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Abstract

The superconformal index for N' =2 5d theories contains a non-perturbative part arising from 5d in-
stantonic operators which coincides with the Nekrasov instanton partition function. In this article, for pure
gauge theories, we elaborate on the relation between such instanton index and the Hilbert series of the in-
stanton moduli space. We propose a non-trivial identification of fugacities allowing the computation of the
instanton index through the Hilbert series. We show the agreement of our proposal with existing results in
the literature, as well as use it to compute the exact index for a pure U (1) gauge theory.
© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY license.

1. Introduction

Supersymmetric gauge theories in 5d automatically come with conserved topological global
currents of the form j = «Tr F A F [1]. The electrically charged particles are instantons, which
in 5d are particle-like excitations. Their role is crucial in the dynamics of 5d gauge theories
leading, under some circumstances, to enhanced global symmetries on the Higgs branch [1].
Very recently, strong evidence in favor of this non-perturbative enhancement due to instantonic
particles has been given in [2] (see also [3]) through the computation of the exact superconformal
index, which admits an expansion in characters of the enhanced global symmetry group.
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In order to compute the index, one considers the Euclidean theory in radial quantization
and chooses a supercharge and its complex conjugate. Primary operators annihilated by this
subalgebra contribute to the index weighted by their representation under all other commuting
charges. In 5d the bosonic part of the N' =1 superconformal algebra is SO(2,5) x SU (2)g,
where SU(2)g is the R-symmetry. In turn SO(2, 5) contains the dilatation operator as well as a
compact SO(5)r acting on the $*. The maximal compact subgroup is [SU(2); x SU2)2]L %
SU(2)g. Calling the U(1) Cartans respectively ji, j2, R, the generators commuting with the
chosen supercharge are j, and j; + R. Then, the index reads [4,2]

T=Tr(—1) e PAx2IHR 20 A =¢y—2j; — 3R, (1)

where £ collectively stands for global symmetries — including the instanton current — with asso-
ciated fugacities collectively denoted by q. As the index does not depend on B, only states whose
scaling dimension satisfies €g = 2 j; + 3R contribute. In [2] it was shown that the index admits a
path integral representation leading to

I:fDaIpenLnsta 2)

where [ Da stands for the integration over the gauge group with the suitable Haar measure,
while Zpery and Zing stand respectively for the perturbative and instantonic contributions to the
index.

The perturbative contribution is easily computed by gluing the appropriate building blocks
[2]: one first needs to construct the single-particle index adding one factor of iy for each vector
multiplet and one factor of i), for each half-hypermultiplet. The corresponding functions read

x(y+yH , . x

(= —xy H A0 M=) =)
where xadj and xm stand for the characters of the representation under the gauge group and other
possible global non-instantonic symmetries. Note that as far as Zpert (and Zingt) is concerned,
the gauge fugacities o appear as global symmetries, it is the [ D« in Eq. (2) what projects to
gauge-invariants. Thus, we will loosely refer to all non-Lorentz fugacities as global symmetries.
Upon taking the plethystic exponential of the single-particle index one immediately finds Ipert.l

The instantonic contribution is, in turn, much harder to compute. On general grounds it lo-
calizes on instantonic configurations around both north (anti-instantons) and south (instantons)
poles of the $* [2], so that locally one needs to compute the path integral on S' x R* over the
solution space of the constraint F* = 0 for the south pole and F~ = 0 for the north pole. This is
precisely the Nekrasov instanton partition function, which can be thought of as the Witten index
of a supersymmetric quantum mechanics on the moduli space of instantons M. Making use of
the results in [5], in [2] the instanton partition function for USp(2) theories with one antisymmet-
ric hyper and Ny fundamental hypers were computed and the emergence of the global Ey 1
was shown. Alternatively, the same result was recovered in [3] by using the topological vertex.

The Nekrasov instanton partition function for pure instantons, regarded as the Witten in-
dex of a supersymmetric quantum mechanics, can be thought of as the equivariant index
(= 1! Tr yo.h § where g is an element of the global symmetry group (see [6,7] for very com-
prehensive introductions). As such, it is intimately related with the Poincare polinomial a.k.a.

