND GREEDY FS APPROACHES (MV, AVG, AND DT)

1) Comparison of Fuzzy Rule-Based Classification System-
Based Combination Method and Greedy Forward Selection Ap-
proaches: The results obtained by FRBCS-CM 10% and 25%,
as well as Greedy FS approaches MV, AVG, and DT, are pre-
sented in Table V. From the viewpoint of this table, it can
be noticed that FRBCS-CM 10% outperforms Greedy FS ap-
proaches AVG and DT in terms of overall average test error
as well as for average test error for low-dimensional datasets,
while being slightly inferior considering average test error for
high-dimensional datasets by 0.0024 and 0.0004, respectively.
Our approach obtains approximately 90 rules less on average
in comparison with both Greedy FS approaches, which gives
around 30% of additional complexity reduction.

Let us consider Greedy FS MV apart, since it is a special
case. This approach outperforms FRBCS-CM 10% in terms of
overall average test error and also average test error for both
low- and high-dimensional datasets. However, the performance
difference between both algorithms is very small, as it is equal
to 0.002. Moreover, the number of rules obtained by Greedy
FS MV is twice as big as the number of rules obtained by our
approach.

Considering FRBCS-CM 25%, it outperforms all three
Greedy FS approaches in terms of overall average test error
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TABLE VII
COMPARISON OF FRBCS-CM AND GREEDY BS APPROACHES (MV, AVG, AND DT) IN TERMS OF ACCURACY AND COMPLEXITY

and average test error for low- and high-dimensional datasets.
However, it obtains a slightly higher complexity, i.e., approxi-
mately 57 more rules on average than Greedy FS MV (around
13% of complexity increase), and roughly 200 more rules on
average in comparison with Greedy FS AVG and DT (around
67% of complexity increase).

From these analyses, we may draw two conclusions. First,
the novel FRBCS-CM proposed is competitive with the state-
of-the-art fusion methods, when using Greedy FS. Second, our
approach allows the user a higher degree of flexibility to define
the desired tradeoff between accuracy and complexity by means
of the specification of the nonzero parameter value. Choosing it
a priori gives an estimation of how simplified will the final MCS
be, which does not characterize the Greedy FS approaches.

Furthermore, Table VI presents the p-values of the statistical
tests performed in order to check if the Wilcoxon test shows
significant differences between FRBCS-CM 10% and 25% and
the Greedy FS approaches in terms of accuracy. The results
showing a significant difference between both algorithms are
presented in bold font. From the viewpoint of this table, it can
be clearly noticed that our approach is not significantly different
for FRBCS-CM 10% and significantly different for FRBCS-
CM 25% in comparison with the accuracy of the Greedy FS
approaches (in favor of FRBCS-CM 25%), which confirm the
conclusions drawn.

2) Comparison of Fuzzy Rule-Based Classification System-
Based Combination Method and Greedy Backward Selection
Approaches: The results obtained by FRBCS-CM 75% and
90%, as well as Greedy FS approaches MV, AVG, and DT,
are presented in Table VII. From the viewpoint of this table,
it can be noticed that FRBCS-CM 90% obtains similar results
to Greedy BS AVG and DT, outperforming Greedy BS MV in
terms of the overall average test error as well as the average test

TABLE VIII
WILCOXON SIGNED-RANK TEST FOR THE COMPARISON OF FRBCS-CM
(75% AND 90%) AND GREEDY BS APPROACHES (MV, AVG, AND DT)

error for both low- and high-dimensional datasets. Considering
the overall average test error, the ranking is Greedy BS with DT,
FRBCS-CM, Greedy BS with AVG, and Greedy BS with MV.
We should emphasize that the difference between the first three
algorithms is negligible: 0.0005 between Greedy BS with DT
and FRBCS-CM and 0.0002 between FRBCS-CM and Greedy
BS with AVG.

Considering the number of rules, FRBCS-CM 90% obtains
roughly 95 and 85 rules less, on average, than the competitive
Greedy BS DT and AVG, respectively (around 5% and 4.5% of
additional complexity reduction). On the opposite, FRBCS-CM
90% obtains roughly 110 more rules on average than Greedy
BS MV (around 6% of complexity increase); however, Greedy
BS MV obtains a lower accuracy.

To complete the analysis, let us consider FRBCS-CM 75%,
which obtains a lower complexity, as well as a lower accuracy.
We will compare it with Greedy BS MV, since FRBCS-CM
90% already obtains less rules than Greedy BS AVG and DT.
FRBCS-CM 75% outperforms Greedy BS MV in terms of over-
all average test error and also average test error for both low-
and high-dimensional datasets. Moreover, it obtains roughly
194 rules less than Greedy BS MV (around 13% of additional
complexity reduction).
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TABLE IX
COMPARISON OF FRBCS-CM AGAINST GA-DIMILILER IN TERMS OF

ACCURACY AND COMPLEXITY

The flexibility of our approach is again clearly appreciated,
since it can define different accuracy–complexity tradeoffs,
which is not allowed by Greedy BS approaches. Our approach
also turned out to be competitive with the state-of-the-art fusion
methods, when using Greedy BS, in terms of accuracy.

The latter conclusion is confirmed in Table VIII, which
presents the p-values of the statistical tests performed in order to
check if the Wilcoxon test shows significant differences between
FRBCS-CM 75% and 90%, as well as Greedy BS approaches in
terms of accuracy. The results showing a significant difference
between both algorithms are presented in bold font. From the
viewpoint of this table, it can be noticed that our approach is not
significantly different for both nonzero values, when compared
with Greedy BS AVG and DT, while being significantly differ-
ent (in favor of the FRBCS-CM) when compared with Greedy
BS MV.

We should again remind that the aim of this study is to
propose the MCS combination methods, providing a good
interpretability–accuracy tradeoff; thus, our approach has to be
competitive in terms of accuracy (but not necessarily the best),
while allowing some interpretability insights at the same time.
We actually think that this goal has been obtained in view of the
performed experiment.

3) Comparison of Fuzzy Rule-Based Classification System-
Based Combination Method and a Hybrid Method Based on
Genetic Algorithm Considering Classifier Selection and Clas-
sifier Fusion: The results obtained by FRBCS-CM 25% and
50% and GA-Dimililer are presented in Table IX. From the
viewpoint of this table, it can be noticed that both FRBCS-
CMs outperform GA-Dimililer, considering the overall average
test error as well as the average test error for both low- and

TABLE X
WILCOXON SIGNED-RANK TEST FOR THE COMPARISON OF FRBCS-CM

(25% AND 50%) AGAINST GA-DIMILILER

high-dimensional datasets. GA-Dimililer turns out to be an infe-
rior approach even in comparison with FRBCS-CM 25%, which
obtains almost 40% rules less on average. Thus, we may con-
clude that the novel FRBCS-CM proposed is competitive with
the state-of-the-art hybrid method based on GA, considering
classifier selection and classifier fusion, while also being able
to obtain simpler MCSs.

The statistical tests performed clearly show that fact. The
FRBCS-CM with both nonzero values is statistically different
from GA-Dimiliter (see Table X), with differences being in favor
of our approach.

D. Interpretability Study on Fuzzy Rule-Based Classification
System-Based Combination Method

The proposed fuzzy linguistic combination method provides
a good degree of interpretability to the MCS, making the com-
bination method operation mode more transparent for the user.
Furthermore, when combined with a fuzzy MCS, the whole
system takes a pure hierarchical structure based on fuzzy classi-
fication rules structure (in the sense that the weak learners con-
stitute individual FRBCSs, becoming the input to the FRBCS-
based combination method). The type of rules with a class and
a certainty degree in the consequent used in the FRBCS-CM
allows the user to get an understandable insight into the MCS,
thus allowing interpretability of such a complicated system to
some extent. The global framework of our proposal was already
presented in Fig. 1.

To illustrate the interpretability capabilities of FRBCS-CM,
we will show how it works on two of the datasets presented
in Table I (one from each group, low and high dimensionality).
The fuzzy rule base obtained with FRBCS-CM 10% on the wine
dataset is presented in Fig. 4. For the sake of comprehensibility,
the sparse matrix introduced in Section III was transposed (on
the left side), and its values were sorted according to the class
label c, exposing which classifier fuzzy rules are considered to
obtain the final decision k with a given weight w. The corre-
sponding FURIA fuzzy rules (on the right side), presented in
Section II-C, were simplified (notice that we do not show the
exact values of the attributes to keep a simple structural repre-
sentation) as well as sorted according to the class label. Fuzzy
rule base obtained by the FRBCS-CM (in the middle), with a
linguistic terms in the antecedent parts of the rules, composes a
human-interpretable structure, making this combination method
operation mode more transparent for the user. The FRBCS-CM
transition from the second level of the fuzzy MCS, that is the
combination method, to the first level, i.e., the FURIA-based
fuzzy component classifiers, is clearly shown. The FRBCS-CM
provides the user with an insight of which rules of component
base classifier are selected for a given class label.
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Fig. 4. Example showing how FRBCS-CM selects and combines fuzzy rules of the selected component FURIA-based fuzzy classifiers. The wine dataset was
used for illustration with FRBCS-CM considering 10% of the nonzero values.

The magic dataset was selected as the representative from
the high-dimensional group. Fig. 5 presents the fuzzy rule
base obtained with FRBCS-CM 25%. The corresponding FU-
RIA fuzzy rules are not shown in this case due to their large
number. Nevertheless, the transparency of the fuzzy linguis-
tic combination method can be clearly seen again. The user
is provided with fuzzy rule base, indicating which rules of
which component base classifier are selected for a given class
label.

Thus, we may conclude that the proposed approach is ca-
pable of providing interpretability to the MCS to some extent.
Moreover, up to our knowledge, there has not been any previous
proposal of an MCS combination method that tried to deal with
this matter.

E. Comparison of the Runtime of the Fuzzy Multiclassification
systems, Fuzzy Rule-Based Classification System-Based
Combination Method, and the Other Multiclassification
System Combination Methods

The runtime values in seconds for the fuzzy MCSs, FRBCS-
CM, and the other MCS combination methods are presented
in Table XI. From the viewpoint of this table, the following
conclusions can be drawn.

1) Considering fuzzy MCSs, the runtime varies from less
than 1 s (0.30 s for wine dataset) to several hours (9.05 h
for texture dataset), obtaining roughly 2.45 h considering
overall average runtime.

Fig. 5. Example showing the FRBCS-CM fuzzy rule base. The magic dataset
was used for illustration with FRBCS-CM considering 25% of the nonzero
values.
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TABLE XI
AVERAGE RUN TIMES OF THE FUZZY MCSS, FRBCS-CM, AND THE OTHER MCS COMBINATION METHODS (IN SECONDS)

2) The proposed FRBCS-CM is placed at the fourth place
after Greedy FS AVG, Greedy BS AVG, and Greedy FS
DT, while it is faster than Greedy BS DT, GA-Dimililer,
Greedy FS MV, and Greedy BS MV, respectively.

3) The proposed FRBCS-CM obtains similar runtime val-
ues (roughly 350 s considering overall average runtime),
regardless of the nonzero percentage value specified.

4) For both Greedy FS and Greedy BS, the highest runtime
values are obtained for MV (due to its implementation),
while AVG is capable of learning within the smallest run-
time.

5) Both Greedy FS and Greedy BS approaches obtain so
small runtime values due to the characteristics of AVG. It
is a simple mathematical function, which does not require
any memory use (as in the case of DT). Each iteration of
the Greedy algorithm is simply based on the calculation
of the AVG value and the comparison with the best value
obtained so far.

6) GA-Dimililer obtains roughly 3.15 h, considering overall
average runtime. This value is approximately three times
higher than that of the proposed FRBCS-CM, which is
also based on the use of a GA.

V. CONCLUDING REMARKS

We have proposed a novel MCS fuzzy linguistic combina-
tion method based on the use of an FRBCS automatically de-
rived by means of a GA. The new fuzzy linguistic combina-
tion method shows very interesting characteristics, especially
its transparency and its capability to jointly perform classi-
fier fusion and selection. In addition, when combined with a
fuzzy classifier ensemble, the overall system shows a hierar-
chical structure (called stacking in the literature). Thus, this
means that FRBCSs can deal with high-dimensional problems

that avoid the curse of dimensionality, allowing the user to select
an appropriate accuracy–complexity tradeoff.

We carried out exhaustive experiments using 20 datasets from
the UCI repository with different dimensionality. A comparison
with some state-of-the-art classifier fusion methods, such as
MV, AVG, and DT combined with Greedy FS and Greedy BS,
as well as with the hybrid method based on a GA considering
both classifier selection and classifier fusion [32], led us to the
conclusion that our approach is competitive in terms of both
accuracy and complexity. Furthermore, we were able to show
that this approach allows us to get some insights into the MCS
fusion method, which is not a usual case in the field of MCSs,
thus leading to a good interpretability–accuracy tradeoff in fuzzy
MCSs.

APPENDIX

BRIEF DESCRIPTION OF THE FUZZY UNORDERED RULES

INDUCTION ALGORITHM

To make this paper self-contained, we introduce the main
features of the algorithm used as a base classifier. Fuzzy un-
ordered rules induction algorithm (FURIA) [51], [52] is a novel
FRBCS, extending the state-of-the-art rule learning algorithm
called RIPPER [67]. It maintains its advantages such as simple
and comprehensible fuzzy rule base or an internal feature selec-
tion algorithm, while introducing some new features. FURIA
provides three different extensions of RIPPER.

1) It takes an advantage of fuzzy rules instead of crisp ones.
Fuzzy rules of FURIA are composed of a class Cj and a
certainty degree CDj in the consequent. The final form of
a rule is the following:

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn

then Class Cj with CDj ; j = 1, 2, ..., N.
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The certainty degree of a given example x is defined as
follows:

CDj =
2D

C j
T

DT
+

∑
x∈D

C j
T

μ
Cj
r (x)

2 +
∑

x∈DT
μ

Cj
r (x)

(5)

where DT and D
Cj

T stands for the training set and a subset
of the training set belonging to the class Cj , respectively.
In this approach, each fuzzy rule makes a vote for its
consequent class. The vote strength of the rule is calculated
as the product of the firing degree μ

Cj
r (x) and the certainty

degree CDj . Hence, the fuzzy reasoning method used is
the so-called voting-based method [30], [68].

2) It uses unordered rule sets instead of rule lists. This change
omits a bias caused by the default class rule, which is
applied whenever there is an uncovered example detected.

3) It proposes a novel rule stretching method in order to
manage uncovered examples. The unordered rule set in-
troduces one crucial drawback: There might appear a case
when a given example is not covered. Then, to deal with
such a situation, one rule is generalized by removing its
antecedents. The information measure is proposed to ver-
ify which rule to “stretch.”

See [51] for a full description of FURIA.
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which was co-advised by Dr. Cordón.
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a b s t r a c t

Recently we proposed the use of the Random Linear Oracles classical classifier ensemble (CE) design
methodology in a fuzzy environment. It derived fuzzy rule-based CEs obtaining an outstanding perfor-
mance. Random Oracles introduce an additional diversity into the base classifiers improving the accuracy
of the entire CE. Meanwhile, the overproduce-and-choose strategy leads to a good accuracy-complexity
trade-off. It is based on the generation of a large number of component classifiers and a subsequent selec-
tion of the best cooperating subset of them. The current contribution has a twofold aim: (1) Introduce a
new Random Oracles approach into the fuzzy rule-based CEs design; (2) Incorporate an evolutionary
multi-objective overproduce-and-choose strategy to our approach analyzing the influence of this addi-
tional diversity in the final CE performance (focusing on the accuracy). To do so, firstly, we incorporate
the two Random Oracle variants into the fuzzy rule-based CE framework. Then, we use NSGA-II to provide
a specific component classifier selection driven by three different criteria. Exhaustive experiments are
carried out over 29 UCI and KEEL datasets with high complexity (considering both the number of attri-
butes as well as the number of examples) showing the good performance of the proposed approach.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Classifier ensembles (CEs), also called multiclassifiers, are well-
recognized tools in the machine learning community and more re-
cently in the soft computing community. They are able not only to
outperform a single classifier but also to deal with complex and
high dimensional classification problems [1].

In a preceding contribution [2], we incorporated Random Linear
Oracles (RLOs) [3], a classical CE design methodology, into a previ-
ously proposed CE framework [4] to derive fuzzy rule-based classi-
fier ensembles (FRBCEs). Thanks to the additional diversity
introduced by RLOs into the robust FURIA-based fuzzy classifiers
[5,6], the obtained FRBCEs were able to achieve an outstanding
performance in terms of accuracy, outperforming RLO combined
with the classical base classifiers.

Nevertheless, the performance of FRBCEs can still be im-
proved. It has been theoretically and empirically shown that
smaller ensembles can outperform larger ones [7–9]. Thus,
selecting a subset of classifiers is a natural way to follow. In
our previous contributions, we used the well known overpro-
duce-and-choose strategy [10] (OCS) to reduce the CE dimension-
ality, while improving its accuracy. OCS is a classifier selection
method based on the generation of a large number of compo-
nent classifiers and a subsequent selection of the best cooperat-
ing subset of them.

Therefore, OCS helps to obtain a good accuracy-complexity
trade-off in the CE design as well as in many cases it also im-
proves the accuracy of the final CE. In fact, these characteristics
were exhibited in [11] for FRBCEs using an OCS strategy based
on NSGA-II [12]. NSGA-II, which is a state-of-the-art evolutionary
multi-objective (EMO) algorithm [13], generated a set of CE de-
signs with different accuracy-complexity trade-offs in a single
run.

In this contribution, we introduce two novel aspects to our
FRBCE design methodology in [2] in order to improve the CE accu-
racy, while reducing its complexity:
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1. To keep a high diversity in the set of classifiers as well as high
performance, we incorporate a new Random Oracle (RO)
approach, namely the Random Spherical Oracle (RSO) [14], into
the FRBCE framework. Opposite to RLO, RSO uses an oracle
based on a random hypersphere to divide the feature space into
two regions in order to feed two subclassifiers, which both com-
pose the final RSO. We expect to improve the performance of
the FRBCEs by combining the RSO randomness and its oracle
shapes with the ‘‘soft boundaries’’ provided by the FURIA-based
component classifier.

2. To reduce the complexity, we design a specific EMO-based OCS
strategy for RO-based FRBCEs from our previous proposal in
[11]. Since RO is composed of two base classifiers, this approach
offers a tremendous advantage over bagging FURIA-based com-
ponent classifiers because each classifier can be independently
selected within each pair component. A higher degree of free-
dom is achieved during the selection procedure, while still hav-
ing the potential of drastically reducing the complexity.

On the one hand, we aim to obtain a good accuracy-complexity
trade-off when dealing with high complexity datasets. While the
main goal in the design of CEs is to obtain an accurate system,
the complexity is an interesting secondary objective allowing us
to obtain simpler and quicker CEs. On the other hand, we aim to
analyze whether the additional diversity induced by ROs is benefi-
cial for the EMO OCS-based FRBCEs. That is, our goal is to check if
the OCS-based selection leads to more accurate results when ap-
plied on RO-based FURIA fuzzy CEs than on bagging fuzzy CEs
thanks to the additional freedom degrees resulting from the RO de-
sign. For that purpose, we use a novel NSGA-II design with a three-
objective fitness function including an advanced accuracy measure
as well as complexity and diversity indices for the component clas-
sifier selection. Specifically, we propose a special binary coding for
NSGA-II in order to take advantage of the additional degrees of
freedom offered by the RO base classifiers, and test two different
mutation operator settings to look for the best performance.

To perform the experimental analysis, we carry out exhaustive
experiments on 29 high complexity datasets from the UCI machine
learning [15] and the KEEL dataset [16] repositories.

This paper is set up as follows. In the next section, the prelimi-
naries required for a good understanding of our work are reviewed.
Section 3 presents RLOs, RSOs, both RLO- and RSO-based FRBCEs,
and a set of experiments focused on the comparison of different
RO-based strategies for the combination of the component classifi-
ers. Then, Section 4 introduces our NSGA-II proposal for RSO com-
ponent fuzzy classifier selection incorporating a three-objective
fitness function and the analysis of the experiments performed. Fi-
nally, Section 5 concludes this contribution with some future re-
search lines.

2. Preliminaries

This section explores the current literature related to the gener-
ation of a FRBCE. The techniques used to generate CEs and fuzzy
CEs are described in Sections 2.1 and 2.2, respectively. Some ways
to reduce the size of the ensembles are described in Section 2.3.
The use of genetic algorithms (GAs) within the OCS strategy is ex-
plored in Section 2.4. Finally, we briefly introduce evolutionary
fuzzy systems in Section 2.5.

2.1. Classifier ensembles design methodologies

A CE is the result of the combination of the outputs of a group of
individually trained classifiers in order to get a system that is usu-
ally more accurate than any of its single components [1]. These

kinds of methods have gained a large acceptance in the machine
learning community during the last two decades due to their high
performance. Decision trees are the most common classifier struc-
ture considered and much work has been done in the topic [17,18],
although CEs can be used with any other type of classifiers (neural
networks are also very extended, see for example [19]).

There are different ways to design a classifier ensemble. On the
one hand, there is a classical group of approaches considering data
resampling to obtain different training sets to derive each individ-
ual classifier. In bagging [7], they are independently learnt from
resampled training sets (‘‘bags’’), which are randomly selected
with replacement from the original training data set. Boosting
methods [20] sequentially generate the individual classifiers (weak
learners) by selecting the training set for each of them based on the
performance of the previous classifier(s) in the series. Opposed to
bagging, the resampling process gives a higher selection probabil-
ity to the incorrectly predicted examples by the previous
classifiers.

On the other hand, a second group can be found comprised by a
more diverse set of approaches which induce the individual classi-
fier diversity using some ways different from resampling [21]. Fea-
ture selection plays a key role in many of them where each
classifier is derived by considering a different subset of the original
features [22,23]. Random subspace [24], where each feature subset
is randomly generated, is one of the most representative methods
of this kind.

Finally, there are some advanced proposals that can be consid-
ered as a combination of the two groups, such as random forests
[25] and more recently rotation forest [26] and fuzzy random forest
[27].

The interested reader is referred to [18,19] for two surveys for
the case of decision tree (both) and neural network ensembles
(the latter), including exhaustive experimental studies.

2.2. Related work on fuzzy classifier ensembles

Focusing on fuzzy CEs, only a few contributions for bagging fuz-
zy classifiers have been proposed considering fuzzy neural net-
works (together with feature selection) [28], neuro-fuzzy systems
[29], and fuzzy decision trees [27,30] as component classifier
structures.

Especially worth mentioning is the contribution of Bonissone
et al. [27]. This approach hybridizes Breiman’s idea of random for-
ests [25] with fuzzy decision trees [31]. Such resulting fuzzy ran-
dom forest combines characteristics of CEs with randomness and
fuzzy logic in order to obtain a high quality system joining robust-
ness, diversity, and flexibility to not only deal with traditional clas-
sification problems but also with imperfect and noisy datasets. The
results show that this approach obtains good performance in terms
of accuracy for all the latter kind of classification problems.

