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Abstract— This work develops Compressed Sensing techniques 

to improve the performance of an active three dimensional (3D) 
millimeter wave imaging system for personnel security screening. 
The system is able to produce a high-resolution 3D 
reconstruction of the whole human body surface and reveal 
concealed objects under clothing. Innovative multistatic 
millimeter wave radar designs and algorithms, which have been 
previously validated, are combined to improve the reconstruction 
results over previous approaches. Compressed Sensing 
techniques are used to drastically reduce the number of sensors, 
thus simplifying the system design and fabrication. 
Representative simulation results showing good performance of 
the proposed system are provided and supported by several 
sample measurements. 

 
Index Terms— Millimeter waves, Imaging Systems, Synthetic 

Aperture Radar (SAR), Inverse Methods, Fast Multipole Method 
(FMM), Compressed Sensing. 

I. INTRODUCTION 

MAGING techniques based on electromagnetic waves are 
used in a wide range of systems [1]-[5] for security and 

medical applications. In the area of homeland security, there is 
an increasing demand for methods to improve the efficiency of 
the personnel screening for concealed objects and contraband 
detection at security checkpoints. Human body imaging is an 
effective way of identifying dangerous objects attached to the 
body under clothing [3]-[5].  Terahertz wave sensing [6],[7] 
and X-ray backscatter [8] provide good resolution, but the 
former is based on expensive, cutting-edge technology and its 
speed and accuracy depend on precise mechanical scanning, 
while the X-ray systems make use of ionizing radiation, which 
is less attractive to the flying public.  
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Active nearfield millimeter-wave imaging radar systems are 
very good candidates for achieving high-resolution imaging, 
while also balancing the trade-off between accuracy and cost. 
With mm-wave radar, the object of interest is first illuminated 
by millimeter waves and then the scattered field is measured 
and processed in order to reconstruct the surface (or volume) 
of the object. The image resolution is determined by the radar 
center frequency, its bandwidth, and its aperture size.  

Current state of the art millimeter wave portal imaging 
systems [3] are based on monostatic radar and Fourier 
inversion [9]. These systems make use of FFT computation, 
and thus are inherently fast, but present disadvantages of 
artifacts when reconstructing dihedrals and corner cubes [10] 
(such as those used for SAR fiducials) and misrepresenting 
deeper indentations and protrusions that are incompletely 
probed with the retro-ray nature of monostatic wave 
collection. The latter dihedrals effects can be seen in Fig.14 
and Fig.15 in the reference [3], where a high reflectivity value 
is reconstructed in the void space between the two legs.  

This work presents algorithmic improvements to a previous 
mm-wave based portal system design [11], which is able to 
generate three-dimensional (3D) high-resolution images of the 
whole human body using fewer receiving positions. The 
capabilities of the system are described in the next subsection. 

 

 
Fig. 1. Geometry of the proposed mm-wave portal-based system.  

A. Portal setup  

The general configuration of the proposed system is shown 
in Fig. 1. The body is illuminated by an incident millimeter-
wave generated by a novel Blade Beam elliptical-parabolic 
reflector antenna. This antenna produces a narrow beam in 
elevation (z axis) while illuminating the body with constant 
amplitude in azimuth [12]. This illumination allows thin slices 
(~ 2-3 cm thickness) of the body to be processed 
independently. The electric field scattered by the section under 
illumination is captured by two arrays of millimeter wave 
antenna elements placed on a 90 degree arc above and below 
the reflector. A SAR based imaging algorithm [13] is used to 
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recover the reflectivity values in the z-axis slice illuminated by 
the Blade Beam antenna. The reflector and receiving antenna 
arrays are translated vertically, and the two-dimensional 
retrieved images are stacked to form a full body surface 
reconstruction. This approach simplifies the three-dimensional 
reconstruction problem into a combination of multiple 2D 
problems which ultimately reduces the computational cost and 
thus the processing time of the full 3D inversion problem, an 
essential requirement for practical security screening systems. 

