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Chronic lymphocytic leukemia (CLL) has heterogeneous clinical and biological behavior. Whole-genome and
-exome sequencing has contributed to the characterization of the mutational spectrum of the disease, but the
underlying transcriptional profile is still poorly understood. We have performed deep RNA sequencing in dif-
ferent subpopulations of normal B-lymphocytes and CLL cells from a cohort of 98 patients, and characterized the
CLL transcriptional landscape with unprecedented resolution. We detected thousands of transcriptional elements dif-
ferentially expressed between the CLL and normal B cells, including protein-coding genes, noncoding RNAs, and pseudo-
genes. Transposable elements are globally derepressed in CLL cells. In addition, two thousand genes—most of which are not
differentially expressed—exhibit CLL-specific splicing patterns. Genes involved in metabolic pathways showed higher ex-
pression in CLL, while genes related to spliceosome, proteasome, and ribosome were among the most down-regulated in CLL.
Clustering of the CLL samples according to RNA-seq derived gene expression levels unveiled two robust molecular sub-
groups, C1 and C2. C1/C2 subgroups and the mutational status of the immunoglobulin heavy variable (IGHV ) region were
the only independent variables in predicting time to treatment in a multivariate analysis with main clinico-biological features.
This subdivision was validated in an independent cohort of patients monitored through DNA microarrays. Further analysis
shows that B-cell receptor (BCR) activation in the microenvironment of the lymph node may be at the origin of the C1/C2
differences.

[Supplemental material is available for this article.]

Chronic lymphocytic leukemia (CLL) is one of the most common

leukemias among adults in the Western world (Zenz et al. 2009).

The clinical evolution of the disease is very heterogeneous with

a group of patients following an indolent course with no need for
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treatment during a long period, whilst others have a rapid ag-

gressive evolution and short survival. These clinical differences

have been mainly associated with two major molecular subtypes of

the disease characterized respectively by high and low numbers of

somatic mutations in the variable region of the immunoglobulin

genes. Disease progression has been also associated with a number

of genetic alterations that include cytogenetic abnormalities and

specific gene mutations (TP53, NOTCH1, SF3B1) (Fabbri et al.

2011; Puente et al. 2011; Quesada et al. 2011; Wang et al. 2011;

Oscier et al. 2012; Ramsay et al. 2013). However, the heterogeneity

in the evolution of the patients is largely unexplained by these

simple genetic events.

Genome-wide transcriptome analysis in cancer provides a

global view of the expressed elements and networks that reshapes

the biology of the normal cells in their transformation and pro-

gression to aggressive cancer cells. Microarray gene expression

profiling studies have characterized gene signatures related to the

different molecular subtypes of CLL and have identified individual

genes or pathways related to the clinical and biological evolution

of the disease (Klein et al. 2001; Rosenwald et al. 2001; Dühren-von

Minden et al. 2012). However, the molecular mechanisms un-

derlying the origin and progression of the disease remain mainly

unknown. Here, we have characterized the CLL transcriptional

landscape at high resolution by performing RNA-seq on a large

cohort of CLL samples, for the majority of which whole-exome

sequencing (Quesada et al. 2011) and high-density DNA methyl-

ation microarrays (Kulis et al. 2012) have been previously pro-

duced. The transcriptomic architecture of CLL that we uncover

refines the molecular characterization of the disease and opens

new avenues for the clinical management of patients.

Results

The gene expression landscape of CLL

Total poly(A)+ RNA was extracted from the CLL samples and se-

quenced using the Illumina HiSeq 2000 instrument. RNA was also

extracted from three subtypes of normal B cells (naı̈ve, memory

IgM/IgD, and memory IgG/IgA), from three different healthy in-

dividuals, and sequenced in triplicates. In total, close to 6 billion

2 3 76-bp paired-end reads were obtained (see Methods sections

‘‘Patients and Samples’’ and ‘‘RNA Preparation, Sequencing, and

Microarrays’’; Supplemental Figs. S1, S2; Supplemental File 1), with

a median number of 45M reads per sample. The reads were pro-

cessed with the Grape pipeline (Knowles et al. 2013), being mapped

to the human genome (hg19) with GEM (Marco-Sola et al. 2012),

and used to quantify genes and transcripts annotated in the

GENCODE gene set (Harrow et al. 2006) with the Flux Capacitor

(Montgomery et al. 2010; http://flux.sammeth.net/index.html)

(see Methods sections ‘‘Read Mapping and Processing’’ and ‘‘Gene,

Transcript, and Exon Quantifications’’). The transcriptome of 219

CLL patients, including 95 of the RNA-seq samples, was also ana-

lyzed using DNA microarrays. We found very high correlation

between RNA-seq and microarray-based quantification of gene

expression (CC ranged from 0.81 to 0.88), and between RNA and

protein levels for ZAP70 and CD38 (known CLL markers), as pre-

viously determined for these samples (Quesada et al. 2011) (CC:

0.52 and 0.77, respectively) (Supplemental Fig. S3).

Across the whole genome, we found large transcriptional

differences between normal lymphocytes and CLL cells. On aver-

age, we found 13.6% of the human genome covered by RNA-seq

reads in CLL samples, while for normal cells the average was 10.5%

(t-test mean coverage P = 1.8 3 10�8) (Supplemental Fig. S4). For

comparison, this average is 12.7% across the cell lines investigated

within the ENCODE Project (Djebali et al. 2012)—among which

there are numerous cancer cell lines. At gene level, and under very

stringent criteria (false discovery rate [FDR] <0.01 and median fold

change >3; Methods, section ‘‘Expression Analysis’’), we identified

1089 genes differentially expressed between normal and tumoral

samples (Table 1; Supplemental File 2). The top differentially

expressed genes are dominated by immunoglobulins, as expected

due to the clonality of the CLL cells (Supplemental Fig. S5a). Path-

way analyses showed that genes involved in metabolic pathways

had higher expression in CLL, while genes related to spliceosome,

proteasome, and ribosome were among the most down-regulated

in CLL when compared with normal lymphocytes (Supplemental

Fig. S5b). Among the pathways particularly enriched in CLL cells,

we found the B-cell receptor (BCR), JAK-STAT signaling, and the

Table 1. Expression and splicing differences between the different groups analyzed

Expression
Splicing

FDR £ 0.01
and FC ‡ 2

FDR £ 0.01
and FC ‡ 3

Genes differing
in splicing ratios

Differentially
included
exons (genes)

Differential usage of splice junctions

FET < 0.05 Known Alt 59 SS Alt 39 SS Alt 59 39 SS

Normal 3578 1390 1089 655 2000 5572 (2932) 3377 2903 218 1039 1287 359
CLL 2188 434 474 110 146 117 101

IGHV region
mutated

80 25 29 10 1 73 (49) 4 0 0 0 0 0

IGHV region
unmutated

55 19 4 2 0 1 1

C1 642 352 128 30 269 1052 (729) 521 204 43 61 43 57
C2 290 98 317 30 126 144 17

SF3B1 mutated 0 0 0 0 1 131 (111) 79 79 2 1 75 1
SF3B1 unmutated 0 0 0 0 0 0 0

Genes differing in splicing ratios: FDR # 0.01 and median change of 20% for at least one transcript. Differentially included exons: FDR # 0.01 and Psi-
median > 0.1. (FET) Fisher’s exact test.
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cytosolic DNA-sensing pathways (Supplemental Fig. S6a). The BCR

signaling pathway is a major regulator of the development, sur-

vival, and activation of B cells with direct implications for CLL

pathogenesis (Dühren-von Minden et al. 2012). Among the genes

in this pathway, the receptor FCGR2B, the signal initiation gene

SYK and the signal propagation genes BTK and BLNK have a

threefold up-regulation in CLL, whereas six genes from the NFKB

family are highly down-regulated (Supplemental Fig. S6b).