Some advanced Evolutionary Fuzzy System-based contributions
should also be remarked. On the one hand, a fuzzy rule-based clas-
sifier system (FRBCS) ensemble design technique is proposed in
[32] considering feature selection methods based on some niching
GA [33] to generate the diverse component classifiers, and another
GA for classifier fusion by learning the combination weights. On
the other hand, another interval and fuzzy the rule-based ensem-
ble design method using a single- and multiobjective genetic selec-
tion process is introduced in [34,35]. In this case, the coding
scheme allows an initial set of either interval or fuzzy rules, consid-
ering the use of different features in their antecedents, to be dis-
tributed among different component classifiers trying to make
them as diverse as possible by means of two accuracy and one en-
tropy measures. Besides, the same authors presented a previous
proposal in [36], where an EMO algorithm generated a Pareto set
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Please cite this article in press as: K. Trawiński et al., Multiobjective genetic classifier selection for random oracles fuzzy rule-based classifier ensembles:
How beneficial is the additional diversity?, Knowl. Based Syst. (2013), http://dx.doi.org/10.1016/j.knosys.2013.08.006



of FRBCSs with different accuracy-complexity trade-offs to be com-
bined into an ensemble.

2.3. Pruning a set of component classifiers in the classifier ensemble

Typically, an ensemble of classifiers is post-processed in such a
way only a subset of them are kept for the final decision. It is a well
known fact that the size of this CE is an important issue for its
trade-off between accuracy and complexity [18,19] and that most
of the error reduction occurs with the first few additional classifi-
ers [7,19]. Furthermore, the selection process also participates in
the elimination of the duplicates or the poor-performing classifiers.

While in the first studies on CEs a very small number (around
ten) of component classifiers was considered as appropriate to suf-
ficiently reduce the test set prediction error, later research on
boosting (that also holds for bagging) suggested that error can be
significantly reduced by largely exceeding this number [37]. This
has caused the use of very large ensemble sizes (for example com-
prised by 1000 individual classifiers) in the last few years [18].

Hence, the determination of the optimal size of the ensemble is
an important issue for obtaining both the best possible accuracy in
the test data set without overfitting it, and a good accuracy-com-
plexity trade-off. In pure bagging and boosting approaches, the
optimal ensembles are directly composed of all the individual clas-
sifiers generated until a specific stopping point, which is deter-
mined according to different means (validation data set errors,
likelihood, etc.). For example, an heuristic method to determine
the optimal number guided by the out-of-bag error is proposed in
[18].

However, there is the chance that the optimal ensemble is not
comprised by all the component classifiers first generated but on
a subset of them carrying a larger degree of disagreement/diver-
sity. This is why different classifier selection methods have been
proposed [38]. GAs have been commonly used for this task as we
will show in the following subsection.

2.4. Related work on OCS-based genetic selection of classifier
ensembles

The selection of a subset of classifiers is commonly done using
the OCS strategy [10,39], in which a large set of classifiers is pro-
duced and then selected to extract the best performing subset.
GAs are a popular technique within this strategy. In the literature,
performance, complexity and diversity measures are usually con-
sidered as search criteria. Complexity measures are employed to
simplify the system, whereas diversity measures are used to avoid
overfitting. The reader is referred to [40] for a review on these ge-
netic CE selection approaches.

Among the different genetic OCS methods, we can remark those
most related to our current proposal. Oliveira et al. presented in
[41] a hierarchical multiobjective GA, performing feature selection
at the first level and classifier selection at the second level, which
outperforms classical methods for two handwritten recognition
problems. The multiobjective GA allows both performance and
diversity to be considered for CE selection. Another EMO proposal
for classifier selection is introduced in [42]. In that contribution, a
comparison of a single-objective GA and the NSGA-II EMO algo-
rithm for 14 different objective functions based on combining the
mentioned three families of criteria (12 diversity measures, the
training error, and the number of classifiers as a complexity mea-
sure) is developed. The authors applied their study on only one
dataset, a digit handwritten recognition problem with 10 classes
and 118,735 instances. They concluded that the training error is
the best criterion for a single GA and a combination of training er-
ror and one diversity measure is the best criterion for an EMO algo-
rithm. In [43] a genetic classifier selection method was considered

based on a single performance index, either the diversity, including
16 different measures, or the ensemble error. The best results were
obtained with the accuracy measure and a specific kind of diversity
measures correlated with the error.

Finally, in [11] we proposed to use NSGA-II with five bi-objec-
tive fitness functions based on three different optimization criteria
(accuracy, complexity, and diversity) for the component classifier
selection in bagging FURIA-based fuzzy CEs. A combination be-
tween accuracy and diversity criteria showed very promising
results.

2.5. Evolutionary fuzzy systems

Fuzzy systems, which are based on fuzzy logic, became popular
in the research community, since they have ability to deal with
complex, non-linear problems being too difficult for the classical
methods [44]. Besides, its capability of knowledge extraction and
representation allowed them to become human-comprehensible
to some extent (more than classical black-box models) [45,46].

The lack of the automatic extraction of fuzzy systems have at-
tracted the attention of the computational intelligence community
to incorporate learning capabilities to these kinds of systems. In
consequence, a hybridization of fuzzy systems and GAs has become
one of the most popular approaches in this field [47–50]. In gen-
eral, evolutionary fuzzy systems (EFSs) are fuzzy systems en-
hanced by a learning procedure coming from evolutionary
computation, i.e. considering any evolutionary algorithm (EA).

Fuzzy rule-based systems (FRBSs), which are based on fuzzy
‘‘IF–THEN’’ rules, constitute one of the most important areas of fuz-
zy logic applications. Designing FRBSs might be seen as a search
problem in a solution space of different candidate models by
encoding the model into the chromosome, as EAs are well known
optimization algorithms capable of searching among large spaces
with the aim of finding optimal (usually nearly optimal) solutions.

The generic coding of EAs provides them with a large flexibility
to define which FRBS parameters/components are to be designed
[49]. For example, the simplest case would be a parameter optimi-
zation of the fuzzy membership functions. The complete rule base
can also be learned. This capability allowed the field of EFSs to
grow over two decades and to still be one of the most important
topics in computational intelligence.

In the current contribution, we will relay on the EFS paradigm
to define our EMO OCS-based FRBCE design method.

3. Using random oracles to design fuzzy rule-based classifier
ensembles

An RO [3,14] is a structured classifier, also defined as a ‘‘mini-
ensemble’’, encapsulating the base classifier of the CE. It is com-
posed of two classifiers and an oracle that decides which one to
use in each case. Basically, the oracle is a random function whose
objective is to randomly split the dataset into two subsets by divid-
ing the feature space into two regions. Each of the two generated
regions and the corresponding data subset is assigned to one clas-
sifier. Any shape for the decision surface of the function can be ap-
plied as far as it divides the training set into two subsets at
random.

In a preceding contribution [2], we used RLOs within our CE
framework [4] to derive FRBCEs. Thanks to the additional diversity
introduced by RLOs into the base classifiers, the obtained FRBCEs
were able to achieve an outstanding performance in terms of
accuracy.

In the current work, we enhance our previous study by combin-
ing RSOs with FRBCEs. In Section 3.1 we recall the RLO approach,
while in Section 3.2 we introduce the RSO approach. Section 3.3
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describes the RO-based FRBCE framework. Then, the experiments
developed to benchmark both approaches and their analysis are
shown in Section 3.4. We kindly refer the interested reader to
[14,3] for more details regarding ROs.

3.1. Random linear oracle

A RLO uses a randomly generated hyperplane to divide the fea-
ture space. To generate a RLO the following procedure was pro-
posed [3]:

– Select randomly a pair of examples from the

training set

– Find the line segment between these points,

passing through a middle point M

– Calculate the hyperplane perpendicular to the

obtained line segment and containing M

3.2. Random spherical oracle

A RSO is based on a hypersphere where one classifier is respon-
sible for the subspace inside of that hypersphere, while the second
classifier is in charge of the rest of the feature space (outside of the
hypersphere). The generation procedure of RSO is as follows [14]:

– Select randomly at least the half ð� 50%Þ of the

features

– Choose randomly an example from the training set to

be the center of the hypersphere

– Calculate distances from the center to E examples

from the training set (chosen at random); the med-

ian of these distances is the radius of the

hypersphere

Notice that, the random feature subset selection is done in order
to improve the randomness, thus the diversity of the RSO. More-
over, the method itself is scalable, meaning that it is weakly af-
fected by the number of attributes and not affected at all by the
number of examples.

3.3. Random oracles fuzzy classifier ensemble framework

In this subsection, we will detail how the RO-based bagging
FRBCEs are designed. To generate RO-based FRBCEs, a normalized
dataset is split into two parts, a training set and a test set. The
training set is submitted to the bagging procedure in order to pro-
vide K individual training sets (bags) to train RO (either RLO or
RSO) mini-ensembles composed of the oracle and two FURIA
[5,6] fuzzy subclassifiers. The oracles randomly split the bags into
two parts and feed each FURIA classifier with the data from each
half-space. As already said, RLO is based on a randomly generated
hyperplane, which serves as a mean to divide the feature space.
Alternatively, RSO does so using a random hypersphere. In total,
2 � K FURIA-based fuzzy FRBCSs are generated in every case.

Let us emphasize that during the classification phase, the oracle
commits an internal classifier selection, that is to say it decides
which FURIA subclassifier makes the final decision for the given
example to be further used at the ensemble level (classifier fusion).

Of course, we directly use the fuzzy classification rules gener-
ated by the FURIA algorithm. These fuzzy rules Rk

j show a class
Ck

j and a certainty degree CFk
j in the consequent: If xk

1 is Ak
j1 and

. . . and xk
n is Ak

jn then Class Ck
j with CFk

j , j = 1, 2, . . ., J, k = 1, 2, . . .,
K, with J being a number of rules and K being a number of compo-
nent classifiers. The voting-based fuzzy reasoning method is used
to take the decision of the individual subclassifier [51,52].

After the training, we get an initial RO-based bagging FRBCE,
which is validated using the training and the test errors, as well
as a measure of complexity based on the total number of fuzzy
rules obtained from the FURIA classifiers. The standard majority
voting approach is applied as the classifier fusion method [1,53]:
the ensemble class prediction will directly be the most voted class
in the ROs output set. In the case of a tie the output class is chosen
at random.

The global framework of the RO-based bagging FRBCE approach
is presented in Fig. 1.

3.4. Experiments and analysis of results

This subsection is devoted to validate our framework using
FURIA as a base classifier in RO-based bagging FRBCEs. Firstly,
the experimental setup considered is introduced. Then, RSO-based

Fig. 1. Our initial framework: after obtaining bootstrapped replicas, the individual component classifiers are derived by RO composed of an oracle and two FURIA-based
subclassifiers. The final output is taken by means of the majority voting, an inherent feature of bagging.
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bagging FRBCEs are compared with RLO-based bagging FRBCE and
bagging FRBCEs in order to show that RSOs have a better influence
on the performance of bagging FRBCEs than the other approaches.
Furthermore, RSO-based bagging FRBCEs are also compared with
classical RSO-based bagging CEs and other kinds of classical CE de-
sign methodologies. By doing so, we aim to show that RSO-based
bagging FRBCEs are competitive against the state-of-the-art RSO-
based bagging CEs using C4.5 [3,14] and Naïve Bayes [14] as the
base classifiers as well as random forests (RF) [25], when dealing
with high complexity datasets, thanks to the use of the FURIA
algorithm.

3.4.1. Experimental setup
To evaluate the performance of the RO-based bagging FRBCEs,

29 high dimensional data sets from the UCI machine learning
repository [15] and the KEEL dataset repository [16] have been se-
lected (see Table 1). Every attribute is tagged as real, integer, or
nominal, denoted by ‘‘(R/I/N)’’ in the table. As it can be seen, the
number of features ranges from 7 to 617,1 while the number of
examples does so from 1941 to 58,000. For illustrative purposes,
we show in the table a complexity index computed as follows
#ex:�#attr:

10;000 , denoted by ‘‘cmpl.’’.
In order to compare the accuracy of the considered classifiers,

we used the Dietterich’s 5 � 2-fold cross-validation (5 � 2-cv)
[54]. The Friedman test and the Iman-Davenport are also used
for assessing the statistical significance of the differences between
algorithms, while the Holm test is carried out in case of 1 � n com-
parison and the Shaffer test is conducted in case of n � n compar-
ison [55–57]. The confidence level considered for the null
hypothesis rejection of all statistical tests considered is 5%.

We used the WEKA [58] implementations of the base classifiers
with the default parameters (i.e. C4.5 is an unpruned tree). All the
experiments have been run on an Intel quadri-core i5-2400
3.1 GHz processor with 4 GBytes of memory, under the Linux oper-
ating system.

3.4.2. Comparison of RSO-based bagging FRBCEs with RLO-based
bagging FRBCEs and bagging FRBCEs

This subsection is devoted to analyze the performance of RSO
combined with bagging FRBCEs. We compare them with the bag-
ging FRBCEs approach proposed in [4], a base variant without RO.
In order to make a fair comparison, we consider all CEs having a
similar complexity based on the total number of rules in the
FRBCSs. Notice that, although by embedding ROs into the CE the
number of resulting classifiers in the ensemble increases by two
(RO includes an oracle and two subclassifiers for each bag), the to-
tal number of rules in the FRBCEs does not necessarily have to in-
crease by the same factor (it will be shown below, when analyzing
Table 5). Thus, we consider the generated bagging FRBCEs com-
prised by 100 classifiers and RO-based bagging FRBCEs comprised
by 75 classifiers only to achieve a similar complexity in terms of
number of fuzzy rules in both ensembles.

The obtained results over the 29 selected datasets are presented
in Table 2, that collects the test errors for the three FRBCEs consid-
ered. The best result for a given dataset is presented in bold font.
The average ‘‘Avg.’’ and standard deviation ‘‘Std. Dev.’’ values over
the 29 datasets are reported at the bottom of the table.

In view of this table, it can be noticed that both RO-based bag-
ging FRBCEs outperform the original bagging FRBCEs considering
the overall average test error as well as they also show a lower
standard deviation. Taking each individual dataset into account,

RLO-based bagging FRBCEs outperform bagging FRBCEs in 23 out
of 29 cases (+1 tie), while RSO-based bagging FRBCEs do so in an-
other 24 out of 29 cases (+1 tie).

Table 1
Datasets considered.

Dataset #ex. #attr. (R/I/N) cmpl. #classes

abalone 4178 8 (7/0/1) 3.3 28
bioassay_688red 27,190 153 (27/126/0) 416.0 2
coil2000 9822 85 (0/85/0) 83.5 2
gas_sensor 13,910 128 (128/0/0) 178.0 7
isolet 7797 617 (617/0/0) 481.1 26
letter 20,000 16 (0/16/0) 32.0 26
magic 19,020 10 (10/0/0) 19.0 2
marketing 6876 13 (0/13/0) 8.9 9
mfeat_fac 2000 216 (0/216/0) 43.2 10
mfeat_fou 2000 76 (76/0/0) 15.2 10
mfeat_kar 2000 64 (64/0/0) 12.8 10
mfeat_zer 2000 47 (47/0/0) 9.4 10
musk2 6598 166 (0/166/0) 109.5 2
optdigits 5620 64 (0/64/0) 36.0 10
pblocks 5474 10 (4/6/0) 5.5 5
pendigits 10,992 16 (0/16/0) 17.6 10
ring_norm 7400 20 (20/0/0) 14.8 2
sat 6436 36 (0/36/0) 23.2 6
segment 2310 19 (19/0/0) 4.4 7
sensor_read_24 5456 24 (24/0/0) 13.1 4
shuttle 58,000 9 (0/9/0) 52.2 7
spambase 4602 57 (57/0/0) 26.2 2
steel_faults 1941 27 (11/16/0) 5.2 7
texture 5500 40 (40/0/0) 22.0 11
thyroid 7200 21 (6/15/0) 15.1 3
two_norm 7400 20 (20/0/0) 14.8 2
waveform_noise 5000 40 (40/0/0) 20.0 3
waveform 5000 21 (21/0/0) 10.5 3
wquality_white 4898 11 (11/0/0) 5.4 7

Table 2
A comparison of RO-based bagging FRBCEs (75 classifiers) with bagging FRBCEs (100
classifiers) in terms of accuracy. FURIA serves as the base classifier in the three
approaches.

Dataset BAG test err. BAG + RLO test err. BAG + RSO test err.

abalone 0.7455 0.7452 0.7480
bioassay_688red 0.0090 0.0090 0.0090
coil2000 0.0602 0.0601 0.0601
gas_sensor 0.0086 0.0079 0.0078
isolet 0.0774 0.0691 0.0700
letter 0.0778 0.0742 0.0743
magic 0.1325 0.1314 0.1299
marketing 0.6749 0.6673 0.6671
mfeat_fac 0.0547 0.0434 0.0431
mfeat_fou 0.1992 0.1941 0.1925
mfeat_kar 0.0825 0.0699 0.0709
mfeat_zer 0.2231 0.2169 0.2181
musk2 0.0338 0.0328 0.0320
optdigits 0.0324 0.0283 0.0282
pblocks 0.0335 0.0353 0.0338
pendigits 0.0155 0.0137 0.0132
ring_norm 0.0432 0.0438 0.0315
sat 0.1013 0.1008 0.1001
segment 0.0309 0.0303 0.0295
sensor_read_24 0.0222 0.0227 0.0233
shuttle 0.0008 0.0009 0.0009
spambase 0.0663 0.0651 0.0639
steel_faults 0.2371 0.2367 0.2361
texture 0.0288 0.0278 0.0274
thyroid 0.0212 0.0215 0.0218
two_norm 0.0316 0.0271 0.0276
waveform_noise 0.1480 0.1461 0.1457
waveform 0.1480 0.1451 0.1453
wquality_white 0.3908 0.3840 0.3803

Avg. 0.1286 0.1259 0.1252
Std. Dev. 0.1833 0.1825 0.1829

1 Notice that, our approach does not support nominal values (due to the use of
FURIA as base fuzzy classifier learner, even if our generic framework does so). Thus,
for abalone we simply remove this attribute. Besides, bioassay_688red contains 122
Boolean values (out of 126 integer values) considered as integer.
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It seems that RSO-based bagging FRBCEs is the approach worth
pointing out as it obtains the lowest overall average test error. In
addition, it gets the highest number of the best individual results
(17 + 2 ties). Nonetheless, a clear conclusion about which RO-based
approach is the best one cannot be drawn as RLO-based bagging
FRBCEs are not much inferior in terms of overall average test error.

The average rankings of each CE obtained through the Friedman
test are shown in Table 3. The Iman-Davenport test indicates sig-
nificant differences between the algorithms, as the p-value is equal
to 3.338533e�5, which is much lower than the assumed a-value
0.05.

These conclusions are confirmed in Table 4, which presents the
adjusted p-values of the Shaffer test comparing all the FRBCE de-

sign approaches (the results showing a significant difference are
presented in bold font). Both RO-based bagging FRBCEs show sig-
nificant differences in comparison with bagging FRBCEs. However,
the statistical test did not indicate significant differences between
RSO- and RLO-based bagging FRBCEs.

As already mentioned, we use the overall number of rules in the
FRBCEs as a measure of the ensemble complexity, while the num-
ber of classifiers composing the ensemble was fixed after a preli-
minary study. Table 5 shows the corresponding values for each
of the three FRBCEs.

In the light of this table, it can clearly be noticed that both RO-
based bagging FRBCEs obtain a lower complexity than the original
bagging FRBCEs in terms of overall average number of rules. RLO-
based bagging FRBCEs obtain the lowest overall average number of
rules, as well as the lowest individual number of rules in 25 out of
29 cases (even though the difference with RSO-based bagging FRB-
CEs is very small). Notice that, the overall standard deviation val-
ues are very high due to the large number of rules obtained for
the letter dataset. Because of that, we also present the overall aver-
age number of rules and the overall standard deviation for the 28
remaining datasets at the bottom of this table.

The average rankings of each CE obtained through the Friedman
test concerning the number of rules are shown in Table 6. The
Iman-Davenport test indicates significant differences between
the algorithms, as the p-value is equal to 6.578824e�15.

These conclusions are confirmed in Table 7, which presents the
adjusted p-values of the Shaffer test comparing all the FRBCE de-
sign approaches (the results showing a significant difference are
presented in bold font). Both RO-based bagging FRBCEs show sig-
nificant differences in comparison with bagging FRBCEs. RLO-based
bagging FRBCEs show significant differences in comparison with
RSO-based bagging FRBCEs.

Overall, we may conclude that RO-based bagging FRBCEs signif-
icantly outperform bagging FRBCEs both in terms of accuracy and
complexity. A decision whether to choose RLO or RSO is not
straightforward since RLO obtains slightly lower accuracy, but also
lower complexity, while RSO does the opposite (slightly higher
accuracy at the cost of a small complexity increase). For the pur-
pose of this contribution, which considers obtaining FRBCEs with
a good accuracy-complexity trade-off but mainly focusing on accu-
racy as usual, we will choose the RSO approach for the further
comparisons.

3.4.3. Comparison of RSO-based FRBCEs with classical classifier
eensembles

In this subsection we compare RSO-based bagging FRBCEs with
classical RSO-based bagging CEs using C4.5 [3,14] and Naïve Bayes
(NB) [14] as the base classifiers. See Tables A.24 and A.25 in the

Table 3
Average rankings of the Friedman’s test.

Algorithm Ranking

FURIA + BAG + RSO 1.552
FURIA + BAG + RLO 1.828
FURIA + BAG 2.621

Table 4
The adjusted p-values of Shaffer test for the pair-wise comparisons (FURIA is the base
classifier in every case).

Comparison p-value

BAG + RSO vs BAG +(1.41e�4)
BAG + RLO vs BAG +(0.002)
BAG + RSO vs BAG + RLO =(0.293)

Table 5
A comparison of RO-based bagging FRBCEs (75 classifiers) with bagging CEs (100
classifiers) in terms of complexity (number of rules). FURIA serves as the base
classifier in the three approaches.

Dataset BAG #
Rules

BAG + RLO #
Rules

BAG + RSO #
Rules

abalone 8369.0 8696.7 9382.8
bioassay_688red 5526.9 4642.8 4780.8
coil2000 4331.9 3804.1 4002.1
gas_sensor 8628.3 7091.3 7310.7
isolet 12215.7 10523.6 10828.5
letter 47109.1 39410.5 40972.9
magic 13770.8 13143.0 14556.9
marketing 6418.5 7252.0 7429.1
mfeat_fac 3479.9 3050.2 3110.3
mfeat_fou 5483.5 4711.4 4886.9
mfeat_kar 4953.3 4448.4 4581.0
mfeat_zer 5028.3 4349.9 4549.2
musk2 4332.2 3581.1 3582.7
optdigits 7167.3 6352.4 6511.1
pblocks 3201.7 2877.9 2816.4
pendigits 8788.6 7348.0 7491.6
ring_norm 7308.9 6205.7 5961.4
sat 8454.4 6956.2 7109.5
segment 2546.3 2201.6 2378.7
sensor_read_24 3430.8 3340.4 3428.3
shuttle 1826.2 1723.8 1737.5
spambase 3612.9 3281.9 4181.1
steel_faults 5467.3 4799.0 4857.0
texture 6537.2 5305.7 5542.8
thyroid 3299.5 2831.7 2959.8
two_norm 6147.5 4973.3 5307.8
waveform_noise 7932.6 6729.9 6850.6
waveform 8303.0 7017.3 7115.0
wquality_white 13429.3 12134.0 12564.4

Avg. 7831.1 6854.6 7130.6
Std. Dev. 8144.6 6857.3 7156.8

Avg. (without letter) 6428.3 5691.9 5921.9
Std. Dev. (without

letter)
3100.2 2847.3 3030.4

Table 6
Average rankings of the Friedman’s test.