XM 3)

iy =

. JAt0)
1 Recall that the plethystic exponential is defined as PE[ f (X)] = ezfto:l n— where x stands for the set of all fugaci-

ties on which the single-particle index f might depend on. Besides x™ = (x;" , x’zn, ).
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Hilbert series [8,9] of the corresponding instanton moduli space M, a generating functional of
the (graded) coordinate ring C[M] = P, H O _ where the elements of 7 (*") are holomorphic
degree i homogeneous polynomials — whose unrefined version is defined as ) _; dim HODe In
a sense, this object counts BPS wavefunctions on M, so it is natural to expect it to be related
to the Witten index of the quantum mechanics on M. While this connection has been implicitly
suggested in the literature (starting with [10]. See e.g. [5,11] for more recent relations), its status
is somewhat vague. In this article we make it precise for the class of 5d pure gauge theories and
check it in a few simple cases showing explicit agreement of the instanton index arising from the
Hilbert series with known results in the literature.

The structure of this article is as follows: in Section 2 we make explicit our conjecture for the
computation of the instanton index as a Hilbert series. In fact, Eq. (6) contains our main result.
In Section 3 we test our conjecture in the particular example of the USp(2) theory whose global
symmetry has been conjectured to be enhanced non-perturbatively to SU(2) [1] and find explicit
agreement with [2,3]. In Section 4 we compute the exact index of a pure U (1) gauge theory. We
conclude in Section 5 with some remarks.

2. Hilbert series and instanton index

We consider a 5d pure gauge theory with gauge group G. As reviewed above, the index con-
tains a contribution from instantonic operators. Such contribution factorizes into the product of
G-instantons localized around the south pole and G-anti-instantons localized around the north
pole of the S* [2]. Let us denote the instanton partition function for instantons around the south
pole by Iifm(q). Denoting by ¢ the instanton current fugacity, such function can be expanded as

9]

Ii?lst = Z ig(:tqk’ 4)
k=0
so that Il([l;)t is the k-instanton partition function (of course, Ii(n(?t = 1). As such, it depends on
the Lorentz fugacities x, y as well as on the G-fugacities «;. Recall that, from the point of view
of the instanton index, gauge symmetries look like global symmetries, as it is [ D in Eq. (2)
what projects to gauge-singlets. Thus, as far as Z;, is concerned, we can regard G as a global
symmetry.”

On the other hand, the instanton index for anti-instantons localized around the north pole can
be easily obtained [2] as Iil;lst(q) = l'ifm(q_l). Then, the whole instanton contribution to the
index is just Zingt = Iiistlilisl. It is then clear that the quantities of interest are the G k-instanton
partition functions Ii(é(s)t. Our claim is that these are just close relatives of the Hilbert series of the
G k-instanton moduli space.

Following [8.,9], the G k-instanton on C? Hilbert series can be constructed by considering
the auxiliary gauge theory — sometimes called the Kronheimer—Nakajima quiver — whose Higgs
branch realizes the desired instanton moduli space through the ADHM construction. As it is well
known, the k-instanton moduli space on C? is realized as the Higgs branch of a gauge theory with

gauge group Gy, an adjoint hypermultiplet and N fundamental hypermultiplets transforming

2 As we will be interested in pure gauge theories, for G = SU(N) we can have as well global baryonic symmetries.
These can be thought of as the U (1) part in U (N). In those cases the global symmetry of Zj,g is the full U (N) to which
we will also refer as G. In fact, consistently, in the ADHM construction, the flavor symmetry of the dual ADHM quiver
is G=U(N).
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under a global G symmetry. The gauge group Gy is the ADHM dual gauge group (see for exam-
ple [7] for an explicit description in various cases).

