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Abstract

A new bootstrap test is introduced that allows for assessing the significance of

the differences between stochastic algorithms in a cross-validation with repeated

folds experimental setup. Intervals are used for modeling the variability of the

data that can be attributed to the repetition of learning and testing stages over

the same folds in cross validation. Numerical experiments are provided that

support the following three claims (1) Bootstrap tests can be more powerful

than ANOVA or Friedman test for comparing multiple classifiers (2) In the

presence of outliers, interval-valued bootstrap tests achieve a better discrimina-

tion between stochastic algorithms than nonparametric tests and (3) Choosing

ANOVA, Friedman or Bootstrap can produce different conclusions in experi-

ments involving actual data from machine learning tasks.
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1. Introduction

The most common experimental setup for comparing multiple machine learn-

ing algorithms is k fold cross-validation. Data sets are broken into k disjoint

subsets of approximately equal size. For each fold, a subset is removed, the

system trained on the remaining data and tested on the held-out subset. The

training sets overlap, but all test sets are independent [22].

Cross validation is often combined with a single factor repeated measures

experimental design [5]. This is a design with one response variable, where each

experimental unit is measured multiple times in this variable. In the context of

this contribution, experimental units are the algorithms being compared. The

values of the response variable are the averages of the k test values obtained for

each pair (algorithm, dataset) with the cross-validation setup. The significance

of differences between algorithms is assessed with repeated-measures ANOVA or

its non-parametric equivalent, the Friedman test [5]. Multiple comparisons tests

are accompanied by post-hoc tests that assess the relevance of paired differences

between algorithms [6, 9, 10].

Algorithms whose output depends only on training and test sets are called

deterministic, and those that also depend on a random seed are called stochastic

[17]. For comparing stochastic algorithms, the variability added by the random

seed must be accounted for by repeating each fold a number of times. In this

case the single factor repeated measures experimental design cannot be applied.

There are designs considering multiple independent observations per cell [14],

but according to [5] they cannot be applied to this problem because repeating

training/test episodes breaks the independence assumption of the test values,

thus analyzing the variance of the repetitions of folds in cross validation is a yet

unresolved problem.

In this paper it is proposed that intervals are used for describing the part of

the variability of the data that can be attributed to the repetition of learning

and testing stages over the same sets. Each group of non independent repeti-

tions will be consolidated into a single interval-valued measure of the response
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variable, thus the single factor repeated measures design can still be applied.

The drawback of the proposal is the need of extending the experimental de-

sign and statistical tests to interval-valued data [8]. In this respect, extending

ANOVA or Friedman tests to interval data would be feasible, but involves an

optimization task that is computationally costly. On the contrary, there exist

efficient algorithms for the particular case of bootstrap tests for interval data

[3]. This raises the question about whether bootstrap tests improve ANOVA or

Friedman tests for this particular problem. It will be shown that the answer is

positive, thus a new bootstrap test is introduced that allows for assessing the

significance of the differences between stochastic algorithms in a cross-validation

with repeated folds experimental setup.

The structure of this paper is as follows: in Section 2 the interval represen-

tation is introduced, and the general procedure for extending paired tests to

interval data recalled. In Section 3 the proposed bootstrap tests are defined for

point and interval data. In Section 4 a numerical analysis is included where the

following three conclusions are supported by data: (1) Boostrap tests can be

more powerful than ANOVA or Friedman test for comparing multiple classifiers

(2) In the presence of outliers, interval-valued bootstrap tests achieve a better

discrimination between stochastic algorithms than nonparametric tests and (3)

Choosing ANOVA, Friedman or Bootstrap can produce different conclusions

in experiments involving actual data from machine learning tasks. The paper

concludes in Section 5, with the concluding remarks and future work.

2. Interval-valued representations and statistical tests

Consider the example shown in Figure 1. Test errors after 100 executions

of two stochastic algorithms are plotted. Results of the first algorithm are

drawn with squares, and those of the second are drawn with diamonds. The

experimental setup is 10-cv with 10 repetitions. Horizontal axis are folds, and

the vertical axis represents the classification error of each training/test pair.

Repetitions of the ‘square’ algorithm form compact clouds, but some execu-
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Figure 1: 10 cv-based comparison to two stochastic algorithms. Left: 10 repetitions of each

algorithm. Center: solid red and blue symbols mark sample means of each fold. Right: solid

symbols mark interquartile ranges of the same folds.

tions of the ‘diamond’ algorithm were trapped in local minima. Average errors

of both are the same (see Figure 1, central part) but the typical error of the

diamonds is better, as shown in the interquartile ranges in the rightmost part

of the same figure. Different facts can be tested with this data:

• If the null hypothesis is average accuracies of algorithms are the same,

both algorithms seem to be similar. However, the experimental design is

not adequate for drawing this conclusion. The sample mean is not a good

estimator of the test error of the diamond algorithm, because different

repetitions for the same fold are not independent, as mentioned in the

introduction. For instance, should the data set contain one instance that

disrupted the learning algorithm, this instance would be a part of the

training set in ninety percent of the experiments, heavily biasing the error

estimate. It is a well known fact that cross validation should not be

applied to algorithms that are not stable with respect to the data set, i.e.

to algorithms for which a small change in the training set triggers large

deviations in the test error [15]. Stochastic algorithms are unstable in the

sense that if they converge to local minima, large changes in the test error

may occur without modifying the training set.
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• If the null hypothesis is typical accuracies of algorithms are the same, then

the diamond algorithm is better. “Typical accuracy” can be understood

either as median, censored mean or interquartile range, to name some

robust estimates. The percentage of repetitions that must be kept and

discarded for obtaining a robust estimate can be estimated with addi-

tional experiments about the convergence ratio of the learning algorithm.

Intervals are arguably more informative than punctual estimations for this

purpose. Some authors claim that they allow for better modeling of asym-

metrical distributions [18]. For instance, the smallest intervals covering at

least 10% of repetitions of each algorithm could be used for describing the

typical range of accuracies. Centers of these intervals provide information

about the mode of the distribution of the repetitions. Their widths inform

about the dispersion of the same distribution.