Algorithm Ranking

FURIA + BAG + RLO 1.138
FURIA + BAG + RSO 2.069
FURIA + BAG 2.793

Table 7
The adjusted p-values of Shaffer test for the pair-wise comparisons (FURIA is the base
classifier in every case).

Comparison p-value

BAG + RLO vs BAG +(8.77e�10)
BAG + RSO vs BAG +(0.006)
BAG + RLO vs BAG + RSO =+(3.92e�4)
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Appendix for the results of both RO-based bagging CEs using C4.5
and NB. It can be noticed that the RSO-based approach is the best
performing approach in both cases. We also perform a comparison
with the state-of-the-art algorithm, RF [25] using 100 base
classifiers.

In this case, a complexity comparison in terms of the number of
rules in the base classifiers is rather impossible, because NB is not a
rule-based classifier and C4.5 considers tree-based rules. Besides,
the number of classifiers is already prefixed to get a similar com-
plexity, so we will not compare the different CEs in terms of this
parameter.

Table 8 presents the test results achieved by RSO-based bagging
FRBCEs and RSO-based bagging CE using C4.5 and NB, as well as RF
over the 29 datasets.

In the light of this table, it can be noticed that RSO-based bag-
ging FRBCEs outperform the other approaches considering the
overall average test error. It also obtains the highest number of
wins (12 + 2 ties) in the individual datasets. On the opposite,
RSO-based bagging CEs based on NB turns out to be the worst
choice both considering overall the average test error and the num-
ber of individual best results. Let us emphasize that RSO-based
bagging FRBCEs obtains a lower overall average test error than
RF, which is a very powerful CE algorithm, thus showing the qual-
ity of the proposed design. Notice that, RSO-based bagging CEs
with C4.5 also outperform RF as a consequence of the use of the
RO approach.

The average rankings of each CE obtained through the Friedman
test are shown in Table 9. The Iman-Davenport test indicates sig-
nificant differences between the algorithms, as the p-value is equal
to 1.074188e�6.

The adjusted p-values of the Holm test comparing RSO-based
bagging FRBCEs (the control algorithm) with the rest of the FRBCE
design approaches (the results showing a significant difference are

presented in bold font) are presented in Table 10. It reveals signif-
icant differences in favor of RSO-based bagging FRBCEs when com-
paring with RSO-based bagging CEs using NB. That is not the case
when comparing with RSO-based bagging CEs using C4.5 and RF.
We aim to improve even more RSO-based bagging FRBCE accuracy
by incorporating the OCS strategy, as it will be shown in the fol-
lowing section.

Concluding, RSO-based bagging FRBCEs not only outperform
classical RSO-based bagging CEs using C4.5 and NB, but they also
obtain better results in comparison with the state-of-the-art RF
algorithm. Thus, we may draw the conclusion that RO-based bag-
ging FRBCEs successfully deal with high complexity datasets, being
competitive with classical RO-based bagging CEs.

4. EMO OCS classifier selection for RSO-based FRBCEs

The second part of this contribution introduces the use of the
OCS strategy for classifier selection in RO-based fuzzy CEs. On
the one hand, the aim is to refine the accuracy-complexity trade-
off in the RO-based bagging FRBCEs (both in RLO and RSO) when
dealing with high complexity classification problems. On the other
hand, an interesting objective is to study whether the additional
diversity induced by ROs is beneficial for the EMO OCS-based com-
ponent fuzzy classifier selection. Thus, we opted for the state-of-
the-art NSGA-II EMO algorithm, which in fact was successively
used for OCS with bagging FRBCEs in [11] (considering biobjective
fitness functions), in order to generate good quality Pareto set
approximations. In this study, we propose a specific design cus-
tomized to the RO characteristics as well as use a three-objective
fitness function including accuracy, complexity, and diversity mea-
sures for classifier selection.

Since RO is composed of the pair of the component classifiers,
our classifier selection is done at the level of the component clas-
sifiers and not the whole pair of classifiers. The adapted coding
scheme, which permits that none, one or both FURIA subclassifiers
can be selected, is proposed. We also develop a reparation opera-
tor, whose objective is to correct the unfeasible solutions.

Fig. 2 shows the final structure of the RO-based bagging FRBCE
design methodology including the OCS stage. The two following
subsections briefly present the proposed algorithm operation
mode and the three evaluation criteria used for the three-objective
fitness function.

4.1. The main components of NSGA-II

NSGA-II [12] is based on a Pareto dominance depth approach,
where the population is divided into several fronts and the depth
of each front shows to which front an individual belongs to. A

Table 8
A comparison of RSO-based bagging CEs using FURIA, C4.5 and NB, as well as RF in
terms of accuracy.

Dataset FURIA test err. C4.5 test err. NB test err. RF test err.

abalone 0.7480 0.7681 0.7619 0.7536
bioassay_688red 0.0090 0.0090 0.0152 0.0090
coil2000 0.0601 0.0615 0.1847 0.0597
gas_sensor 0.0078 0.0089 0.2939 0.0092
isolet 0.0700 0.0788 0.1246 0.0766
letter 0.0743 0.0615 0.2927 0.0701
magic 0.1299 0.1255 0.2391 0.1314
marketing 0.6671 0.6735 0.6864 0.6624
mfeat_fac 0.0431 0.0498 0.0659 0.0475
mfeat_fou 0.1925 0.1902 0.2221 0.1858
mfeat_kar 0.0709 0.0818 0.0593 0.0597
mfeat_zer 0.2181 0.2273 0.2464 0.2330
musk2 0.0320 0.0271 0.1107 0.0375
optdigits 0.0282 0.0276 0.0709 0.0277
pblocks 0.0338 0.0327 0.0706 0.0332
pendigits 0.0132 0.0150 0.0864 0.0162
ring_norm 0.0315 0.0376 0.0199 0.0587
sat 0.1001 0.0950 0.1720 0.1027
segment 0.0295 0.0328 0.1180 0.0350
sensor_read_24 0.0233 0.0234 0.3710 0.0224
shuttle 0.0009 0.0009 0.0143 0.0009
spambase 0.0639 0.0651 0.1788 0.0625
steel_faults 0.2361 0.2263 0.3441 0.2517
texture 0.0274 0.0334 0.1384 0.0383
thyroid 0.0218 0.0222 0.0381 0.0221
two_norm 0.0276 0.0280 0.0219 0.0389
waveform_noise 0.1457 0.1643 0.1668 0.1556
waveform 0.1453 0.1588 0.1534 0.1587
wquality_white 0.3803 0.3688 0.5230 0.3864

Avg. 0.1252 0.1274 0.1997 0.1292
Std. Dev. 0.1829 0.1852 0.1890 0.1830

Table 9
Average rankings of the Friedman’s test.

Algorithm Ranking

FURIA + BAG + RSO 1.793
C4.5 + BAG + RSO 2.276
RF 2.345
NB + BAG + RSO 3.586

Table 10
The adjusted p-values of Holm test for the pair-wise comparisons where RSO-based
bagging FRBCE (using FURIA) is the control method.

Comparison p-value

FURIA + BAG + RSO vs C4.5 + BAG + RSO =(0.207)
FURIA + BAG + RSO vs RF =(0.207)
FURIA + BAG + RSO vs NB + BAG + RSO +(3.69e�7)
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pseudo-dominance rank being assigned to each individual, which
is equal to the front number, is a metric used for the selection of
an individual.

In our coding scheme, a binary digit corresponds to each gene,
i.e. to a single FURIA base classifier composing the RO pair. When
the gene takes the value 1, it means that the component classifier
belongs to the final ensemble, while when the gene is equal to 0,
that classifier is discarded. This representation has a low opera-
tional cost, which leads to the high speed of the algorithm.

We have used a generational approach and an elitist replace-
ment strategy. The initial population is composed of randomly
generated individuals. To introduce a high amount of diversity,
binary tournament is used as selection mechanism. That means
that two individuals are randomly picked from the current popula-
tion and the best one is selected. We have considered the classical
two-point crossover and two different mutation operator settings.
The first one is the standard bit-flip mutation, while the second is
the bit-flip mutation with biased probabilities proposed in [59]. In
the latter case, the probability of generating a 0 is higher than the
probability of giving a 1. Both crossover and mutation operators
are applied with different pre-specified probabilities.

The proposed coding scheme, however, has one drawback. Since
the oracle assigns only a half-region of the feature space to each
component classifier, NSGA-II might select a subset of classifiers
that do not cover the entire feature space. To avoid this problem,
at least one pair of component classifiers composing the RO pair
is forced to be selected. For that purpose, we developed a repara-
tion operator, which is executed after the genetic operators (muta-
tion and crossover) and is enabled when the said condition is not
fulfilled. In this case all the possible combinations containing a sin-
gle RO pair of component classifiers are generated. Then, the repa-
ration operator evaluates them in the objective space and removes
the dominated ones. Finally, one of the non-dominated solutions is
selected at random.

4.2. The three used evaluation criteria for three-objective NSGA-II

In this subsection we describe all the optimization criteria con-
sidered by NSGA-II for the RO-based FRBCE OCS task. We will uti-
lize measures of three different kinds embedded into the three-
objective fitness function:

� Accuracy. We use the accuracy of a selected ensemble, which
was proposed in [60], defined by three components (e, m1,
m2) (see Fig. 3), thus the first objective of NSGA-II is a triplet
comprising three real numbers:
1. Training error e: we compute the error of each ensemble for

a large number of bootstrapped resamples of the training
set, and use a quantile of the distribution of these errors
as the first term of the fitness. This is intended to avoid
overfitting when there are outliers in the training set, and
also to detect the most robust selections, which are
expected to generalize better.

2. Error margin m1: the second component of the fitness func-
tion depends on the distance between the misclassified
examples and their nearest decision surface. Given an
example x, we have approximated this value by the differ-
ence between the highest and the second highest term of
RII(x)(c), and defined that the error margin of an ensemble
is the worst (i.e. the highest) value of this difference for
any example x in the training set.

3. Classification margin m2: the third component depends on
the distance between the correctly classified instances and
their nearest decision surface, which is approximated as

Training 
Dataset 

Test Dataset 

EMO 
Selection 

Dataset 
(normalized) 

…

Bagging 

Instance 
selection 

(resampling) 

50%

50%

RO 2 

RO n
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…

RO 2 

RO n

RO 1 

Validation: 
• Training Error
• Test Error
• Complexity 
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• Complexity  
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FURIA 2 
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FURIA 2 
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Fig. 2. Our final framework: after obtaining bootstrapped replicas, the component classifiers are derived by the specific RO method (either RLO or RSO) using FURIA as
subclassifiers. Then, the OCS takes place by means of NSGA-II with a three-objective fitness function providing a Pareto set of simplified FRBCEs. In every case, the output is
obtained using a voting-based method.

Fig. 3. The accuracy objective of NSGA-II has three components: (a) a quantile of
the bootstrap estimation of the training error, (b) the largest distance between a
misclassified example and the decision surface, and (c) the smallest distance
between a correctly classified example and the decision surface.
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before, by the difference between the highest and the sec-
ond highest terms in RII(x)(c). In this case, however, the mar-
gin of an ensemble is the lowest value of this difference for
all the examples of the training set; we seek a decision sur-
face with the highest margin.

Given an instance x, let us define the ‘‘winner rule’’ as the rule with
the highest activation and the ‘‘most promising rule’’ for classifying
this pattern as the rule with the highest activation among those
whose consequent is different than that of the winner rule.
The decision surface is formed by the points for which there is a tie
between the activations of the winner rule and the most promising
rule. In this respect, if an instance is close to the decision surface,
the difference between these two activations will be small. If the
instance is moved towards the decision surface, this difference will
be further decreased. The opposite is also true: if the instance is
separated from the decision surface, this difference will increase.
As a consequence, we can take this difference as a measure of dis-
tance between the instance and the nearest decision surface.
A lexicographical ordering is defined between each two triplets:(e,
m1, m2) � (e0, m01; m02),

ðe < e0Þ
ðe ¼ e0Þ and m1 < m10
ðe ¼ e0Þ and ðm1 ¼ m10Þ and ðm2 > m20Þ

8><
>:

ð1Þ

� Complexity. The complexity of the ensemble is directly
accounted by the number of classifiers in the ensemble:

Complx ¼ jEj ð2Þ

� Diversity. Obtaining a high diversity between classifiers is the
base goal to be reached when aiming to achieve performance
improvement in CEs. In the last few years, a group of research-
ers devoted their attention to diversity measures [22,43,61]. In
this contribution we consider the difficulty measure h. This
measure is computed as follows. Let X = {i/jEj}i2{0,. . .,jEj} and Xk -
2 X be the proportion of classifiers classifying correctly the
instance xk. Then, h is defined as follows:

h ¼ VarðfX1; . . . ;Xk; . . . ;XmgÞ ð3Þ

Notice that, the use of fitness functions based on diversity mea-
sures has been justified by previous findings in the specialized lit-
erature. Diversity measures have been deeply studied in
[22,39,42,43,61]. However, the relationship between diversity
measures and accuracy is still not clear. In [61], it was showed
how the ensemble accuracy and diversity are not as strongly corre-
lated as it could be expected. The authors concluded that accuracy
estimation cannot be substituted by diversity during the CE design
process. These results were confirmed by Ruta et al. [43] in classi-
fier selection, our current application domain. In the experimental
study developed, the authors drew the conclusion that the use of a
single-objective function based on a diversity measure does not
outperform the direct use of an error rate. Hence, the combined ac-
tion of both kinds of measures can lead to a better performance in
our case.

The idea of using a three-objective evaluation function came
from our previous contribution [11] in which we conducted an
extensive study of the OCS method on FRBCEs using NSGA-II and
five different two-objective fitness functions obtained from four
evaluation criteria. The most promising results were obtained by
the combination of TE and h, which led to an accuracy improve-
ment while keeping a low complexity. However, a preliminary
study showed us that, when combined with RO-based FRBCEs, a
two-objective fitness function is not enough to give the chance
to obtain a low number of classifiers. This is why we decided to
also include explicitly the complexity as an additional objective.

We should remark that, the three objectives proposed are not
directly correlated, hence using them jointly may lead to good
accuracy-complexity trade-off solutions, always keeping in mind
that accuracy is the most important learning goal.

4.3. The EMO variants for the comparison purpose

To study the influence of the additional diversity induced by the
RO approach in the performance of the final FRBCE selected by the
specific RO NSGA-II, we compare it with the EMO-based OCS clas-
sifier selection of bagging FRBCEs.

For that purpose, we use NSGA-II with the same components as
the specific RO NSGA-II, apart from one. Since bagging FRBCEs are
composed of the FURIA fuzzy classifiers, a standard binary coding
is used. That is to say, a binary gene is assigned to each base clas-
sifier. Of course, in this approach there is no need for a reparation
operator. From now on, this version of NSGA-II we will call ‘‘stan-
dard NSGA-II’’.

Furthermore, a different choice for selecting classifiers among
RO-based bagging FRBCEs is possible. That could be performed
by selecting directly the whole RO pairs (instead of a single compo-
nent classifier). That is to say the binary coding assigns a single
binary gene to each RO pair. Hence, it is clear that this second var-
iant has a lower number of freedom degrees associated. Besides,
the reparation operator is not necessary in this approach. Thus,
standard NSGA-II can be applied. All the EMO variants use the
three-objective fitness function described in Section 4.2.

We will compare the proposed NSGA-II for RLO- and RSO-based
bagging FRBCEs classifier selection with the latter two EMO OCS
methods. Table 11 summarizes the seven resulting EMO OCS-based
FRBCEs approaches. In order to make the manuscript easy to fol-
low, from now on we will refer to them using the abbreviations
presented in this table.

4.4. Experiments and analysis of results

This section reports all the experiments performed on the EMO
classifier selection procedure. Firstly, we introduce the experimen-
tal setup (Section 4.4.1). Then, in Section 4.4.2, we compare the
performance of the seven FRBCE variants in Table 11. A unary mul-
tiobjective metric [13] is considered to analyze the results. We also
show graphs of the obtained Pareto front approximations. Further-
more, we study some representative individual solutions selected

Table 11
The different variants resulting from the three EMO approaches used for the classifier selection.

Abbreviation Base classifier CE methodology OCS strategy Mut. type

BAS-BAG FURIA Bagging Standard NSGA-II Standard
BAS-RLO RLO (2 � FURIA + oracle) Bagging + RLO Standard NSGA-II Standard
ADV-RLO RLO (2 � FURIA + oracle) Bagging + RLO Specific RO NSGA-II Standard
ADV-BI-RLO RLO (2 � FURIA + oracle) Bagging + RLO Specific RO NSGA-II Biased
BAS-RSO RSO (2 � FURIA + oracle) Bagging + RSO Standard NSGA-II Standard
ADV-RSO RSO (2 � FURIA + oracle) Bagging + RSO Specific RO NSGA-II Standard
ADV-BI-RSO RSO (2 � FURIA + oracle) Bagging + RSO Specific RO NSGA-II Biased
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from the obtained Pareto sets in Section 4.4.3. Finally, we compare
the best EMO-based FRBCE variant with some non-simplified clas-
sical CEs in Section 4.4.4.

4.4.1. Experimental setup
To evaluate the performance of the generated EMO OCS-based

FRBCEs, we use the same 29 datasets as in Section 3.4 (see Table 1).
In order to compare the accuracy of the considered classifiers, we
also consider the Dietterich’s 5 � 2-fold cross-validation (5 � 2-
cv) [54].

The RO-based bagging FRBCEs generated are initially comprised
by 75 RO pairs (150 base classifiers), while bagging FRBCEs are ini-
tially comprised by 100 base classifiers. Both versions of NSGA-II
for the component classifier selection work with a population of
200 individuals and runs during 1000 generations. The number
of genes is equal to the number of base classifiers in every case
but in variants BAS-RLO and BAS-RSO. In these cases, its size is half
of the number of classifiers, as the result of the selection of the en-
tire RO pairs. The crossover probability considered is 0.6 and the
standard mutation probability is 0.1, while the biased mutation
probability is 0.1 from 1 to 0 and 0.033, three times less, from 0
to 1. A different run is developed with each of the variants pro-
posed for each initial FRBCE, thus resulting in 10 different runs
per dataset as a consequence of the 5 � 2-cv procedure. All the
experiments have been run in the same computer used in
Section 3.4.

To compare the results obtained we computed their values for
the two learning goals, namely test error (the primary goal) and
complexity, that are supposed to be considered by the designer
in order to choose the final fuzzy CE structure.

Notice that, in order to make a fair comparison, we consider the
final complexity in terms of the total number of rules instead of the
total number of classifiers, since the RO-based FRBCEs produce
twice as much classifiers as the only bagging approach and usually
their component classifiers are less complex than a standard base
classifier (as already explained in Section 3.4.2). In contrast, it is
necessary to use the number of classifiers as the optimization cri-
terion (as a EMO objective), since using the total number of rules
will lead to a bias in the NSGA-II optimization process. That is, as
each classifier has a different number of rules, the ones having a
lower number of rules will be promoted. Thus, some of the classi-
fiers will have a higher probability (based on number of rules) of
being used in the final ensemble. However, our assumption is that
each classifier should be treated in the same way, having the same
chance to be selected in the final ensemble. In order to perform a
comparison of the Pareto front approximations of the global learn-
ing objectives (i.e. CE test accuracy and complexity) we consider
one of the most extended multiobjective metrics, the hypervolume
ratio (HVR). A detailed explanation of the HVR metric is to be found
in [13].

Let us call Pj
i the non-dominated solution set returned by NSGA-

II using the variant of fitness function i in the j-th run for a specific
problem instance; Pi ¼ P1

i

S
P2

i

S
. . .
S

P10
i , the union of the solution

sets returned by the ten runs obtained from 5x2-cv of algorithm i,
and finally Pi the set of all non-dominated solutions in the Pi set2

(aggregated Pareto fronts). As a complement to the analysis of the
results obtained in the two different multiobjective metrics, we will
provide graphical representations of some of those aggregated Pare-
to fronts. When graphically represented, these plots offer a valuable
visual information, not measurable, but sometimes more useful than
numerical values.

4.4.2. Comparison of the three EMO classifier selection variants in the
two global learning objectives

Table 12 presents the results obtained in the HVR metric. Our
analysis of the HVR measure clearly points out the best performing
approach for the final learning goal. The ADV-BI-RLO variant, con-
sidering the RLO-based bagging FRBCEs with the specific RO NSGA-
II method proposed in this contribution and the biased mutation,
obtained the highest value in 25 out of 29 cases showing an overall
good quality of the Pareto front approximations. Variant ADV-BI-
RSO obtained the highest value 4 times, being not much worst than

Table 12
Comparison of Pareto fronts using the HVR measure.

BAS-
BAG

BAS-
RLO

ADV-
RLO

ADV-BI-
RLO

BAS-
RSO

ADV-
RSO

ADV-BI-
RSO

aba 0.8248 0.8594 0.6399 0.8878 0.8378 0.7305 0.8500
bio 0.8343 0.9073 0.8059 0.9825 0.9115 0.9118 0.9678
coi 0.6929 0.7419 0.5687 0.7548 0.7251 0.6497 0.6477
gas 0.8590 0.9404 0.6876 0.9771 0.9382 0.8435 0.9642
iso 0.8611 0.9118 0.7661 0.9534 0.9074 0.8571 0.9155
let 0.9127 0.9477 0.7961 0.9726 0.9626 0.8945 0.9727
mag 0.7970 0.8423 0.6444 0.9061 0.8433 0.8119 0.8737
mar 0.7214 0.8217 0.6569 0.8689 0.8170 0.7994 0.8225
mfa 0.8874 0.9463 0.7886 0.9763 0.9439 0.8717 0.9600
mfo 0.8373 0.8838 0.7145 0.9322 0.8809 0.8040 0.8931
mka 0.8661 0.9227 0.7643 0.9631 0.9091 0.8418 0.9211
mze 0.8041 0.8650 0.6498 0.9183 0.8560 0.7702 0.8660
mus 0.7112 0.8098 0.6161 0.8779 0.8172 0.7071 0.8122
opt 0.8721 0.9316 0.7662 0.9669 0.9322 0.8411 0.9415
pbl 0.7487 0.7794 0.6038 0.7231 0.8052 0.7764 0.8421
pen 0.8617 0.9375 0.6873 0.9752 0.9419 0.8106 0.9609
rin 0.8187 0.8526 0.6878 0.8803 0.9221 0.8954 0.9222
sat 0.8436 0.9219 0.7196 0.9613 0.9284 0.8296 0.9468
seg 0.8551 0.9081 0.7621 0.9358 0.9080 0.8172 0.8417
sen 0.8597 0.9234 0.6630 0.9644 0.9228 0.8043 0.9503
shu 0.9347 0.9192 0.7051 0.9645 0.9176 0.7858 0.9661
spa 0.8196 0.8932 0.6805 0.9343 0.8690 0.8535 0.9109
ste 0.8206 0.8836 0.6620 0.9264 0.8877 0.7998 0.9053
tex 0.8713 0.9308 0.7769 0.9614 0.9288 0.8388 0.9444
thy 0.8368 0.9084 0.6804 0.9560 0.9025 0.8303 0.9487
two 0.8774 0.9558 0.7478 0.9814 0.9392 0.8880 0.9565
wan 0.8566 0.8881 0.7335 0.9397 0.8873 0.8400 0.8890
wav 0.8426 0.9033 0.7163 0.9300 0.8989 0.8367 0.9192
wqu 0.7914 0.8567 0.6973 0.9098 0.8724 0.8119 0.8881

Avg. 0.8317 0.8894 0.7031 0.9269 0.8901 0.8191 0.9035
Std. Dev. 0.0562 0.0522 0.0608

0.0618 0.0524 0.0564 0.0681

Table 13
Average rankings of the Friedman’s test.