In addition to protein-coding genes, we identified 127

long noncoding RNAs (lncRNAs), including 47 lincRNAs, and 61

pseudogenes as differentially expressed between normal and CLL

cells (Fig. 1A; Supplemental File 2). We specifically identified sev-

Figure 1. CLL transcriptional landscape. (A) Distribution of differentially expressed genes between tumor and normal samples according to their coding
potential. (B) Normalized expression of transposable elements (TEs). Blue indicates low expression and red high expression, with some of the TEs dif-
ferentially expressed highlighted. (C ) Genes with condition-specific splicing ratios. Two of the genes with the most significant differences in the relative
abundance of alternatively spliced isoforms between tumor and normal samples are shown. The boxplots correspond to the distribution of the relative
abundances for each transcript (represented with a specific color) in the normal (left, N) and tumor (right, T) populations. The exonic structure of each
transcript is represented using the same color scheme. (D) Allele-specific expression of somatic mutations. The relative expression of the reference allele, as
derived from RNA-seq reads, was binned, and the number of cases in each bin plotted. The color gradient reflects the relative expression of the two alleles
(the value that labels the bin in the x-axis).
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eral pseudogenes with cognates involved in cancer control (Sup-

plemental Table S1). For instance, CD24P4 has a corresponding

protein-coding gene involved in the modulation of B-cell activa-

tion responses, and PSMD10P1 has a cognate proto-oncoprotein

involved in the regulation of tumor suppressor genes. The two

genes show high expression and have a fivefold overexpression in

CLL. These results suggest a possible role for pseudogene expres-

sion in CLL pathogenesis, in line with recent findings for other

malignancies (Poliseno et al. 2010).

Analysis of RNA-seq reads mapping to known transposable

elements (TEs) revealed a general trend of derepression of TE

transcription in CLL compared with normal cells (P = 0.0084)

(Fig. 1B; Supplemental Fig. S19a; Methods, section ‘‘Transposable

Elements’’). Among TE classes, Human Endogenous Retroviruses

show the most derepression in CLL compared with normal cells.

This observation is consistent with the enhanced transcriptional

activity of CLL samples.

Exome sequencing has been previously performed in 76 of

the 98 cases analyzed here (Quesada et al. 2011). We used RNA-seq

data to determine if any of the somatic mutations showed evidence

for allelic imbalance favoring the expression of a given allele. Out

of the 899 genomic positions with somatic mutations having po-

tential functional impact, we detected expression in 342, of which

177 had enough sequence depth to carry out analysis of allele-

specific expression (Methods, section ‘‘Allelic Imbalance’’). We

found an equal number of 19 genes with a significant bias toward

the expression of the reference or the mutated allele (Fig. 1D). The

genes with bias toward the expression of the mutated allele, among

which we found ATM, TP53, TOPBP1, FANCD2, and PTPN1, are

enriched in processes related to ‘‘response to ionizing radiation’’

(P = 0.0075) and ‘‘response to DNA damage stimulus’’ (P = 0.025).

The CLL samples analyzed included a similar number of IGHV

region-mutated (n = 54) and IGHV region-unmutated (n = 41) cases.

The number of genes differentially expressed between these two

subtypes was similar to that observed in previous microarray ex-

pression studies (Klein et al. 2001; Rosenwald et al. 2001). Thus, at

a very stringent threshold (FDR <0.01 and median fold change >3),

we identified 29 such genes (80 genes at fold change >2), including

lncRNAs and protein coding, 11 of which were also detected in

these previous studies (Table 1; Supplemental Fig. S11; Supple-

mental File 2; Klein et al. 2001; Rosenwald et al. 2001). These re-

sults confirm that these two subtypes exhibit little differences in

global expression patterns.

The splicing landscape of CLL

Cancer-specific splice forms are of major importance as they can be

involved in the cause or development of the disease, and they can

then be used as surrogate biomarkers (Pajares et al. 2007). We

compared splicing patterns between CLL and normal samples at

three different levels (Methods, sections ‘‘Gene, Transcript, and

Exon Quantifications’’ and ‘‘Differential Splicing’’; Table 1): (1)

usage of splice junctions, (2) exon inclusion levels, and (3) relative

abundances of transcript isoforms. For the latter, we used a method

that we recently developed (Gonzalez-Porta et al. 2011), and

identified 2000 genes with significant differences in the relative

ratios of alternative splice isoforms between CLL and normal cells

(Supplemental Fig. S7; Table 1; Supplemental File 3). Among these,

we found several genes with well-known alternative isoforms as

cancer biomarkers, including RAC1, CD44, and BCL2L1 (Pajares

et al. 2007). The gene with the largest difference in splicing ratios,

segregating almost perfectly CLL from normal B cells, is BCL2 (Fig.

1C). BCL2 has three known isoforms, two of which differ in the

59 UTR while the third one lacks the terminal exon. This shorter

form was almost exclusively expressed in normal cells, while CLL

cells mostly expressed the longer isoforms. Many splicing regulators

themselves, including SRSF1, an oncoprotein that is up-regulated in

breast cancer and modulates apoptosis and proliferation (Anczukow

et al. 2012), exhibited differential splicing between normal and CLL

cells (Fig. 1C). Alterations in the BCR pathway were observed not

only at expression but also at the splicing level. Splicing changes

were identified in the signal modulator SYK, in signal propagation

genes GAB1, PIK3AP1 (also known as BCAP), PIK3R1, AKT3, and in

regulatory genes BCL2L1 and GSK3B, including both kinases and

binding genes (Fig. 2A,B). In the particular case of SYK—a thera-

peutic target in CLL (Buchner et al. 2009; Quiroga et al. 2009) and

for which alternative splicing has been shown to promote onco-

genesis in other cancers (Prinos et al. 2011)—we observed that the

transcript isoform that captures the largest fraction of overall gene

expression in tumors (60%) (Supplemental Fig. S8) has an alterna-

tive downstream transcription start site and therefore an alternative

promoter and 59 UTR. The usage of this alternative transcript does

not lead to change in the protein sequence, but it may have an effect

in the transcript stability and transcription efficiency. This may

contribute to understanding the biological mechanisms underlying

the therapeutic behavior of SYK targets.

Among the genes most recurrently mutated in CLL, we find

the splicing factor SF3B1 (Quesada et al. 2011; Wang et al. 2011),

which is also mutated in myelodysplasia (Papaemmanuil et al.