For deciding whether the differences between interquartile ranges of dia-

monds and squares in Figure 1 could have happened by chance or not, a statis-

tical test for interval data must be used. Different extensions of statistical tests

to interval-valued data have been proposed (see [3] for a discussion about this

subject). The generalization used in this paper for paired tests is described in

the remaining of this section. Multiple comparison tests will be addressed in

Section 3.

Let ([qa1−, q
a
1+], . . . , [qak−, q

a
k+]) and ([qb1−, q

b
1+], . . . , [qbk−, q

b
k+]) be interval val-

ued measurements of the typical accuracy of two classifiers a and b in k folds.

Let xa = (xa1 , x
a
2 , . . . , x

a
k) and xb = (xb1, x

b
2, . . . , x

b
k) be two vectors of k real

numbers each. Lastly, let the test being generalized be defined by a function

p(xa, xb) that maps each pair (xa, xb) to the probability of the null hypothesis

being false (p-value), given that xa and xb are the test errors of either classifier

at each fold.

Given two vectors of intervals

([qa1−, q
a
1+], . . . , [qak−, q

a
k+]) (1)
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and

([qb1−, q
b
1+], . . . , [qbk−, q

b
k+]), (2)

the p-value of the extended test is defined as the interval [p−, p+], where

p−(xa, xb) = inf{p(xa, xb) | xai ∈ [qai−, q
a
i+], xbi ∈ [qbi−, q

b
i+]} (3)

p+(xa, xb) = sup{p(xa, xb) | xai ∈ [qai−, q
a
i+], xbi ∈ [qbi−, q

b
i+]}. (4)

Observe that determining p− and p+ requires solving two constrained non-linear

optimization problems with 2k variables and 2k interval restrictions each.

3. Two proposals of bootstrap tests for making multiple comparisons

As mentioned in the introduction, a multiple comparison procedure is needed

for comparing series of executions of different algorithms. Friedman’s test is

often used because normality is not assumed in rank tests [5]. But replacing

measurements by their ranks has the same effect as if the sample size is reduced

by 3% for very large samples and much more for smaller ones [11]. In addition

to this, Friedman’s test requires that the distribution of the differences scores

between any pair of levels is continuous and symmetrical in the population. This

assumption is required to ensure that the test evaluates difference in medians

rather than other characteristics of the distribution [16].

Bootstrap tests make less restrictive assumptions [7], nonetheless their use

in combination with cross-validation is not common. In this section two permu-

tations-based bootstrap test are proposed that can be applied to single factor

repeated measures designs, either with scalar or interval-valued data.

3.1. Test Bootstrap-A for multiple comparisons of algorithms with scalar data

Let eadfr be the test error of the a-th algorithm in the d-th dataset, f -th fold

and r-th repetition. Let nd, na, nf and nr the number of datasets, algorithms,

folds and repetitions in the experimental setup. Let

F̂a···(x) =
1

ndnrnf
#{(d, r, f) | eadfr ≤ x} (5)
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be the sample cumulative distribution function (cdf) of the outcome of the a-th

algorithm, and let

F̂····(x) =
1

nandnrnf
#{(a, d, r, f) | eadfr ≤ x} (6)

be the sample cdf of the prior distribution of the test error. Let Fa··· and F···

be the corresponding population cdfs.

If the differences between the algorithms were not significant, the expec-

tations obtained with respect to F···· and wrt F1···, . . . , Fna··· should not be

significantly different. The null hypothesis of the test will then be expressed as

“the expectations

ea =

∫
xdFa···, a = 1, . . . , na (7)

do not depend on the algorithm index a”.

Following [11], this problem can be solved with a bootstrap test, obtained

via rearrangements of the sample. This requires four steps:

1. Choice of test statistic that best discriminates between the primary hy-

pothesis and the alternative hypothesis.

2. The value of this statistic is determined for the set of observations before

rearrangement of their labels.

3. A rearrangement distribution is generated by computing the value of the

test statistic for each rearrangement.

4. The value of the statistic obtained at step 2 is compared with the set of

possible values generated at step 3. If the original value of the test statistic

lies in the tails of the rearrangement distribution favoring the alternative

hypothesis, the primary hypothesis is rejected.

It is proposed that these steps are implemented as follows:

1. The test statistic is the sample mean.

2. The value before rearrangement is a vector of na components êa. These

are the expected test errors of the algorithms wrt cdfs F̂a···:

êa =

nf∑
i=1

nr∑
j=1

nd∑
k=1

eakij

nfnrnd
(8)
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3. Let {πd}d=1...,nd
= {(α1,d, . . . , αna,d)}d=1...,nd

be a family of permutations

of the indices 1, . . . , na, and let

ê∗a =

nf∑
i=1

nr∑
j=1

nd∑
k=1

eαa,kkij

nfnrnd
(9)

the value of the test statistics for the rearrangement given by {πd}d=1...,nd
.

The rearrangement distributions of the values ê∗a are numerically approx-

imated by bootstrap estimation.

4. If the value êa belongs to the tails of the distribution of ê∗a for any a, the

null hypothesis is rejected and the index a marks the algorithms whose

expected error is different than the average. The tails of the distribution

of ê∗a must be determined so that their probability mass is lower than the

significance level of the test, adjusted for simultaneous na tests.

In case the null hypothesis is rejected, the post-hoc tests for comparing

pairs of algorithms can be defined by particularizing the same test: let π
(2)
d =

(α
(2)
1,d, α

(2)
2,d) be a permutation of the pair of indices (a, b), and let

ê
(2)
b =

nf∑
i=1

nr∑
j=1

nd∑
k=1

e
α

(2)
2,kkij

nfnrnd
(10)

If the value êa belongs to the tails of the distribution of ê
(2)
b , the null hypothesis

“the test errors of algorithms a and b are the same” is rejected. The tails of the

distribution of ê
(2)
b are determined as before.