Algorithm Ranking

ADV-BI-RLO 1.345
ADV-BI-RSO 2.207
BAS-RLO 3.310
BAS-RSO 3.517
BAS-BAG 5.103
ADV-RSO 5.517
ADV-RLO 6.999

Table 14
The adjusted p-values of Holm test for the pair-wise comparisons where RSO-based
bagging FRBCE is the control method (FURIA is the base classifier in every case).

Comparison p-value

ADV-BI-RLO vs ADV-RLO +(1.26e�22)
ADV-BI-RLO vs ADV-RSO +(9.56e�13)
ADV-BI-RLO vs BAS-BAG +(1.38e�10)
ADV-BI-RLO vs BAS-RSO +(3.85e�4)
ADV-BI-RLO vs BAS-RLO +(0.003)
ADV-BI-RLO vs ADV-BI-RSO =(0.771)

2 Notice that, the pseudo-optimal Pareto front is the fusion of the Pi sets generated
by every variant of the EMO OCS-based FRBCEs in all the runs developed.
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ADV-BI-RLO. Concerning the average value on the 29 datasets con-
sidered, the order of the best algorithms is ADV-BI-RLO, ADV-BI-
RSO, BAS-RSO, BAS-RLO, BAS-BAG, ADV-RSO and finally ADV-RLO.

The average rankings of each EMO variant using HVR metric ob-
tained through the Friedman test are shown in Table 13. The Iman-
Davenport test indicates significant differences between the algo-
rithms, as the p-value is equal to 5.942658e�64.

Table 14 presents the adjusted p-values of the Holm test com-
paring ADV-BI-RLO (the control algorithm) with the rest of the
EMO variants (the results showing a significant difference are pre-
sented in bold font). ADV-BI-RLO show significant differences in
comparison with all the other variants apart from the ADV-BI-RSO.

The results obtained in the experimentation developed corrob-
orate our initial assumption that the additional diversity provided
by the RO approach is beneficial for the FRBCEs designed. The best
performing approaches are based on RLO and RSO. Notice that, the
HVR metric considered in the comparison measures the overall
quality of the Pareto front approximations obtained with respect
to the two global learning goals, accuracy and complexity. Hence,
the EMO OCS methods performing a stronger classifier selection

are promoted. In the next subsection we will show how, when
focusing on the main learning goal, test accuracy, a weaker selec-
tion is more beneficial and the specific RO EMO OCS method not
using the biased mutation allows us to significantly improve the
RO-based FRBCE accuracy.

In order to complement the previous analysis and get a deep in-
sight of the results obtained, the aggregated Pareto fronts will be
graphically represented for two datasets: letter and sen-
sor_read_24 (see Fig. 4). These figures allow an easy visual compar-
ison of the performance of the different EMO OCS-based FRBCEs
variants.

It can be seen that our ADV-BI-RLO and ADV-BI-RSO approaches
generate FRBCE designs spreading widely over the Pareto search
space. ADV-BI-RLO seems to be obtaining better Pareto front solu-
tions, however ADV-BI-RSO does not perform much worse. Differ-
ences with the other approaches are less significant in letter
(Fig. 4a) than in sensor_read_24 (Fig. 4c).

In order to make a stronger conclusion, particular solutions are
extracted from the Pareto front approximations and analyzed in
detail in the next section.

Fig. 4. Graphical representations of the Pareto front approximations obtained from the three EMO approaches for two datasets: (a) letter, (b) letter (zoom), (c)
sensor_read_24, and sensor_read_24 (zoom). Objective 1 stands for test error and objective 2 for complexity in terms of the number of rules. The pseudo-optimal Pareto front
is also drawn for reference.
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4.4.3. Analysis and comparison of single solutions extracted from the
obtained Pareto front approximations

In this section, our objective is to analyze the final performance
of our proposal by imitating the procedure expected to be followed
by a human designer in order to select a desired FURIA-based fuzzy
CE structure from those available in the obtained accuracy-com-
plexity non-dominated fronts.

From each Pareto front approximation, we have selected four
different solutions, the one having the best value in the three
objectives that have been optimized: complexity (in terms of num-
ber of rules), diversity, and training error; and the one with the
best trade-off value among the latter three measures. The trade-
off solution is selected as follows: 1000 random weights w1, w2,
w3 2 [0, 1] are computed for each solution, the average value of
the aggregation function of three learning goals (complexity, diver-
sity, and training error) LG1, LG2 and LG3 is taken as:
(w1⁄LG1 + w2⁄LG2 + w3⁄LG3), and the solution with the highest
aggregated value is selected. For each solution we present the val-
ues of four different measures, complexity (Cmpl), diversity (Div),
training error (Tra), and test error (Tst). The average and standard
deviation values for each of the four different solutions in the 29
problems are collected in Table 15 (the values for each specific
dataset are presented in B, together with the cardinality of each
Pareto set approximation).

As our approach involves the joint optimization of three differ-
ent objectives, in our opinion their mixture is the best combination
for the selection of the final solution. Thus, we will focus mostly on
the solutions with the best trade-off (cmpl-div-tra) value. From
these results we may draw the following conclusions:

� The ADV-RLO, ADV-RSO, and ADV-BI-RLO variants actually out-
perform the standard BAS-BAG variant considering test accu-
racy, which shows a good behavior of the approach proposed.
However, the ADV-RLO and ADV-RSO variants do so at the cost
of obtaining a higher number of rules when looking at the com-
plexity criterion. Notice that, the best complexity solution for

ADV-RSO could be alternatively selected from the Pareto front,
as it also outperforms BAS-BAG both in terms of test error and
complexity (see, for example, the best complexity and diversity
solutions for ADV-RSO in Table 15).
� The biased mutation obtains very good results in terms of com-

plexity, as it significantly reduces the number of rules in the
final FRBCEs. Considering the best complexity it manages to
decrease the number of rules to 90 and 115 for ADV-BI-RLO
and ADV-BI-RSO, respectively.
� In general, the proposed NSGA-II approaches with three learn-

ing objectives derive good quality solutions, which are widely
spread among the Pareto front. They reach both edges acquiring
high performance for the two learning goals: accuracy (ADV-
RSO and ADV-RLO) and complexity (ADV-BI-RSO and ADV-BI-
RLO).
� The best performance in terms of test accuracy was obtained by

the ADV-RLO variant, even though it obtained quite weak Par-
eto front approximations in the previous subsection. This fact
is justified by the HVR metric nature, as already mentioned in
that section.

To verify the results obtained, we carried the Friedman test on
the test error values, whose average rankings are shown in Ta-
ble 16. The Iman-Davenport test indicates significant differences
between the algorithms, as the p-value is equal to 2.816171e�38.

Table 17 presents the adjusted p-values of the Holm test com-
paring ADV-RLO (the control algorithm) with the rest of the EMO
variants (the results showing a significant difference are presented
in bold font). ADV-RLO shows significant differences in comparison
with all the other variants but the ADV-RSO. No statistical differ-
ence between ADV-RSO and ADV-RLO could be expected, since
the only difference between these algorithms is the kind of oracle
used. The statistical differences indicated by the Holm test also
help us to answer the question asked at the beginning of the paper.

Table 15
A comparison of the averaged performance of the four single solutions selected from the obtained Pareto sets.

Best complx Best diversity Best train Best trade-off (tra-div-cmpl)

Cmpl Div Tra Tst Cmpl Div Tra Tst Cmpl Div Tra Tst Cmpl Div Tra Tst

Avg. BAS-BAG 445 0.1392 0.0694 0.1399 558 0.1371 0.0695 0.1396 2003 0.2173 0.0506 0.1306 647 0.1554 0.0640 0.1317
BAS-RLO 202 0.0874 0.0983 0.1736 303 0.0842 0.0962 0.1726 1748 0.2176 0.0436 0.1301 404 0.1151 0.0667 0.1381
ADV-RLO 1058 0.0203 0.0525 0.1314 3044 0.0165 0.0476 0.1268 2663 0.0172 0.0435 0.1267 2078 0.0172 0.0473 0.1235
ADV-BI-RLO 90 0.0390 0.0916 0.1680 1606 0.0163 0.0474 0.1271 1269 0.0173 0.0426 0.1276 480 0.0185 0.0489 0.1264
BAS-RSO 205 0.0904 0.0926 0.1688 308 0.0874 0.0905 0.1682 1883 0.2243 0.0420 0.1292 402 0.1201 0.0646 0.1384
ADV-RSO 587 0.2633 0.0523 0.1307 778 0.1818 0.0514 0.1290 2164 0.6111 0.0409 0.1271 836 0.2228 0.0501 0.1248
ADV-BI-RSO 115 0.1180 0.1417 0.2114 670 0.0542 0.0628 0.1446 1463 0.3331 0.0392 0.1308 414 0.0624 0.0635 0.1380

Std. Dev. BAS-BAG 512 0.0987 0.1500 0.1858 687 0.0987 0.1495 0.1852 3505 0.1539 0.1390 0.1832 731 0.1088 0.1478 0.1833
BAS-RLO 222 0.0668 0.1511 0.1925 496 0.0640 0.1418 0.1881 2976 0.1565 0.1213 0.1821 541 0.0845 0.1396 0.1832
ADV-RLO 1267 0.0230 0.1319 0.1845 4234 0.0203 0.1274 0.1831 3508 0.0210 0.1206 0.1828 2745 0.0209 0.1276 0.1812
ADV-BI-RLO 96 0.0395 0.1535 0.1928 2218 0.0202 0.1272 0.1830 1645 0.0211 0.1196 0.1829 542 0.0221 0.1309 0.1818
BAS-RSO 205 0.0688 0.1472 0.1906 499 0.0662 0.1366 0.1867 3461 0.1622 0.1194 0.1820 454 0.0878 0.1372 0.1837
ADV-RSO 686 0.1195 0.1303 0.1845 927 0.0871 0.1307 0.1842 3269 0.3958 0.1156 0.1829 989 0.1020 0.1288 0.1818
ADV-BI-RSO 120 0.0665 0.1462 0.1870 764 0.0483 0.1287 0.1833 2235 0.2822 0.1135 0.1839 519 0.0517 0.1375 0.1838

Table 16
Average rankings of the Friedman’s test.

Algorithm Ranking

ADV-RLO 1.603
ADV-RSO 2.138
ADV-BI-RLO 3.345
BAS-BAG 3.707
BAS-RSO 5.603
BAS-RLO 5.638
ADV-BI-RSO 5.966

Table 17
The adjusted p-values of Holm test for the pair-wise
comparisons where RSO-based bagging FRBCE is the
control method (FURIA is the base classifier in every
case).

Comparison p-value

ADV-RLO vs ADV-BI-RSO 8.89e�014
ADV-RLO vs BAS-RLO 5.73e�012
ADV-RLO vs BAS-RSO 7.11e�012
ADV-RLO vs BAS-BAG 0.0006
ADV-RLO vs ADV-BI-RLO 0.0043
ADV-RLO vs ADV-RSO 0.3461
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It can be noticed that the additional diversity induced by the ROs to
the base classifier is also beneficial for the final accuracy of the
FRBCEs designed.

Concluding, the proposed approaches (ADV-RSO and also ADV-
RLO) generate very good results in terms of the test accuracy of the
final FRBCEs, which is the lowest of all the variants considered.
That is confirmed by the statistical tests for the best individual
FRBCE design according to the test error. The ADV-RLO accuracy re-
sults showed significant differences with respect to all the other
variants apart from ADV-RSO. In addition, the latter approach ob-
tains very high complexity reduction. The additional diversity pro-
vided by RO actually introduces more degrees of freedom than a
standard OCS-based genetic selection. Taking advantage from this
fact we have been able to design both highly accurate, which is
the main learning goal, and significantly less complex FRBCEs.

4.4.4. Comparison between the EMO-selected FRBCEs and non-selected
classical classifier ensembles

In this section we compare the ADV-RLO and ADV-RSO EMO
variants, which turned out to be the best performing in Sec-
tion 4.4.3, with the full original ensemble, RO-based bagging FRB-
CEs composed of 75 base classifiers. The FRBCE designs considered

are those corresponding to the best trade-off values in Table 15.
Besides, we perform a comparison with the classical CE approaches
RO-based bagging CEs using C4.5 and RF.

Table 18 reports the test error of the RLO-based CEs on the 29
datasets. It can be clearly noticed that the ADV-RLO FRBCEs obtain
the highest accuracy. They outperform the other approaches in 17
out of 29 cases, obtaining the lowest average test error.

The average rankings of each CE obtained through the Friedman
test are shown in Table 19. The Iman-Davenport test indicates sig-
nificant differences between the algorithms as the p-value is equal
to 6.443102e�5.

The adjusted p-values of the Holm test comparing ADV-RLO
(the control algorithm) with the rest of the CE design approaches
are presented in Table 20 (the results showing a significant differ-
ence are presented in bold font). It reveals significant differences in
favor of ADV-RLO when comparing with all the big ensembles. No-
tice that, in addition, ADV-RLO obtains roughly a 70% of the com-
plexity reduction in comparison with FURIA + BAG + RLO.

Meanwhile, Table 21 reports the test error of the RSO-based CEs
on the 29 datasets. The ADV-RSO FRBCEs obtain the highest accu-
racy, as it happened for ADV-RLO in Table 18. They outperform the

Table 20
The adjusted p-values of Holm test for the pair-wise comparisons where RLO-based
bagging FRBCE (using FURIA) is the control method.

Comparison p-value

ADV-RLO vs C4.5 + BAG + RLO 9.13e�005
ADV-RLO vs RF 2.73e�004
ADV-RLO vs FURIA + BAG + RLO 0.0051

Table 18
A comparison of RLO-based bagging CEs using FURIA, C4.5 and NB, as well as RF in
terms of accuracy.

Dataset ADV-
RLO
test
err.

FURIA + BAG + RLO
test err.

C4.5 + BAG + RLO
test err.

RF test
err.

abalone 0.7425 0.7452 0.7666 0.7536
bioassay_688red 0.0091 0.0090 0.0090 0.0090
coil2000 0.0603 0.0601 0.0612 0.0597
gas_sensor 0.0075 0.0079 0.0097 0.0092
isolet 0.0693 0.0691 0.0803 0.0766
letter 0.0852 0.0742 0.1559 0.0701
magic 0.1285 0.1314 0.1254 0.1314
marketing 0.6620 0.6673 0.6728 0.6624
mfeat_fac 0.0427 0.0434 0.0484 0.0475
mfeat_fou 0.1825 0.1941 0.1932 0.1858
mfeat_kar 0.0655 0.0699 0.0766 0.0597
mfeat_zer 0.2108 0.2169 0.2285 0.2330
musk2 0.0297 0.0328 0.0271 0.0375
optdigits1 0.0270 0.0283 0.0290 0.0277
pblocks 0.0336 0.0353 0.0333 0.0332
pendigits 0.0127 0.0137 0.0155 0.0162
ring_norm 0.0409 0.0438 0.0558 0.0587
sat 0.0980 0.1008 0.0953 0.1027
segment 0.0263 0.0303 0.0338 0.0350
sensor_read_24 0.0218 0.0227 0.0228 0.0224
shuttle 0.0006 0.0009 0.0009 0.0009
spambase 0.0604 0.0651 0.0650 0.0625
steel_faults 0.2293 0.2367 0.2265 0.2517
texture 0.0262 0.0278 0.0348 0.0383
thyroid 0.0218 0.0215 0.0222 0.0221
two_norm 0.0260 0.0271 0.0266 0.0389
waveform 0.1422 0.1461 0.1630 0.1556
waveform1 0.1430 0.1451 0.1599 0.1587
wquality_white 0.3762 0.3840 0.3714 0.3864

Avg. 0.1235 0.1259 0.1314 0.1292
Std. Dev. 0.1812 0.1825 0.1844 0.1830

Table 19
Average rankings of the Friedman’s test.

Algorithm Ranking

ADV-RLO 1.586
FURIA + BAG + RLO 2.534
RF 2.879
C4.5 + BAG + RLO 3.000

Table 21
A comparison of RSO-based bagging CEs using FURIA, C4.5 and NB, as well as RF in
terms of accuracy.

Dataset ADV-
RSO
test
err.

FURIA + BAG + RSO
test err.

C4.5 + BAG + RSO
test err.

RF test
err.

abalone 0.7425 0.7480 0.7681 0.7536
bioassay_688red 0.0091 0.0090 0.0090 0.0090
coil2000 0.0601 0.0601 0.0615 0.0597
gas_sensor 0.0079 0.0078 0.0089 0.0092
isolet 0.0744 0.0700 0.0788 0.0766
letter 0.0780 0.0743 0.0615 0.0701
magic 0.1294 0.1299 0.1255 0.1314
marketing 0.6654 0.6671 0.6735 0.6624
mfeat_fac 0.0453 0.0431 0.0498 0.0475
mfeat_fou 0.1887 0.1925 0.1902 0.1858
mfeat_kar 0.0740 0.0709 0.0818 0.0597
mfeat_zer 0.2188 0.2181 0.2273 0.2330
musk2 0.0316 0.0320 0.0271 0.0375
optdigits1 0.0294 0.0282 0.0276 0.0277
pblocks 0.0317 0.0338 0.0327 0.0332
pendigits 0.0132 0.0132 0.0150 0.0162
ring_norm 0.0314 0.0315 0.0376 0.0587
sat 0.0994 0.1001 0.0950 0.1027
segment 0.0268 0.0295 0.0328 0.0350
sensor_read_24 0.0219 0.0233 0.0234 0.0224
shuttle 0.0005 0.0009 0.0009 0.0009
spambase 0.0606 0.0639 0.0651 0.0625
steel_faults 0.2303 0.2361 0.2263 0.2517
texture 0.0280 0.0274 0.0334 0.0383
thyroid 0.0214 0.0218 0.0222 0.0221
two_norm 0.0282 0.0276 0.0280 0.0389
waveform 0.1464 0.1457 0.1643 0.1556
waveform1 0.1459 0.1453 0.1588 0.1587
wquality_white 0.3785 0.3803 0.3688 0.3864

Avg. 0.1248 0.1252 0.1274 0.1292
Std. Dev. 0.1818 0.1829 0.1852 0.1830
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other approaches in 9 (+1 tie) out of 29 cases, obtaining the lowest
average test error.

The average rankings of each CE obtained through the Friedman
test are shown in Table 22. The Iman-Davenport test indicates sig-
nificant differences between the algorithms as the p-value is equal
to 6.443102e�5.

The adjusted p-values of the Holm test comparing ADV-RSO
(the control algorithm) with the rest of the CE design approaches
are presented in Table 23. It reveals significant differences in favor
of ADV-RSO when comparing with RF and C4.5 CEs but not with
the FURIA + BAG + RSO approach. Even so, ADV-RSO obtains an
outstanding complexity reduction keeping a similar (slightly bet-
ter) accuracy level, showing good accuracy-complexity trade-off.
When comparing to its full ensemble FURIA + BAG + RSO, the com-
plexity reduction is almost 90% (exactly 88.3%), which eventually
leads to a lower execution time and memory consumption with
no performance decrease.

Thus, we can conclude that the proposed approach obtained
very promising results, showing the profit resulting from the addi-
tional diversity provided by the RO approach.

5. Conclusions and future works

In this contribution, we focused on two aims. Firstly, we intro-
duced a new RSO approach into our previous FRBCE design frame-
work. Secondly, we incorporated the EMO-based OCS strategy to
these kinds of classifiers analyzing the influence of the additional
RO diversity in the final FRBCEs performance. We used an ad-
vanced accuracy measure and proposed a specific binary coding
for the RO-based classifier selection. A three-objective fitness func-
tion using three different optimization criteria such as accuracy,
complexity, and diversity metrics was used. By using the said tech-
niques, we succeed to both obtain a high accuracy level and a good
accuracy-complexity trade-off, when dealing with high complexity
data.

We carried out exhaustive experiments using 29 high complex-
ity datasets from the UCI and the KEEL repositories. It turned out
that our EMO OCS approach for the RO-based FRBCEs provided
very promising results.

Among the next steps to be considered, we include the use of
different diversity measures in the objective space of the fitness
function in order to improve the results obtained. A combination
between ROs and the recently proposed FRBCS-based combination
method including classifier fusion and classifier selection for a
good interpretability-accuracy trade-off [60] is also an interesting
future step to be considered. Finally, applying this approach to

Table 22
Average rankings of the Friedman’s test.

Algorithm Ranking

ADV-RSO 1.983
FURIA + BAG + RSO 2.259
C4.5 + BAG + RSO 2.793
RF 2.965

Table 23
The adjusted p-values of Holm test for the pair-wise comparisons where RSO-based
bagging FRBCE (using FURIA) is the control method.

Comparison p-value

ADV-RSO vs C4.5 + BAG + RSO 0.0112
ADV-RSO vs RF 0.0336
ADV-RSO vs FURIA + BAG + RSO 0.4158

Table A.24
A comparison of RO-based bagging FRBCEs (75 classifiers) with bagging FRBCEs (100
classifiers) in terms of accuracy. C4.5 serves as a base classifier in both approaches.

Dataset BAG BAG + RLO BAG + RSO

abalone 0.7676 0.7666 0.7681
bioassay_688red 0.0090 0.0090 0.0090
coil2000 0.0619 0.0612 0.0615
gas_sensor 0.0151 0.0097 0.0089
isolet 0.0929 0.0803 0.0788
letter 0.0801 0.1559 0.0615
magic 0.1267 0.1254 0.1255
marketing 0.6761 0.6728 0.6735
mfeat_fac 0.0588 0.0484 0.0498
mfeat_fou 0.2017 0.1932 0.1902
mfeat_kar 0.0998 0.0766 0.0818
mfeat_zer 0.2401 0.2285 0.2273
musk2 0.0314 0.0271 0.0271
optdigits 0.0441 0.0290 0.0276
pblocks 0.0339 0.0333 0.0327
pendigits 0.0236 0.0155 0.0150
ring_norm 0.0601 0.0558 0.0376
sat 0.1017 0.0953 0.0950
segment 0.0368 0.0338 0.0328
sensor_read_24 0.0226 0.0228 0.0234
shuttle 0.0010 0.0009 0.0009
spambase 0.0665 0.0650 0.0651
steel_faults 0.2279 0.2265 0.2263
texture 0.0399 0.0348 0.0334
thyroid 0.0224 0.0222 0.0222
two_norm 0.0338 0.0266 0.0280
waveform_noise 0.1699 0.1630 0.1643
waveform 0.1666 0.1599 0.1588
wquality_white 0.3739 0.3714 0.3688

Avg. 0.1340 0.1314 0.1274
Std. Dev. 0.1841 0.1844 0.1852

Table A.25
A comparison of RO-based bagging FRBCEs (75 classifiers) with bagging FRBCEs (100
classifiers) in terms of accuracy. NB serves as a base classifier in both approaches.