B. Aim and scope of this contribution 

One of the limitations of the proposed portal-based system 
is the minimum number of receivers in the arcs. According to 
the minimum sampling rate criterion [14], for the proposed 
system (f = 60 – 66 GHz, human body having a maximum 
cross-range size of ~40 cm), the minimum number of receivers 
on each arc to avoid SAR image aliasing is approximately 
150.  

Reducing the number of receivers and thereby the cost, 
complexity, and measurement time without compromising the 
quality of the reconstructed image, is the purpose of this 
research. For this goal, Compressed Sensing (CS) techniques, 
which have been successfully applied in several SAR imaging 
problems [15]-[19] are proposed. 

II. COMPRESSED SENSING TECHNIQUE 

Compressed Sensing (CS) [20]-[24] is a relatively novel 
signal processing theory, which states that sparse signals can 
be recovered using far fewer samples or measurements than 
that required by the Nyquist sampling criterion. A discrete 
signal vector y  CN can be represented in terms of an 
orthonormal basis  CNN as: 

 

y   , (1) 

where   CN is the coefficients vector. The signal y is K-
sparse if it is a linear combination of only K  basis vectors;  
that is,  only has K non-zero coefficients, with K << N.  

The subsampled signal ys, is acquired by linear projection ys 
= y.  CMN is a binary matrix: with ones corresponding 
to the receiver locations, and zeros, to the discarded positions. 
Selected and discarded positions are randomly selected. M 
denotes the number of measurements needed, which satisfies 
M << N. 

sy y     , (2) 

where  is an M  N matrix. Eq. (2) is underdetermined, 
that is, it has an infinite set of solutions.  Nevertheless, it has 
been shown that it is very likely to recover y =  exactly 
provided that  is a sparse signal and that matrix  obeys a 
Restricted Isometry Property (RIP), by means of convex 
programming: 

 

1
min N sR

subject to y


 


   (3) 

 

When the samples are corrupted with noise, as occurs in 
real problems, the minimization problem becomes: 

1 2
min N sR

subject to y


  


   (4) 
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The RIP is satisfied if and  are incoherent. It has been 

widely proved [15]-[20] that any random matrix  (as the one 
described before) is likely incoherent with the orthonormal 
basis . Numerical evaluation of the coherence (represented 
by (* ) ) of  = , has been assessed as indicated in 
Eq. (3) of  [20]. For the examples shown in this paper, it is 
verified that (* ) < (*). A cross-validation 
technique described in [21,22] is used to determine the value 
of the regularization parameter .  

If the CS technique is translated to the SAR imaging 
problem, y is the entire set of N scattered field measurements, 
and ys, a random set of M measurements given by the linear 
transformation ys = y.  is the set of N reflectivity values, K 
of them being different from zero (or noise-level) values. 
Orthonormal basis elements are given by: 

 

 , ,exp 2m n m m nj k R    (7) 

 1/ 22 2 2
, ( ') ( ') ( ')m n m n m n m nR x x y y z z       (8) 

M is the number of selected frequencies (F) times the 
number of selected observation points (P).  In consequence, 
wavenumber vector k, and scattered field observation points 
vectors x, y, z, are formed as follows: 
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(9) 

 
In this contribution, Eq. (4) is minimized by means of the 

Nesterov algorithm [23], provided as a Matlab toolbox. This 
approach limits the calculation time (60 s in a conventional 
laptop with N = 100100, M = 400). This calculation time can 
be improved using C language implementations for a practical 
real-time system. The choice of this algorithm is based upon 
superior results when compared to other norm-1 minimization 
techniques. 

The physical basis for the sparsity that is exploited by the 
CS SAR imaging comes from the fact that the incident field 
does not penetrate appreciably nor scatter from points inside 
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the human body, so for a 2D slice, only a narrow layer, 
corresponding to the body surface where electric currents are 
induced, will be recovered. Thus, the resulting 2D image will 
be sparse. 

An additional advantage of CS SAR imaging derived from 
the aforementioned mm-wave portal-based scanner is that the 
number of non-zero elements can be estimated using a-priori 
information. Assuming that the slice where the SAR image is 
recovered has a size of (N)1/2(N)1/2, then it is possible to 
estimate that the number of non-zero reflectivity elements will 
be K ~ (N)1/2 assuming one-pixel range thickness, and that the 
recovered profile occupies the entire cross-range dimension. 
Moreover, it has been observed that the sparse signal can be 
accurately recovered with a number of samples of M ~ 4K 
[24]. Thus the expected number of non-zero reflectivity pixels 
of , K, is related to the minimum number of samples (ys 
vector) M to be used for the reconstruction. 