The auxiliary dual ADHM theory will generically have an SU(2) global symmetry associ-
ated to the adjoint hypermultiplet in addition to a global G symmetry associated to the flavor
symmetry. Thus, the Hilbert series on the Higgs branch computed following the techniques in
[8,9] will depend on a fugacity y for the SU(2) and on &; fugacities associated to G. Besides, it
will depend on a fugacity x standing for the dimension of the operators — actually the fugacity ¢
corresponding to the degree of the grading as defined above — which can be thought of as an R
fugacity. As such, indeed only positive powers of x appear in the Hilbert series. Thus, the Hilbert
series on the Higgs branch of the ADHM auxiliary theory can be written as HSx = HSx (X, 7, &;).

In turn, the Nekrasov partition function II(I];)t depends on an element g of a compact global
symmetry group involving both the Lorentz fugacities {x, y} as well as the global symmetry
fugacities «; for G. For the latter, it is clear that the G fugacities «; in Ii(nl?t will be identified with
the G fugacities &; in HSx = HSx(X, 7, &;). It remains to clarify the mapping between (x, y) and
(£, ).

To that matter, recall that both X and y have a clear geometrical meaning. Indeed, consider
the case of pointlike instantons on C2. As these have no internal structure, the Hilbert series will
be purely geometrical. Furthermore, it can be written [12,8] as PE[£($ + $~1)], which shows
that the moduli space is constructed with two dimension-1 generators transforming as an SU(2)
doublet. On the other hand, upon introducing complex coordinates {z1, 22}, C? is invariant under
SU2), x SU(2)p, acting each on the doublets {z1, zo} and {z1, Z2}. Then the coordinate ring
on C? is constructed in terms of monomials of the generic form Z|'z5 which obviously have
definite transformation properties under SU(2),,. Hence the SU(2) with fugacity § associated to
the adjoints directly maps to the SU(2), geometric symmetry on C?. Besides, the degree of the
monomial, basically given by § = n + m, directly maps to the fugacity x. As in polar coordinates,
both z; 7 are proportional to the radial coordinate, so we have that x is an R fugacity.

In turn, both (x,y) in Il(nl?t are SU(2) fugacities corresponding to the (compact) global
symmetry group element g. Note that SU(2) characters [n], ° are invariant under z <> z 1.
This “symmetry” is inherited by the generating function. In fact, because of the same rea-
son, it is easy to check that HSy($) = HS(3~"). Obviously, since % is not an SU(2) fugacity,
HSk(x) # HSk (x~1). However, it is possible to construct an invariant quantity under this trans-
formation by considering ITITS‘k()?) = x*HSk (x) such that ITITS'k()?) = IfL\S‘k()?_l) by appropriately
choosing a.

This is always possible because the Hilbert series is a function of the form [8,12,13]

Py(x,¥)
1Y (1 — femjdn)

where Py is a palindromic polynomial of X,  invariant under y <> =" of degree N. Besides,
also the denominator must be invariant under y <> !, In fact, such invariance follows from the
fact that the corresponding SU(2) symmetry is present already in the auxiliary ADHM quiver,
and hence its inherited by its F- and D-terms (the former ensures the invariance of the numerator,
while the latter ensures the invariance in the denominator). Besides, {c;,, d;;} are some integer
exponents. Note that, for simplicity, we have unrefined the G-fugacities (we will come back to
this point below).

HSy (%) = &)

1

3 We use the notation [n]; for SU(2) characters, where [1]; =z + 21 2]; = 224+ 1422 and so on.
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Since Py is a palindrome, the factor f,(y) multiplying " will be equal to the fy_, ()
multiplying £¥~". Hence, upon sending % to £~!, the combination f,%" + fy_,xV~" will go
to N (£, 2" + fy_nxN "), so that, under £ — £, the palindrome goes to itself up to a factor
of £~V On the other hand, since the denominator is invariant under $ <> 9!, for each term
(1 — x¢m $ldmly there must be a term (1 — £ $~191) This ensures that, upon sending £ — !,
the denominator transforms by picking an overall factor of £M " for some integer M’. Note that
naively one might worry of potentially dangerous factors of —1 which would be relevant if there
were an odd number of monomials in the denominator. Note that if that was the case, then in
particular, upon completely unrefining, the order of the pole of the Hilbert series at x = 1 would
be odd. However, the order of the pole of the unrefined Hilbert series at X = 1 coincides with
the complex dimension of the instanton moduli space, which, being a hyper-Kéhler variety, must
be an even number. Hence we conclude that such potentially dangerous factors of —1 in the
denominator transformation under £ <> £~! must all cancel among themselves. Thus, putting
the transformations of the numerator and the denominator together, we have that HS (™ =
X“HSx(x) for some a € Z.