2011; Yoshida et al. 2011). In CLL, SF3B1 mutations are associated

with faster disease progression and poor overall survival (Quesada

et al. 2011). SF3B1 encodes a protein involved in the binding of the

spliceosomal U2 snRNP to the branch point of 39 splicing sites

(Corrionero et al. 2011). The 98 CLL samples investigated here

included nine in which SF3B1 was mutated. We detected 131

exons with significant differences in inclusion ratios between

samples with and without mutations in SF3B1 (Table 1; Supple-

mental File 3). Most notably, we identified 79 splice junctions that

were specific to tumors with SF3B1 mutations (Supplemental File

3). The vast majority of these (95%) corresponded to novel 39 splice

sites, consistent with the known molecular function of SF3B1.

This is highly significant compared with a random control (see

Methods section ‘‘Differential Splicing’’), and in striking contrast

with the proportion of novel 39 splice sites among the junctions

that are specific to other CLL partitions (Table 1). We then selected

five potentially biologically relevant cases for independent vali-

dation, and in all of them quantitative PCR, followed by Sanger

sequencing, confirmed the differential splicing inferred from RNA-

seq (Supplemental Fig. S12). Gene-annotation enrichment analy-

sis shows that genes with an alternative 39 splice site specific to

SF3B1-mutated cells are enriched for the ‘‘protein binding’’ func-

tion (P = 0.02). Among these, we found ATM, a master regulator of

the DNA damage response pathways, which is frequently altered in

CLL. The use of the alternative 39 splice site generates a truncated

protein lacking the 720 C-terminal amino acids, where the phos-

phatidylinositol-3 kinase domains are located. PCR analysis vali-

dated the enhanced expression of the putative splice junctions

that lead to the truncated form of ATM in the SF3B1-mutated cells

(Fig. 2C). We observed that SF3B1 mutations tend to be mutually

exclusive with ATM mutations and 11q deletions (Fig. 2C), sup-

porting the recently proposed connection between mutations in

SF3B1 and ATM dysfunction (Wang et al. 2011; Raa et al. 2012).

Other genes with altered splicing in SF3B1-mutated cells include

the following: FCER2, a B-cell specific antigen that has an essential

Transcriptome characterization of CLL
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role in B-cell growth and differentiation; TEAD2, a transcription

factor which plays a key role in the Hippo signaling pathway in-

volved in organ size control and tumor suppression; TCIRG1, an

immune regulator involved in normal T-cell activation; or TNIP1,

a gene that plays a role in autoimmunity and tissue homeostasis

through the regulation of nuclear factor kappa-B activation. In

these four cases, the novel isoform introduces a premature stop

codon leading to considerable truncation of the coding sequence

Figure 2. Splicing changes in the BCR pathway between normal (N) and tumor (T) samples. (A) Partial view of the BCR signaling pathway with
representation of genes with significant changes in alternative splicing. (B) Distribution of alternative splicing ratios between tumor and normal samples for
three example genes in the BCR pathway highlighted in A. (C ) ATM splicing in SF3B1-mutated samples. (Top left) Location of CLL-specific novel splice
junction in the ATM gene. The novel 39 splice site extends 20 bp upstream into the intron. Red dashed line indicates the truncation of the C-terminal end of
ATM caused by the frame shift introduced by the novel splice site. (Bottom right) Expression levels of the putative and annotated junctions analyzed by
qPCR. The log2 scale of the relative gene expression is represented for cases with SF3B1 mutation (dark gray), cases with ATM mutation and/or 11q
deletion (dark gray), and cases without these genetic alterations. Light gray indicates unknown status.
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(Supplemental Fig. S13). Truncation of the encoded protein by the

introduction of premature stop codons is actually the most com-

mon outcome of splicing aberrations induced by SF3B1 mutations,

affecting 90% of the cases. The estimated median size of the trun-

cated product is 41% that of the wild-type protein. These results

suggest that aberrant splicing in SF3B1 mutations is in most cases

unlikely to lead to functional protein products.

In order to further understand the interplay between the

splicing machinery and alternative splicing in CLL, we derived a

composite cassette exon (CE)/RNA–binding protein (RBP) network.

The final model aims to capture both, clusters of co-regulated

exons in CLL as well as their putative regulators. Here, network

reconstruction is based on the covariance of the expression of RBPs

and alternative exon inclusion (see Methods). Community de-

tection analysis is then used to identify distinct modules within

the network topology (see Methods section ‘‘Splicing Networks’’).

Our analysis reveals a network comprised of four modules each

with a distinct profile of exon inclusion across the CLL samples

(Supplemental Fig. S9a,b). Enrichment analysis on the exons of

modules 2, 3, and 4 shows that they are predominantly contained

in genes coding for products targeted by phosphorylation in dif-

ferent cellular contexts and particularly during mitosis. These re-

sults suggest that aberrant splicing in CLL may impact phosphor-

ylation dynamics that modulate signaling networks and control

cell cycle progression. The network, in addition, highlights two

cassette exon events in CCNL2 and CSDE1 as ‘‘hub’’ nodes in

modules m1 and m2, respectively (Supplemental Fig. S9a,b). CCNL2

encodes a cyclin that induces cell cycle arrest, promotes apoptosis,

and its overexpression has been shown to inhibit growth in several

types of cancer (Zhuo et al. 2009). The affected cassette exon

(chr1:1326677–1326955) resides in an untranslated gene portion

and therefore does not affect the protein product but can poten-

tially influence the transcriptional efficiency, stability, or trans-

latability of the gene. CSDE1 (synonym upstream of NRAS, UNR) is

an RBP that regulates translation and/or stability of different genes

including those involved in tumorigenesis such as FOS, APAF1,

MYC, and CDK11A (Mihailovich et al. 2010). Notably the CSDE1

exon that appears to be affected (chr1:115272879–115273043) is

annotated as constitutive and codes for portions of the protein’s

cold shock domains (CSD) that affect CSDE1 affinity toward its

targets (Triqueneaux et al. 1999). Interestingly, a known interactor

of the CSDE1 target MYC, MYCBP2, also contains an exon in the

same module as CSDE1.

Transcriptional chimeras in CLL

Gene fusions leading to chimeric proteins constitute an important

mechanism that contributes to carcinogenesis (Mitelman et al.

2007). We used our RNA-seq data to identify potential CLL-specific

RNA chimeras. Using a very stringent criterion based on read

support (see Methods section ‘‘Chimeric Junctions’’; Supplemental

File 5), we identified 122 chimeric junctions present in CLL cells,

but not in normal B cells. At this stringent filtering, 65% of the

junctions appear only in one tumor sample, but can also be

detected in other samples with lower read support. Twenty-six

junctions are found between two immunoglobulin genes and 48

junctions connect two protein-coding genes (42 unique pairs of

genes). Of these, only six junctions were inter-chromosomal and

the remaining had a median distance between the two ends of the

junctions of 21 kb (average 63 kb, maximum distance of 1.2 Mb).

Given the genomic proximity of the genes connected in the chi-

mera and the fact that the majority (98%) is transcribed in the

same direction, many of them are likely to correspond to read-

through transcriptional events. This type of event has already been

linked to other cancers (Maher et al. 2009; Berger et al. 2010).