3.2. Test Bootstrap-B for multiple comparisons of algorithms with interval data

The interval-valued bootstrap test proposed in this section will be called

Bootstrap-B. Let [e−adfr, e+adfr] be the interval-valued error of the a-th algo-

rithm in the d-th dataset, f -th fold and r-th repetition. In the first place,

each group of r repetitions of an algorithm over the same fold is consolidated

into a confidence interval [q−adf , q+adf ]. For scalar problems, e−adfr = e+adfr

and q−adf = q+adf is a robust central tendency measure summarizing the nr

repetitions of the algorithm.
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Let [F̂−a··(x), F̂+a··(x)] be the sample cdf of the of the outcome of the a-th

algorithm [4],

F̂−a··(x) =
1

ndnf
#{(d, f) | q+adf ≤ x} (11)

F̂+a··(x) =
1

ndnf
#{(d, f) | x ∈ [q−adf , q+adf )}+ F̂−a··(x) (12)

and let [F̂−···(x), F̂+···(x)] be the sample cdf of the prior distribution of the test

error,

F̂−···(x) =
1

nandnf
#{(a, d, f) | q+adf ≤ x} (13)

F̂+···(x) =
1

nandnf
#{(a, d, f) | x ∈ [q−adf , q+adf )}+ F̂−···(x). (14)

Let also [F−a··(x), F+a··(x)] and [F−···(x), F+···(x)] be the corresponding popu-

lation cdfs. The null hypothesis of the test will then be expressed as “the set of

expectations

[q−a, q+a] =

{∫
xdF | F (x) ∈ [F−a··(x), F+a··(x)] for all x

}
, a = 1, . . . , na

(15)

do not depend on the algorithm index a”.

Extending [3], a rearrangement bootstrap problem will be defined for com-

paring a mix of scalar or interval data-based algorithms, with the following

premises:

1. The test statistic is the sample Aumann mean [19].

2. The value before rearrangement is a vector of na intervals [q̂−a, q̂+a]:

q̂−a =

nf∑
i=1

nd∑
k=1

q−aki

nfnd
(16)

q̂+a =

nf∑
i=1

nd∑
k=1

q+aki

nfnd
(17)
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3. Let {πd}d=1...,nd
= {(α1,d, . . . , αna,d)}d=1...,nd

be a family of permutations

of the indices 1, . . . , na, and let

q̂∗−a =

nf∑
i=1

nd∑
k=1

q−αa,kki

nfnd
(18)

q̂∗+a =

nf∑
i=1

nd∑
k=1

q+αa,kki

nfnd
(19)

the value of the test statistics for the rearrangement given by {πd}d=1...,nd
.

The rearrangement distributions of the values q̂∗a are numerically approx-

imated by bootstrap estimation, as before.

4. If the interval [q̂−a, q̂+a] belongs to the tails of the distribution of [q̂∗−a, q̂
∗
−a]

for any a, the null hypothesis is rejected and these indices a mark the

algorithms whose expected error is different than the average. In other

words, let q∗−adf (s) and q∗+adf (s) be the results of evaluating expressions

18 and 19 in the s-th bootstrap resample, and let ns the number of these

resamples. Then,

F̂ ∗
−a(x) =

1

ns
#{s | q∗+adf (s) ≤ x} (20)

F̂ ∗
+a(x) =

1

ns
#{s | x ∈ [q∗−adf (s), q∗+adf (s))}+ F̂ ∗

−a(x) (21)

For an adjusted signification level α, the test is rejected if any of the

following conditions are met:

F̂ ∗
−a(q̂−a) > 1− α

2
(22)

F̂ ∗
+a(q̂+a) <

α

2
. (23)

In case the null hypothesis is rejected, the post-hoc tests for comparing pairs

of algorithms can be defined, as was done in the preceding case, by particulariz-

ing the test: let π
(2)
d = (α

(2)
1,d, α

(2)
2,d) be a permutation of the pair of indices (a, b),

and let

q̂
(2)
−b =

nf∑
i=1

nd∑
k=1

q−α(2)
2,kki

nfnd
(24)
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q̂
(2)
+b =

nf∑
i=1

nd∑
k=1

q
+α

(2)
2,kki

nfnd
(25)

If the value [q̂−a, q̂+a] belongs to the tails of the distribution of [q̂
(2)
−b , q̂

(2)
+b ], the

null hypothesis “the set of test errors of algorithms a and b are the same” is

rejected. This happens when any of the following conditions are met:

F̂
(2)
−b (q̂−a) > 1− α

2
(26)

F̂
(2)
+b (q̂+a) <

α

2
(27)

where

F̂
(2)
−b (x) =

1

ns
#{s | q(2)+b (s) ≤ x} (28)

F̂
(2)
+b (x) =

1

ns
#{s | x ∈ [q

(2)
−b (s), q

(2)
+b (s))}+ F̂

(2)
−b (x) (29)

4. Numerical results

Numerical experiments are provided that are not in disagreement with the

following three claims:

1. Bootstrap tests can be more powerful than ANOVA or Friedman test for

comparing multiple classifiers.

2. In the presence of outliers, interval-valued bootstrap tests achieve a better

discrimination between stochastic algorithms than nonparametric tests.

3. Choosing ANOVA, Friedman or Bootstrap can produce different conclu-

sions in experiments involving actual data from machine learning tasks.

Experiments related to items 1 and 2 are based on synthetic data. Item 3 will

be supported by standard machine learning bechmarks.

4.1. Claims 1 and 2

In this section, power and type-I error of ANOVA, Friedman, Bootstrap-

A and Bootstrap-B tests are estimated by the fraction of correct and wrong
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conclusions taken by these tests when confronted with synthetic classification

problems with known statistical properties.

Let x(ω) be a set of features measured on an object ω ∈ Ω, whose class is

denoted as class(ω). Let A(x(ω)) be the output of a classification algorithm,

and let

eA = P{ω ∈ Ω | A(x(ω)) 6= class(ω)} (30)

be the expected error of this classifier. Let also T be a test set comprising nt

objects, T = {ω1, . . . , ωnt
}. The fraction of misclassifications in T is

êA(T ) =
1

nt
#{ω ∈ T | A(x(ω)) 6= class(ω)}, (31)

and êA(T ) is an estimator of eA. In a k-fold cv based experimental design,

classifiers are learnt from k training sets and tested in k independent test sets.