Given that we can construct the function HSk (%) which shows the (%,3) — (7,57 in-
variance expected for SU(2) characters, it is then natural to identify I;L\S’k (X, 9, a;) with Ilg(s)t and
X <> x, y <> y. That is, we conjecture

T (6, v, ) = HSi(x, y, ). (©)

nst

Note that had we explicitly taken the G-fugacities into account by not unrefining when check-
ing the variation of HSy under X <> £~! nothing would have changed. This is because in the
ADHM auxiliary theory multiplets come in real representations, e.g. a hyper contains a funda-
mental and an antifundamental chiral in 4d ' = 1 notation. Thus «; <> a; ! will also leave HSy
invariant and the same manipulation as that done with y immediately shows that upon sending X
to X!, HSy only picks an overall factor .

Finally, note that in the 4d limit where one writes x = ¢/P(€11€2) y = piB(c1=€2) . — (iPdi gnd
sends B — 0 the leading behavior is not affected by the x¢. Hence, in the 4d limit, the instanton
partition function directly coincides with the Hilbert series as shown in e.g. [11].

3. Explicit check: pure SU(2) gauge theory and global symmetry enhancement

We now test our proposal with an explicit computation of a full index and compare it with the
known results in the literature. In [1] it was argued that a USp(2) gauge theory with Ny < 8 fun-
damental hypers should be a fixed point theory exhibiting, at the origin of the Coulomb branch,
an enhanced Ey 4 global symmetry due to massless instantonic particles. This was checked by
computing the exact index in [2,3]. On the other hand, this theory can be thought of as the N =1
case of a USp(2N) theory with one antisymmetric hypermultiplet and Ny fundamental hyper-
multiplets. For N = 1, when USp(2) = SU(2), the antisymmetric is a singlet and thus decouples.
Hence, for all practical purposes, the theory is a pure SU(2) gauge theory with Ny fundamental
hypers. On the other hand this theory can be regarded as the worldvolume theory on a stack of
N D4 branes probing an O8~ with Ny coinciding D8 branes. In turn, this system can be backre-
acted finding in the near-brane region an AdSe geometry [14], therefore strongly supporting that
the dual theory is a fixed point theory.

We will be interested in the Ny = 0 case for the minimal rank, that is, a pure USp(2) =
SU(2) gauge theory, for which we expect an enhanced SU(2) global symmetry due to instantonic
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Fig. 1. Quiver engineering k-instantons of U (2), the same as 1-instanton of SU(2) ~ USp(2).

particles, and to which our methods are directly applicable. Following the general expressions
above, the index will read

1—u?
I= | du " Ipertz-inst» (7N

2, . . .
where [ du I_M” is the integration over the gauge group with the SU(2) Haar measure. Further-
more, for the perturbative part it is straightforward to write that

— _ x(y‘i‘yil) “1\2
Ipen_PE[ (1—xy)(1—xy*1)((”+” ) 1)}. (8)

3.1. The non-perturbative part

Following our conjectured formula, we first need to compute the Hilbert series of the pure
SU(2) k-instanton on C? moduli space. The auxiliary ADHM quiver is shown in Fig. 1.
The quiver comes with the superpotential

W=Tr®[p1, 2]+ QP Q" )

Naively there is a global U(2) flavor symmetry. However, the U (1) part coincides with the
U(1) € U (k), and hence the global flavor symmetry will be just SU(2), whose fugacity we will
denote by u. It will correspond to the u gauge fugacity in Eq. (7). Besides, there is a global
SU(2) acting on ¢; whose fugacity, as described in Section 2, will be y. Finally, there will be an
x fugacity for the dimension of the operators. Once the Hilbert series is computed following the
methods in [8,9], as described in Section 2, we will construct the associated function invariant

under x < x~ 1.