Given its read support and specificity in CLL samples, we found of

particular interest two chimeras, which we selected for further

experimental validation by PCR and Sanger sequencing. The

FCRL2–FCRL3 chimeric junction is present in 11 CLL samples and

joins the exon 7 of FCRL2 to the second exon of the 59 UTR of

FCRL3 (Fig. 3). These are two genes from the immunoglobulin

receptor superfamily, which have predictive value for determining

clinical progression in CLL (Li et al. 2008). The chimeric sequence

introduces a premature stop codon, which leads to the loss of

several of the FCRL3 immunoglobulin domains. The second chi-

mera joins GAB1 and SMARCA5 (Fig. 3). GAB1 (also called GRB2) is

an adaptor protein involved in intracellular signaling pathways

including the BCR pathway. Its functions are involved in cellular

growth, transformation, and apoptosis. SMARCA5 belongs to the

SWI/SNF family of proteins involved in chromatin remodeling and

has an important role in the repair of double-strand breaks

(Smeenk et al. 2013). The chimera joins the terminal protein-

coding exon of GAB1 with the first coding exon of SMARCA5,

generating an ORF that conserves almost the entire protein se-

quences of the two genes (Fig. 3). We detected this chimera in six

CLL samples. In both chimeras, we tested five CLL samples con-

taining the predicted chimera, and five CLL samples in which the

chimera has not been predicted. In both cases, four out of the five

RNA-seq positive cases were strongly validated by Sanger se-

quencing (Fig. 3A), and only one of the negative FCRL2–FCRL3

cases and two of the negative GAB1–SMARCA5 produced a very

weak signal (Supplemental Fig. S10a,b). Recently, Velusamy and

colleagues have reported a recurrent and reciprocal chimera be-

tween YPEL5 and PPP1CB genes (Velusamy et al. 2013). This re-

currence was reported to be as high as 95% of the CLL samples but

negative in normal samples using qPCR. We have detected this

chimera both in normal and cancer samples, but it did not reach

our required minimal read support (see Supplemental File 5). We

also analyzed other cancer studies where chimeric genes have been

reported. In our full set of chimeric junctions (see Methods section

‘‘Chimeric junctions’’) we found five chimeric read-through events

previously identified, LAMTOR1–ANAPC15 and PTPRG–C3orf14 in

melanoma (Berger et al. 2010), TATDN1–MTSS1 and MAP2K7–

SNAPC2 in CLL (Velusamy et al. 2013), and TTTY15–USP9Y found

in prostate cancer and experimentally validated (Ren et al. 2012).

Only the latter showed CLL specificity (see Fig. 3). The detection of

transcriptional chimeras in normal samples could simply reflect

that a basal level of inconsequential transcriptional read-through

naturally exists in normal cells. The increased expression of the

underlying genes in altered conditions may result in an even larger

increase in the expression of the chimeric isoforms, which may

then reach physiologically relevant levels. Indeed, FCRL2, FCRL3,

GAB1 are highly up-regulated in CLL (fold change of 4.89, 6.7, and

19.4, respectively). The passenger nature of such transcriptional

read-through events in normal cells may then become function-

ally relevant in the altered cells.

Identification of two major transcriptional CLL subgroups

Hierarchical clustering of the RNA-seq samples according to gene

expression of protein-coding and long noncoding genes clearly

separated normal lymphocytes from tumor samples (Fig. 4A). The

expression profile of the different subtypes of normal lymphocytes

was relatively homogeneous. However, within the CLL samples

Transcriptome characterization of CLL
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the clustering revealed two large, strongly defined subgroups,

which were independent of the IGHV gene region’s mutational

status (Fig. 4A). Consensus clustering, multidimensional scaling,

and principal component analysis supported the partition of the

CLL samples in these two groups, to which we refer as C1 and C2

(Fig. 4B,C; see Methods section ‘‘Cluster Robustness’’). Based on

the hierarchical clustering, we assigned each CLL sample to one of

these subgroups (Supplemental Table S3). The hierarchical clus-

Figure 3. Chimeric junctions between FCRL2–FCRL3 and GAB1–SMARCA5. (A) Schematic representation of the chimeric genes, associated ORFs, and
junction sequences. (Top) Black boxes represent exons skipped by the chimeric junction. ORFs in the three possible frames are indicated in yellow. (Bottom)
Sanger sequencing for the junction part of each chimera. The number in the square corresponds to the CLL sequenced sample. (B) Number of split-
mapped (single reads split and mapped independently) and paired-end (two single reads from both ends of the same fragment) reads supporting the two
chimeras and six previously described cases. TTTY15–USP9Y is reported twice because of the presence of two distinct fusion points. We should note that,
although split-mapped and paired-end reads are shown separately, each chimera is supported by a combination of both.
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tering of 95 of these cases based on microarray expression data

reproduced the RNA-seq-derived classification (95% agreement)

(Supplemental Fig. S14). To further corroborate this basic molec-

ular subdivision of CLL, we performed consensus clustering and

Gene Set Enrichment analyses (GSEA) using C1- and C2-specific

signatures (Supplemental File 4; see Methods section ‘‘Cluster Ro-

bustness’’) in microarray gene expression data from an indepen-

dent series of 124 CLL patients, as well as from three previously

published data sets (including 60 CLL patients from Italy, 68 from

the United States, and 107 from Germany) (Fabris et al. 2008;

Friedman et al. 2009; Herold et al. 2011). In all these cases, we

found strong support for the previously unreported CLL C1/C2

subdivision (Fig. 4D,E; Supplemental Figs. S15, S16).

We performed bioinformatics analyses to investigate the

molecular signatures and pathways underlying the C1/C2 groups

(see Methods section ‘‘Functional and Gene-Set Enrichment Analy-

sis’’). We found that these molecular signatures were independent of,

and stronger than, those underlying the IGHV region’s mutational

subtypes. Indeed, 5% of the variability in gene expression observed

across all samples can be attributed to the C1/C2 status, compared

with only 1.5% to IGHV region mutational status. At FDR <0.01 and

a median fold change >3, we identified 128 genes differentially

expressed between C2 and C1 (642 genes at fold change >2), of which

16 are lncRNAs, 98 at higher levels in C2 and 30 in C1 (Table 1;

Supplemental Fig. S17; Supplemental File 2). C1 samples also exhibit

higher expression of some transposable elements (Supplemental

Fig. S19). Differentially expressed genes between C1 and C2 are

related preferentially to a few pathways and cell processes (Sup-

plemental Fig. S20). Genes involved in RNA splicing and mRNA

transport are overexpressed in C2 (Supplemental Fig. S21; Table 1).

A significant proportion of differentially expressed genes (16 out of

128, 12%, FDR = 5.5 3 10�7) belong to the MAPK/ERK signaling

pathway, all of which are up-regulated in the C2 samples (Sup-

plemental Fig. S22). C2 samples also show high expression of

many members of the AP1 transcription factor family, including

FOS and JUN, with the targets of these two genes having clear

Figure 4. Major transcriptional CLL subgroups. (A) Clustering of CLL and normal samples. Dendrogram obtained by hierarchical clustering of CLL and
normal samples. (B) Consensus cluster. The matrix shows a clear and robust separation between CLL samples in C1 and C2. Dark blue regions indicate
cluster partitions for samples that always cluster together (high consensus) and white indicate partitions with low consensus. (C ) Multidimensional scaling
of CLL and normal samples according to gene expression. (D) Enrichment score plot by GSEA comparing the RNA-seq based clustering with the clustering
of an independent set of 124 samples, profiled with expression arrays. The plot compares the ranking correlation of the list of genes from the two clustering
solutions. The vertical dark lines indicate where the genes in one list appear in the other ranked list of genes. An accumulation at the extremes indicates an
agreement between the two lists. (E) Enrichment score plot by GSEA comparing the clustering in the RNA-seq and the previously published data sets. The
three previously published data sets (Fabris et al. 2008; Friedman et al. 2009; Herold et al. 2011) contained 60, 40, and 106 samples, respectively.
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differential expression patterns between C1 and C2 (Supplemental

Fig. S23).

