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ABSTRACT  

Streptomycetes are mycelium-forming bacteria that produce two thirds of clinically 

relevant secondary metabolites. Secondary metabolite production is activated at specific 

developmental stages of Streptomyces life cycle. Despite this, Streptomyces 

differentiation in industrial bioreactors tends to be underestimated and the most 

important parameters managed are only indirectly related to differentiation: 

modifications to the culture media, optimization of productive strains by random or 

directed mutagenesis, analysis of biophysical parameters, etc. In this work the 

relationship between differentiation and antibiotic production in lab-scale bioreactors 

was defined. Streptomyces coelicolor was used as a model strain. Morphological 

differentiation was comparable to that occurring during pre-sporulation stages in solid 

cultures: an initial compartmentalized mycelium suffers a programmed cell death, and 

remaining viable segments then differentiate to a second multinucleated antibiotic-

producing mycelium. Differentiation was demonstrated to be one of the keys to 

interpreting biophysical fermentation parameters and to rationalizing the optimization of 

secondary metabolite production in bioreactors. 
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1. Introduction 

Streptomycetes are gram-positive, environmental soil bacteria that play 

important roles in the mineralization of organic matter. Streptomyces is extremely 

important in biotechnology, given that approximately two thirds of all clinical 

antibiotics and several other bioactive compounds are synthesized by members of this 

genus (Ruiz et al. 2010).  

Streptomycetes are mycelial microorganisms with complex developmental 

cycles that include programmed cell death (PCD) and sporulation (reviewed in Claessen 

et al. 2006; and Yagüe et al. 2013). In solid sporulating cultures, a compartmentalized 

mycelium (MI) initiates development. MI compartments are separated by septa formed 

by membranes which generally do not display thick cell walls (reviewed in Yagüe et al. 

2013). A fraction of MI cells undergo a highly ordered programmed cell death (PCD) 

(Yagüe et al. 2013), and remaining viable cells differentiate to a multinucleated 

mycelium that has only sporadic septa (MII). MII gradually begins to express the 

chaplin and rodlin proteins that assemble into the rodlet layer that, in turn, provides the 

surface hydrophobicity necessary to grow into the air (aerial mycelium) (reviewed in 

Claessen et al. 2006). At the end of the cycle, hypha septation and sporulation take 

place. MI fulfills the vegetative role in Streptomyces and MII constitutes the 

reproductive stage that is destined to sporulate and also produces secondary metabolites 

(Yagüe et al. 2013). In previous works, it was reported that differentiation in non-

sporulating liquid cultures (laboratory flasks) was similar to that occurring during the 

pre-sporulation stages in solid cultures (reviewed in Yagüe et al. 2013): an initial 

compartmentalized mycelium (MI) undergoes PCD and the remaining viable segments 



 4 

of this mycelium differentiate to a multinucleated mycelium (MII), i.e., the antibiotic-

producing mycelium (Yagüe et al. 2013). 

Most processes for secondary metabolite production are performed in 

bioreactors. Nevertheless, Streptomyces differentiation under these conditions has 

barely been studied, mainly due to the fact that most Streptomyces strains do not 

sporulate under these conditions. Streptomyces fermentation analysis and optimization 

has mainly been empirical and focused on the analysis of biophysical parameters, such 

as mycelial grouping (pellets, clumps), media composition, oxygenation, pH, agitation, 

temperature and, of course, levels of secondary metabolite production. Several studies 

have tested the optimal composition of culture media (Wentzel et al. 2012), analysing 

the kind of hyphae grouping that is best suited for secondary metabolite production 

(dispersed hyphae vs. clumps or pellets) (van Veluw et al. 2012, van Wezel et al. 2006), 

analysing the effects of bioreactor hydrodynamics on the physiology of Streptomyces 

(reviewed in Olmos et al. 2013), or optimizing productive strains by random or directed 

mutagenesis (van Wezel et al. 2006). However, the complex development of 

Streptomyces under these conditions has not been fully understood and, as a direct 

consequence, there is no general consensus as to how morphology and other biophysical 

parameters correlate with secondary metabolite production. Fermentation parameters 

need to be optimized empirically for each strain and compound. For example, pellet and 

clump formation has been described as essential for obtaining good production of 

retamycin or nikkomycin (Pamboukian and Facciotti, 2004), but in the case of 

virginiamycin, there is no relationship between morphology and secondary metabolite 

production (Yang et al. 1996); high dissolved oxygen tensions (DOT) have been 
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reported as necessary for the production of vancomycin (Dunstan et al. 2000), but not 

for the production of erythromycin (Clark et al. 1995), just to name a few examples.  