III. CS HUMAN BODY 3D PROFILE RECONSTRUCTION 

CS is successful in reducing the amount of samples needed 
for good inversion results in most SAR imaging systems. 
Usually, CS images are generated with just 25-30 % of the 
samples required by the Nyquist sampling criterion. In this 
section, an application example of the CS techniques for the 
proposed personnel screening system is presented.   

For an initial configuration, a 90º-arc with 150 receiving 
positions placed at z = 0 m is considered. As a test case, two 
metallic objects are placed on top of the human body torso, as 
shown in Fig. 6 (left). 

The forward problem is simulated with physical optics 
(PO), assuming that the human body behaves as a good 
conductor in the 60.6-66 GHz frequency band, sampled at 600 
MHz frequency steps (F = 10). A Signal-to-Noise ratio of 30 
dB is considered, by adding white Gaussian noise to the 
simulated scattered field. The reconstruction slice is 
(x,y)=(0.3, 0.3) m, centered at (x,y)=(0,0.15) m, with z = 0 m 

First, results for traditional SAR imaging using the 
algorithm described in [13] are plotted in Fig. 2 (a). Both the 
human body torso and the objects at the chosen slice are 
recovered. Next, CS is applied using a subset of P random 
positions taken from the available 150 samples. Cases for P = 
32, 40, and 48 have been tested, finding that P = 40 provides 
an acceptable CS profile reconstruction results, providing 90% 
probability of correct recovery of the profile. Concerning the 
coherence assessment, (*,) ≤ 0.35 for all the tested cases, 
whereas (*,) = 0.45. Coherence is normalized so that   
[0 1]. For these sample choices, the reconstruction domain has 
been discretized into N = 8080, 100100, and 120120 
subdomains, to satisfy M ~ 4K, with K~(N)1/2, and M = FP. 

To address the SAR imaging limitations when the Nyquist 
criterion is not met, results for 40 uniformly spaced and 
randomly spaced receivers are depicted in Fig. 2 (b) and (c). 
Aliasing due to cross-range undersampling corrupts the 
recovered images. 

The quality of the reconstructed CS images using 40 
receivers (corresponding to N = 100100) can be clearly 
appreciated in Fig. 3 when compared to the previous SAR 
image results. Quantitative assessment of the image quality is 
provided by the Image Signal-to-Noise Ration (ISNR) defined 

in Eq. (15) of [22]. Clearly the ISNR of CS images is higher 
than SAR ones. 
 

  
Fig. 2. SAR image (normalized reflectivity, dB) recovered on the z = 0 m 
slice. A single observation arc placed at z = 0 m is used. (a) 150 uniformly 
spaced receivers. (b) 40 uniformly spaced receivers. (c) 40 randomly placed 
receivers. Solid green line represents the true profile. 

 

 
Fig. 3. CS image (normalized reflectivity, dB) recovered on the z = 0 m slice. 
A single observation arc placed at height z = 0 m is used. (a) 40 uniformly 
spaced receivers. (b) 40 randomly placed receivers. Solid green line represents 
the true profile. 

 

 
Fig. 4. Field scattered by the human body torso when the beam is pointing at z 
= 0 m. Two arcs are used. Black dots indicate the randomly chosen receiver 
positions. 
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Fig. 5. CS images (normalized reflectivity, dB) recovered on the z = 0 m slice. 
(a) CS image using a random set of 40 receivers in the upper arc. (b) CS 
image using the same random set of 40 receivers in the lower arc. (c) 
Combination of (a) and (b). (d) CS image using two arcs of 120 equally-
spaced receivers. Solid green line represents the true profile. 

 

 

 
Fig. 6. Original human body torso with two objects mesh (left) and mesh 
generated from the stacked 2D CS images using two arcs of 40 receivers 
(right). 