We find also more differences in splicing patterns between the

C1 and C2 subgroups than between the IGHV region-mutated and

-unmutated subgroups, with C2 samples exhibiting a larger number

of splicing alterations than C1 (Table 1; Supplemental Fig. S18).

Notably, we found 204 splice junctions specific to C1 samples and

317 to C2 samples. SF3B1 mutations are more frequent in C2 (six

samples, 20%) than in C1 samples (three samples, 4.7%, Fisher’s

exact test P = 0.027). Although only one of the differentially in-

cluded junctions between SF3B1-mutated and -unmutated sam-

ples is also differentially included between C1 and C2 samples, 38

exons (corresponding to 33 genes) are differentially included both

between SF3B1-mutated and -unmutated samples and between C1

and C2 samples. As with gene expression, protein kinases are also

enriched among the genes with differential splice site usage, in-

cluding MAPK1 and JAK1 (which were confirmed by qPCR) (Sup-

plemental Fig. S12).

Among the modules that arise from the splicing networks

previously described (section ‘‘The Splicing Landscape of CLL’’),

module 1 is the one showing the sharpest differences between C1

and C2 samples. This module contains four of the top 20 RNA

processing genes identified as differentially expressed between C1

and C2 (Supplemental Fig. S9c). These include three genes over-

expressed in C2 (WBP11, BCAS2, and RBM16) and one overex-

pressed in C1 (RNPC3).

Using microarray methylation data (Kulis et al. 2012) that

match 85 of our CLL RNA-seq samples, we analyzed the methyl-

ation patterns among the genes differentially expressed between

C1 and C2 (see Methods section ‘‘Methylation Analysis’’). We did

not find a general pattern of differential methylation in C1 and C2

cells, neither in the promoters or the gene bodies. We found, how-

ever, that the promoters of genes differentially expressed between

C1 and C2 are significantly hypomethylated (P < 2.2 3 10�16)

compared with non-differentially expressed genes (Supplemental

Fig. S24). The promoters of these genes are always hypomethylated,

irrespective of the C1/C2 subgroup to which they belong.

We found, after analyzing the expression data of the samples

collected by Herishanu et al. (2011), that many genes that are

differentially expressed between C1 and C2 are also differentially

expressed between peripheral blood and the lymph node of CLL

patients. GSEA yielded a very significant enrichment between the

two sets of differentially expressed genes (Supplemental Fig. S25a).

Indeed, we found 194 differentially expressed genes between pe-

ripheral blood and lymph node (a number and a set of genes

similar to those previously reported by the authors; see Methods

section ‘‘Expression Analysis’’). Forty of these genes are also dif-

ferentially expressed between C1 and C2. Strikingly, all of them are

simultaneously up-regulated in C2 and in the lymph node. Among

genes with similar up-regulation in these two groups we find genes

with transcription regulation activity (FOS, FOSB, JUN, JUNB,

EGR1/2, KLF4/6/10, NR4A2, SIK1), genes involved in cell–cell sig-

naling (CCL3/4/5, TNFAIP3, NAMPT, CXCR5, IL8/1B/4R), and

genes that promote a response to an organic substance (CD83,

DNAJB1, CCL5, DUSP1/4, EGR1/2, JUN, JUNB, FOS, NR4A2,

PPP1R15A, HSPA1B). This seems to indicate that the differences

between C1 and C2 originate from a series of molecular signals that

occur at the cell surface and that lead to a downstream change in

regulation of transcription. We also found that genes differentially

expressed in cells with and without BCR stimulation, which occurs

in the lymph node, are highly overrepresented among up-regu-

lated genes in C2. This was confirmed with data from two studies

(Guarini et al. 2008; Herishanu et al. 2011) through the analysis of

gene overlap (Hypergeometric test P = 1.0 3 10�30) and GSEA

(Supplemental Fig. S25b,c). Additionally, we used an interaction

network that captures transcriptional and post-translational mo-

lecular interactions in human B cells (Lefebvre et al. 2010; Methods,

section ‘‘Interaction Network’’). We selected the subnetwork that

contains the C1/C2 differentially expressed genes and highlight it

according to the direction and intensity of the gene expression.

While maintaining the same subnetwork, this was repeated for the

lymph node versus peripheral blood signatures (Herishanu et al.

2011). The two networks (Supplemental Fig. S26) show a very sim-

ilar pattern in the direction of gene up-regulation, confirming the

previous results. Due to their higher connectivity and centrality,

JUN, JUNB, JUND, FOSB, NFE2L2, and NR4A2 are the most in-

fluential genes in the subnetworks. Of notice, there are changes in

several genes of the DUSP family (DUPS1/2/4) involved in signal

transduction and major regulators of the MAPK signaling pathway,

which may explain the large differences in expression between C1

and C2 in this pathway. Taken together, these results suggest that

the activation of the B-cell receptor of CLL cells in the lymph node

microenvironment might induce significant downstream gene ex-

pression changes leading to the C2 gene expression phenotype.

Clinical relevance of C1 and C2 CLL groups

To assess the clinical impact of the C1/C2 classification, we ana-

lyzed clinical and biological variables in 91 patients with available

data at the time of sampling (Supplemental Table S2). C2 patients

had a higher frequency (27%, compared with 9% in C1) of muta-

tions in genes related to adverse outcome (NOTCH1 and SF3B1),

and were more likely to be in the advanced Binet stage (Fig. 5A;

Supplemental Table S4). In addition, these patients had more fre-

quently active disease with need for therapy, and showed a signif-

icantly shorter time to treatment (TTT) than C1 patients, both in

the whole series (Supplemental Fig. S27A; Supplemental Table S4)

and in the subset of patients in stages A and B (Fig. 5B). Other

variables significantly associated with shorter TTT in this cohort

were advanced stage at sampling, unmutated IGHV region (Sup-

plemental Fig. S27B,C), high ZAP70 and high CD38 expression,

and presence of mutations in either NOTCH1 or SF3B1. However,

multivariate analysis, performed in patients in stages A and B in-

cluding these variables, identified only C1/C2 clustering (Hazard

ratio [HR]: 3.73; 95% interval of confidence [IC]: 1.8–7.7; P < 0.001)

and IGHV region mutational status (HR: 2.7; 95% IC: 1.3–5.6; P =

0.006) as the relevant variables associated with TTT. No significant

relationship was observed between C1/C2 clustering and response

to therapy or overall survival (Supplemental Fig. S27D).

We confirmed the clinical impact of the C1/C2 clustering in

an independent cohort of 110 patients with available data at time

of sampling using microarray expression profiling. The clinical

impact of C1/C2 groups was virtually identical in this validation

series and in the original RNA-seq series (Fig. 5C,D; Supplemental

Fig. S27E–H; Supplemental Table S4). Concordantly, multivariate

analysis confirmed that C1/C2 clustering and IGHV region mutational

status were the only significant variables associated with TTT. The

contribution of these two variables to TTT seems to be of similar im-

portance (Supplemental Fig. S27A,B,E,F) and essentially orthogonal.