The main objective of this work is to extend understanding of Streptomyces 

differentiation to lab-scale bioreactors, defining the kind of differentiation present under 

these conditions, how differentiation, fermentation parameters and secondary metabolite 

production are correlated, and describing a general model applicable to improving 

secondary metabolite production in Streptomyces industrial fermentations. Streptomyces 

coelicolor is one of the best-characterized Streptomyces strains (Chater, 2001). It 

produces various secondary metabolites, including two well-characterized antibiotics: 

undecylprodigiosin and actinorhodin. In order to facilitate comparisons with 

differentiation and development in bioreactors and other developmental conditions 

(solid cultures and laboratory flasks), S. coelicolor was used in this work as a model 

strain.  

 

2. Materials and Methods 

2.1. Strains, media, and culture conditions 

S. coelicolor M145 was the strain used in this work. Cultures were performed in 

R5A sucrose-free liquid media (Fernandez et al. 1998). This culture medium contains 

MOPS buffer in sufficient concentration (100 mM) to maintain pH stable during 

cultivations. Laboratory flasks of 500 ml were filled with 100 ml of culture medium and 

incubated at 200 rpm and 30ºC. Bioreactor cultivations were performed in a 2-L 

bioreactor (Bio-Flo 110, New Brunswick Scientific, NJ, USA) equipped with a pH 

meter (Mettler Toledo, Switzerland), a polarographic dissolved oxygen electrode (InPro 

6830, Mettler Toledo, Switzerland), and rushton impellers. As described above, the 
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effect of pitched blade impellers in fermentations was also tested (data not shown). An 

initial working volume of 1.3 L at 30ºC and aeration of 1 L/min were used. Dissolved 

oxygen tension was set to a minimum of 3.8 mg/L (50% saturation), using an agitation 

interval of between 300 and 800 rpm, and pH was set at 6.8 using a computer-controlled 

peristaltic pump via automatic addition of 2 M KOH and 1M HCl.  

Flasks and bioreactors were inoculated directly with freshly prepared spores at 1 

x 10
7
 (“dense cultures”) or 1 x 10

5
 (“diluted cultures”) spores per ml. Where indicated, 

culture medium was supplemented with antifoam (Biospumex 153 K, BASF) to a final 

concentration of 1%. The effect of the antifoam in preventing early massive 

fragmentation/lysis was not so evident at lower concentrations (data not shown). More 

than 5 biological replicates were performed for each culture, and monitored 

morphologically and biochemically. However, extensive quantitative measurements 

were performed in only two of these biological replicates, and the quantitative data 

presented in the figures of this work correspond to the average ± SD of these two 

independent fermentations (biological replicates). 

 

2.2. Streptomyces coelicolor repeated batch cultivations 

“Dense cultures” (10
7
 spores/ml), growing in R5A sucrose-free medium 

amended with antifoam (1% of Biospumex 153 K, BASF), and using the growth 

parameters indicated above were grown in the bioreactor for 66 hours. After that time-

point, the full bioreactor contents were extracted into a 2-liter sterile bottle using a 

peristaltic pump connected to the inoculation port. Mycelial pellets were allowed to 

sediment in a static state for 5 minutes, after which supernatant was removed under 

sterile conditions. The volume of medium extracted was replaced by the same volume 
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of fresh, sterile, R5A medium amended with antifoam, and the whole culture was 

reintroduced into the bioreactor using again a peristaltic pump connected to the 

inoculation port.  

 

2.3. Determination of the oxygen uptake rate (OUR) and oxygen transfer rate (OTR) 

OUR was obtained from the slope of the plot of dissolved oxygen concentration 

over time following a momentary interruption of the air supply to the bioreactor. OTR 

was estimated according to the slope of dissolved oxygen recovery after aeration (fixed 

value of 1 L/min) and agitation (interval of between 300 and 800 rpm) was restored to 

the values present at the time at which the air supply was interrupted. OUR and OTR 

values were only estimated at developmental time points at which DOT values were less 

than 7 mg/L (90% saturation). 

 

2.4. Streptomyces sampling throughout the differentiation cycle 

Samples of S. coelicolor obtained from liquid cultures were centrifuged (7740 g, 

10 minutes at 4ºC). Supernatants of the culture medium were used to estimate 

extracellular proteins. Cellular extracts were obtained as follows: the mycelium pellets 

were resuspended in a known volume of buffer A (Tris–HCl 20 mM pH 8, EDTA 1 

mM, ß-mercaptoethanol 7 mM, and complete EDTA-free Protease Inhibitor Cocktail 

Tablets from Roche) and ruptured using Fast-Prep (MP™ Biomedicals) with ≤ 106 µm 

beads (Sigma, G8893500G) and three 20-s force 6.5 cycles, with 1 min on ice between 

each run. Finally, samples were centrifuged at 7740 g in an Eppendorf microcentrifuge 

for 15 min at 4°C; the resulting supernatant fraction was used as the cellular fraction.  
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2.5. Protein quantification 

Determination of protein concentrations was carried out with the Bradford assay 

(Biorad) and a bovine serum albumin standard (Sigma). Protein measured in the 

supernatants of culture medium corresponded to extracellular protein; protein measured 

in the cellular extracts corresponded to intracellular protein; and the sum of both, 

corresponded to total protein. 