Dataset BAG BAG + RLO BAG + RSO

abalone 0.7653 0.7653 0.7619
bioassay_688red 0.0222 0.0143 0.0152
coil2000 0.2119 0.1797 0.1847
gas_sensor 0.4293 0.3064 0.2939
isolet 0.1411 0.1279 0.1246
letter 0.3578 0.3022 0.2927
magic 0.2725 0.2359 0.2391
marketing 0.6925 0.6874 0.6864
mfeat_fac 0.0762 0.0658 0.0659
mfeat_fou 0.2362 0.2251 0.2221
mfeat_kar 0.0686 0.0579 0.0593
mfeat_zer 0.2660 0.2486 0.2464
musk2 0.1577 0.1110 0.1107
optdigits 0.0890 0.0681 0.0709
pblocks 0.0845 0.0590 0.0706
pendigits 0.1421 0.0816 0.0864
ring_norm 0.0201 0.0199 0.0199
sat 0.2038 0.1706 0.1720
segment 0.1897 0.1477 0.1180
sensor_read_24 0.4661 0.3728 0.3710
shuttle 0.0642 0.0176 0.0143
spambase 0.2273 0.2191 0.1788
steel_faults 0.3735 0.3397 0.3441
texture 0.2260 0.1855 0.1384
thyroid 0.0390 0.0375 0.0381
two_norm 0.0219 0.0216 0.0219
waveform_noise 0.2006 0.1552 0.1668
waveform 0.1905 0.1429 0.1534
wquality_white 0.5535 0.5164 0.5230

Avg. 0.2341 0.2029 0.1997
Std. Dev. 0.1938 0.1893 0.1890
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Table B.26
Statistics of the Pareto front approximations with the global EMO objectives.

Card. Best complx Best diversity Best train Best trade-off (tra-div-cmpl)

Cmpl Div Tra Tst Cmpl Div Tra Tst Cmpl Div Tra Tst Cmpl Div Tra Tst

aba BAS-BAG 171.6 650 0.1267 0.5781 0.7562 1421 0.1126 0.5770 0.7535 2788 0.1247 0.5153 0.7498 1187 0.1152 0.5679 0.7408
BAS-RLO 199.1 340 0.1648 0.5911 0.7736 1107 0.1276 0.5527 0.7532 3059 0.1490 0.4393 0.7502 985 0.1305 0.5444 0.7444
ADV-RLO 152.2 1448 0.0601 0.4950 0.7529 3601 0.0452 0.4712 0.7498 3377 0.0500 0.4355 0.7502 2568 0.0490 0.4727 0.7425
ADV-BI-RLO 182.1 132 0.1233 0.6161 0.7850 1931 0.0449 0.4717 0.7493 1591 0.0515 0.4307 0.7509 825 0.0521 0.4762 0.7435
BAS-RSO 199.4 360 0.1740 0.5827 0.7778 1127 0.1336 0.5383 0.7587 3515 0.1561 0.4226 0.7518 1214 0.1356 0.5208 0.7477
ADV-RSO 121.0 1057 0.2613 0.4807 0.7544 1437 0.1752 0.4792 0.7533 3748 0.5691 0.4035 0.7511 1426 0.2138 0.4713 0.7417
ADV-BI-RSO 188.1 157 0.2388 0.6107 0.7945 1134 0.1431 0.4869 0.7593 2066 0.4089 0.3926 0.7586 606 0.1655 0.5208 0.7527

bio BAS-BAG 7.6 222 0.0094 0.0080 0.0092 421 0.0092 0.0088 0.0091 295 0.0098 0.0075 0.0092 244 0.0093 0.0086 0.0091
BAS-RLO 2.7 135 0.0084 0.0052 0.0102 135 0.0083 0.0053 0.0102 139 0.0086 0.0048 0.0103 135 0.0084 0.0053 0.0102
ADV-RLO 26.6 256 0.0055 0.0064 0.0095 572 0.0048 0.0077 0.0091 265 0.0054 0.0062 0.0095 386 0.0049 0.0069 0.0091
ADV-BI-RLO 25.5 48 0.0055 0.0048 0.0103 247 0.0047 0.0075 0.0091 99 0.0052 0.0044 0.0105 130 0.0049 0.0065 0.0092
BAS-RSO 3.7 130 0.0085 0.0052 0.0101 134 0.0083 0.0055 0.0101 136 0.0088 0.0049 0.0101 132 0.0084 0.0054 0.0100
ADV-RSO 17.4 131 0.0163 0.0087 0.0091 140 0.0156 0.0088 0.0092 581 0.0629 0.0077 0.0092 139 0.0165 0.0088 0.0091
ADV-BI-RSO 15.1 62 0.0079 0.1082 0.1105 103 0.0063 0.0859 0.0890 155 0.0141 0.0046 0.0105 72 0.0076 0.0069 0.0099

coi BAS-BAG 14.0 185 0.0659 0.0569 0.0604 197 0.0638 0.0575 0.0601 753 0.0884 0.0530 0.0613 220 0.0653 0.0575 0.0599
BAS-RLO 10.0 87 0.0579 0.0576 0.0603 87 0.0576 0.0578 0.0604 239 0.0722 0.0502 0.0628 89 0.0581 0.0576 0.0601
ADV-RLO 31.8 364 0.0402 0.0541 0.0605 696 0.0365 0.0543 0.0607 546 0.0377 0.0514 0.0615 500 0.0372 0.0535 0.0603
ADV-BI-RLO 53.4 48 0.0434 0.0557 0.0614 317 0.0363 0.0538 0.0612 133 0.0387 0.0484 0.0628 131 0.0383 0.0547 0.0605
BAS-RSO 10.6 99 0.0578 0.0566 0.0606 101 0.0576 0.0570 0.0604 207 0.0697 0.0487 0.0629 101 0.0576 0.0570 0.0604
ADV-RSO 24.9 137 0.1490 0.0556 0.0604 147 0.1444 0.0560 0.0604 773 0.6004 0.0521 0.0609 167 0.1574 0.0561 0.0601
ADV-BI-RSO 22.4 54 0.0444 0.0544 0.0646 215 0.0379 0.0500 0.0627 240 0.1748 0.0464 0.0636 76 0.0406 0.0550 0.0625

gas BAS-BAG 15.6 445 0.0346 0.0029 0.0123 457 0.0335 0.0030 0.0116 1475 0.0708 0.0005 0.0091 540 0.0373 0.0022 0.0107
BAS-RLO 20.1 194 0.0164 0.0080 0.0233 196 0.0153 0.0083 0.0235 1090 0.0625 0.0004 0.0091 297 0.0219 0.0028 0.0122
ADV-RLO 79.5 986 0.0025 0.0012 0.0093 2477 0.0018 0.0011 0.0081 1925 0.0020 0.0004 0.0081 1763 0.0020 0.0009 0.0074
ADV-BI-RLO 140.7 89 0.0052 0.0087 0.0234 1280 0.0018 0.0011 0.0079 869 0.0020 0.0002 0.0086 492 0.0020 0.0007 0.0079
BAS-RSO 21.9 197 0.0168 0.0079 0.0234 201 0.0159 0.0087 0.0243 1034 0.0648 0.0003 0.0097 297 0.0227 0.0033 0.0132
ADV-RSO 59.0 504 0.3490 0.0017 0.0094 628 0.1964 0.0018 0.0093 1824 0.9081 0.0003 0.0085 711 0.2540 0.0015 0.0079
ADV-BI-RSO 74.8 111 0.0707 0.1294 0.1437 565 0.0075 0.0030 0.0133 901 0.3685 0.0000 0.0100 286 0.0131 0.0052 0.0155

iso BAS-BAG 37.5 610 0.2110 0.0158 0.1144 611 0.2109 0.0160 0.1141 1983 0.3795 0.0000 0.0855 1277 0.3115 0.0025 0.0871
BAS-RLO 52.8 285 0.1222 0.0662 0.1807 288 0.1187 0.0680 0.1817 1675 0.3758 0.0000 0.0833 707 0.2231 0.0115 0.0979
ADV-RLO 151.0 1703 0.0135 0.0026 0.0840 7113 0.0091 0.0002 0.0701 4020 0.0100 0.0000 0.0729 5031 0.0095 0.0001 0.0685
ADV-BI-RLO 176.0 135 0.0383 0.0663 0.1779 3821 0.0091 0.0001 0.0705 1723 0.0100 0.0000 0.0741 1336 0.0103 0.0005 0.0722
BAS-RSO 54.1 292 0.1265 0.0716 0.1901 295 0.1252 0.0720 0.1892 1836 0.3968 0.0000 0.0821 691 0.2236 0.0129 0.1016
ADV-RSO 103.0 932 0.3177 0.0034 0.0857 1443 0.1663 0.0010 0.0780 1864 0.2089 0.0000 0.0773 1525 0.1925 0.0008 0.0747
ADV-BI-RSO 160.7 171 0.1641 0.0973 0.2097 834 0.0764 0.0208 0.1189 2378 0.1301 0.0000 0.0824 995 0.0854 0.0069 0.0930

let BAS-BAG 51.3 2932 0.1964 0.0227 0.1002 2932 0.1964 0.0227 0.1002 19,513 0.3465 0.0048 0.0802 4461 0.2317 0.0140 0.0886
BAS-RLO 101.8 1244 0.0885 0.2491 0.3173 1244 0.0885 0.2491 0.3173 16,292 0.3311 0.0112 0.0856 3399 0.1538 0.0328 0.1096
ADV-RLO 158.7 7199 0.0167 0.0172 0.0921 23,327 0.0135 0.0186 0.0913 19,721 0.0146 0.0113 0.0845 15,632 0.0141 0.0145 0.0851
ADV-BI-RLO 182.9 543 0.0328 0.0599 0.1453 12,150 0.0135 0.0194 0.0913 9135 0.0148 0.0112 0.0850 4290 0.0148 0.0147 0.0870
BAS-RSO 76.3 1130 0.1198 0.0721 0.1604 1140 0.1197 0.0727 0.1619 18,892 0.3989 0.0029 0.0755 2755 0.1982 0.0217 0.0991
ADV-RSO 177.1 3845 0.4772 0.0112 0.0856 5177 0.2888 0.0084 0.0808 18,040 1.1457 0.0028 0.0761 5672 0.3277 0.0071 0.0778
ADV-BI-RSO 194.5 676 0.1825 0.1700 0.2476 4218 0.0601 0.0180 0.0967 12,403 0.8690 0.0029 0.0777 3773 0.0728 0.0186 0.0958

mag BAS-BAG 12.2 674 0.1631 0.1047 0.1388 674 0.1631 0.1047 0.1388 2853 0.2238 0.0869 0.1319 937 0.1727 0.0951 0.1331
BAS-RLO 10.8 414 0.1199 0.1045 0.1458 422 0.1194 0.1050 0.1464 2130 0.2057 0.0732 0.1305 681 0.1395 0.0813 0.1346
ADV-RLO 24.6 1646 0.0499 0.0833 0.1325 3327 0.0432 0.0769 0.1298 2747 0.0438 0.0732 0.1298 2699 0.0440 0.0754 0.1285
ADV-BI-RLO 66.0 162 0.0772 0.0992 0.1461 1596 0.0427 0.0750 0.1300 1023 0.0443 0.0707 0.1307 731 0.0461 0.0732 0.1305
BAS-RSO 9.8 467 0.1178 0.1003 0.1455 469 0.1172 0.1005 0.1461 2355 0.2087 0.0703 0.1299 690 0.1393 0.0790 0.1349
ADV-RSO 65.8 794 0.3533 0.0827 0.1312 894 0.2779 0.0833 0.1304 4008 1.3268 0.0688 0.1298 1150 0.3861 0.0798 0.1288
ADV-BI-RSO 111.4 265 0.1370 0.1101 0.1558 809 0.0542 0.0991 0.1474 2258 1.0684 0.0620 0.1311 863 0.0820 0.0799 0.1345

mar BAS-BAG 200.0 609 0.1713 0.6036 0.6815 2786 0.1590 0.6016 0.6789 2302 0.1672 0.5678 0.6734 1562 0.1648 0.5837 0.6695
BAS-RLO 199.4 357 0.1898 0.5958 0.6928 2446 0.1659 0.5542 0.6730 2908 0.1744 0.5063 0.6678 1356 0.1715 0.5509 0.6629
ADV-RLO 130.9 1239 0.1066 0.5398 0.6757 2867 0.0972 0.5259 0.6691 2971 0.1002 0.5046 0.6665 2054 0.0993 0.5263 0.6620
ADV-BI-RLO 175.1 98 0.1649 0.6111 0.6959 1508 0.0968 0.5245 0.6693 1403 0.0998 0.5015 0.6682 627 0.1023 0.5331 0.6627
BAS-RSO 199.7 359 0.1873 0.5962 0.6949 2508 0.1657 0.5534 0.6742 2796 0.1745 0.5070 0.6648 1300 0.1696 0.5595 0.6673
ADV-RSO 111.5 545 0.4481 0.5417 0.6739 746 0.3510 0.5451 0.6723 2847 1.0419 0.4955 0.6672 812 0.4130 0.5352 0.6648
ADV-BI-RSO 174.9 108 0.2088 0.6265 0.7098 1000 0.1585 0.5360 0.6766 1649 0.7167 0.4885 0.6718 532 0.1966 0.5586 0.6743

mfa BAS-BAG 32.9 196 0.1428 0.0107 0.0675 203 0.1406 0.0105 0.0672 390 0.2045 0.0000 0.0593 310 0.1832 0.0022 0.0550
BAS-RLO 34.7 83 0.0862 0.0436 0.1225 86 0.0814 0.0454 0.1197 285 0.2014 0.0000 0.0599 182 0.1375 0.0100 0.0615
ADV-RLO 83.2 468 0.0103 0.0024 0.0540 1145 0.0068 0.0002 0.0451 1037 0.0075 0.0000 0.0451 978 0.0071 0.0002 0.0423
ADV-BI-RLO 106.7 35 0.0248 0.0439 0.1224 662 0.0067 0.0003 0.0468 252 0.0099 0.0000 0.0598 270 0.0077 0.0003 0.0453
BAS-RSO 33.2 86 0.0841 0.0416 0.1173 87 0.0816 0.0433 0.1159 296 0.2056 0.0000 0.0616 197 0.1459 0.0086 0.0617
ADV-RSO 71.0 281 0.2191 0.0030 0.0517 423 0.1612 0.0012 0.0486 453 0.1703 0.0000 0.0489 431 0.1707 0.0011 0.0453
ADV-BI-RSO 92.9 46 0.0673 0.1759 0.2432 387 0.0441 0.0013 0.0596 472 0.1125 0.0000 0.0575 229 0.0487 0.0062 0.0618

mfo BAS-BAG 33.3 291 0.2851 0.0347 0.2241 297 0.2831 0.0361 0.2242 1197 0.4456 0.0000 0.2013 388 0.3170 0.0231 0.2050
BAS-RLO 40.6 122 0.1635 0.0986 0.2781 123 0.1605 0.1013 0.2795 948 0.4431 0.0000 0.1996 231 0.2337 0.0431 0.2160
ADV-RLO 119.1 777 0.0224 0.0089 0.2018 2224 0.0162 0.0029 0.1917 2186 0.0166 0.0000 0.1923 1525 0.0175 0.0024 0.1822
ADV-BI-RLO 160.6 61 0.0526 0.0990 0.2940 1183 0.0161 0.0025 0.1914 1223 0.0164 0.0000 0.1919 552 0.0178 0.0024 0.1853
BAS-RSO 40.8 127 0.1674 0.1038 0.2836 131 0.1645 0.1091 0.2918 967 0.4494 0.0000 0.2026 220 0.2287 0.0462 0.2253
ADV-RSO 85.3 487 0.3466 0.0113 0.2030 586 0.2638 0.0100 0.1995 1376 0.7376 0.0000 0.1968 608 0.3109 0.0070 0.1887
ADV-BI-RSO 138.4 74 0.1629 0.1825 0.3534 524 0.0924 0.0319 0.2269 854 0.2934 0.0000 0.2088 314 0.1095 0.0313 0.2084
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Table B.27
Statistics of the Pareto front approximations with the global EMO objectives.

Card. Best complx Best diversity Best train Best trade-off (tra-div-cmpl)

Cmpl Div Tra Tst Cmpl Div Tra Tst Cmpl Div Tra Tst Cmpl Div Tra Tst

mka BAS-BAG 37.2 268 0.2258 0.0179 0.1168 268 0.2258 0.0179 0.1168 564 0.3160 0.0000 0.0947 500 0.2958 0.0044 0.0887
BAS-RLO 38.7 118 0.1299 0.0809 0.2131 119 0.1290 0.0815 0.2145 460 0.3212 0.0000 0.0956 307 0.2427 0.0087 0.1001
ADV-RLO 105.0 758 0.0144 0.0011 0.0837 2115 0.0100 0.0001 0.0700 2335 0.0102 0.0000 0.0701 1819 0.0104 0.0000 0.0648
ADV-BI-RLO 125.1 56 0.0388 0.0680 0.1947 1183 0.0099 0.0001 0.0714 997 0.0102 0.0000 0.0712 490 0.0112 0.0001 0.0694
BAS-RSO 40.4 126 0.1400 0.0773 0.2064 128 0.1368 0.0810 0.2086 500 0.3352 0.0000 0.0984 307 0.2472 0.0105 0.1055
ADV-RSO 78.5 454 0.2982 0.0021 0.0900 697 0.2128 0.0010 0.0796 709 0.2188 0.0000 0.0796 670 0.2433 0.0005 0.0740
ADV-BI-RSO 102.7 78 0.1569 0.1492 0.2608 586 0.0686 0.0000 0.0957 665 0.1351 0.0000 0.0972 409 0.0703 0.0047 0.0988

mze BAS-BAG 31.1 279 0.3024 0.0786 0.2453 288 0.2998 0.0773 0.2419 1368 0.4530 0.0344 0.2287 344 0.3170 0.0705 0.2324
BAS-RLO 42.2 114 0.1916 0.1436 0.3021 116 0.1896 0.1465 0.3048 1269 0.4737 0.0307 0.2218 219 0.2582 0.0825 0.2430
ADV-RLO 115.8 760 0.0365 0.0434 0.2256 1937 0.0307 0.0367 0.2187 1837 0.0321 0.0304 0.2186 1482 0.0317 0.0350 0.2116
ADV-BI-RLO 157.8 54 0.0763 0.1430 0.3085 1054 0.0306 0.0359 0.2205 875 0.0318 0.0298 0.2195 439 0.0327 0.0371 0.2146
BAS-RSO 43.8 127 0.2014 0.1487 0.3068 131 0.1998 0.1515 0.3132 1360 0.4894 0.0299 0.2232 257 0.2823 0.0775 0.2471
ADV-RSO 108.2 443 0.3937 0.0483 0.2309 537 0.2819 0.0452 0.2295 1414 0.7910 0.0298 0.2245 658 0.3243 0.0425 0.2177
ADV-BI-RSO 159.8 80 0.2034 0.1815 0.3393 299 0.1299 0.0946 0.2709 999 0.5235 0.0290 0.2247 285 0.1540 0.0754 0.2391

mus BAS-BAG 19.1 218 0.0609 0.0126 0.0396 219 0.0596 0.0134 0.0411 1061 0.1261 0.0012 0.0342 301 0.0676 0.0078 0.0330
BAS-RLO 21.4 99 0.0312 0.0228 0.0486 99 0.0311 0.0229 0.0487 867 0.1203 0.0008 0.0322 155 0.0426 0.0080 0.0325
ADV-RLO 51.7 478 0.0053 0.0054 0.0345 982 0.0041 0.0027 0.0320 1061 0.0044 0.0007 0.0313 782 0.0043 0.0023 0.0294
ADV-BI-RLO 98.8 38 0.0162 0.0192 0.0447 512 0.0040 0.0026 0.0322 479 0.0042 0.0005 0.0297 158 0.0049 0.0030 0.0293
BAS-RSO 22.3 99 0.0309 0.0245 0.0512 99 0.0309 0.0245 0.0512 908 0.1233 0.0005 0.0321 177 0.0456 0.0081 0.0317
ADV-RSO 81.9 284 0.0704 0.0068 0.0339 353 0.0527 0.0063 0.0343 1276 0.3221 0.0006 0.0331 422 0.0811 0.0051 0.0315
ADV-BI-RSO 115.1 59 0.0368 0.0256 0.0502 172 0.0195 0.0104 0.0380 683 0.1603 0.0001 0.0328 214 0.0312 0.0075 0.0328

opt BAS-BAG 25.5 420 0.1069 0.0061 0.0426 428 0.1064 0.0057 0.0432 898 0.1655 0.0000 0.0367 686 0.1401 0.0014 0.0351
BAS-RLO 37.0 168 0.0595 0.0323 0.0863 169 0.0589 0.0331 0.0896 745 0.1753 0.0000 0.0351 404 0.1103 0.0050 0.0404
ADV-RLO 93.9 1013 0.0072 0.0015 0.0334 3006 0.0049 0.0002 0.0284 3005 0.0049 0.0000 0.0284 2255 0.0052 0.0003 0.0270
ADV-BI-RLO 126.6 89 0.0172 0.0299 0.0851 1514 0.0049 0.0001 0.0290 1519 0.0049 0.0000 0.0292 593 0.0056 0.0001 0.0290
BAS-RSO 36.3 171 0.0621 0.0331 0.0876 171 0.0610 0.0338 0.0881 795 0.1864 0.0000 0.0370 396 0.1104 0.0063 0.0421
ADV-RSO 77.5 669 0.2247 0.0010 0.0347 908 0.1673 0.0007 0.0325 954 0.1833 0.0000 0.0332 1007 0.2193 0.0004 0.0293
ADV-BI-RSO 106.5 112 0.0954 0.0584 0.1076 814 0.0305 0.0026 0.0409 998 0.1120 0.0000 0.0364 509 0.0349 0.0043 0.0406

pbl BAS-BAG 16.8 174 0.0497 0.0191 0.0355 199 0.0481 0.0192 0.0343 652 0.0740 0.0117 0.0331 217 0.0501 0.0174 0.0329
BAS-RLO 17.1 79 0.0306 0.0233 0.0409 80 0.0300 0.0241 0.0417 602 0.0760 0.0105 0.0351 119 0.0369 0.0169 0.0339
ADV-RLO 44.2 329 0.0116 0.0152 0.0357 606 0.0097 0.0129 0.0345 733 0.0103 0.0105 0.0347 516 0.0099 0.0122 0.0336
ADV-BI-RLO 78.6 37 0.0165 0.0234 0.0429 292 0.0094 0.0128 0.0357 267 0.0101 0.0096 0.0355 153 0.0101 0.0121 0.0339
BAS-RSO 15.3 74 0.0311 0.0245 0.0408 76 0.0304 0.0249 0.0416 479 0.0703 0.0105 0.0349 130 0.0370 0.0171 0.0334
ADV-RSO 52.1 151 0.2513 0.0154 0.0338 172 0.1606 0.0157 0.0336 851 1.3417 0.0107 0.0328 234 0.3057 0.0146 0.0317
ADV-BI-RSO 60.5 44 0.0430 0.0298 0.0417 317 0.0077 0.0125 0.0342 367 0.5747 0.0086 0.0338 135 0.0154 0.0175 0.0330