The C1/C2 molecular subdivision adds, therefore, additional

resolution to the CLL prognosis. Indeed, C1/IGHV region-

mutated patients exhibit the most favorable outcome, while C2/

IGHV region-unmutated ones have the poorest outcome (Sup-

plemental Fig. S27C,G).
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Discussion

The work here presented underscores the relevance of deep RNA

sequencing in cancer research. Through RNA-seq it is possible to

define global transcriptome signatures that are not restricted to

gene expression patterns, and that lead therefore to a molecular

characterization of the disease at higher resolution. Indeed, in

addition to identifying hundreds of protein-coding genes differ-

entially expressed between CLL and normal B cells, we have char-

acterized the status of other transcriptional elements, such as

transposable elements (TEs), lncRNAs, and pseudogenes—all of

which are typically invisible to DNA microarrays. We have found

a general trend of deregulation of TEs in CLL cells. Reactivation of

repeat DNA has previously been observed in mouse pancreatic

cancers (Ting et al. 2011), while LINE-1 reactivation has been ob-

served in developing mammalian neural stem cells (Coufal et al.

2009). Also consistent with recent findings (Poliseno et al. 2010),

we have identified several differentially expressed pseudogenes

with cognates involved in cancer control (Supplemental Table S1),

suggestive of a role for pseudogene expression in CLL pathogenesis.

Due to the increased resolution of RNA-seq, we have also identified

genes with significantly different splicing patterns—defined as the

relative ratios of the gene’s splice forms—between CLL and normal B

cells. Notably, the splicing pattern of BCL2 segregates almost perfectly

the populations of CLL and normal B cells, and it could thus be po-

tentially used as a surrogate marker for the disease.

By using RNA-seq, we have also been able to explore in greater

detail the splicing effects of mutations of SF3B1. As expected from

the known biological role of this gene, the vast majority (95%) of

splicing changes associated with SF3B1 mutations correspond to

the activation of cryptic 39 splice sites. Among the genes with al-

ternative 39 splice sites specific to SF3B1-mutated cells, we found

ATM. The association between SF3B1 mutations and the 11q de-

letions observed in CLL (Wang et al. 2011; Raa et al. 2012) suggest

that these two genetic events may cooperate to inactivate ATM in this

disease by deletions of one allele and the generation of an anomalous

truncating transcript induced by the SF3B1 mutation in the other.

Analysis at the level of individual transcript isoform reveals

that many of the pathways that are altered in the disease are af-

fected not only by changes in the expression of key genes in the

pathway, but also changes in the relative proportion of the alter-

native splice isoforms produced by each gene. This is, for instance,

the case of the BCR pathway where alterations of the relative ex-

pression of splicing isoforms can be detected in several important

genes in the pathway. An example of such genes is for instance

SYK, a mediator of BCR signaling pathway and a potential drug

target in CLL (Buchner et al. 2009; Quiroga et al. 2009). By using

RNA-seq, we have also been able to quantify the alternative usage

of transcription initiation sites by this gene in CLL and normal

cells—which could provide important information to understand

the therapeutic role of this gene.

Based on RNA-seq quantifications of gene expression, we

have uncovered two major transcriptional subgroups in CLL,

which are independent of IGHV region mutational status, and to

which we refer as C1 and C2. Strikingly, these two transcriptional

groups have not been previously reported, which could be due to

Figure 5. Clinical behavior of the C1 (green) and C2 (red) subgroups. (A) Distribution of clinico-biological features in the RNA-seq profiled patients.
(B) Time to treatment in the RNA-seq profiled patients at Binet stages A and B. (C ) Distribution of clinico-biological features in the microarray profiled
patients from the independent validation series. (D) Time to treatment in the microarray-profiled patients from the independent validation series at Binet
stages A and B.
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the fact that most CLL transcriptome

surveys have focused on the analysis and

comparison of well-known and estab-

lished disease groups, such as those de-

fined by the IGHV region’s mutational

status of the CLL tumors. Moreover, the

increased size of the cohort used in our

study, which includes 98 patients moni-

tored by RNA-seq, and 124 additional

patients monitored by microarrays, as well

as the availability of rich and well-curated

clinical annotations, has provided us with

additional statistical power. In any case,

the C1/C2 subgroups are very robust, and

can be replicated in independent cohorts

of patients—both previously published

and monitored by us. The two subgroups

have markedly different clinical out-

come, with C2 patients having a more

aggressive disease. The differential clinical

outcome of C1/C2, which we validated in

the independent cohort, is orthogonal to

IGHV region mutational status, and adds

therefore a new layer of resolution to CLL

prognosis. C1/IGHV region-mutated pa-

tients exhibit the most favorable out-

come, while C2/IGHV region-unmutated

ones have the poorest one. This may suggest alternative thera-

peutic strategies depending on the C1/C2 status of patients.

The two groups have specific transcriptional signatures that

are stronger than those from the classical IGHV region-mutated

and -unmutated subtypes. C2 cells show overall higher transcrip-

tional complexity than C1 cells. They overexpress a larger number

of genes, and exhibit a larger number of splicing alterations with

the up-regulation of genes involved in RNA splicing and mRNA

transport. C2 shares many of the genes and pathways up-regulated

in the CLL cells obtained from the lymph node (Herishanu et al.

2011), suggesting that the lymph node microenvironment may be

influencing the differences in gene expression observed in C1 and

C2 CLL subtypes. Among the pathways differentially expressed

between C1 and C2, the MAPK/ERK signaling pathway appears to

be the most affected one. Indeed, 12% of all genes differentially

expressed between C1 and C2 belong to this pathway, all of which

are up-regulated in the C2 cells. There is also a significant enrich-

ment of genes that are up-regulated after BCR stimulation by IgM

antigen (Guarini et al. 2008; Herishanu et al. 2011) among C2 up-

regulated genes. These results suggest that C2 cells show a pattern

in expression changes similar to those cells that are under direct

BCR activation in the microenvironment of the lymph node. This

pattern may explain the faster disease progression observed in C2,

since as pointed out in Herishanu et al. (2011) antigen-dependent

BCR activation has been shown to accelerate disease progression in

a mouse lymphoma model (Refaeli et al. 2008). Figure 6 highlights

some of the genes possibly involved in the complex cellular and

molecular interactions of CLL cells and the lymphoid tissue mi-

croenvironment (Burger and Gandhi 2009). The enrichment in the

MAPK signaling pathway is consistent with the recent work by

Chuang et al. (2012). These authors identify gene co-expression

subnetworks that are associated with disease progression. In one of

these subnetworks, genes in the MAPK signaling pathway have

higher expression levels in patients at early stages of the disease.

We found no overlap, however, between the genes differentially

expressed in C1/C2 in the MAPK signaling pathway and the genes

found by Chuang and colleagues in their subnetwork, suggesting

that different parts of this pathway are altered at different stages

during the development of the disease.

In summary, we have monitored here with unprecedented

resolution the CLL transcriptome. Our work has revealed new in-

sights into the molecular pathogenesis of CLL, and has led to the

discovery of new molecular subtypes of this disease with potential

clinical implications.