 

2.6. Antibiotic quantification 

Undecylprodigiosin and actinorhodin were quantified spectrophotometrically 

according to Tsao et al. (1985) and Bystrykh et al. (1996). In order to measure the total 

amount of actinorhodin (intracellular and extracellular), cells were ruptured in their 

culture medium by adding KOH 0.1N. Cellular debris was discarded by centrifugation, 

and actinorhodin was quantified spectrophotometrically with a UV/visible 

spectrophotometer (Shimadzu, Model UV-1240), applying the linear Beer–Lambert 

relationship to estimate concentration (ε640 = 25,320). In the case of cultures with 

antifoam, acthinorhodin spectrophotometric measurements were performed at 4ºC, in 

order to prevent interference with turbidity due to the antifoam. Undecylprodigiosin was 

measured after vacuum drying the culture (including the mycelium and culture medium) 

followed by extraction with methanol, acidification with HCl (to 0.5M), and 

spectrophotometric assay at 530 nm, again using the Beer–Lambert relationship to 

estimate concentration (ε530 = 100,500). In all cases, for the high concentration 

solutions, dilutions were performed to conduct the analysis in the linear Beer–Lambert 

region.  
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2.7. Viability staining 

Culture samples were obtained and processed for microscopy at different 

incubation time points, as previously described (Manteca et al. 2008). Cells were 

stained with a cell-impermeant nucleic acid stain (propidium iodide, PI) in order to 

detect the dying cell population and with SYTO 9 green fluorescent nucleic acid stain 

(LIVE/DEAD Bac- Light Bacterial Viability Kit, Invitrogen, L-13152) to detect viable 

cells. The SYTO 9 green fluorescent stain labels all the cells, i.e. those with intact 

membranes, as well as those with damaged ones. In contrast, PI penetrates only bacteria 

with damaged membranes, decreasing SYTO 9 stain fluorescence when both dyes are 

present. Thus, in the presence of both stains, bacteria with intact cell membranes appear 

to fluoresce green, whereas bacteria with damaged membranes appear red. After leaving 

them for at least 10 minutes in the dark, the samples were examined under a Leica TCS-

SP2-AOBS confocal laser-scanning microscope at a wavelength of either 488 nm or 

568 nm excitation and 530 nm (green) or 630 nm (red) emission, respectively (optical 

sections about 0.2 µm). Images were mixed using Leica Confocal Software. In some 

cases, samples were also examined in differential interference contrast mode, available 

with the same equipment.  

S. coelicolor unstained samples were used as controls to determine the minimum 

photomultiplier tube (PMT) gain necessary to detect autofluorescence in the confocal 

microscope. Green autofluorescence (Willemse and van Wezel, 2009) can interfere with 

green fluorescent fluorochromes as occurs, for instance, with GFP (Manteca et al. 2008; 

Willemse and van Wezel, 2009), and they can potentially interfere with SYTO9 green 

stain. However, in practice, there is no interference because the intensity of green 

autofluorescence is negligible when compared to the SYTO9 green fluorescence. 
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Tenconi et al. (2013) have recently demonstrated the existence of red autofluorescence 

associated with undecylprodigiosin that displays an excitation-emission spectrum 

similar to PI. Under the experimental conditions used in this work, red autofluorescence 

was significantly less than PI fluorescence and the minimum PMT gain necessary to 

observe it was 860 volts (using the 63x objective), 60% more than the PMT gain used to 

observe PI fluorescence (535 volts under the 63x objective) (data not shown). Despite 

this, red autofluorescence was not negligible, and some of the red fluorescent 

background detected at later time points in the centres of mycelial pellets may be 

derived from undecylprodigiosin. 

The antifoam used had green autofluorescence, however its intensity was very 

low in comparison with the SYTO9 green fluorescence. In addition, antifoam could be 

not confused with stained hyphae, because it was completely amorphous. 

More than 30 images were analysed for each developmental time point in a 

minimum of three independent cultures. The percentage of sporulation and MI 

compartmentalized hyphae were estimated by counting 200 hyphae, from different 

pictures, and different biological replicates, visualized independently in the same focal 

plane. 