3.1.1. One-instanton
This corresponds to the case k = 1 above. The F flat part of the Higgs branch yields

g;_{g =PE[(y+y )x+ (w+u")(r+r "x —x%], (10)

where r is the ADHM U (1) gauge group fugacity. Upon integrating over it we find the one-
instanton Hilbert series HS
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(1+x?)

HS| = 3 .
(1 =21 —ux?)(1 — DL —xy)

(1)

As expected, this is not invariant under x < x~!. Imposing such invariance by multiplying by
the adequate power of x fixes 7V = x2HS 1, which explicitly reads

st
-(1) _ X2(1 +X2)
=51 w1 - (A - xy)

One can compare this expression with previous results in the literature (see e.g. [2]) obtaining
exact agreement.

12)

3.1.2. Two instantons

This corresponds to the case k =2 in Fig. 1. In this case, since N. = N the gauge group
is not entirely broken. We can however compute the 2-instanton moduli space Hilbert series by
brute force using Macaulay?2 [15]. One can check that, enforcing the symmetry x <> x !, one

finds Il(nks)t = x*HS,. The final result is a bit cumbersome and can be written as

o _P
inst — @’ (13)

where

73:_u6x7y4+u4x9y4+u8x9y4+u4x11y4+M8x11y4+u4x13y4+u8x13y4

SISy Okt S _2uSx605 _ 00k 85 4 A 10y5 6,100,548, 10.5
oty Oy 12y5 81205 06,1405 06,1605 6,185 6,76

+u4x9y6+u8x9y6+u4x“y6+u8x11y6+u4x13y6+u8x13y6—u6x15y6,
and
Q= (* +u'x® =i (14 ")) (xr -y + 27y +03°) (v + 27y = x(14%))°
x (uty + % =l (14 y%)) (v + u'x®y — 23 (1 +y2)).

To give a flavor of the result, let us quote the fully unrefined index

_ x4(1 +x 4+ 3x% +6x3 +8x* + 6x5 +8x% + 6x7 +3x3 +x° +x10)
inst = (1 —x)8(1 + )4 (1 +x +x2)3 '

As in the one-instanton case, one can explicitly compare these expressions with results in the
literature (see e.g. [2]) obtaining again exact agreement.

Note that, up to the x* factor enforcing the x <> x~! invariance, the result is a palindrome
as expected for a hyper-Kéhler moduli space. Besides, the order of the pole at x =1 is 8. Since
the geometric Hilbert series of C? has a pole at x = 1 of order 2, this means that the reduced
instanton moduli space for 2 SU(2) instantons is 6-complex-dimensional, in agreement with [9].

(14)

1

3.2. The full index

As just shown, the instanton partition functions computed using our technique exactly agree
with the expected results in the literature. For the sake of completeness, let us now compute the



8 D. Rodriguez-Gomez, G. Zafrir / Nuclear Physics B 878 [PM] (2014) 1-11

full index just by combining the results above as described in Section 2 and integrating over u
in (7). Note that the k-instanton index enters at order x>*. Hence up to the 2-instanton order
computed here we can at most go up to x>. Up to that order we find

1 1+¢)2(1+y?
z=1+<1+—+q)ﬁ+f_iﬂl_illf
q qy
0?2 +4%y2 +9(1+y)’ + 221+’ +4°A +57)?) 4
+ 2,2 .
qa-y
LU0 +a% +9( 4522 + A+ +07°C+ 352 +20%)

g%y’

+(9(x6). (15)

It is a straightforward exercise to show that this expression precisely agrees with Eq. (4.9) in [2].
In particular, one can see the appearance of the SU(2) characters in g, hence explicitly showing
the enhanced global SU(2) symmetry.

All in all, we have shown the explicit agreement between the index computed following our
prescription with the known results in the literature up to order x. Going to arbitrarily higher
orders is a tedious but straightforward exercise. Note in particular that the prescription to select
the poles contributing is completely fixed: just those with positive power of x, this is inherited
from the original R nature of x in HS.