Methods

Patients and samples
Tumor CLL cells from 98 patients were separated from non-tumor
cells by immunomagnetic depletion of T cells, NK cells, mono-
cytes, and granulocytes (Supplemental Material). Tumor cell purity
was $95%. Normal B-cell subsets were obtained from healthy
donors and purified with immunomagnetic selection. The studies
were approved by the institutional review board (IRB) of Hospital
Clinic (Barcelona, Spain). All subjects included in the initial RNA-
seq study gave informed consent for their participation according
to the International Cancer Genome Consortium (ICGC) guide-
lines, and the subjects in the mutational screening and clinical
validation analysis agreed to IRB-approved informed consent for
genetic studies. Detailed information about the collection and
processing of samples is provided in the Supplemental Material.

RNA preparation, sequencing, and microarrays

Total RNA was extracted with TRIzol reagent (Invitrogen) follow-
ing the recommendations of the manufacturer. RNA integrity was
examined with the Bioanalyzer 2100 (Agilent). High-quality RNA
samples were sequenced and hybridized to microarrays. For se-
quencing, the RNA-seq libraries were prepared according to the
standard Illumina protocol with the mRNA-seq Illumina TruSeq.

Figure 6. Interaction of CLL cells and the lymph node microenvironment. Stimulation of the BCR
complex and other receptor and cell surface genes (CD79B, CD22, CD83, FCRG2B) leads to downstream
changes in regulation. Affected genes such as those of the DUSP family, involved in the regulation of the
MAPK pathway, may explain transcriptional differences observed for this pathway. Up-regulation of
transcriptional regulators, like FOS and JUN, may trigger proliferation and inflammation processes that
could be at the origin of C2 cells. Other genes involved in cell–cell signaling are also up-regulated in C2.
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cDNA libraries were checked for quality and quantified using the
DNA-1000 kit (Agilent) on a 2100 Bioanalyzer. Each library was
sequenced with the Illumina Sequencing Kit v4 on one lane of a
HiSeq 2000 sequencer to obtain 76-bp paired-end reads. Affymetrix
Human Genome Array U219 array plates were hybridized with
high-quality RNA samples. Expression Console software (Affymetrix)
was used to generate summarized expression values using the Robust
Multiarray Average (RMA).

Read mapping and processing

RNA-seq data sets were processed with the Grape pipeline (Knowles
et al. 2013; big.crg.cat/services/grape). The 76-bp paired-end reads
were mapped to the genome version hg19 and to an exon-junction
database derived from the annotation (GENCODE v7 [Harrow et al.
2006]), with a maximum of two mismatches using GEM (Marco-Sola
et al. 2012). Unmapped reads were further split-mapped, to allow the
discovery of novel splice junctions.

Gene, transcript, and exon quantifications

Uniquely genomic and split-mapped reads were used to quantify
expression levels for genes, transcripts, and exons. These are pro-
vided as RPKM values (Mortazavi et al. 2008). Exon expression
values are computed by considering all reads mapping to the exon.
Gene expression values are computed by considering all reads
mapping to the exons in the gene. Individual transcript abundances
are computed using the Flux Capacitor program (Montgomery et al.
2010; http://flux.sammeth.net/index.html). Based on the density
function of the reads along the transcripts, this method is able to de-
convolute the contribution of each transcript to the overall gene
expression and to estimate their original abundances. It does this by
building—from the reference annotation—splicing graphs where
reads are mapped to corresponding edges in these graphs according
to the position at which they align in the genomic sequence. The
resulting graph with edges labeled by the number of reads can be
interpreted as a flow network, where each transcript represents
a transportation path from its start to end. Consequently, each edge
is possibly a shared segment of transportation, along which a certain
number of reads per nucleotide—i.e., a flux—is observed.

Expression analysis

The statistical environment R was used to perform statistical
analysis. For RNA-seq, RPKM values were converted to log2 scale.
Hierarchical clustering was performed using the Ward method and
the distance 1-r, where r is the Pearson correlation coefficient. Genes
from the Y chromosome were not considered. Multidimensional
scaling (MDS) analysis was performed using the isoMDS package and
the same distance. Differential gene expression analysis was done
using the non-parametric Wilcoxon rank sum test, with Benjamini-
Hochberg (BH) adjustment, and a fold change difference between
the medians, with added pseudo-counts, of the two groups. Genes
with FDR <0.01 and a fold change of 2 or 3 were considered signif-
icantly expressed. RPKM values were compared with microarray
expression levels, where the expression of each gene was derived as
the average value of all the probes in the gene. The Spearman and
Pearson correlation was obtained across the 95 samples from which
RNA-seq and microarray data were available. Microarray differential
expression analysis was done with the SAM algorithm using the BRB-
tool application (Simon et al. 2007). Differences in gene expression
were considered significant if they were in the 99th percentile FDR
and had a fold change $2. All the data sets (Fabris et al. 2008;
Friedman et al. 2009; Herishanu et al. 2011; Herold et al. 2011) were
normalized independently, using fRMA (McCall and Irizarry 2011).

Transposable elements

We obtained all the known human TE sequences as provided in
Repbase (Jurka et al. 2005) as of February 2012. Due to issues of
multiple mapping, we manually filtered the two large families of
TEs, Alu, and LINE-1 to remove all but one member of each family.
Annotated poly(A) sequences at the 39 end of Alu were trimmed,
and any unknown nucleotides deleted. We then mapped all the
reads by trimming them to the first 25 nucleotides and aligning
with up to three mismatches. Reads with a single best mapping to
one of the TE sequences were considered. The numbers of reads
mapping to each TE were counted and the expression value of each
TE class was normalized by the total number of mapped reads.

Allelic imbalance

A set of 899 point mutations, corresponding to substitutions,
among the 1247 somatic mutations reported in Quesada et al.
(2011) could be analyzed in the 76 samples common to the two
studies. Allele frequencies were obtained by aligning the reads
across the mutation and counting the number of reads that sup-
port either the reference or the mutation allele. To avoid mapping
bias toward the reference allele, two mapping indices with the
reference and the mutation alleles were created and reads mapped
with up to two mismatches. Only reads where the nucleotide that
matches the somatic mutation has a minimum quality of 20 and is
found before the last 6 bp were considered. From the exome se-
quencing data we also obtained the number of reads that map to
the mutation and how many of those reads support the reference
allele. Only cases with $10 reads were considered for the allele
frequency analysis. To test for a bias toward the expression of the
reference or the mutation allele we applied a Fisher’s exact test
between the total read count and the number of reads supporting
the reference allele in the exome and RNA-seq data. Cases with an
FDR <0.05 were considered significant.