 

2.8. Nuclease activity gel analysis (zymograms) 

Nucleases were separated in a 12% gel by SDS–PAGE containing 10 µg/ml of 

denatured calf thymus DNA (Sigma); 8.5 µg of protein were used per well. When 

necessary, protein samples were concentrated by filtration using Vivaspin 20 (10,000 

molecular weight cutoff, Sartorius). After electrophoresis, the proteins were renatured 

by repeatedly washing the gel with the renaturation buffer (Tris–HCl 25 mM, pH 8.8, 
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EDTA 1 mM, ß-mercaptoethanol 7 mM) for 2 h at 4ºC. Nuclease activity was 

visualized by incubating the gels for 20 minutes at 37ºC in 20 mM Tris–HCl (pH 8.0), 7 

mM 2-mercaptoethanol, 10 mM MgCl2, 5 mM CaCl2 and 10% DMSO buffer, as 

reported elsewhere (Nicieza et al. 1999), followed by staining with ethidium bromide 

and analysis under UV light. Micrococcal nuclease (16.7 kDa) and bovine pancreatic 

DNase I (31 kDa) (Amersham Pharmacia Biotech) were included as positive controls. 

The reproducibility of the data shown was corroborated by at least three independent 

cultures and nuclease analysis at various developmental time points. 

 

 

3. Results and discussion 

3.1. Differentiation of Streptomyces coelicolor M145 in 2L-bioreactors 

In order to facilitate comparison of Streptomyces differentiation in bioreactors 

with differentiation previously reported in laboratory flasks, a workflow similar to that 

used in flask cultures (Manteca et al. 2008) was utilized: R5A culture medium (without 

antifoam) were inoculated with either10
7
 spores/ml (“dense cultures”) (Fig. 1, and 

Supplementary Fig. S1) or 10
5
 spores/ml (“diluted cultures”) (Supplementary Fig. S2, 

and Supplementary Fig. S3). Despite the fact that some foam was formed in the 

bioreactor, it was not excessive, and cultures were initially performed without 

defoamers, in order to facilitate direct comparison with differentiation previously 

described in flask cultures (Manteca et al. 2008). Morphological differentiation was 

analysed by means of confocal microscopy on cultures stained with the vital stains 

SYTO9 and propidium iodide (see Methods for details). At early time points, 100% of 

the hyphae presented the regular discontinuities and gaps (Supplementary Fig. S1E) 
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previously described for MI hyphae (Manteca et al. 2008). MI differentiated into a 

second multinucleated mycelium (MII) that had only sporadic gaps (compare MI 

hyphae from Supplementary Fig. S1E with MII hyphae from Supplementary Fig. S1F). 

There was also a transition phase in which some segments of the MI started to grow in 

the form of hyphae with more widely spaced septa (MII) while other parts of the hyphae 

remained in the MI stage (data not shown). Cell death started in the centres of MI 

mycelial pellets (propidium iodide staining) (Supplementary Fig. S1A) and exhibited 

the hallmarks previously reported for Streptomyces PCD (reviewed in Yagüe et al. 

2013), including the activation of non-sequence specific nucleases involved in 

chromosomal DNA degradation (Supplementary Fig. S4A).  

One of the most important differences observed in the bioreactor with respect to 

laboratory flasks for the Streptomyces strain and culture conditions used in this work, 

was the existence of massive fragmentation and disintegration of mycelial pellets at 

around 50 hours of fermentation. This massive disintegration was observed 

microscopically, in the irregular shape of the pellets (Supplementary Fig. S1B) or the 

fissures crossing them internally (Supplementary Fig. S1C), and macroscopically, in the 

form of the apparent clarification of the culture medium (notice that bioreactor probes 

are clearly visible in the bioreactor vessel) (Supplementary Fig. S1L,M). This pellet 

disintegration correlated with a sudden fall in intracellular protein levels (Fig. 1A), 

which decreased from 0.1 mg/ml prior to the massive pellet disintegration to 0.0002 

mg/ml after that. The few pellets that did not lose their integrity continued to grow in 

diameter (up to 530-600 µm in the “dense cultures”) (Supplementary Fig. S1D). Most of 

the biomass in these pellets corresponded to dying cells (red staining) (Supplementary 

Fig. S1D) and, consequently, the number of remaining viable hyphae (green staining) in 
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the bioreactor following massive pellet disintegration was extremely low. This kind of 

mycelial disintegration has been previously described as “massive lysis” in several 

Streptomyces fermentations, such as S. clavuligerus (reducing mycelium by more than 