The experimental measurement of the performance of the algorithm A on a

given dataset is a vector comprising k different estimations

(êA(T1), . . . , êA(Tk)) (32)

for k independent test sets T1, . . . , Tk.

The simulation of these estimations will be different for a deterministic al-

gorithm (the outcome of the learning process is uniquely determined by the

training set) or a stochastic algorithm (the outcome of the learning process is

determined by both the training set and a random seed). Both are described

below.

4.1.1. Deterministic algorithms

Assuming that the probability of misclassifying an instance is eA, a random

variable YA following a binomial distribution models the number of errors in the

test set T :

YA → B(nt, eA). (33)

thus the fraction of errors is

êA(Ti) =
1

nt
YA. (34)
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4.1.2. Stochastic algorithms

For stochastic algorithms, the probability of committing an error is higher

if the learning algorithm is trapped in a local minimum. Let A(r) be the r-th

repetition of the algorithm being simulated, let pA(r) be the probability that

A(r) is trapped in a local minimum, and let e∗
A(r) be the average fraction of

misclassifications committed in this case. Let YA(r) be a random variable with

binomial distribution, as before:

YA(r) → B(nt, eA(r)) (35)

and let ZA(r) be a random variable with Bernouilli distribution,

ZA(r) → B(1, pA(r)). (36)

Assuming that YA(r) and ZA(r) are independent, the test error of A(r) is modeled

as follows:

êA(r)(Ti) = Ze∗A(r) +
1

nt
(1− ZA(r))YA(r) . (37)

4.1.3. Experimental setup and results for claim 1

Five algorithms A1, . . . ,A5 and 32 datasets are simulated. 5-fold cross val-

idation with 30 repetitions is used. A3 and A4 are deterministic, A1, A2 and

A5 are stochastic. In this first experiment, none of the stochastic algorithms

converges to a suboptimal solution, p
(r)
Ai

= 0.

For each test set Td, one algorithm jd is assigned the theoretical error

e
(r)
Ajd

(Td) = 0.20. The remaining algorithms were assigned a higher value such

that the average of the theoretical errors of the algorithms for each dataset

is 1
32

∑
d e

(r)
Ai

(Td) = 0.30 + (i − 1) · ∆p, i = 1, . . . , 5. For each value ∆p =

0, 0.005, 0.01, . . . , 1, 100 simulations were made (see Table 1 for an example of

theoretical errors and simulated sample means for ∆p = 0.03).

In Figure 2, power and type I errors are plotted for ANOVA (dotted line),

Friedman (dashed line) and Bootstrap-A (solid line). The contents of this figure

are:
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Table 1: Theoretical errors and simulated sample errors for ∆p = 0.03

Dataset A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 nt

1 0.20 0.37 0.40 0.49 0.44 0.22 0.41 0.33 0.37 0.42 12

2 0.31 0.37 0.40 0.20 0.44 0.34 0.34 0.42 0.23 0.46 13

3 0.31 0.37 0.40 0.20 0.44 0.39 0.32 0.47 0.17 0.49 15

4 0.31 0.37 0.40 0.49 0.20 0.35 0.41 0.37 0.52 0.17 19

5 0.31 0.20 0.40 0.49 0.44 0.34 0.23 0.32 0.45 0.39 12

6 0.31 0.20 0.40 0.49 0.44 0.36 0.18 0.38 0.48 0.46 18

7 0.31 0.37 0.20 0.49 0.44 0.28 0.37 0.19 0.39 0.46 19

8 0.31 0.37 0.20 0.49 0.44 0.38 0.34 0.26 0.47 0.36 16

9 0.20 0.37 0.40 0.49 0.44 0.22 0.33 0.41 0.55 0.49 16

10 0.31 0.37 0.40 0.20 0.44 0.38 0.35 0.46 0.16 0.48 10

11 0.31 0.20 0.40 0.49 0.44 0.39 0.15 0.42 0.57 0.44 12

12 0.31 0.37 0.40 0.20 0.44 0.28 0.49 0.33 0.24 0.52 11

13 0.20 0.37 0.40 0.49 0.44 0.13 0.42 0.38 0.46 0.43 16

14 0.31 0.37 0.40 0.20 0.44 0.35 0.33 0.32 0.15 0.50 13

15 0.31 0.37 0.20 0.49 0.44 0.31 0.32 0.16 0.40 0.46 17

16 0.31 0.37 0.40 0.20 0.44 0.31 0.32 0.43 0.17 0.50 14

17 0.31 0.37 0.40 0.20 0.44 0.35 0.31 0.36 0.26 0.41 17

18 0.31 0.37 0.20 0.49 0.44 0.31 0.40 0.19 0.49 0.44 19

19 0.31 0.20 0.40 0.49 0.44 0.32 0.21 0.38 0.43 0.37 13

20 0.31 0.20 0.40 0.49 0.44 0.35 0.24 0.39 0.55 0.43 17

21 0.31 0.37 0.40 0.20 0.44 0.31 0.42 0.40 0.33 0.43 19

22 0.31 0.37 0.40 0.49 0.20 0.25 0.35 0.37 0.48 0.17 12

23 0.31 0.20 0.40 0.49 0.44 0.33 0.21 0.46 0.46 0.47 16

24 0.31 0.37 0.20 0.49 0.44 0.34 0.29 0.16 0.49 0.47 11

25 0.20 0.37 0.40 0.49 0.44 0.17 0.36 0.35 0.38 0.42 12

26 0.31 0.37 0.20 0.49 0.44 0.30 0.39 0.17 0.52 0.44 13

27 0.31 0.37 0.40 0.20 0.44 0.21 0.42 0.38 0.14 0.46 10

28 0.31 0.37 0.40 0.20 0.44 0.34 0.39 0.48 0.18 0.48 13

29 0.31 0.37 0.40 0.49 0.20 0.24 0.43 0.46 0.51 0.18 18

30 0.31 0.37 0.20 0.49 0.44 0.32 0.43 0.22 0.51 0.42 13

31 0.31 0.20 0.40 0.49 0.44 0.41 0.19 0.46 0.49 0.44 14

32 0.31 0.37 0.40 0.20 0.44 0.31 0.37 0.39 0.25 0.41 15

Avg. 0.30 0.33 0.36 0.39 0.42 0.31 0.33 0.35 0.38 0.42 14.5

1. Left part: Power of the tests, estimated by the fraction of times the combi-

nation of multiple comparisons test and post-hoc tests correctly detected

that an algorithm was better than other. Horizontal axis is ∆p, vertical

axis is the power. Bootstrap-A is more powerful than a Friedman test fol-

lowed by Wilcoxon post-hoc tests and Hochberg adjustment, as claimed.
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In turn, Friedman’s test is better than ANOVA followed by t-tests.