4. Exact index for a pure U (1) 5d SCFT

Let us now apply our technique to the case of pure U(1) gauge theory. Although U (1) in-
stantons are singular, we can consider the non-commutative deformation removing the small
instanton singularity. The exact index for a pure U (1) SCFT is

du
1= 7IinstIpert- (16)
Here, the perturbative part is simply

x(y+yH }
(I—xyd=xy™H [
Note that it does not depend on the U (1) fugacity u.
As for the instanton contribution, following our recipe, they arise from the Hilbert series on
the Higgs branch of the auxiliary ADHM quiver depicted in Fig. 2.
Denoting by r the ADHM U (1) fugacity, the F-flat part of the Higgs branch yields

Ton= PE[— (a7)

g;}-g=PE[(y+y_l)x +x(r+r_l)—x2]. (18)

Thus, upon integrating over the ADHM auxiliary U (1) gauge group and imposing the x <> x !,

the 1-instanton index is easily seen to be (see also [16])

1 _ X
T = T (=0 1
We can compute higher instanton indices. However, these are technically slightly more involved,
as the auxiliary AHDM gauge group will not be completely higgsed for k > 1. Computing by
brute force the Hilbert series using Macaulay?2 [15], one can see that
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Fig. 2. Quiver engineering k-instantons of U (1).

2 x2(1+x?%) I(¥)*+ I3
inst = 1 ) IV N . (20)
(I =xy)d —xy=HA —x2y9) (1 —xy~9) 2
This is just the second coefficient of the Taylor expansion in g of
xq
IN.(q) =PE : 21
st (@) [(1 —xy( —xy‘J .

In fact, Eq. (21) is to be expected. Since we have a pure U (1) theory, instantons are non-
interacting pointlike particles, and hence the k-instanton contribution is inherited from the
1-instanton. Furthermore, the fugacity ¢ above counts instanton number, and hence indeed coin-
cides with the original instanton fugacity. Indeed, one can check that higher order coefficients of
this expansion agree with the instanton index computed from the appropriate kK ADHM quiver.

Taking into account the south pole contribution — which is just the same upon doing ¢ — 1/g
— we find the instanton index

X
Tinst = PE 0. 22
‘ [(1—xy><1—xy—1)("+q )] .

Note that this coincides with the contribution to the index of a hypermultiplet, g playing the role

of the global symmetry fugacity. Hence, all in all, the exact index for the pure U (1) theory is
x(y+y7h x(q+q7" }

(I—=xy)(d=xy=) (I =xy)(I—xy~h)

7= PE[— (23)

5. Conclusions

In this article we have made explicit the connection between the Hilbert series of the moduli
space of instantons with the instanton index of 5d pure gauge theories. Since the Nekrasov in-
stanton partition formula involves compact symmetries, while the Hilbert series is a generating
function depending on an R fugacity, the mapping between Hilbert series and instanton index
requires “covariantizing” the Hilbert series so that the fugacity counting the dimension of op-
erators is converted into an SU(2) fugacity. We used the exact index computation of the pure
USp(2) ~ SU(2) theory to show the agreement of our proposal, displaying explicit computations
up to 2 instantons. It should be stressed that, although we are not displaying them to keep the
presentation contained, similar consistency checks have been performed up to higher k as well
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as on diverse other instanton indices for higher SU(N) groups obtaining perfect agreement with
the results in the literature.

It is immediate to ask how our procedure can be extended to compute instanton indices of
5d theories with extra matter in arbitrary representations. While it is not clear how to extend the
computation of the “Hilbert series” to moduli spaces of flavored instantons, comparison with [2]
suggests that one can incorporate the flavor contribution simply by multiplying g z» by an extra
factor incorporating information about the extra matter.

It would be very interesting to apply these techniques — or else the more standard methods
well known in the literature — to the computation of indices for the quiver theories introduced
in [17,18], in particular clarifying whether enhanced symmetries do indeed arise in the quiver
case. As these theories do admit an AdSe¢ dual, it would also be very interesting to study the
large N version of the index and compare with the SUGRA dual. It is natural to expect that
instantons correspond to spinning DO branes, and it would be very interesting to compute the
large N instanton index from the gravity dual.
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