30%) (Roubos et al. 2001), Streptomyces spp. (Techapun et al. 2003), Streptomyces 

albulus (Shih and Shen, 2006), or S. coelicolor (Ozergin-Ulgen and Mavituna, 1993), to 

name just a few examples. This “massive lysis” differs from the “fragmentation of the 

mycelial clumps” described in some cases (van Wezel et al. 2006), which basically 

consists of the fragmentation of large clumps into small clumps, but without the early 

massive hyphal lysis reported in this work as well as others (Ozergin-Ulgen and 

Mavituna, 1993; Roubos et al. 2001; Shih and Shen, 2006; Techapun et al. 2003). The 

reason why this phenomenon occurred in some streptomycetes and not in others 

remains unknown. In S. coelicolor growing under the growth conditions used in this 

work, true lysis started in hyphae located at the centres of the pellets (beginning at times 

as early as 15 hours) (Supplementary Fig. S1A), long before massive fragmentation 

took place (around 50 hours) (Supplementary Fig. S1B,C). This massive pellet 

disintegration did not occur in laboratory flasks (Manteca et al. 2008), where it was 

observed neither macroscopically nor microscopically (data not shown), as reflected by 

the absence of the dramatic decrease in the intracellular protein described above in the 

bioreactor cultures (Fig. 1A). Hence, it seems that massive pellet disintegration depends 

on the hydrodynamics of the bioreactor combined with the tendency of S. coelicolor to 

form large pellets under the culture conditions used in this work.  

Another important difference between bioreactor- and laboratory flask-cultured 

samples was the existence of a sporulation-like process, beginning at around 70 hours, 

and affecting some 5% of hyphae that remained viable at these time points (see 



 14 

quantification criteria in Methods). Two of the most important features of sporulation, 

division and separation of nucleoids (Supplementary Fig. S1G), and the physical 

strangulation of hypha forming chains of individual round segments (Supplementary 

Fig. S1H), were observed. Further work will be necessary to characterize if these round 

segments present the resistance properties characterizing Streptomyces spores formed in 

solid cultures (Lee and Rho, 1993).  

Antibiotic production was accelerated in the bioreactor, peaking at 100-140 

hours in laboratory flasks vs. 50 hours in the bioreactor (Fig. 1C,D). MII differentiation 

was slightly accelerated, from 50 hours in laboratory flasks (Manteca et al. 2008) to 

around 40 hours in the bioreactor (Supplementary Fig. S1 and data not shown). 

Antibiotic biosynthesis was halted after pellet disintegration, with maximum 

undecylprodigiosin production levels slightly lower in the bioreactor with respect to the 

laboratory flasks (0.02 mM vs. 0.06 mM observed in flasks) (Fig. 1C) and dramatically 

lower in the case of actinorhodin (0.007 mM vs. 1 mM observed in flasks) (Fig. 1D). 

These results match previous works reporting that undecylprodigiosin and actinorhodin 

are synthetized differentially in S. coelicolor fermentations (Sevcikova and Kormanec, 

2004) and illustrates the important and well-known issue that, in addition to hyphal 

differentiation, there are specific regulatory mechanisms for different secondary 

metabolites.  

Biophysical fermentation parameters, such as dissolved oxygen tension (DOT), 

agitation, and oxygen uptake rates (OUR), correlated well with differentiation (Fig. 1G-

I): DOT fell from saturation to a fixed level (50% saturation), probably due to hyphal 

growth and respiration (Fig. 1G); there was a concomitant increase in agitation to 

maintain oxygen levels at the fixed level (Fig. 1H); once pellet disintegration started 
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(see above), biological oxygen consumption and agitation decreased gradually, and 

dissolved oxygen levels increased suddenly to saturation. OUR values peaked at 20 

hours (MI stage) (Fig. 1I) and fell during the PCD of the MI; they also did not recover 

during the MII stage, probably due to early massive pellet disintegration/lysis described 

above. OUR values were consistently lower than oxygen transfer rates (OTR) (data not 

shown), indicating that oxygen did not limit growth at any time. Interestingly, 

Streptomyces coelicolor OUR values measured in this work were quite low, with peak 

values of 30 mg/Lh (Fig. 1I). This might be a direct consequence of the unusual 

development of S. coelicolor, in which most of the biomass in the mycelial pellets is 

dying and therefore does not consume oxygen. This constitutes an elegant example of 

the importance of understanding Streptomyces differentiation, so as to be able to 

interpret classical biophysical fermentation parameters in the model strain S. coelicolor 

and conceivably in other industrial relevant streptomycetes, which is one of the most 

important conclusions of this work. Information concerning oxygen uptake kinetics of 

Streptomyces cultures is scarce despite their industrial importance. OUR values vary 

widely between strains, from 2.88 mg O2 g cell
-1

 h
-1

 in S. lividans (Magnolo et al. 1991) 

to 320 mg O2 g cell
-1

 h
-1

 in S. clavuligerus (Yegneswaran et al. 1991). The meaning of 

these differences is difficult to interpret due to the absence of any indication as to 

mycelium differentiation/PCD in most of these works. Ozergin-Ulgen and Mavituna 

(1998) described maximum OUR values for S. coelicolor of 192 mg/Lh, 6.4-fold higher 

than the maximum OUR detected in this work for the same strain. This might be due to 

important differences in the bioreactor vessel used in Ozergin-Ulgen and Mavituna 

work (1998), which had large baffles instead of the smooth vessels used in this work. 