2. Right part: Type-I error of the tests, estimated by the fraction of times

the combination of multiple comparisons test and post-hoc tests wrongly

concluded that an algorithm was better than a preferable alternative. The

horizontal axis is ∆p, vertical axis is the error. Notice that the significance

level is 0.95 thus it is expected that this error is 0.05 (marked with the

horizontal dotted line).

In Table 2, numerical values plotted in Figure 2 are given and in Table 3 a detail

of the column for ∆p = 0.03 is provided. The number of significant and correct

comparisons (labelled “Sig OK”), not significant (“No Sig”) and significant but

wrong conclusions (“Sig Err”) were obtained for each pair of algorithms being

compared.
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Figure 2: Left: Average power of post-hoc tests a function of distance. Right: Average

Type I error of post-hoc tests as a function of distance. Solid line: Bootstrap-A. Dotted line:

ANOVA + t-test. Dashed line: Friedman + Wilcoxon. Horizontal dotted line in the right

part: expected type-I error (0.05)

4.1.4. Experimental setup and results for claim 2

As done in the preceding section, five algorithms A1, . . . ,A5 and 32 datasets

are simulated. 5-fold cross validation with 30 repetitions is used. A3 and A4
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Table 2: Numerical data plotted in Figure 2. Column “MC” contains the number of simu-

lations where the multiple comparisons test detected a relevant difference. Columns “PH”

count how many post-hoc tests found existing differences between each pair of algorithms

(“Sig OK”), found non-existing differences (“Sig Err”) or did not find differences (“No Sig”).

MC PH PH PH

Actual AOV Fried Boot-A t-test Wilcoxon Bootstrap-A

∆p Sig Sig Sig Sig OK No Sig Sig Err Sig OK No Sig Sig Err Sig OK No Sig Sig Err

0 0 6 4 0 1000 0 0 1000 0 0 1000 0

0.005 0 69 2 48 933 19 0 1000 0 4 996 0

0.01 2 100 30 45 900 55 0 998 2 31 953 16

0.015 64 100 99 12 988 0 95 903 2 274 706 20

0.02 100 100 100 75 877 48 76 876 48 377 569 54

0.025 100 100 100 159 769 72 189 737 74 449 441 110

0.03 100 100 100 407 567 26 450 521 29 539 406 55

0.035 100 100 100 344 642 14 416 570 14 971 15 14

0.04 100 100 100 474 482 44 501 455 44 911 45 44

0.045 100 100 100 542 436 22 903 75 22 978 0 22

0.05 100 100 100 603 397 0 1000 0 0 1000 0 0

0.055 100 100 100 546 400 54 926 20 54 946 0 54

0.06 100 100 100 652 340 8 992 0 8 992 0 8

0.065 100 100 100 768 209 23 976 1 23 976 1 23

0.07 100 100 100 996 4 0 996 4 0 1000 0 0

0.075 100 100 100 634 268 98 902 0 98 902 0 98

0.08 100 100 100 979 0 21 979 0 21 979 0 21

0.085 100 100 100 998 0 2 998 0 2 998 0 2

0.09 100 100 100 1000 0 0 1000 0 0 1000 0 0

0.095 100 100 100 1000 0 0 1000 0 0 1000 0 0

1 100 100 100 1000 0 0 1000 0 0 1000 0 0

0.56 0.025 0.67 0.022 0.76 0.027

Avg Pow T1 Err Pow T1 Err Pow T1 Err
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Table 3: Detail of the Table 2 for ∆p = 0.03

Actual ANOVA + t-test Friedman + Wilcoxon Bootstrap A

∆p = 0.030 (Hochberg pv adjust) (Hochberg pv adjust)

Sig OK No Sig Sig ERR Sig OK No Sig Sig ERR Sig OK No Sig Sig ERR

A1 vs. A2 0 100 0 0 100 0 0 100 0

A1 vs. A3 0 100 0 0 100 0 0 100 0

A1 vs. A4 0 100 0 0 100 0 0 100 0

A1 vs. A5 0 100 0 0 100 0 0 100 0

A2 vs. A3 35 45 20 38 39 23 49 2 49

A2 vs. A4 55 45 0 61 39 0 98 2 0

A2 vs. A5 55 45 0 61 39 0 98 2 0

A3 vs. A4 83 16 1 97 2 1 99 0 1

A3 vs. A5 84 16 0 98 2 0 100 0 0

A4 vs. A5 95 0 5 95 0 5 95 0 5

Avg. 40.7 56.7 2.6 45 52.1 2.9 53.9 40.6 5.5
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are deterministic, A1, A2 and A5 are stochastic. In this second experiment,

stochastic algorithms can converge to a suboptimal solution with probability

p
(r)
Ai

= 0.1. The expected error of suboptimal classifiers is e∗
A(r)(Td) = 0.75.

For each test set Td, one algorithm jd was assigned a theoretical error

e
(r)
Ajd

(Td) = 0.20 and the remaining algorithms were assigned an error such

that 1
32

∑
d e

(r)
Ai

(Td) = 0.30 + (i − 1) · ∆p, i = 1, . . . , 5. For each value ∆p =

0, 0.005, 0.01, . . . , 1, 100 simulations were made. The number of samples of the

test partitions was chosen at random between 10 and 20. The interval estima-

tion of the dispersion of the repetitions is estimated by a confidence interval,

centered in the median and covering 10% of data.

In Figure 3, power and type I errors are plotted for ANOVA (dotted line),

Friedman (dashed line) and Bootstrap-A (solid line). The contents of this figure

are:
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Figure 3: Data with 10% of outliers. Solid line: Bootstrap-B. Dotted line: ANOVA + t-test.