In order to confirm that random positions provide better CS 
results than uniformly spaced receivers, CS image from 40 
uniformly spaced receivers (Fig. 3 (a)) is compared to the one 
provided by 40 randomly selected positions (Fig. 3 (b)). It is 
observed that the latter fits the true profile better, and also 
exhibits fewer artifacts.  

Once 2D CS capabilities have been proved, next step is the 
analysis of 3D geometry reconstruction and automatic 
concealed objects detection using the CS images. As 
mentioned before, there are few slices in which the human 
body provides specular reflection in elevation (z-axis). Thus, 
the use of two arcs, above (+30 cm) and under (-5 cm) the 

blade reflector antenna, ensures that part of the scattered field 
will be collected in at least one of the two arcs.  

The same randomly selected positions are used both in the 
upper and lower arcs, as shown in Fig. 4. CS images do not 
really improve when using two different random sets in the 
arcs. Even more, it has been found that better CS images are 
achieved if processing every arc independently, then 
combining the CS images in amplitude and phase. 

Fig. 5 represents the CS and SAR images for the case in 
which the Blade Beam antenna is illuminating the z = 0 m 
slice. Figs. 5 (a) and (b) corresponds to the CS images 
retrieved from the 40 randomly placed receivers placed at 
upper and lower arcs. As depicted in Fig. 4, the upper arc 
collects more scattered field power, explaining why the Fig. 5 
(a) CS image is better than Fig. 5 (b), as the lower arc collects 
less signal for a given noise level. Fig. 5 (c) is the incoherent 
combination of the former ones, slightly improving the quality 
of Fig. 5 (a). Finally, the CS image using 120 equally-spaced 
receivers per arc is plotted in Fig. 5 (d) for comparison 
purposes. It is clear that the CS image can not only be 
obtained with fewer receivers but also can sharpen the human 
body profile with respect to SAR (see Fig. 2 (a) and the ISNR 
provided on each figure), making easier and more accurate 
automatic profile extraction and 3D mesh generation [11]. 

The automatic profile extraction described in [11] is applied 
to CS images to create a 3D mesh, which is depicted in Fig. 6 
(right). Twelve slices in z axis, from -12 cm to +10 cm, in 2 
cm-steps, are considered. Both the human body torso, as well 
as the metallic objects placed on it, are accurately retrieved. 
The Root Mean Square Error (RMSE) on y-axis (range or 
depth) between the original human body torso geometry (yorig) 
and the retrieved mesh using stacked CS images (yCS) has been 
computed (10): 

 

 
1/ 2

2

1

/
N

orig CS
n

RMSE y y N


   
 


 
(10) 

 
For this case, RMSE = 5.4 mm. Concerning automatic 

threat detection (which actually is the goal of the mm-wave 
portal-based system), the generated 3D mesh is smoothed, 
then subtracting it from the former to obtain a difference 
mesh. Assuming that the human body torso has smooth 
variations, objects will show up as protuberances in the 
difference mesh. 

Fig. 7 compares the retrieved difference mesh from stacked 
2D SAR images using 150 receivers (Fig. 7 (a)) with stacked 
2D CS images with 40 positions (Fig. 7 (b)). In both cases, the 
metallic objects are clearly identified. 

Computational cost is another key factor concerning the 
final implementation of a real-time portal-based mm-wave 
imaging system. In this sense, SAR processing is faster than 
CS, as the former can be easily implemented using forward 
techniques as described in [13]. For this example, and for 
every slice, SAR processing using 150 receivers takes 5 s, 
whereas CS requires 20 s for the 40 receiver case. A 
conventional laptop (Intel Core i5 at 2.67 GHz with 4 GB 
RAM) has been used for benchmarking. CS has a higher 
computational cost than SAR, as can be expected when 
comparing an iterative reconstruction method (CS) with a non-
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iterative method (SAR). An iterative method using SAR as a 
forward and inverse model will take more time than CS, 
because the sensing matrix is substantially bigger in the 
former case. 

Despite being 4 times slower, attention must be focused on 
the overall calculation time for CS: 20 s times 12 slices = 240 
s, further from the real-time goal. Fortunately, recent advances 
on Graphics Processing Units (GPUs) applied to inverse 
problems provide speed-up from 50x to 100x [25]. 