Baffles are in fact routinely used in laboratory flask cultures to prevent pellet formation 
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in S. coelicolor (Kieser et al. 2000), and a dispersal growth could prevent cell death and 

increase OUR. An analysis of hyphae differentiation, development and PCD would be 

essential to address these differences in OURs between different Streptomyces strains 

and culture conditions. 

Inoculation density is one of the well-known fermentation parameters that is 

usually conducive to modifications in growth and production. In order to test how this 

parameter would affect differentiation in the bioreactors, a 100-fold dilution, 10
5
 

spores/ml (“diluted cultures”), was used. The same kind of differentiation described 

above for “dense” culture, was also observed in “diluted” cultures (Supplementary Fig. 

S2, and Supplementary Fig. S3): MI differentiated to MII (Supplementary Fig. S2) after 

a PCD that activated the non-sequence specific nucleases (Supplementary Fig. S4B); 

there was an early massive lysis of pellets (Supplementary Fig. S2), and sporulation-like 

processes were also observed (Supplementary Fig. S2) affecting approximately 5% of 

the hyphae. Massive pellet disintegration occurred at similar developmental time points 

in “dense” and “diluted” cultures (50 hours, when the pellet diameter was 500 µm), but 

the biomass (number of pellets) was much lower in “diluted” compared to “dense” 

cultures: 0.016 mg/ml of intracellular protein in “diluted” (Supplementary Fig. S3A) vs. 

0.07 mg/ml in “dense” cultures (Fig. 1A). Antibiotic production, DOT, agitation, and 

OUR also correlated well with differentiation (Supplementary Fig. S3G-I).  

 

3.2. Differentiation of Streptomyces coelicolor M145 in 2-L bioreactors supplemented 

with antifoam 

As commented above, the onset of antibiotic production in the bioreactor was 

more rapid than in laboratory flasks (Manteca et al. 2008), but the final levels of 
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production were very low. In order to improve production in the bioreactor, growing 

conditions were modified to try to prevent the early massive lysis, so growth would 

more to resemble the development observed in flasks. The most obvious difference 

between bioreactors and laboratory flasks is the impellers used for agitation in the case 

of the bioreactor, so the first experimental approach to trying to prevent lysis was to 

reduce agitation to minimum levels (50 rpm),; however, the same extension of pellet 

disintegration was observed (data not shown). Similar results were observed at different 

agitation rates (50, 100, 200, or 300 rpm) (data not shown). Second, Rushton impellers 

were replaced by a gentler impeller (pitched blade impellers), but similar results were 

again obtained (data not shown). Finally, the culture medium’s rheology was modified 

reducing surface tension by means of an antifoam agent (Biospumex 153 K, BASF), at 

a concentration of 1%. Under these conditions, massive fragmentation of the pellets was 

avoided, as observed under the confocal microscope (compare Supplementary Fig. 

S1B,C with Supplementary Fig. S5B, noting the absence of fissures in the pellets) and 

macroscopically by the high turbidity of the cultures (compare Supplementary Fig. S5K, 

L with Supplementary Fig. S1L, M). The change was also reflected in the high levels of 

intracellular protein, which reached a maximum of 0.6 mg per ml (Fig. 1A) vs. the 0.1 

mg/ml observed in cultures without antifoam (Fig. 1A). This effect of preventing early 

fragmentation/lysis was only observed at relatively high concentrations of antigoam 

(1%, see Methods for details). The reason why antifoam prevents pellet disintegration is 

as yet unknown; however, the antifoam tended to coat the mycelial pellets (as can 

observed by its own autofluorescence in Supplementary Fig. S5C) and the hydrophobic 

forces generated may have prevented this phenomenon. Antifoams are often used with 

Streptomyces coelicolor (Wentzel et al. 2012) as well as other Streptomyces 
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fermentations to prevent foam formation, or even, in some cases to be used as carbon 

sources (Perlman and Wagman, 1952). They are usually added automatically in small 

amounts when foam is detected by a specific probe, and in some cases, they are added 

directly to the culture medium at concentrations up to 0.1% (Wentzel et al. 2012). 