Dashed line: Friedman + Wilcoxon. Left: Average power of post-hoc tests a function of the

differences between the theoretical errors of the classifiers. Right: Estimation of Type I error

of post-hoc tests as a function of the theoretical differences.

1. Left part: Power of the tests is estimated by the fraction of times the

combination of multiple comparisons test and post-hoc tests detected that

an algorithm was better than other. Horizontal axis is ∆p, vertical axis
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is the power. Bootstrap-B is more robust than Friedman and achieves

better discrimination, as claimed. For instance, differences as high as 0.05

were considered as not significant in 69% of simulations by ANOVA +

t-test, 46% by Friedman Test and only in 1% by Bootstrap-B. Observe

also that, in the presence of outliers, Friedman’s test is not always better

than ANOVA followed by t-tests.

2. Right part: Type-I error of the tests, estimated by the fraction of times

the combination of multiple comparisons test and post-hoc tests wrongly

concluded that an algorithm was better than other. It is expected that

this error is 0.05. For Bootstrap-B, not conclusive results were regarded

as not significant.

In Table 4, numerical values plotted in Figure 2 are given and in Table 5 a

detail of the column for ∆p = 0.03 is provided. The number of significant and

correct comparisons (labelled “Sig OK”), not significant (“No Sig”), significant

but wrong conclusions (“Sig Err”) and (only for Bootstrap-B) not conclusive

(“Inc”) were obtained for each pair of algorithms being compared. Post-hoc

tests were assigned the outcome “not significant” whenever the corresponding

multiple comparisons test was not conclusive, as mentioned before.

4.2. Claim 3

In this section, an experimentation is designed to check whether the state-

of-the-art fuzzy classification algorithm FURIA [13] is better than a selection of

classical classifiers in imbalanced classification problems. FURIA, Linear Dis-

criminant Analysis (LDA) [21], Nearest Neighbor (1NN) [21], Multilayer Per-

ceptron (NNET) [12] and C4.5 [20] were applied to 64 imbalanced classification

problems taken from KEEL repository [1]. Their performances were measured

both by the classification error and by the area under the ROC curve (AUC)

[2]. The average results of 30 repetitions of each pair (algorithm, dataset) are

shown in Table 6.
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Table 4: Numerical data plotted in Figure 3. Column “MC” contains the number of simu-

lations where the multiple comparisons test detected a relevant difference. Columns “PH”

count how many post-hoc tests found existing differences between each pair of algorithms

(“Sig OK”), found non-existing differences (“Sig Err”), did not find differences (“No Sig”) or

were inconclusive (“Inc”).

MC PH t-test PH Wilx PH Boot-B

Actual AOV Fried Boot-B

∆p Sig Sig Sig Inc Sig OK No Sig Sig Err Sig OK No Sig Sig Err Sig OK No Sig Sig Err Inc

0 93 55 13 0 8 928 64 17 884 99 0 968 0 32

0.005 82 90 6 41 5 992 3 10 981 9 1 958 0 41

0.01 78 100 61 38 100 900 0 72 926 2 103 886 1 10

0.015 99 100 100 0 100 900 0 99 901 0 171 718 15 96

0.02 100 100 100 0 32 968 0 100 900 0 273 567 32 128

0.025 100 100 100 0 100 900 0 100 900 0 415 144 73 368

0.03 100 100 100 0 100 900 0 108 892 0 482 101 74 343

0.035 100 100 100 0 132 868 0 231 766 3 763 15 29 193

0.04 100 100 100 0 122 878 0 182 816 2 651 4 93 252

0.045 100 100 100 0 203 796 1 502 497 1 963 0 9 28

0.05 100 100 100 0 237 693 70 468 462 70 917 0 71 12

0.055 100 100 100 0 515 467 18 311 672 17 943 0 33 24

0.06 100 100 100 0 548 452 0 799 201 0 1000 0 0 0

0.065 100 100 100 0 888 102 10 695 295 10 990 0 10 0

0.07 100 100 100 0 626 374 0 994 6 0 1000 0 0 0

0.075 100 100 100 0 899 101 0 1000 0 0 1000 0 0 0

0.08 100 100 100 0 996 4 0 1000 0 0 1000 0 0 0

0.085 100 100 100 0 989 6 5 995 0 5 995 0 5 0

0.09 100 100 100 0 985 0 15 985 0 15 985 0 15 0

0.095 100 100 100 0 994 0 6 994 0 6 994 0 6 0

0.1 100 100 100 0 907 0 93 907 0 93 907 0 93 0

0.47 0.011 0.53 0.011 0.73 0.028 0.075

Avg Pow T1 Err Pow T1 Err Pow T1 Err
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Table 5: Detail of the Table 3 for ∆p = 0.03

Actual ANOVA + t-test Friedman + Wilcoxon Bootstrap B

∆p = 0.030 (Hochberg pv adjust) (Hochberg pv adjust)

Sig OK No Sig Sig ERR Sig OK No Sig Sig ERR Sig OK No Sig Sig ERR Inc

A1 vs. A2 0 100 0 0 100 0 4 20 0 76

A1 vs. A3 0 100 0 0 100 0 4 20 0 76

A1 vs. A4 0 100 0 0 100 0 4 20 0 76

A1 vs. A5 0 100 0 0 100 0 4 20 0 76

A2 vs. A3 0 100 0 0 100 0 19 7 61 13

A2 vs. A4 0 100 0 0 100 0 74 6 7 13

A2 vs. A5 0 100 0 0 100 0 81 6 0 13

A3 vs. A4 0 100 0 4 96 0 92 2 6 0

A3 vs. A5 0 100 0 4 96 0 100 0 0 0

A4 vs. A5 100 0 0 100 0 0 100 0 0 0

Avg. 10 90 0 10.8 89.2 0 48.2 10.1 7.4 34.3
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Table 6: AUC and test error of 5 machine learning algorithms in 64 datasets