pen BAS-BAG 20.5 467 0.0511 0.0038 0.0196 467 0.0511 0.0038 0.0196 1620 0.1050 0.0001 0.0163 563 0.0565 0.0024 0.0171
BAS-RLO 27.1 195 0.0254 0.0135 0.0378 196 0.0250 0.0138 0.0372 1284 0.1089 0.0001 0.0157 308 0.0359 0.0044 0.0213
ADV-RLO 106.5 1110 0.0035 0.0013 0.0154 2860 0.0025 0.0007 0.0141 2274 0.0027 0.0001 0.0144 1986 0.0027 0.0007 0.0127
ADV-BI-RLO 172.3 103 0.0075 0.0123 0.0374 1535 0.0025 0.0007 0.0140 1443 0.0027 0.0000 0.0145 667 0.0028 0.0006 0.0136
BAS-RSO 24.4 194 0.0259 0.0136 0.0377 196 0.0254 0.0138 0.0379 1290 0.1101 0.0001 0.0148 347 0.0400 0.0039 0.0210
ADV-RSO 83.7 691 0.2230 0.0013 0.0151 961 0.0939 0.0013 0.0147 1833 0.2488 0.0001 0.0144 985 0.1158 0.0010 0.0132
ADV-BI-RSO 92.4 119 0.1054 0.0516 0.0737 651 0.0121 0.0020 0.0183 1108 0.1260 0.0000 0.0155 354 0.0131 0.0044 0.0211

rin BAS-BAG 20.8 383 0.1114 0.0080 0.0543 383 0.1114 0.0080 0.0543 985 0.1945 0.0000 0.0454 635 0.1511 0.0021 0.0435
BAS-RLO 29.8 168 0.0595 0.0170 0.0666 171 0.0593 0.0184 0.0693 864 0.1935 0.0000 0.0472 376 0.1105 0.0044 0.0484
ADV-RLO 91.2 1052 0.0061 0.0014 0.0466 3254 0.0043 0.0002 0.0434 3189 0.0043 0.0000 0.0437 2281 0.0045 0.0001 0.0409
ADV-BI-RLO 135.5 86 0.0151 0.0158 0.0674 1749 0.0042 0.0002 0.0437 1726 0.0043 0.0000 0.0433 640 0.0049 0.0003 0.0425
BAS-RSO 31.2 149 0.0561 0.0213 0.0659 154 0.0546 0.0227 0.0677 799 0.1918 0.0000 0.0352 382 0.1137 0.0037 0.0387
ADV-RSO 72.7 352 0.3508 0.0024 0.0392 474 0.2111 0.0015 0.0376 1591 0.8206 0.0000 0.0328 772 0.2955 0.0007 0.0310
ADV-BI-RSO 130.3 103 0.0557 0.0435 0.0893 659 0.0251 0.0148 0.0609 1047 0.1181 0.0000 0.0395 456 0.0597 0.0043 0.0432

sat BAS-BAG 28.7 511 0.1603 0.0266 0.1064 513 0.1585 0.0272 0.1071 2579 0.2727 0.0087 0.1013 620 0.1691 0.0247 0.1031
BAS-RLO 38.1 201 0.0870 0.0518 0.1286 202 0.0858 0.0526 0.1297 2248 0.2690 0.0058 0.1031 392 0.1305 0.0268 0.1066
ADV-RLO 85.2 990 0.0161 0.0154 0.1029 2734 0.0128 0.0088 0.1008 2642 0.0133 0.0057 0.1009 1875 0.0134 0.0091 0.0979
ADV-BI-RLO 145.9 92 0.0315 0.0503 0.1281 1428 0.0128 0.0092 0.1000 1344 0.0132 0.0052 0.1007 641 0.0139 0.0096 0.0978
BAS-RSO 39.7 195 0.0847 0.0531 0.1287 197 0.0838 0.0540 0.1308 2178 0.2689 0.0055 0.1008 397 0.1300 0.0258 0.1070
ADV-RSO 121.0 597 0.2356 0.0159 0.1042 743 0.1751 0.0143 0.1029 2566 0.7476 0.0050 0.1008 843 0.2120 0.0146 0.0993
ADV-BI-RSO 167.1 122 0.1613 0.1016 0.1684 762 0.0508 0.0282 0.1139 1598 0.5394 0.0043 0.1019 455 0.0636 0.0248 0.1053

seg BAS-BAG 26.6 140 0.0690 0.0082 0.0364 153 0.0640 0.0084 0.0373 453 0.1074 0.0000 0.0305 222 0.0771 0.0041 0.0282
BAS-RLO 23.4 61 0.0352 0.0182 0.0520 70 0.0335 0.0160 0.0491 355 0.1092 0.0000 0.0311 119 0.0506 0.0052 0.0306
ADV-RLO 44.3 285 0.0054 0.0030 0.0333 534 0.0038 0.0004 0.0299 535 0.0038 0.0000 0.0293 463 0.0042 0.0004 0.0262
ADV-BI-RLO 59.2 24 0.0110 0.0169 0.0486 237 0.0037 0.0004 0.0294 243 0.0037 0.0000 0.0293 111 0.0043 0.0008 0.0278
BAS-RSO 25.1 65 0.0337 0.0168 0.0474 70 0.0318 0.0171 0.0467 298 0.1071 0.0000 0.0308 118 0.0540 0.0055 0.0308
ADV-RSO 69.5 214 0.1674 0.0032 0.0307 274 0.1309 0.0031 0.0298 477 0.3429 0.0000 0.0289 277 0.1711 0.0025 0.0267
ADV-BI-RSO 69.7 36 0.0571 0.0762 0.1028 110 0.0196 0.0086 0.0363 327 0.1109 0.0000 0.0310 122 0.0272 0.0053 0.0299

sen BAS-BAG 24.0 188 0.0398 0.0069 0.0249 203 0.0378 0.0074 0.0242 786 0.0759 0.0013 0.0227 266 0.0436 0.0057 0.0216
BAS-RLO 22.9 90 0.0240 0.0154 0.0383 92 0.0235 0.0155 0.0387 745 0.0921 0.0009 0.0235 147 0.0309 0.0077 0.0235
ADV-RLO 48.0 440 0.0046 0.0039 0.0239 895 0.0035 0.0023 0.0236 922 0.0038 0.0008 0.0244 636 0.0038 0.0026 0.0218
ADV-BI-RLO 98.4 41 0.0094 0.0140 0.0392 401 0.0034 0.0022 0.0239 411 0.0036 0.0006 0.0242 187 0.0038 0.0028 0.0221
BAS-RSO 22.4 92 0.0245 0.0164 0.0402 98 0.0244 0.0151 0.0381 676 0.0921 0.0008 0.0238 150 0.0323 0.0070 0.0245
ADV-RSO 67.4 257 0.2262 0.0043 0.0239 389 0.1435 0.0052 0.0233 895 0.5728 0.0006 0.0231 339 0.1798 0.0043 0.0220
ADV-BI-RSO 82.3 52 0.0669 0.0628 0.0800 142 0.0121 0.0207 0.0395 550 0.2289 0.0002 0.0250 162 0.0127 0.0099 0.0267
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Table B.28
Statistics of the Pareto front approximations with the global EMO objectives.

Card. Best complx Best diversity Best train Best trade-off (tra-div-cmpl)

Cmpl Div Tra Tst Cmpl Div Tra Tst Cmpl Div Tra Tst Cmpl Div Tra Tst

shu BAS-BAG 3.9 38 0.0003 0.0003 0.0006 38 0.0003 0.0003 0.0006 71 0.0006 0.0002 0.0006 40 0.0003 0.0003 0.0006
BAS-RLO 8.8 46 0.0005 0.0004 0.0008 51 0.0005 0.0004 0.0008 139 0.0011 0.0002 0.0006 65 0.0006 0.0004 0.0006
ADV-RLO 37.0 155 0.0003 0.0003 0.0007 291 0.0002 0.0002 0.0006 322 0.0002 0.0002 0.0006 207 0.0002 0.0002 0.0006
ADV-BI-RLO 24.7 22 0.0003 0.0004 0.0009 119 0.0002 0.0002 0.0007 124 0.0002 0.0002 0.0006 56 0.0002 0.0002 0.0006
BAS-RSO 8.4 47 0.0005 0.0004 0.0008 53 0.0005 0.0004 0.0008 119 0.0010 0.0002 0.0006 68 0.0006 0.0003 0.0005
ADV-RSO 33.3 114 0.1293 0.0003 0.0006 135 0.0907 0.0003 0.0006 294 0.5660 0.0002 0.0006 131 0.1256 0.0003 0.0005
ADV-BI-RSO 27.8 20 0.0800 0.0184 0.0185 76 0.0001 0.0030 0.0035 103 0.0866 0.0002 0.0007 42 0.0104 0.0004 0.0008

spa BAS-BAG 13.9 192 0.1007 0.0427 0.0680 199 0.0995 0.0426 0.0677 691 0.1551 0.0304 0.0642 223 0.1032 0.0397 0.0657
BAS-RLO 14.0 96 0.0659 0.0479 0.0808 105 0.0641 0.0493 0.0830 569 0.1517 0.0253 0.0633 146 0.0776 0.0366 0.0643
ADV-RLO 30.1 408 0.0227 0.0324 0.0655 648 0.0196 0.0280 0.0630 642 0.0204 0.0250 0.0629 526 0.0202 0.0281 0.0604
ADV-BI-RLO 58.5 39 0.0317 0.0472 0.0830 338 0.0193 0.0280 0.0638 282 0.0201 0.0235 0.0636 180 0.0203 0.0261 0.0612
BAS-RSO 13.5 116 0.0638 0.0490 0.0859 117 0.0631 0.0500 0.0865 720 0.1584 0.0203 0.0618 182 0.0793 0.0319 0.0687
ADV-RSO 52.9 170 0.2824 0.0282 0.0638 205 0.2539 0.0297 0.0651 867 1.2860 0.0190 0.0619 239 0.3106 0.0273 0.0606
ADV-BI-RSO 67.4 63 0.0982 0.0728 0.1081 456 0.0457 0.0302 0.0725 630 0.5219 0.0149 0.0634 202 0.0504 0.0310 0.0685

ste BAS-BAG 34.2 301 0.3127 0.0749 0.2567 303 0.3118 0.0750 0.2560 1617 0.4945 0.0155 0.2399 331 0.3208 0.0704 0.2484
BAS-RLO 42.3 130 0.1845 0.1237 0.3147 130 0.1818 0.1241 0.3088 1547 0.4968 0.0111 0.2405 283 0.2729 0.0679 0.2491
ADV-RLO 76.8 758 0.0315 0.0335 0.2447 1870 0.0243 0.0189 0.2389 1797 0.0256 0.0099 0.2395 1432 0.0253 0.0176 0.2288
ADV-BI-RLO 135.5 62 0.0689 0.1282 0.3186 1075 0.0241 0.0188 0.2371 928 0.0253 0.0089 0.2380 408 0.0269 0.0197 0.2313
BAS-RSO 43.9 136 0.1933 0.1248 0.3052 138 0.1924 0.1263 0.3034 1607 0.5102 0.0099 0.2376 239 0.2586 0.0722 0.2538
ADV-RSO 94.4 440 0.2478 0.0366 0.2437 621 0.1832 0.0314 0.2392 1648 0.4641 0.0087 0.2391 611 0.2077 0.0349 0.2305
ADV-BI-RSO 142.4 89 0.1803 0.1967 0.3565 579 0.1197 0.0626 0.2669 1105 0.3620 0.0069 0.2413 343 0.1257 0.0590 0.2446

tex BAS-BAG 25.8 373 0.0965 0.0050 0.0393 381 0.0951 0.0050 0.0390 813 0.1418 0.0000 0.0323 611 0.1217 0.0016 0.0312
BAS-RLO 30.1 141 0.0444 0.0250 0.0713 142 0.0436 0.0255 0.0718 668 0.1386 0.0000 0.0336 280 0.0731 0.0060 0.0382
ADV-RLO 89.5 767 0.0059 0.0017 0.0324 2107 0.0041 0.0003 0.0282 2152 0.0041 0.0000 0.0282 1606 0.0044 0.0003 0.0259
ADV-BI-RLO 119.1 60 0.0128 0.0214 0.0662 1227 0.0041 0.0003 0.0280 1151 0.0041 0.0000 0.0282 494 0.0045 0.0004 0.0277
BAS-RSO 30.6 147 0.0476 0.0274 0.0721 148 0.0467 0.0279 0.0724 659 0.1420 0.0000 0.0318 315 0.0794 0.0057 0.0381
ADV-RSO 72.8 532 0.2566 0.0015 0.0312 685 0.1038 0.0015 0.0306 880 0.1514 0.0000 0.0302 749 0.1531 0.0006 0.0277
ADV-BI-RSO 95.2 91 0.1112 0.0831 0.1195 439 0.0256 0.0062 0.0429 940 0.1051 0.0000 0.0326 333 0.0318 0.0060 0.0392

thy BAS-BAG 10.6 154 0.0279 0.0129 0.0222 167 0.0275 0.0124 0.0228 443 0.0441 0.0077 0.0221 167 0.0283 0.0123 0.0218
BAS-RLO 11.4 78 0.0201 0.0109 0.0273 80 0.0193 0.0116 0.0279 251 0.0399 0.0064 0.0242 89 0.0212 0.0110 0.0262
ADV-RLO 32.3 310 0.0072 0.0089 0.0224 549 0.0061 0.0085 0.0230 449 0.0065 0.0068 0.0226 418 0.0064 0.0088 0.0215
ADV-BI-RLO 55.8 32 0.0099 0.0111 0.0285 287 0.0059 0.0086 0.0228 193 0.0064 0.0056 0.0233 146 0.0063 0.0073 0.0222
BAS-RSO 10.6 85 0.0193 0.0102 0.0286 87 0.0191 0.0105 0.0283 287 0.0418 0.0057 0.0232 119 0.0235 0.0099 0.0250
ADV-RSO 44.0 162 0.0838 0.0115 0.0221 184 0.0707 0.0111 0.0221 697 0.3476 0.0068 0.0222 205 0.0893 0.0106 0.0213
ADV-BI-RSO 44.0 35 0.0254 0.1369 0.1477 107 0.0127 0.0259 0.0403 263 0.1771 0.0037 0.0238 62 0.0172 0.0140 0.0269

two BAS-BAG 25.5 337 0.0954 0.0059 0.0415 339 0.0932 0.0065 0.0417 913 0.1692 0.0000 0.0352 488 0.1175 0.0026 0.0353
BAS-RLO 29.2 121 0.0409 0.0233 0.0611 122 0.0405 0.0235 0.0621 664 0.1472 0.0000 0.0323 273 0.0740 0.0048 0.0344
ADV-RLO 104.9 836 0.0044 0.0010 0.0317 2481 0.0031 0.0003 0.0274 2415 0.0032 0.0000 0.0277 1932 0.0033 0.0001 0.0259
ADV-BI-RLO 137.0 65 0.0129 0.0220 0.0626 1269 0.0031 0.0003 0.0274 1209 0.0031 0.0000 0.0276 442 0.0038 0.0002 0.0274
BAS-RSO 28.5 143 0.0467 0.0246 0.0704 144 0.0463 0.0261 0.0714 711 0.1605 0.0000 0.0348 309 0.0858 0.0064 0.0393
ADV-RSO 86.1 365 0.1834 0.0022 0.0320 517 0.1221 0.0014 0.0312 1039 0.2921 0.0000 0.0298 577 0.1554 0.0013 0.0282
ADV-BI-RSO 114.0 81 0.0962 0.0578 0.0989 409 0.0264 0.0166 0.0525 835 0.1124 0.0000 0.0338 372 0.0305 0.0053 0.0390

wan BAS-BAG 39.1 421 0.2212 0.0236 0.1623 427 0.2188 0.0247 0.1629 1877 0.4111 0.0000 0.1499 539 0.2497 0.0168 0.1528
BAS-RLO 51.0 177 0.1154 0.0660 0.2012 183 0.1132 0.0670 0.2044 1622 0.4110 0.0000 0.1495 318 0.1748 0.0290 0.1644
ADV-RLO 131.5 1139 0.0140 0.0064 0.1530 4143 0.0098 0.0006 0.1454 3684 0.0101 0.0000 0.1466 2737 0.0105 0.0009 0.1418
ADV-BI-RLO 168.5 86 0.0374 0.0676 0.2008 2180 0.0098 0.0009 0.1462 1761 0.0101 0.0000 0.1472 797 0.0112 0.0012 0.1438
BAS-RSO 50.8 180 0.1197 0.0696 0.2047 181 0.1188 0.0718 0.2049 1641 0.4151 0.0000 0.1499 325 0.1754 0.0303 0.1657
ADV-RSO 100.8 604 0.2645 0.0062 0.1527 775 0.1913 0.0036 0.1519 1562 0.3660 0.0000 0.1488 826 0.2236 0.0037 0.1462
ADV-BI-RSO 131.2 120 0.1425 0.0930 0.2183 717 0.0581 0.0110 0.1596 1751 0.2104 0.0000 0.1526 522 0.0590 0.0162 0.1586

wav BAS-BAG 38.7 489 0.2258 0.0272 0.1614 489 0.2258 0.0272 0.1614 3009 0.4285 0.0010 0.1492 644 0.2548 0.0201 0.1530
BAS-RLO 54.9 192 0.1138 0.0650 0.1957 193 0.1133 0.0654 0.1970 2777 0.4390 0.0002 0.1473 389 0.1851 0.0280 0.1593
ADV-RLO 132.0 1132 0.0156 0.0112 0.1534 3694 0.0115 0.0030 0.1473 3561 0.0119 0.0002 0.1464 2566 0.0122 0.0023 0.1425
ADV-BI-RLO 168.8 111 0.0348 0.0590 0.1908 1991 0.0115 0.0028 0.1482 1904 0.0118 0.0002 0.1486 829 0.0127 0.0044 0.1455
BAS-RSO 53.5 203 0.1202 0.0640 0.1959 203 0.1202 0.0640 0.1959 2474 0.4348 0.0003 0.1474 354 0.1760 0.0326 0.1602
ADV-RSO 102.1 614 0.2568 0.0084 0.1512 851 0.1824 0.0078 0.1503 2392 0.5965 0.0002 0.1482 788 0.2153 0.0072 0.1459
ADV-BI-RSO 135.5 115 0.1717 0.1009 0.2133 839 0.0562 0.0119 0.1552 1842 0.3425 0.0002 0.1523 550 0.0626 0.0200 0.1552

wqu BAS-BAG 36.1 731 0.3716 0.1938 0.4184 731 0.3707 0.1949 0.4186 4130 0.5045 0.1192 0.3900 950 0.3933 0.1768 0.4049
BAS-RLO 51.6 326 0.2589 0.2489 0.4619 328 0.2584 0.2519 0.4606 4263 0.5223 0.0883 0.3824 605 0.3277 0.1707 0.4154
ADV-RLO 97.6 1883 0.0495 0.1252 0.4002 6230 0.0378 0.0962 0.3843 4880 0.0390 0.0873 0.3825 4418 0.0394 0.0939 0.3753
ADV-BI-RLO 161.3 167 0.1140 0.2435 0.4637 3476 0.0377 0.0952 0.3850 2483 0.0391 0.0851 0.3842 1384 0.0412 0.0945 0.3786
BAS-RSO 53.8 344 0.2595 0.2469 0.4565 344 0.2591 0.2473 0.4566 5065 0.5339 0.0778 0.3784 717 0.3457 0.1566 0.4075
ADV-RSO 143.9 1201 0.5524 0.1212 0.3930 1461 0.4049 0.1142 0.3896 5307 1.2924 0.0735 0.3770 1717 0.4914 0.1068 0.3785
ADV-BI-RSO 189.8 201 0.2518 0.3037 0.5042 1518 0.1709 0.1252 0.4014 3239 0.9560 0.0731 0.3826 917 0.2183 0.1447 0.4003
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class imbalanced problems with an appropriate classifier [62] is a
very challenging future work.
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Appendix A. Bagging CEs and RO-based bagging CEs using C4.5
and NB

To make this contribution self-contained we provide the results
of bagging CEs and both (RLO and RSO) RO-based bagging CEs
using C4.5 and NB (see Tables A.24 and A.25 respectively) as men-
tioned in Section 3.4.3.

Appendix B. Statistics of the Pareto front approximations with
the global objectives

Tables B.26, B.27, and B.28 present the values of three global
learning objectives, training error (Tra), test error (Tst), and com-
plexity (Cmpl) considering each solution for each dataset. The car-
dinality of each Pareto set approximation (Card.) is also shown in
the three tables.
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5 A Multiclassifier Approach for Topology-based WiFi Indoor Lo-
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Abstract People localization is required for many novel

applications like for instance proactive care for the elders

or people suffering degenerative dementia such as Alz-

heimer’s disease. This paper introduces a new system for

people localization in indoor environments. It is based on a

topology-based WiFi signal strength fingerprint approach.

Accordingly, it is a robust, cheap, ubiquitous and non-

intrusive system which does require neither the installation

of extra hardware nor prior knowledge about the structure

of the environment under consideration. The well-known

curse of dimensionality critically emerges when dealing

with complex environments. The localization task turns

into a high dimensional classification task. Therefore, the

core of the proposed framework is a fuzzy rule-based

multiclassification system, using standard methodologies

for the component classifier generation such as bagging

and random subspace, along with fuzzy logic to deal with

the huge uncertainty that is characteristic of WiFi signals.

Achieved results in two real environments are encourag-

ing, since they clearly overcome those ones provided by

the well-known nearest neighbor fingerprint matching

algorithm, which is usually considered as a baseline for

WiFi localization.

Keywords WiFi localization � Classifier ensembles �
Bagging � Random subspace � Fuzzy rule-based

multiclassification systems

1 Introduction

Recently, there has been a wide proliferation of smart-

phones. They can be seen as small computers equip-

ped with GSM/UMTS, GPS, WiFi, blootooth, infrared,

accelerometers, cameras, and so on (Palmer et al. 2012).

As a result, everyday there are more and more novel

applications which are able of exploiting successfully the

localization capabilities of smartphones. Telecommuni-

cation companies are interested in providing personalized

advertisements and/or context-aware information ser-

vices. Thus, for instance once user location is discovered

he/she can be guided towards the closest restaurant/shop

which better fits his/her preferences. In addition, in the

context of social networks, one user may be interested in

receiving some kind of a notification when some friends

were close to him/her. On the other hand, there are also

challenging medical applications where people localiza-

tion is required, such as proactive care of elders or dis-

abled people.