 
Fig. 7. Detection results. Difference in y-axis (range) between the 
reconstructed 3D profile and a smoothed one. (a) SAR results using 150 
receivers per arc. (b) CS results using 40 receivers per arc. 

IV. VALIDATION WITH MEASUREMENTS 

In order to validate the simulation results, a set of 
experimental measurements were collected. Since the 60 GHz 
final configuration using the blade beam reflector antenna is 
still under development and testing, preliminary lower 
frequency measurements have been performed at the spherical 
range in anechoic chamber of the University of Oviedo [26]. 
The measurement setup is depicted in Fig. 8. The object-
under-test (shown in Fig. 8) is a curved metallic surface that 
aims to model the human body torso curvature. A 2.5 cm thick 
metallic object (wood covered with aluminum foil) is placed at 
the front. The frequency range was 20 to 26 GHz, in F = 13 
500 MHz-steps. The field scattered by the metallic target has 
been measured on a 90º degrees arc placed 5 m away of the 
object. For this configuration, the measurement setup does not 
allow displacement along z axis, so the SAR and CS images 
are recovered in only one slice. 

First, the minimum number of samples to avoid SAR image 
aliasing is calculated. From [14], and assuming that the object 
has a size of 40 cm, 60 samples are required in the 90º-arc, 
and as few as 46 equally-spaced samples provide almost 
aliasing-free image, as depicted in Fig. 9. 

Next, CS is applied to a selected random set of positions. 
Two different sets, with P = 30 and P = 25 samples (see Fig. 
10) are chosen. Thus, as M = FP = 390 and 325 respectively, 
the reconstruction domain, with size (x,y)=(0.5,0.5) m, is 
discretized into N = 90  90 and N = 80  80 subdomains. 

CS and SAR images for the selected set of samples are 
depicted in Fig. 11. Clearly, SAR images are corrupted by 
aliasing echoes, thus distorting the proper profile 
reconstruction. CS overcomes this issue, providing a sharp 
profile reconstruction (resulting in higher ISNR), requiring as 
few as 25 samples (51% of the information used in the almost 
aliasing-free Fig. 9 SAR image). For this example, calculation 
time is 3 s for the SAR processing with 46 measurement 
positions and 15 s for the CS method with 25 positions. The 
same laptop as in the first example is used. 

 

 
Fig. 8. Experimental measurement setup (top). Metallic curved object-under-
test (OUT), which has z axis (height) invariant geometry (bottom left). 
Anechoic chamber (bottom right). 

  

  
Fig. 9. SAR image (normalized reflectivity, dB) using 46 measurement 
positions. Aliasing effects are visible along the line x = 0.2 m. Solid black line 
represents the true profile. 
 

 
Fig. 10. Selected random measurement positions in the arc. Left: 30 positions. 
Right: 25 positions. 

V. CONCLUSION 

Compressed Sensing (CS) techniques have been 
successfully introduced to reduce the number of receivers 

(a) (b)

y axis (m)

Normalized reflectivity (dB)

ISNR = 15.8 dB
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needed for a mm-wave portal-based concealed objects 
detection system. To achieve similar resolution as SAR 
imaging, the proposed CS implementation is thus considerable 
considerably more cost effective (from reducing a 150- to a 
40-element arrays) [11], although CS exhibits higher 
computational time. Results show that CS allows an accurate 
3D profile reconstruction and automatic threat detection using 
only 25% of the minimum number of receivers required for 
traditional SAR imaging processing. Even for an extreme case 
in which the object under test can be reconstructed with 
traditional SAR using fewer samples than Nyquist, CS only 
requires about half of these samples ensuring correct recovery 
with >90% probability. 

Concerning mm-wave imaging system implementation, 
receivers would be permanently mounted at fixed positions in 
an array. Among several randomly selected positions, some 
may perform better than others. Thus, further research will be 
focused on optimizing the receiver positions before final 
system fabrication. 
 

 
Fig. 11. CS images obtained from 30 (a) and 25 (b) randomly selected 
positions on the 90º-arc. 
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