FURIA LDA 1NN NNET C4.5 FURIA LDA 1NN NNET C4.5

Dataset AUC Test Error

ecoli147vs2356 0.85 0.81 0.82 0.83 0.84 0.96 0.96 0.95 0.94 0.94

ecoli34vs5 0.84 0.86 0.87 0.86 0.81 0.95 0.94 0.96 0.95 0.95

glass 0.78 0.54 0.81 0.68 0.73 0.81 0.64 0.85 0.72 0.72

ecolivs1 0.99 0.98 0.96 0.96 0.98 0.99 0.99 0.96 0.96 0.96

leddigit02456789vs1 0.90 0.90 0.91 0.89 0.88 0.97 0.96 0.96 0.96 0.96

yeastvs4 0.85 0.83 0.85 0.85 0.83 0.95 0.96 0.96 0.95 0.95

ecoli67vs35 0.85 0.75 0.83 0.81 0.85 0.96 0.92 0.95 0.93 0.93

glass6vs5 0.95 0.68 0.94 0.98 0.99 0.98 0.92 0.97 0.99 0.99

wisconsin 0.97 0.95 0.95 0.94 0.95 0.97 0.96 0.96 0.95 0.95

ecoli1vs5 0.84 0.89 0.87 0.88 0.81 0.95 0.97 0.97 0.96 0.96

ecoli234vs5 0.84 0.89 0.87 0.86 0.79 0.96 0.96 0.97 0.95 0.95

pima 0.74 0.72 0.65 0.64 0.70 0.78 0.77 0.68 0.70 0.70

glass146vs2 0.52 0.49 0.63 0.56 0.64 0.92 0.91 0.87 0.84 0.84

glass15vs2 0.52 0.48 0.61 0.53 0.50 0.89 0.87 0.87 0.83 0.83

iris 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00

ecoli147vs56 0.79 0.80 0.87 0.86 0.75 0.96 0.96 0.97 0.96 0.96

glass 0.83 0.70 0.78 0.66 0.82 0.87 0.76 0.79 0.73 0.73

yeast359vs78 0.60 0.61 0.67 0.62 0.59 0.91 0.92 0.88 0.85 0.85

clevelandvs4 0.71 0.78 0.59 0.69 0.66 0.93 0.94 0.89 0.92 0.92

yeast2579vs368 0.89 0.89 0.87 0.82 0.84 0.97 0.97 0.96 0.93 0.93

yeast 0.71 0.63 0.64 0.67 0.67 0.80 0.76 0.70 0.75 0.75

vehicle1 0.74 0.71 0.59 0.60 0.66 0.82 0.80 0.70 0.76 0.76

vehicle2 0.98 0.96 0.92 0.76 0.95 0.99 0.97 0.93 0.88 0.88

vehicle3 0.75 0.70 0.61 0.58 0.67 0.84 0.80 0.73 0.76 0.76

ecoli146vs5 0.78 0.87 0.87 0.83 0.78 0.95 0.97 0.98 0.96 0.96

yeast256vs3789 0.73 0.72 0.76 0.69 0.66 0.93 0.93 0.91 0.89 0.89

ecoli46vs5 0.84 0.89 0.87 0.87 0.81 0.96 0.97 0.97 0.95 0.95

ecoli 0.84 0.92 0.90 0.86 0.81 0.97 0.98 0.98 0.97 0.97

glass123vs456 0.88 0.88 0.94 0.83 0.92 0.92 0.93 0.96 0.90 0.90

ecoli01vs235 0.77 0.86 0.79 0.83 0.77 0.94 0.96 0.94 0.95 0.95

vehicle0 0.95 0.93 0.91 0.79 0.93 0.97 0.95 0.94 0.89 0.89

yeast1vs7 0.57 0.56 0.64 0.64 0.59 0.94 0.93 0.91 0.89 0.89

ecoli0267vs35 0.80 0.85 0.78 0.82 0.76 0.94 0.96 0.95 0.94 0.94

Continued on next page
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Table 6 – Continued from previous page