Of course, several ethical and controversial issues usu-

ally arise when dealing with localization applications,

mainly regarding tasks related to tracking people (Paul

et al. 2012). Users want to receive useful information

related to their current location but they also want to pre-

serve their own privacy. Therefore, systems based on video

cameras are usually rejected. All in all, localization
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systems are demanded to be non-intrusive, ubiquitous and

cheap (Garcia-Valverde et al. 2012).

In the case of outdoor environments, there is a wide

range of applications based on GPS (Enge and Misra

1999). Most of them are related to navigation assistance,

e.g., an intelligent program is able to find out the optimal

route (according to the user’s preferences) in a predefined

map between the current location and the desired destina-

tion (Chiang and Huang 2008). Unfortunately, GPS does

not work properly in indoor environments where many

interesting applications arise.

Regarding indoor localization, there are lots of related

proposals which are based on different technologies: infra-

red, computer vision, ultrasound, laser, radio frequency,

cellular communication, etc. Anyway, the so-called signal

strength approaches are very attractive because they can

be applied to wireless networks without needing an addi-

tional specific hardware (Elnahrawy et al. 2004). Moreover,

WiFi localization systems arise as the most promising

choice thanks to their quickly growing degree of the

coverage. Nowadays, there are WiFi Access Points (APs)

in most of the public buildings like hospitals, libraries, uni-

versities, museums, etc. In addition, measuring the WiFi

signal strength level (without transmitting-receiving any

data) is free of charge even for private WiFi networks. In fact,

some works have already presented experiments showing the

suitablity of combining both GPS (outdoor environments)

and WiFi (indoor environments) with the aim of designing

global and ubiquitous localization systems (Gallagher et al.

2010).

This work focuses on people localization in indoor

environments. That is the reason why we have opted for a

topology-based localization system. Actually, we have

enhanced the framework for WiFi localization sketched in

(Menendez et al. 2011). It was firstly introduced in (Alonso

et al. 2009) and then successfully integrated in the people

positioning module presented in (Alvarez-Alvarez et al.

2010). Such a system is based on fingerprinting, i.e.,

matching the current signal strength measures with those

ones previously stored into a database that represents a

WiFi map of the experimental environment. Then, the

database is split into training and test datasets. They are

used to generate and validate an intelligent classifier able to

estimate the closest reference location (one out of the

predefined set of significant locations considered when

building the WiFi map) to the actual user location

according to the measured signal strength.

Notice that, the main novelty of this work comes from

the fact that the new system is implemented in the form of

a multiclassification system (MCS) instead of adopting a

single-classifier strategy like we had considered in our

previous works, with the aim of producing a system as

accurate as possible. Furthermore, the proposal has been

tested and validated into two different real-world envi-

ronments: (1) A small trial scenario considering only one

corridor at the European Centre for Soft Computing

(ECSC) premises; and (2) a much more complex scenario

considering the second and the third floors of the Poly-

technic School at the University of Alcalá (UAH).

The rest of the manuscript is organized as follows. The

next section gives an overview on some preliminary works,

regarding both WiFi localization systems and MCSs. Then,

Sect. 3 describes thoroughly the new proposed MCS-based

WiFi indoor localization system. Section 4 presents the

experimental framework along with a detailed analysis of

the achieved results. Finally, Sect. 5 highlights the main

conclusions but also points out some challenging future

works.

2 Preliminaries

2.1 WiFi localization and soft computing

WiFi localization systems make use of 802.11 b/g network

infrastructure to estimate the position of a receiver. Thus,

the location of a person can be discovered by pointing out

the estimated location of one of its electronic devices, for

instance a smartphone equipped with a WiFi interface.

WiFi technology works at 2.4 GHz, which is close to the

water resonant frequency, therefore the received signal

strength (RSS) from each AP visible in the surrounding

environment directly depends on the distance between the

emitter and the receiver, but it also depends on the presence

of obstacles and/or people placed between them. Notice

that, human body absorbs part of the electromagnetic

waves it is exposed to (Bahillo et al. 2009). Thus, people

may become a non-negligible source of interference,

dimming RSS.

RSS is affected by many variations, namely temporal,

small-scale and large-scale variations (Youssef and

Agrawala 2003). They introduce a lot of uncertainty in the

system that is difficult to deal with. For instance, small-

scale variations take place when one electronic device

equipped with WiFi moves in a small distance (under the

wavelength k = 12.5 cm). In such circumstances, RSS can

strongly vary up to 10 dBm what would be equivalent to

move around 6 m in the context of large-scale variations

(Alonso et al. 2011). As a result, it is not straightforward to

estimate the correct device location. Uncertainty must be

properly handled in order to determine if the observed

changes in RSS are due to small-scale variations (only a

few centimeters away) or they are due to large-scale vari-

ations (a few meters away).

WiFi localization systems exploit the path loss propa-

gation model due to large-scale variations of WiFi signal to
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determine how close the receiver is to a certain AP.

Unfortunately, in indoor environments, RSS is also

strongly affected by reflection, refraction and diffrac-

tion, what is commonly known as the multipath effect

(Elnahrawy et al. 2004). As a result, RSS becomes a

complex function of the distance that dynamically changes

with time. Therefore, formalizing propagation models

adapted to the specific characteristics of each indoor

environment, in each time instant, is not reliable.

Soft Computing is usually defined as a family of tech-

niques (Fuzzy Logic, Neuro-computing, Probabilistic Rea-

soning, Evolutionary Computation, and their hybridizations),

well suited for coping with imprecision and uncertainty

(Magdalena 2008). Thus, an extensive research has been

done on wireless localization based on Soft Computing

techniques over the last decade. For instance, Soft Computing

techniques are able to deal properly with small-scale varia-

tions in wireless sensors (Alonso et al. 2011).

Yun et al. (2009) proposed a Soft Computing based

localization system for outdoor environments. To start with,

they generated a genetic fuzzy system for individual locali-

zation where the edge weights of each anchor node were firstly

modeled by a fuzzy system and then optimized by a genetic

algorithm. Later, they generated a neural network for overall

localization. Achieved results were promising and they

proved the suitability of considering Soft Computing

approaches to deal with the wireless localization.

Nerguizian et al. (2004) proposed the use of neural

networks and fingerprinting to deal with the well-known

multipath effect in indoor environments. They addressed

mobile robot location based on a distance-based (also

known as metric or Cartesian) approach, which is normally

adopted in Robotics where localization is made in a low

abstraction level with the aim of estimating X–Y coordi-

nates. The network learning was done off-line but it could

become computational costly (and even unfeasible) for

very large environments. More recently, Outemzabet et al.

presented an alternative location system also based on

neural networks and fingerprinting. The main novelty arose

from the fact that the estimated X–Y position was

enhanced first with Kalman filtering (Outemzabet and

Nerguizian 2008) and later with particle filtering and a low-

cost sensor (Outemzabet and Nerguizian 2008).

Dharne et al. (2006) advocated for the use of fuzzy

logic. They proposed a fuzzy rule-based system able to

yield good results thanks to the use of a grid-based map

describing the environment under consideration. Moreover,

they reduced the computational cost by taking into account

only significant grid-points. Hence, they followed a

topology-based approach instead of a distance-based one.

Topology-based systems carry out a more human friendly

symbolic localization, which is made in a higher abstrac-

tion level. Their goal is not to find out the exact X–Y

coordinates but to give an approximate position (e.g., at the

room level) with a high confidence. This approach is pre-

ferred when dealing with most applications supported by

people localization. Notice that, fuzzy logic is especially

useful to handle problems where the available information

is vague, which is the typical situation when working with

WiFi signal strength sensors (Astrain et al. 2006). Fuzzy

systems have proved to be effective for topology-based

WiFi indoor localization in the context of people localiza-

tion in ambient intelligent environments (Garcia-Valverde

et al. 2012) but also in the context of Robotics (Herrero-

Pereza et al. 2010).

Finally, topology-based indoor localization has already

been addressed as a classification problem through Soft

Computing techniques (Alonso et al. 2011), however a

need for improving the accuracy (while maintaining a low

execution time) in this kind of applications requires an

advanced tool being able to cope with these challenges.

Thus, in the current contribution, the MCS approach, which

is a well known to obtain high performance (better than a

single classifier) (Kuncheva 2004), will be applied. Up to

our knowledge, no work has been done related to MCSs in

the context of topology-based WiFi fingerprint indoor

localization. Notice that, the well-known curse of dimen-

sionality critically emerges when dealing with complex

real-world environments. In consequence, the localization

problem turns into a high dimensional classification task.

Such kind of problem only can be addressed effectively

through an MCS approach.

2.2 Multiclassification systems

In the last decade, MCSs, also called multiclassifiers or

classifier ensembles, have arisen as very powerful tools

when dealing with complex, high dimensional classifica-

tion problems, because they are able to yield higher per-

formance than any of their single classifiers (Kuncheva

2004). As a result, this research topic has become espe-

cially active inside the machine learning community in

general, and the Soft Computing community in particular,

considering decision trees (machine learning) or neural

networks (Soft Computing) to generate the component

classifiers. The interested reader is referred to (Banfield

et al. 2007; Optiz and Maclin 1999) where he/she can find

two surveys for the case of decision trees (both) and neural

network ensembles (the latter), including exhaustive

experimental studies. More recently, some works have also

considered the use of fuzzy classifiers (Soft Computing)

(Bonissone et al. 2010; Trawiński et al. 2011).

An individual classifier must provide different patterns

of generalization in order to obtain a diverse set of clas-

sifiers composing a highly accurate ensemble (Kuncheva

2004). Otherwise, the ensemble would be composed of the
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same (or similar classifiers) and it would be only as

accurate as the best single classifier. Thus, generating

diverse component classifiers is fundamental to obtain

highly accurate MCSs (Tsymbal et al. 2005). There are

different ways to face the design of classifier ensembles.

On the one hand, there is a classical group of approaches

considering data resampling with the aim of generating

different training sets to derive each individual classifier.

Firstly, in the bagging approach (Breiman 1996), the base

classifiers are independently learnt from previously resam-

pled training sets (‘‘bags’’), which are randomly selected

with replacement from the original training data set. Sec-

ondly, boosting methods (Schapire 1990) sequentially

generate the individual classifiers (weak learners) by

selecting the training set for each of them based on the

performance of the previous classifier(s) in the series.

Opposed to bagging, this resampling process gives a higher

selection probability to the incorrectly predicted examples

by the previous classifiers.

On the other hand, a second group is comprised by a

more diverse set of approaches which induct the individual

classifier diversity through some alternative ways, different

from resampling (Zhou 2005). Feature selection plays a

key role in many of them where each classifier is derived

by considering different subsets of the original features

(Tsymbal et al. 2005). Random subspace (Ho 1998), where

each feature subset is randomly generated, is likely to be

the most representative method of this kind.

Interestingly, it turns out that a combination between

bagging and feature selection yields a generic approach

well suited for designing robust and accurate MCSs, no

matter the chosen classifier learning method (Panov and

Džeroski 2007). We have already tested the combination of

bagging and feature selection in the form of fuzzy MCS

composition designs (Trawiński et al. 2011). All in all, we

drew the conclusion that bagging combined with a base

homogeneous fuzzy classifier, which directly incorporated

the feature selection ability, was a very powerful tool for

dealing with high dimensional classification problems.

3 An MCS-based framework for scalable WiFi indoor

localization

This section details the proposed framework for topology-

based indoor localization. The main goal of this work is to

obtain a scalable and accurate localization system, which

can estimate the closest reference location to the actual

user location using RSS in a relatively short time. Our

proposal is based on an MCS approach. Two different

methodologies, bagging (Breiman 1996) and bagging

combined with random subspace (Panov and Džeroski

2007), are exploited to design the final MCS-based

localization system. First, the base classifiers are learnt off-

line from a fingerprint database previously generated, and

then the MCS-based framework is run on-line.

3.1 The base classifiers

Two types of base classifiers are considered in order to derive

the component classifiers: (1) A simple decision tree, J48G

(Webb 1999); and (2) a more advanced Soft Computing

algorithm called Fuzzy Unordered Rule Induction Algorithm

(FURIA) (Hühn and Hüllermeier 2009).

3.1.1 J48G

J48G is a version of the well-known standard C4.5 (called

J48 in Weka1 (Witten et al. 2011)) decision tree, extended

by means of grafting. As explained in (Webb 1999),

grafting is a post-processing algorithm applied to an

already generated decision tree, which aims at reducing

prediction error. It starts with looking for those regions in

the feature space which are either empty or they only

include misclassified examples. Then, grafting searches for

an alternative branch (e.g. generated from the ancestor to

the leaf related to the identified region), which is added to

the current tree, only in the case that its support for clas-

sification of that region is stronger than the already gen-

erated one by the initial decision tree generation method.

In particular, J48G considers grafting based on all-tests-

but-one-partition (ATBOP), a metric to estimate the

accuracy of a potential new leaf, initially proposed by

Quinlan (1991). This algorithm assigns one set of training

data only to each leaf of the initial decision tree (the set of

examples that fails no more than one test on the path to the

leaf). Thanks to grafting based on ATBOP, J48G is able to

reduce the tree complexity, thus speeding up the induction

process while also increasing accuracy.

The interested reader is kindly referred to (Webb 1999)

for a full description of J48G.

3.1.2 FURIA

FURIA (Hühn and Hüllermeier 2009) is an extended and

enhanced version of the state-of-the-art rule learning

algorithm called RIPPER (Cohen 1995), keeping its main

advantages such as simplicity and comprehensibility but

also introducing new features. We would like to highlight

three main extensions of RIPPER provided by FURIA:

1. It defines fuzzy rules instead of crisp ones. The final

form of a rule Rj is the following:

1 We use the implementation of J48G provided by Weka, a software

tool for data mining which is freely available at http://www.cs.waikato.

ac.nz/ml/weka/.
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Rj : If x1 is Aj1 AND . . . AND xn is Ajn

Then Class is Cj with CDj; j ¼ 1; 2; . . .; c

c is the number of classes. The consequent part points

out a class Cj along with its related certainty degree

CDj. Given an example x = fx1; . . .; xng, the certainty

degree is defined as follows:

CDj ¼
2

D
Cj
T

DT
þ
P

x2D
Cj
T

lCj
r ðxÞ

2þ
P

x2DT
lCj

r ðxÞ
ð1Þ

where DT and D
Cj

T stand for the training set and a subset

of the training set related to the class Cj respectively. In

this approach, each fuzzy rule makes a vote for its

consequent class. The vote strength of a rule is cal-

culated as the product of its firing degree lCj
r ðxÞ and its

certainty degree CDj. Hence, the fuzzy reasoning

method used is the so-called voting-based method

(Cordón et al. 1999).

2. It uses unordered rule sets instead of rule lists. This

change omits a bias caused by the default class rule,

which is applied whenever there is an uncovered example

detected. Unfortunately, the unordered rule set introduces

one crucial drawback too, there might appear some cases

when given examples are not covered.

3. It proposes a novel rule stretching method in order to

manage uncovered examples. To deal with such

undesired situations, each rule can be dynamically

generalized by removing some of its antecedents. The

information measure is proposed to find out which rule

to ‘‘stretch’’ for each specific case.

Let us emphasize that FURIA inherits an internal feature

selection algorithm from RIPPER. This characteristic in

combination with the ‘‘soft boundaries’’ provided by fuzzy

rules makes FURIA well-endowed with the ability to deal

with noisy, complex, and non-linear high dimensional

classification problems.

The interested reader is kindly referred to (Hühn and

Hüllermeier 2009) for a full description of FURIA.

3.2 The MCS design approach

In this work we will consider two standard MCS method-

ologies: bagging (Breiman 1996) and a combination of

bagging with random subspace (Ho 1998), as proposed in

(Panov and Džeroski 2007) (both methodologies were

already used in (Trawiński et al. 2011), as well as random

subspace only, however the latter did not bring any per-

formance improvement).

The term bagging is an acronym of bootstrap aggrega-

tion and refers to the first successful method proposed to

generate MCSs (Breiman 1996). This approach was originally

designed for decision tree-based classifiers. However, it rep-

resents a very generic approach (its applicability fits to any

type of base model either for classification or regression

problems). The core of bagging is based on bootstrap and

consists of reducing the variance of the classification by

averaging many classifiers that have individually been tuned

to random samples that follow the sample distribution of the

training set. Then, the final output of the model is the most

frequent value, called voting, of the learners considered. As a

result, bagging is the most effective approach when dealing

with unstable classifiers, which means a small change in the

training set can cause a significant change in the final model.

Furthermore, bagging provides another main advantage,

namely it makes feasible parallel and independent learning of

the classifiers among the ensemble. In consequence, it is time

efficient (due to its inherent parallelism) and quite accurate

(Trawiński et al. 2011). In this contribution, the bags are

generated with the same size as the original training set, as

commonly done.

As said before, random subspace (Ho 1998) is a generic

methodology to induce diversity in the generation of the

base classifiers. In this approach, a set of features is ran-

domly selected from the original dataset. It is also a well-

known approach in the multiclassifiers research field for

feature selection (Bonissone et al. 2010; Breiman 2001;

Dietterich 2000). Additionally, in Panov and Džeroski

2007 it was shown that the combination between bagging

and random subspace results in a general design procedure,

usually leading to good MCS designs (regardless the

classifier structure considered).

A flow of our design is as follows. The training set is sub-

mitted to an instance selection procedure, and (optionally) to a

feature selection procedure, in order to provide individual

training sets (bags) to train the base classifiers (in off-line mode).

The combination of classifier members within the

ensemble (on-line mode), is made by the so-called classi-

fier fusion method (Woods et al. 1997), which aggregates

the results provided by the set of component classifiers to

calculate the final output, assuming that all classifiers are

trained over the entire feature space. The Decision Profile

(DP) represents the outputs of all the classifiers in the

ensemble (Kuncheva 2001; Kuncheva et al. 2001):

DPðxÞ ¼
D1ðxÞ

..

.

DLðxÞ

0
B@

1
CA ¼

d1;1ðxÞ � � � d1;cðxÞ
..
. ..

.

dL;1ðxÞ � � � dL;cðxÞ

0
B@

1
CA ð2Þ

where c is the number of classes; L is the number of

classifiers; and di,j(x) are the confidence degrees for the

classes given an example x. Considering L classifiers, the

combined output is usually computed by an algebraic

function (Kittler et al. 1998; Kuncheva 2002) such as

maximum, minimum, product, mean, median, etc.
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3.3 The proposal of an MCS-based framework to deal

with noisy WiFi signals

To deal with the inherent noise that characterizes the WiFi

signal in indoor environments, we propose an elaborated

framework encapsulating an MCS in order to improve the

robustness of the whole system. Figure 1 depicts a global

schema of the proposed framework, which is made up of

the three following phases:

• Phase1—Classification process of each classifier com-

ponent. In this phase the classification task of each

MCS components is carried out. Each classifier for each

instance from 1 to N outputs confidence degrees dij
m for

each class. Thus, the N matrices, namely DPs, are

generated to be provided as the input required for the

Phase 2.

• Phase2— Filtering (Aggregation 1). The filtering phase

takes place at the classifier output level. The confidence

degrees dij
m of N instances are aggregated for each

classifier dij
*. The aggregation is done by means of one

of the (algebraic) functions mentioned in Sect. 3.2.

Then, the aggregated DP of the MCS is provided as an

output. Notice that, the filtering follows the ‘‘moving

average’’ fashion, in every step DP of the next example

is included (xN?1

0
in the example from Fig. 1) in the

aggregation of DPs, while excluding the first DP

appeared in the given period of time (x1

0
in the example

from Fig. 1).

• Phase3—Classifier fusion (Aggregation 2). In the last

phase, a second aggregation is performed. The aggre-

gated DP is combined by means of one of the

abovementioned algebraic functions (mean, median,

etc.). As a result, the outputs of all the individual

classifiers dij
* are merged into one final decision c0.

It is worth noting that, the framework described above is

only applicable for the on-line execution mode of our WiFi

location system, while the core of the MCS is trained in an

off-line mode, starting from a fingerprint database previ-

ously generated. Of course, the off-line learning process is

not included in the figure.

4 Experimentation

4.1 Experimental setup

In this contribution we present results achieved in two

different real-world experimental environments. In the first

experiment, just for illustrative purposes, data were gath-

ered in a simple scenario considering only one corridor of

the ECSC premises, where all analyzed locations are

placed in a straight line. In the second scenario, which is

much more realistic and hence complicated, data were

gathered in the second and third floors of the Polytechnic

School at the UAH. In both cases, experimental data were

gathered under usual working conditions.

4.1.1 Scenario 1. A simple but highly illustrative case

The first experimental environment is shown in Fig. 2. It

consists of an indoor corridor, about 35 m long, where 13

different positions (Pi), in the distance of 2 m each, were

Fig. 1 The proposed framework to tackle with noisy WiFi signals
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identified with the aim of being properly recognized by the

proposed localization system. The signal strength from 4

APs were measured at each position. These APs were

chosen due to their visibility in the entire test-bed envi-

ronment, exhibiting good patterns of the signal transmis-

sion. Although their exact locations are not known, their

approximate positions are plotted in the figure.

Data acquisition was made as follows. At each position,

Pi, 600 samples of the signal level from each AP were

measured and saved in a file. This process was carried

out during five different days at different hours. Thus, we

obtained a dataset containing 39,000 signal samples.

Notice that, since we considered only 13 different positions

placed in the same part of the building, namely a corridor,

it was feasible to obtain so many samples per position.

Considering the WiFi localization task as a classification

problem, we built a dataset containing 39000 instances

with 4 features. Each set of RSS coming at once from all

visible APs corresponds to an instance, whereas the signal

from each AP defines a feature of that instance.

The data distribution along the five days for each posi-

tion and for each AP is shown in Fig. 3. It is represented in

the form of boxplots. It can be easily observed how the

signal obtained varies for each AP differently, when

changing the position. For instance, in positions P1 and P2

the highest power level corresponds to AP1, but in posi-

tions P12 and P13 the highest level comes from AP4, due

to its proximity. Unfortunately, the variation of RSS is not

lineal with physical distance.

Furthermore, in this work, we take an advantage of the

time-dependent characteristics of the data, namely the

signals of APs are obtained in a consecutive order for each

location. In our scenario, the user stops for a few seconds to

Fig. 2 ECSC test-bed environment (Scenario 1). Four APs and

thirteen positions, Pi, (separated by 2 m distance) in a straight line
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Fig. 3 Data distribution (five different days) for all positions and access points: AP1 (a); AP2 (b); AP3 (c); and AP4 (d)
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acquire several consecutive WiFi measures with the aim of

getting better estimation of its current position. In order to

avoid any loss or distortion of the data, for the identifica-

tion of a given position we consider a consecutive block of

samples of size 300 (half of measured samples of each Pi

during each day).

Thus, we have defined a special kind of cross validation

inspired by the Diettrich’s cross-validation (Dietterich

2000) with the aim of considering the time-dependent

characteristics of the data. The measurements for each

location and for each experimentation day were divided

into 2 blocks of 300 subsequent samples. As we collected

data among 5 different days, we got 10 blocks for each

location. Blocks for each day are uniformly assigned to the

training and test sets in a way that always one block from a

given day is assigned to training set as well as to test set. It

results with 32 different combinations of the blocks, which

can be seen as a particular adaptation of the 16 9 2 cross-

validation. The averaged results are reported.