However, to the best of our knowledge, this is the first time that early pellet 

fragmentation/lysis has been demonstrated to be prevented by adding antifoam to the 

culture media at relatively high concentrations, a fact that might be useful for preventing 

lysis in other industrial streptomycetes.  

 Under the conditions used in this work, antifoam led to a moderate increase in 

undecylprodigiosin production (0.05 mM vs. 0.02 mM in the case of cultures without 

antifoam) (Fig. 1C), but it was also slightly delayed when production was referenced to 

cellular protein (Fig. 1E). This level of production was comparable to the production 

observed in laboratory flasks (0.05 mM) (Fig. 1C). Actinorhodin production was also 

increased with respect to cultures without antifoam (0.06 mM in cultures with antifoam 

vs. 0.006 mM in cultures without antifoam), although it was far from the production 

levels obtained in laboratory flasks (1 mM) (Fig. 1D). Similar to the arrest in cellular 

metabolism associated with sporulation in solid sporulating cultures (Chater and 

Horinouchi, 2003), inhibition of actinorhodin production might be a consequence of a 

change in hyphae metabolism/differentiation, affecting most of the hyphae, and 

culminating in the sporulation-like processes which continued to affect some 5% of the 

hyphae in the case of “dense cultures” amended with antifoam (Supplementary Fig. 

S5F,G).  

Biophysical fermentation parameters also correlated well with differentiation in 

cultures with antifoam (Fig. 1G-I): DOT fell from saturation (100%) to the set level 
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(50% saturation) (Fig. 2G), leading to increased agitation (Fig. 1H); the absence of 

pellet disintegration might prolong the oxygen consumption phase, generating the two 

peaks of OUR separated by a stage of low oxygen consumption (Fig. 1I). The latter may 

reflect a transient arrest in metabolism (oxygen consumption) preceding MII 

differentiation similar to that previously reported in laboratory flasks (reviewed in 

Yagüe et al. 2013). These two maxima in OUR were very unusual, and are another nice 

illustration of the necessity of understanding Streptomyces differentiation in order to 

interpret fermentation parameters. As in the case of fermentations without antifoam, 

oxygen levels did not limit growth; OUR levels were consistently lower than OTR 

values at any given point in time (data not shown).  

Antifoam also prevented pellet disintegration in the “diluted” cultures 

(Supplementary Fig S3, and Supplementary Fig. S6). Interestingly, the sporulation-like 

processes observed in “dense” cultures amended with antifoam were not observed in the 

“diluted” cultures (Supplementary Fig. S6F). Sporulation in S. coelicolor liquid cultures 

is very unusual and to the best of our knowledge, has only been reported once before in 

laboratory flasks suffering nutritional downshifts (Daza et al. 1989). The differentiation 

signals activating sporulation in the bioreactors remain unknown. However, if it is 

considered that sporulation is triggered by environmental/biological stresses (Chater, 

2001), the high growth rates achieved in the bioreactors together with pellet 

disintegration might approach the development occurring in stressed solid sporulating 

cultures. In the absence of pellet disintegration, putative differentiation diffusible 

signals (Chater et al. 2010; Horinouchi and Beppu, 1992) generated by stressed cells 

suffering PCD (Yagüe et al. 2013) would be hidden in the centres of the pellets.  
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The highest levels of antibiotic production were reached in the “diluted cultures” 

amended with antifoam. The maximum production levels were around 0.2 mM in the 

“diluted” cultures (Supplementary Fig. S3C,D) vs. 0.05 mM obtained in the “dense” 

cultures with antifoam (Fig. 1C,D) for both, undecylprodigiosin and actinorhodin. By 

contrast, growth in the “diluted” cultures, measured as total protein per ml, was half that 

in the “dense” cultures (compare Fig. 1B and Supplementary Fig. S3B). As a 

consequence, the sporulation-like processes observed in some 5% of the hyphae in the 

cultures without antifoam and in the “dense” cultures with antifoam correlate with a 

block in the production of secondary metabolites in the whole mycelium. This is 

another example of how growth/biomass production is not sufficient to guarantee 

secondary metabolite production in Streptomyces.  