FURIA LDA 1NN NNET C4.5 FURIA LDA 1NN NNET C4.5

Dataset AUC Test Error

ecoli1 0.87 0.85 0.80 0.82 0.86 0.91 0.88 0.86 0.87 0.87

haberman 0.59 0.55 0.55 0.56 0.58 0.74 0.74 0.68 0.71 0.71

shuttlec0vsc4 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00

glass04vs5 0.99 0.89 0.95 0.99 0.99 0.99 0.96 0.99 1.00 1.00

glass4 0.85 0.59 0.94 0.93 0.79 0.97 0.93 0.98 0.97 0.97

newthyroid2 0.94 0.81 0.99 0.93 0.95 0.98 0.94 1.00 0.97 0.97

ecoli0346vs5 0.86 0.86 0.90 0.88 0.82 0.97 0.95 0.98 0.96 0.96

newthyroid1 0.97 0.84 0.98 0.90 0.95 0.98 0.95 0.99 0.97 0.97

pageblocks13vs4 1.00 0.75 0.86 0.95 1.00 1.00 0.96 0.97 0.99 0.99

ecoli0347vs56 0.79 0.81 0.87 0.87 0.79 0.95 0.95 0.95 0.96 0.96

ecoli2 0.86 0.82 0.92 0.85 0.86 0.94 0.91 0.95 0.91 0.91

glass016vs5 0.84 0.59 0.84 0.82 0.89 0.97 0.95 0.96 0.97 0.97

segment0 0.99 0.98 0.99 0.99 0.98 1.00 0.98 0.99 1.00 1.00

yeast05679vs4 0.70 0.73 0.69 0.69 0.68 0.92 0.94 0.90 0.89 0.89

ecoli067vs5 0.84 0.86 0.84 0.86 0.77 0.96 0.96 0.95 0.96 0.96

glass6 0.88 0.91 0.93 0.88 0.81 0.96 0.96 0.97 0.94 0.94

shuttlec2vsc4 0.95 0.94 1.00 1.00 1.00 0.99 0.98 1.00 1.00 1.00

vowel0 0.96 0.86 1.00 0.99 0.97 0.99 0.95 1.00 1.00 1.00

yeast1458vs7 0.51 0.50 0.57 0.55 0.50 0.95 0.96 0.94 0.90 0.90

yeast3 0.88 0.83 0.80 0.83 0.86 0.95 0.94 0.93 0.93 0.93

ecoli3 0.80 0.84 0.75 0.71 0.73 0.93 0.93 0.91 0.89 0.89

glass016vs2 0.54 0.49 0.59 0.55 0.62 0.89 0.90 0.88 0.84 0.84

glass5 0.90 0.64 0.84 0.88 0.90 0.99 0.96 0.97 0.98 0.98

glass2 0.58 0.49 0.61 0.54 0.67 0.93 0.91 0.88 0.84 0.84

pageblocks0 0.94 0.79 0.87 0.90 0.92 0.98 0.95 0.96 0.97 0.97

yeast2vs8 0.77 0.77 0.74 0.74 0.50 0.98 0.98 0.96 0.96 0.96

yeast4 0.61 0.61 0.67 0.65 0.60 0.97 0.96 0.96 0.95 0.95

yeast1289vs7 0.55 0.53 0.56 0.59 0.62 0.97 0.97 0.95 0.94 0.94

yeast5 0.90 0.80 0.85 0.84 0.88 0.99 0.98 0.98 0.98 0.98

ecoli0137vs26 0.75 0.84 0.84 0.82 0.75 0.98 0.98 0.98 0.98 0.98

yeast6 0.75 0.70 0.78 0.73 0.78 0.98 0.98 0.97 0.97 0.97

Avg 0.81 0.77 0.81 0.80 0.80 0.94 0.93 0.93 0.92 0.93

According to the results, FURIA has the highest fraction of correct classifi-

cations. FURIA and 1NN are tied if the performance is measured with AUC.
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For assessing the relevance of the differences, three different sets of tests were

applied to the data: (1) ANOVA + paired t-tests, (2) Friedman + Wilcoxon

and (3) Bootstrap-B with confidence intervals with mass 10%. The p-values of

the three tests are shown in Table 7.

Observe that ANOVA and Friedman’s tests show a strong relevance of the

differences in AUC, however post-hoc tests are needed to show the fact that

LDA and not FURIA is responsible of this result (LDA is significantly worse

than the mean). Bootstrap-B provides more information: it correctly shows that

algorithms LDA and 1NN are responsible of the differences in AUC (the quality

of 1NN is better than the mean, LDA is inferior and the data is inconclusive

for FURIA). If the performance of the classifier is measured by the test error,

FURIA and NNET are both different than the average because FURIA is better

and NNET is worse.

For ANOVA and Friedman, the setup in [10] is followed and the best ranked

classifier for AUC (FURIA) has been compared to its alternatives and the results

shown in Table 8. The only disagreement between the tests is in FURIA vs.

C4.5 (boldfaced in the table). In Figure 4 density functions of the distributions

of values of AUC of FURIA, C4.5 and their paired differences are displayed,

thus the similarity between these algorithms can be judged. Observe that the

mode of both algorithms is the same and therefore the mode of their difference

is zero. The typical performance of both is typically the same, however there are

a small number of datasets for which FURIA performed better than C4.5. After

Hochberg adjust, a paired t-test between between FURIA and C4.5 does not

reject that both algorithms have the same AUC, but Friedman’s test reject the

hypothesis at 99% level. An interval-valued bootstrap test estimate a p-value

between 0.03 and 0.40, thus the test is inconclusive, meaning that the dispersion

of the results is too high and a decision cannot be taken.
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Table 7: p-values of different multiple comparisons tests for data in Table 6

Test p-value - AUC

ANOVA 0.00023

Friedman 0.0020

FURIA LDA 1NN NNET C4.5

Bootstrap-B (10%) [0.07, 0.3] [0.005, 0.005] [0.03, 0.03] [0.4,1] [1,1]

Test p-value - Test Error

ANOVA ≈ 0

Friedman ≈ 0

FURIA LDA 1NN NNET C4.5

Bootstrap-B [0.0001,0.0001] [1, 1] [0.7, 0.7] [0.0001,0.03] [0.8, 0.8]

Table 8: p-values of post-hoc tests. Cases where the selection of the test influences the

difference have been marked.

FURIA vs. LDA FURIA vs. 1NN FURIA vs. NNET FURIA vs. C4.5

AUC

ANOVA 0.01 0.98 0.24 0.12

Friedman 0.02 0.93 0.71 0.01

Bootstrap-B [0.00,0.02] [0.50,1.00] [0.60,1.00] [0.03,0.40]

Test Error

ANOVA 0.01 0.01 ≈ 0 ≈ 0

Friedman 0.0004 0.002 ≈ 0 ≈ 0

Bootstrap-B [0.0001,0.0001] [0.0001,0.003] [0.0001,0.0001] [0.0001,0.0001]
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Figure 4: Density function of the distribution of values of AUC of FURIA, C4.5 and their

paired differences.

5. Concluding remarks and future work

In deterministic algorithms, the variability of the test error in the different

folds of cross validation is originated on the random selection of the test sets.

In stochastic algorithms, the chance that the algorithm converges to a subopti-

mal solution introduces a second source of uncertainty in the estimation of its

performance, that cannot be properly accounted with a single factor repeated

measures experimental design. In this study it is proposed that a confidence

interval for a robust central tendency measure of the repetitions (median, mode,

censored mean) is used instead of the mean when modeling the repetitions of

a fold. A new interval-valued statistical test (Bootstrap-B) has been proposed,

and it has been shown that in the presence of outliers, its power can be better

than that of Friedman’s test. In addition to this, in future works the following

properties will be explored:

• The new test can be applied to learning algorithms that produce interval-

valued estimations of the test error. Up to our knowledge, this is the

first proposal of a mixed experimental design that allows for multiple

comparisons between a combination of algorithms for scalar and interval-

valued data.
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• Incomplete tables of results can be tackled. Missing values in an exper-

imentation could possibly be replaced by an interval spanning the range

of errors.

A symmetric redefinition of the bootstrap post-hoc tests will also be consid-

ered in the future. Lastly, the use of a family of confidence intervals (a fuzzy set)

for describing the variability attributable to repetitions of folds will be analyzed.

This representation might remove the need for determining the best width for

the intervals with additional experiments, as was proposed in this contribution.
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