4.1.2 Scenario 2. A realistic high dimensional case

The second experiment was carried out in the second and

the third floors on the west sector of the Polytechnic School

at the UAH (see Fig. 4). The experimental environment

covers a total surface of 2,400 m2 with over 100 APs. We

have considered 71 significant positions (30 in the third

floor and 41 in the second floor), each placed several

meters (between 2.5 and 9.5 m) apart from the nearest

neighbor position to be recognized.

It is important to remark that contrary to the case of the

previous scenario where a few APs were selected for

localization purposes, in the second scenario over one-

hundred APs were actually deployed with the aim of pro-

viding a good Internet access to the largest number of

students. Notice that, data coming from all detected wire-

less devices were considered as APs by our localization

system, with no prior knowledge about neither their rele-

vance (they may be just a laptop or smartphone instead of a

real AP) nor their physical location. This is a very

important issue, since data acquisition is very quick but the

number of APs is huge and it may differ among the days of

the data acquisition. Moreover, no data pre-processing is

required, the off-line learning stage is in charge of dis-

covering the most significant APs for localization purposes.

Data acquisition for training and test was made in two

independent weeks. In fact, collecting data for all the 71

positions was made in discontinuous periods of time, at

different hours, all along each week considering both

mornings and afternoons. At each position, Pi, 60 samples

of the signal level from each visible AP were measured and

saved in a file. Thus, we built two datasets (one per week)

containing 4,260 signal samples each. During the first

week we detected 143 different APs, while in the second

week there were only 134 APs. Of course, during the test

stage only those APs that were also visible in the training

Fig. 4 UAH test-bed environment (Scenario 2). One-hundred APs (which actual location is unknown) and seventy-one different positions

(represented by circles): 30 positions in the second floor (a) and 41 positions in the third floor (b)
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stage are taken into account. Again, like in the case of

Scenario 1, the WiFi localization task is addressed as a

classification problem. Thus, we built a dataset containing

8,520 instances (all sets of RSS coming at once from all

visible APs) with 143 (134 in the case of looking at the

second experimental week) features (all visible APs).

In a first experiment, the entire dataset obtained from the

first week was taken as a training set, while the entire

dataset obtained during the second week was considered as

a test set. Then, we inverted the procedure, the dataset

related to the second week was assigned to a training set

and the dataset corresponding to the first week was taken as

a test set. Due to the large instability of the random sub-

space algorithm, we repeat the whole procedure 10 times

with different seeds (20 in total). Of course, average of

both is reported as the final result.

Notice that, due to the large number of positions ana-

lyzed in the different floors of UAH, obtaining such a huge

number of data samples like in the previous scenario was

not feasible because it would have become very costly and

time consuming, thus we opted for reducing the number of

collected instances from 600 to 60 at each position. As a

result, the total number of instances drops from 39,000 to

8,520. However, the complexity, and scalability, of the new

scenario increases significantly in terms of the number of

positions (from 13 to 71) and the number of APs (from 4 to

over 100), yielding a much more difficult high dimensional

classification problem.

4.2 Analysis of the results

In our framework, the localization problem is defined in

terms of a classification problem with:

• 4 features considering the 4 visible APs and 13 classes

(one per position to be identified) for the first scenario.

• 143 (134 in the case of looking at the second

experimental week) features considering all visible

APs and 71 classes (one per position to be identified)

for Scenario 2.

Our design (J48G MCSs, FURIA MCSs) is composed of

10 classifiers (because in some preliminary trials on

Scenario 1, we observed that considering a larger number

of classifiers was not yielding a significant increase of

accuracy for the analyzed problem), while random sub-

space (RS) selects a subset of features containing 25, 50, or

75 % of the initial feature set. It is compared with the state-

of-the-art classification technique k-Nearest Neighbor

(k-NN) (Cover and Hart 1967). For each test sample,

k-NN algorithm calculates the Euclidean distances between

it and every training sample in the database. Then, it ranks

them and takes the k smallest ones. A majority vote

between selected samples decides which class the test

sample belongs to. We have chosen the standard value

k = 1, as it is done in (Gallagher et al. 2010). Notice that,

1-NN is usually considered as base line for comparisons

since the Bahl’s pioneer paper (Bahl and Padmanabhan

2000) where a WiFi localization system based on the use

of the Nearest Neighbor algorithm with fingerprinting

(a priori radio map) was first proposed. Such a system

comprised the same two main stages, namely off-line and

on-line stages, as in our proposal. The main difference

comes up with the fact that our off-line stage includes not

only the generation of the fingerprint database (what was

called training stage by Bahl) but also the learning of

classifier models. Of course, in the case of 1-NN there is

not any explicit classifier model. On the contrary, each new

WiFi measure is directly compared against the previously

stored radio map in order to determine the right location

during the estimation stage.

In addition, we chose mean as the most common

aggregation method in both stages (Aggr1 and Aggr2).

Notice that the second aggregation stage (Aggr2) only

takes place in the case of the designed MCSs, where the 10

individual classifier outputs are fused. The final decision is

done using the maximum activation degree. Notice that,

with the structure of basic k-NN method Aggr2 makes no

sense.

Several values of the block size N were selected, i.e. 1,

4, 7, and 10 corresponding to around 1, 4, 7, and 10 s

respectively because our WiFi acquisition frequency was

1 Hz. It is worth mentioning that time is strongly affected

by the number of WiFi measures used for a single evalu-

ation, since the time for collecting data samples (in the

range of seconds) is much longer than the time required for

inferring the current position (in the range of milliseconds).

4.2.1 Results in a simple case (Scenario 1)

In this section we analyze the results obtained for the first

scenario. The goal is to check the proposed framework in

the context of a rather simple case as the one defined in the

selected corridor of the ECSC premises. Table 1 reports the

achieved results in terms of accuracy for all the selected

block sizes.

The first column presents all the algorithms used,

namely 1-NN, J48G, FURIA and several variants of J48G

MCSs as well as FURIA MCSs. These variants include

bagging (Bag), bagging and RS with 25 % (Bag ? RS

(25 %)), bagging and RS with 50 % (Bag ? RS (50 %)),

and bagging and RS with 75 % (Bag ? RS (75 %)). In

total, 11 algorithms are evaluated in the experiments. The

next four columns present accuracy results obtained for

block size equal to 1 (N1), 4 (N4), 7 (N7), and 10 (N10)

respectively. The best result for each given Ni is high-

lighted in bold font.
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In the light of this table, it can be noticed that ‘‘J48G

MCS Bag’’ (N10) outperforms the other approaches in

overall (0.940). However, ‘‘FURIA MCS Bag’’ (N10) as

well as 1-NN (N10) are able to produce very good results

too, 0.912 and 0.936 respectively. As expected, most of

the evaluated algorithms were able to achieve very high

accuracy (over 84 % in 8 out of 11 algorithms, regarding

N10). Notice that 1-NN outperforms both single classifiers,

J48G as well as FURIA, no matter the selected block size

(Ni).

There are some additional interesting issues to be

remarked:

• Both J48G MCSs and (especially) FURIA MCSs get

more instable when combined with Bag ? RS than with

Bag only. ‘‘FURIA MCSs Bag ? RS (25 %)’’ obtains

the worst result (0.494) for N1.

• MCSs obtain better accuracy results, when increasing

the number of features selected by RS (look at the

percentage in brackets).

• Considering the block size parameter (Ni), it seems to

be somehow correlated with the accuracy. The larger

the block size is, the higher accuracy is obtained.

Obviously, feature selection has a negative impact in the

results reported for this scenario where the whole training

dataset only includes four features. Hence, considering a

subset of features is useless in the case of dealing with

simple test-bed environments.

Unfortunately, considering different combinations of

parameters, it is hard to point out a single one. Even though

‘‘J48G MCSs Bag’’ seems to be the best algorithm in many

cases, all results are so similar that we cannot draw sig-

nificant conclusions. Anyway, we can appreciate how the

proposed framework achieves very good results no matter

the selected classification method. This fact is due to the

inherent simplicity of the analyzed scenario.

With the aim of making a deeper analysis regarding the

behavior of the classifiers used, in addition to the classifi-

cation accuracy, the distance between the real position and

the estimated one, which is also an important issue in the

WiFi localization application, is calculated (only when

misclassification takes place). The dispersion of these

results for each algorithm used is shown in Fig. 5 by means

of boxplots (the possible outliers are represented by cir-

cles). On the right side (Fig. 5b) a zoom of the boxplots

from the left side (Fig. 5a) is presented.

In the view of this figure, it can be noticed that the

median for all the algorithms is the same (4 m). Further-

more, 1-NN, J48G, and ‘‘J48G MCSs Bag’’ seem to be

providing the lowest error distances, however ‘‘J48G MCSs

Bag’’ yields the outliers with the smallest distance value

out of the three approaches. On the other hand, ‘‘FURIA

MCSs Bag ? RS (25 %)’’ provides the worst results, since

it obtains the highest value of the upper quartile (8 m) and

the farthest outliers (up to 24 m).

Anyway, trying to have a fair global view, both Table 1

and Fig. 5 should be considered together. Unfortunately,

although it seems that ‘‘J48G MCSs Bag’’ is the algorithm

worth pointing, since it outperforms all the others taking

into account both accuracy and error distance distribution,

still clear and sound conclusions cannot be drawn. This is

due to the simplicity of this first illustrative scenario where

all algorithms (even the basic 1-NN) provide really good

results.

Finally, Table 2 reports the average on-line evaluation

time obtained for the entire test set by the algorithms

considered (corresponding to the execution of the

schema detailed in Fig. 1). It is constructed in the same

fashion as the previous table. The first column presents

all the algorithms evaluated, while the next four columns

present the reported execution time for each block size

(Ni).

Regarding this table, it can be noticed that all types

of MCSs reported quite similar and small on-line

evaluation time. In contrast, in the case of 1-NN the on-

line evaluation time is roughly 7 times longer than the

MCS-based methods. We have also included J48G and

FURIA just for comparison purpose. As expected, they

achieve the shortest execution times. Notice that, the

reported time refers to the total computational time,

because in the case of 1-NN there is no learning stage,

i.e., classification is carried out on the fly without

an explicit model previously generated. Of course, a

localization system requires high accuracy, however it

also requires a low online execution time to provide the

user a quick response and this is the main drawback of

1-NN.

Table 1 Accuracy results for different classification and aggregation

methods in Scenario 1 (ECSC environment)

Algorithm N1 N4 N7 N10

1-NN 0.893 0.915 0.929 0.936

J48G 0.836 0.882 0.908 0.923

FURIA 0.758 0.791 0.820 0.846

J48G MCSs

Bag 0.863 0.916 0.932 0.940

Bag ? RS (75 %) 0.838 0.898 0.919 0.931

Bag ? RS (50 %) 0.762 0.832 0.860 0.877

Bag ? RS (25 %) 0.630 0.692 0.725 0.749

FURIA MCSs

Bag 0.814 0.868 0.894 0.912

Bag ? RS (75 %) 0.744 0.799 0.825 0.844

Bag ? RS (50 %) 0.645 0.695 0.718 0.734

Bag ? RS (25 %) 0.494 0.530 0.549 0.561
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4.2.2 Results in a realistic case (Scenario 2)

This section presents the results obtained for the second

scenario. It represents a much more complex (and realistic)

case. It actually becomes a quite hard classification prob-

lem. This state is confirmed in Table 3, which is built in the

same way as Table 1. It summarizes the achieved results in

terms of accuracy. The best result for each given Ni is

highlighted in bold font.

Looking carefully at this table, it can be noticed that

reported accuracy significantly decreases in comparison

with the results reported for the first scenario (look at

Table 1). It is also worth mentioning how 1-NN obtains the

worst results (around 0.5 what means that only one out of

each two positions is correctly estimated). Thus, we

observe how the performance of 1-NN drops dramatically

in the case of dealing with complex and realistic environ-

ments. Both single classifiers, J48G and FURIA also obtain

much worse results than those reported in Scenario 1,

however they both outperform 1-NN no matter the block

FURIA MCSs Bag + RS (25%)

FURIA MCSs Bag + RS (50%)

FURIA MCSs Bag + RS (75%)
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J48G MCSs Bag + RS (75%)

J48G MCSs Bag

FURIA

J48G

1−NN

5 10 15 20

meters

(a) Block size N10

FURIA MCSs Bag + RS (25%)

FURIA MCSs Bag + RS (50%)

FURIA MCSs Bag + RS (75%)

FURIA MCSs Bag

J48G MCSs Bag + RS (25%)

J48G MCSs Bag + RS (50%)

J48G MCSs Bag + RS (75%)

J48G MCSs Bag

FURIA

J48G

1−NN

2 4 6 8 10 12 14 16

meters

(b) Block size N10 (zoomed)

Fig. 5 Reported results (considering block size N10) in terms of error distances (in meters), paying attention to the misclassified positions in

Scenario 1 (ECSC test-bed environment)

Table 2 Execution time (measured in seconds) for different classi-

fication and aggregation methods during the on-line stage in Scenario

1 (ECSC test-bed environment)

Algorithm N1 N4 N7 N10

1-NN 15.650 15.806 16.437 14.944

J48G 0.311 0.326 0.326 0.332

FURIA 0.938 1.123 1.082 0.929

J48G MCSs

Bag 2.268 2.304 2.329 2.290

Bag ? RS (75 %) 2.321 2.210 2.251 2.310

Bag ? RS (50 %) 2.142 2.212 2.219 2.248

Bag ? RS (25 %) 2.955 2.301 2.348 2.407

FURIA MCSs

Bag 2.780 3.550 3.736 3.311

Bag ? RS (75 %) 2.868 3.597 3.759 3.322

Bag ? RS (50 %) 2.943 3.660 3.776 3.337

Bag ? RS (25 %) 2.876 3.653 3.808 3.370

Table 3 Accuracy results for different classification and aggregation

methods in Scenario 2 (UAH environment)

Algorithm N1 N4 N7 N10

1-NN 0.490 0.501 0.523 0.536

J48G 0.566 0.578 0.586 0.589

FURIA 0.534 0.564 0.581 0.595

J48G MCSs

Bag 0.644 0.679 0.690 0.694

Bag ? RS (75 %) 0.657 0.697 0.711 0.720

Bag ? RS (50 %) 0.697 0.735 0.749 0.757

Bag ? RS (25 %) 0.731 0.776 0.789 0.797

FURIA MCSs

Bag 0.624 0.667 0.680 0.688

Bag ? RS (75 %) 0.675 0.715 0.726 0.734

Bag ? RS (50 %) 0.723 0.769 0.785 0.794

Bag ? RS (25 %) 0.733 0.790 0.803 0.809
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size (Ni). On the other hand, the best result (0.809) is

obtained by ‘‘FURIA MCSs Bag and RS (25 %)’’ for N10.

Moreover, ‘‘FURIA MCSs Bag and RS (25 %)’’ outper-

forms the other algorithms for all block sizes (Ni). From

these facts, it can be confirmed the need of adopting the

MCS-based approach in order to deal properly with high

dimensional problems like those arising from complex

environments like Scenario 2. Moreover, fuzzy methods

like FURIA exhibit all their potential in the context of very

noisy problems where classical methods do not perform so

well. This is due to the characteristics of the fuzzy rules

generated by FURIA. On the one hand, thanks to RS

(25 %) FURIA handles much smaller number of features to

be further filtered by its own internal feature selection

algorithm in order to consider only the most representative

features during the rule generation process. On the other

hand, the ‘‘soft boundaries’’ determined by the fuzzy rule

base fit well this complex classification problem.

In addition, there are some interesting conclusions

derived from this table that deserve to be highlighted:

• Both J48G MCSs and FURIA MCSs perform better

when combined with Bag ? RS than with Bag only.

‘‘FURIA MCSs Bag ? RS’’ outperform ‘‘J48G MCSs

Bag ? RS’’ in all cases. However, ‘‘J48G MCSs Bag’’

slightly outperform ‘‘FURIA MCSs Bag’’.

• MCSs obtain the highest accuracy when decreasing

the number of features selected by RS (the smaller

percentage of selected features, the more accurate

results are reported). This fact is probably due to the so

noisy and redundant signals measured from some APs

in this complex scenario. Remind that in this scenario

the number of handled APs is huge (over one-hundred).

• Considering the block size parameter (Ni), like we

observed in the previous scenario, it is correlated with

the accuracy. The larger the block size is, the higher

accuracy is obtained (however, already for N7 good

results are reported).

Like in the previous scenario, we can get a deep insight in

the evaluation of the behavior of the classifiers used. Apart

from paying attention to the classification accuracy, in the

WiFi localization application, we should also take care of

the error distance regarding the real position and the

estimated one, which is considered only when misclassi-

fication takes place. Figure 6 depicts a dispersion of the the

error distance (in meters) for each algorithm evaluated by

means of boxplots (the possible outliers are represented by

circles).

We have focused only on N10 because it yields the

highest accuracy results. On the right side (Fig. 6b) a zoom

of the boxplots from the left side (Fig. 6a) is presented. In

the light of this figure, it can be noticed that the best values

are obtained by ‘‘FURIA MCSs Bag ? RS (25 %)’’ and

‘‘J48G MCSs Bag ? RS (25 %)’’. The former does so for

the lower quartile and the median, whereas the latter

achieves it for the lower and the upper quartile but also

other MCSs combined with Bag ? RS such as ‘‘J48G

MCSs Bag ? RS (50 %)’’ or ‘‘FURIA MCSs Bag ? RS

(50 %)’’ perform fairly well. On the other hand, several
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Fig. 6 Reported results (considering block size N10) in terms of error distances (in meters) for the misclassified positions in Scenario 2 (UAH

test-bed environment)
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outliers with high distance value (up to 40 m) are obtained

by FURIA MCSs (e.g., ‘‘FURIA MCSs Bag’’, ‘‘FURIA

MCSs Bag ? RS (50 %)’’, and ‘‘FURIA MCSs Bag ? RS

(75 %)’’), as well as J48G and FURIA.

Only looking carefully at both Table 3 and Fig. 6, it is

possible to have a fair global view of the goodness of the

reported results. In order to make this task easier, Fig. 7a

presents the median values of the error distances repre-

sented in Fig. 6 (x-axis) against the accuracy values

reported in Table 3 (y-axis), for all the eleven algorithms

evaluated in the experiments. Notice that, the best solution

would lie in the upper-left corner having the highest

accuracy and the smallest median. Thus, to have a better

insight we have also presented a zoom of that part in

Fig. 7b. In the view of this figure, it can be clearly seen that

the best solutions (they outperform all the remaining ones

taking into account both classification rate and median

error distance) are obtained by MCSs combined with Bag

? RS. It is worth pointing ‘‘FURIA MCS Bag and RS

(25 %)’’, since it outperforms all the other approaches

considering both measures. By contrast the basic 1-NN

does not achieve especially good behavior. It is placed in

the lower part of the figure since it produces very low

accuracy, but it does not report the most outstanding

median value either. All the MCSs combined with Bag ?

RS clearly outperform 1-NN, when considering accuracy

and in half of the cases with respect to median error dis-

tance. Thus, we can draw a clear conclusion. The proposed

MCS-based approach strongly outperforms the standard

1-NN. Depending on the type of MCS selected different

objectives could be achieved.

Finally, Table 4 summarizes the average on-line evalu-

ation time (corresponding to the execution of the schema

detailed in Fig. 1) reported by all the analyzed algorithms

when dealing with the entire test set. This table is con-

structed in the same fashion as Table 2, regarding several

block sizes (Ni) for each evaluated algorithm. In the view

of the reported run-times, it can be noticed that all evalu-

ated MCSs were able to get much smaller on-line evalua-

tion time than 1-NN. The reported execution time is

roughly 8 times smaller with MCSs than with 1-NN.

Moreover, if we make a comparison between execution
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Fig. 7 Comparison of algorithms used in Scenario 2 (UAH test-bed environment). Accuracy (y-axis) versus Median Error Distance (x-axis)

Table 4 Execution time (measured in seconds) for different classi-

fication and aggregation methods during the on-line stage in Scenario

2 (UAH test-bed environment)

Algorithm N1 N4 N7 N10

1-NN 17.633 17.849 18.677 16.067

J48G 0.008 0.007 0.007 0.007

FURIA 0.010 0.008 0.010 0.010

J48G MCSs

Bag 1.780 1.732 1.772 1.790

Bag ? RS (75 %) 1.819 1.849 1.836 1.996

Bag ? RS (50 %) 1.800 1.750 1.782 1.810

Bag ? RS (25 %) 1.841 1.772 1.741 1.784

FURIA MCSs

Bag 1.801 1.810 1.768 1.783

Bag ? RS (75 %) 1.833 1.744 1.783 1.814

Bag ? RS (50 %) 1.820 1.773 1.796 1.805

Bag ? RS (25 %) 1.819 1.771 1.803 1.842
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times reported for both scenarios (Table 2 vs Table 4), we

can see how 1-NN requires more time when the complexity

of the test-bed environment increases (Scenario 2), while

simultaneously the execution time reported by MCSs

slightly decreases. This fact is due to 1-NN is a lazy

method where all computational effort is made during the

on-line execution stage while MCS-based methods are

eager methods, i.e., they spend most of the time during the

off-line learning stage but they are fast and extremely

efficient in the on-line execution stage.

5 Conclusions and future works

In this study, we proposed a framework in which both bag-

ging and the combination of bagging with random subspace

are applied to train J48G-based MCSs (fast decision trees)

and FURIA-based MCSs (fuzzy rule-based classifiers)

devoted to deal with the WiFi localization problem, that is

faced as a high dimensional classification problem. By using

the above mentioned techniques, we aimed to obtain a WiFi

localization system which provides high accuracy with a

reasonable on-line computational time.

We have conducted a comprehensive experiment on two

real test-bed environments, a simple scenario composed of

39,000 instances, 4 features, and 13 classes (locations) and a

more realistic one (also more complex) composed of 8,520

instances, 143 (134) features, and 71 classes (locations). It

turned out that the designed MCSs were able to outperform

the accuracy of the state-of-the-art nearest neighbor algo-

rithm with a lower execution time in both analyzed sce-

narios. Especially big accuracy differences were reported

for the second scenario. Thus, our approach is very prom-

ising for tackling with complex and realistic environments.

Of course, further research should be performed. One of

the next steps we will consider in the future is to incor-

porate some other advanced techniques, like random

(Breiman 2001) and rotation forest (Rodriguez et al. 2006),

to generate MCSs. This is likely to yield even more

accurate systems. Another interesting research line to fol-

low is to apply our MCS-based framework into the context

of a novel hierarchical WiFi localization approach that we

have recently sketched (Hernández et al. 2012). Finally, we

would like to explore the chance of extending the basic

nearest neighbor algorithm in order to integrate it in our

framework in combination with the other evaluated com-

ponent classifiers J48G and FURIA.
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[TCQ11a] K. Trawiński, O. Cordón, and A. Quirin. A first study on a fuzzy rule-based multiclas-
sification system framework combining furia with bagging and feature selection. In In
Proceedings of the World Conference on Soft Computing (WConSC), pages 167–175,
San Francisco (USA), 2011.



BIBLIOGRAPHY 185
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