 

3.3. Optimization of MII differentiation and antibiotic production in Streptomyces 

coelicolor fermentations: repeated batch cultivations 

As outlined in Figure 2A, the highest levels of antibiotic production were 

reached by preventing pellet disintegration (using antifoams), blocking sporulation-like 

processes (using low inocula; i.e. slow growth rates), and prolonging the antibiotic-

producing phase (MII). In spite of that, antibiotic production was faster in the “dense 

cultures” (maximum undecylprodigiosin levels at 60 hours) (Fig. 1C) than in the 

“diluted cultures” (maximum undecylprodigiosin levels at 80 hours) (Supplementary 

Fig. S3C). The possibility of combining the rate of antibiotic production reached in the 

“dense cultures” with the high yields obtained in the “diluted cultures” was tested. To 

do so, the possibility of repressing the sporulation-like processes observed in “dense 

cultures” was explored, by replacing culture medium with fresh medium once 
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undecylprodigiosin reached maximum levels (66 hours) (Fig. 1C) but prior to 

sporulation. Under these conditions, there was no significant increase in mycelial 

biomass (measured as either total or intracellular protein/ml; data not shown). The 

mycelium remained at the MII stage (Supplementary Fig. S7) and there was not 

sporulation (Supplementary Fig. S7). After an unsurprising delay of approximately 20 

hours, there was very rapid production of actinorhodin (0.004 mmol/Lh, 4-fold faster 

than in the original culture) (Fig. 3A). In the case of undecylprodigiosin, there was also 

a delay of 20 hours prior to production, but in this case, production was very weak (Fig. 

3B), which once again demonstrates that in addition to differentiation there are specific 

regulators for different secondary metabolites. Moreover, the production of both 

antibiotics normalized by total protein was consistently higher in the repeated batch 

cultivation than in the original cultures (Fig. 3C,D). This kind of experimental workflow 

opens up the possibility of maintaining the mycelium in the productive stage (MII) 

indefinitely, replacing culture medium periodically after MII differentiation and once 

antibiotic production has already peaked.  

 

3.4. Future perspectives 

Different streptomycetes show different behaviours in liquid cultures: some 

species form large pellets, such as S. coelicolor, others growth more dispersed, as for 

instance S. clavuligerus (Roubos et al. 2001), while still others such as S. griseus 

sporulate (Kendrick and Ensign, 1983) etc. As a consequence, the effect of fermentation 

parameter modifications in different species cannot be easily predicted. The workflow 

proposed here for S. coelicolor (optimization of antibiotic-producing mycelium 

differentiation, prevention of sporulation) might be applied to rationalizing the 
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biological effects of classical biophysical fermentation parameters, and to facilitating 

the optimization of secondary metabolite production in industrial streptomycetes. In 

addition, preventing early massive pellet fragmentation/lysis by adding antifoam 

directly to the culture medium at relatively high concentrations is novel, and may be 

useful for preventing lysis in other industrial streptomycetes.  

 

4. Conclusions 

The most important conclusions reached in this work, were: first, the existence 

of a progressive morphological differentiation in S. coelicolor growing in lab-scale 

bioreactors (PCD, MII differentiation, pellet disintegration, and a kind of sporulation) 

comparable to that occurring in solid cultures; second, it was demonstrated that this 

differentiation is one of the keys to interpreting typical fermentation parameters 

(growth, antibiotic production, dissolved oxygen tension, agitation and oxygen uptake 

rates) (outlined in Fig. 2B); third, a general consensus to improve secondary metabolite 

production in S. coelicolor was proposed: optimization of the differentiation of the 

antibiotic-producing mycelium (MII).  
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Figure Captions 

Fig. 1. Time-course of fermentation parameters. The data correspond to “dense 

cultures” (10
7
 spores/ml) of Streptomyces coelicolor M145. Green lines, 2-L 

bioreactors, R5A without antifoam; red lines, 2-L bioreactors, R5A with antifoam; gray 

lines, laboratory flasks, R5A without antifoam. (A), (B), Growth curves (intracellular 

protein and total protein). (C), (D), (E), (F), Antibiotic production (undecylprodigiosin 

and actinorhodin). Actinorhodin levels in the laboratory flasks in (D) and (F) have their 

own scales on the right. Time points at which maximum antibiotic productions was 

reached are indicated. (G), (H), (I), DOT, Agitation and OUR. Values are the average ± 

SD from two biological replicates.  

 

Fig. 2. Scheme illustrating S. coelicolor differentiation in bioreactors. (A) S. coelicolor 

differentiation growing in R5A sucrose-free medium with and without antifoam, at two 

spore inoculations (10
5
 and 10

7
 spores/ml). Red corresponds to dying hyphae (PI 

staining) and green to viable hyphae (SYTO9 staining). The optimal fermentation 

workflow is highlighted in red. (B) Comparison between classic (black letters) and new 

(red letters) fermentation parameters established in this work. See text for details. 

 

Fig. 3. Time-course of antibiotic production in Streptomyces coelicolor repeated batch 

fermentations. (A) Undecylprodigiosin (mM). (B) Actinorhodin (mM). (C) 

Undecylprodigiosin (mmoles / mg total protein). (D) Actinorhodin (mmoles / mg total 

protein). Rates of actinorhodin production (slopes) are indicated in the graphs. 
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Antibiotic concentration values are the average ± SD from two biological replicates. See 

text for details. 