Differential splicing

Differential exon inclusion was obtained using the Percentage
Splicing Index (PSI) as previously defined (Wang et al. 2008;
Shapiro et al. 2011). This index reflects the inclusion level of the
exon and is defined as PSI = #inclusion_reads/(#inclusion_reads +
#exclusion_reads); Inclusion reads correspond to the reads that
fall in the exon region (a), plus the reads that support the exon
junctions (b). Exclusion reads are those split-reads that skip the
exon (c). For each sample, we require a minimum of 10 reads,
a minimum exon length of 150 bp, and the exon to have
detectable expression in at least 50% of the samples of each group
(final set of 120,596). Significant differences were considered for
FDR < 0.01 (Wilcoxon test + BH adjustment) and absolute
difference in PSI medians of the groups $0.1. A splice-junction
event was considered to be present in a sample if it has a read
density >3/msms, where msms is the median number of split-
mapped reads in all tumor samples. To determine differential
event usage, a contingency table with the number of samples
from each group where the event is present was created and
a Fisher’s exact test with BH correction is applied, with events in
differentially expressed genes excluded. As a control for the speci-
ficity of the junctions, a randomization procedure (n = 1000) on the
samples where the junctions occur was performed. This procedure
consists of the permutation of the samples by keeping fixed the
number of occurrences of the junction. Exon annotation was then
used to classify the events as annotated, alternative 59 SS or 39 SS or
novel. Differences in the patterns of alternative splicing between
two groups were identified using the previously described method
(Gonzalez-Porta et al. 2011). Genes with two or more transcripts
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and RPKM of 1 in at least one sample in each group were selected.
Genes with FDR < 0.01 and a maximum difference in the splicing
ratios between the two groups of at least 20% were considered
significant.

Splicing networks

The starting point for network reconstruction is the quantifica-
tions of gene expression for a collection of 689 RBPs and of the
inclusion values of all internal exons according to annotation.
After removal of sparse variables (fraction of NA values >0.5)
missing values in each set were filled in using k-nearest-neighbor-
based imputation (k = 10). Next, variables invariable in CLL sam-
ples or highly variable in B-cell samples are discarded in order to
reduce noise and extraneous variables unrelated to CLL pathology.
The variables are then scaled and a robust-estimate of sample co-
variance is obtained based on the FAST-Minimum Covariance
Determinant (MCD) estimator (R package mvoutlier). In order to
minimize redundancies in the final covariance matrix, only one
representative event is retained from sets of highly correlated
variables originating from the same transcription unit. Network
reconstruction is based on the graphical Lasso (gLasso) algorithm
for sparse graphical model selection (Friedman et al. 2008). gLasso
estimates a sparse covariance matrix by optimizing the log-likeli-
hood function: log det Q� tr SQð Þ � r Qk k1, where Q is an estimate
for the inverse covariance matrix S�1, S is the empirical covariance
matrix of the data, Qk k1 is the Q L1 norm, and r is a regularization
parameter. Here we set r = 0.7 and constrain all gene-to-gene entries
of Q to zero in order to focus on exon-to-exon or RBP-to-exons
connections. Nonzero entries in Q directly correspond to the edges
of the network. Module detection on the reconstructed network is
based on maximizing the network’s modularity using the greedy
community detection algorithm developed in Clauset et al. (2004).

Chimeric junctions

Single reads that do not map to the genome or the transcriptome
were further split-mapped to the genome allowing inter-chromo-
somal mappings. Chimeric junctions (Supplemental File 5) were
defined using two different filtering criteria: (1) junctions sup-
ported in each sample by at least three unique staggered single
split-mapping reads where both tumor and normal samples are
considered. This yielded a total of 2031 chimeric junctions; (2)
junctions that, for each sample, are supported by at least three
unique staggered single split-mapping reads and three unique
paired-end reads in the same sample. Additionally, only junctions
specific of tumor samples and that connect protein-coding genes
were considered. The occurrence of a chimera in a sample is only
considered if the minimum number of three supporting reads is
achieved for that sample. To eliminate possible errors in gene
structure annotation, all the cases were verified in the recent
GENCODE v13.

Cluster robustness

The robustness of C1/C2 clustering was confirmed using three
different approaches: (1) consensus clustering (Monti et al. 2003;
Reich et al. 2006; Wilkerson and Hayes 2010), to assess the stability
of the clusters. The method was applied to the gene expression
matrices for the RNA-seq and microarray data sets in this study and
three previously published data sets (Fabris et al. 2008; Friedman
et al. 2009; Herold et al. 2011); (2) Centroid Validation, where the
in-group proportion (IGP) (Kapp and Tibshirani 2007) measure
implemented in the clusterRepro package was applied to the in-
dependent data set of 124 microarray samples using the RNA-seq

data set to define the centroids; (3) gene signature correlation be-
tween data sets, where GSEA (Subramanian et al. 2005) was applied
to quantify the enrichment of the genes differentially expressed in
the published data sets (Fabris et al. 2008; Friedman et al. 2009;
Herold et al. 2011) with the list of genes defined a priori by the
RNA-seq data set.

Functional and gene-set enrichment analysis

Functional enrichment analysis was performed with the DAVID
(Huang da et al. 2009) server, BioProfiling.de tools (Antonov 2011),
with SLEA (Gundem and Lopez-Bigas 2012) using Gitools (Perez-
Llamas and Lopez-Bigas 2011) and the GSEA (Subramanian et al.
2005) tool.

Methylation analysis

We used the methylation data set of Kulis et al. (2012) obtained by
Infinium HumanMethylation450 BeadChip microarrays, available
online at https://www.ebi.ac.uk/ega/datasets/EGAD00010000254,
and included the samples of the data set for which we have both
methylation and gene expression data in our analyses. We used all
probes of the methylation microarrays that passed quality control
in the study of Kulis et al. (2012) and are located in gene promoter
regions. We calculated mean methylation values per probe using
beta values for four different subsets of samples altogether: (1) M-CLL
and C1, (2) U-CLL and C1, (3) M-CLL and C2, and (4) U-CLL and C2.
To obtain methylation values per gene, we further calculated the mean
beta value of all probes of a single gene promoter. Finally, we compared
the distribution of mean methylation values of promoters of genes
differentially expressed between C1 and C2 (for 474 of the 642 dif-
ferentially expressed genes we had methylation measures available)
with the distribution of mean methylation values of all remaining
promoters of genes available on the methylation microarray.

Interaction network

Lefebvre et al. (2010) published a human B-cell interaction net-
work where they assembled transcriptional and post-translational
molecular interactions in human B cells. The interactome was
constructed using a collection of 254 B-cell gene expression pro-
files representing 24 distinct phenotypes derived from normal and
malignant B cells from primary tumor samples and cell lines. The
network contains 5748 nodes (genes) and 64,600 unique edges
(interactions). We downloaded this network and selected those
genes of the network that are significantly differentially expressed
between C1 and C2 and have a fold change >2. From these 266
differentially expressed genes contained in the interaction net-
work, 198 genes have a degree >1, i.e., they interact with at least
one other differentially expressed gene in the network. Thus, our
subnetwork of interactions of differentially expressed genes con-
sists of 198 nodes and 459 edges. We colored the nodes of the
network corresponding to their gene expression status: Genes up-
regulated in C2 are colored orange while genes down-regulated in
C2 are blue. The intensity of the colors represent –log10(p) values:
The darker represents a node, the smaller its original P-value. The
colors of the edges are determined by the colors of the nodes they
connect. The same figure was then drawn again, but using differ-
ential expression values from a comparison of lymph node versus
blood signatures (Herishanu et al. 2011)

Reverse transcription, quantitative PCR, and chimeric junctions

cDNA was synthesized from 500 ng of total RNA using Moloney
murine leukemia virus (MMLV) reverse transcriptase (Invitrogen)
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following the manufacturer’s instructions and amplified by PCR.
Amplification was performed using AmpliTaqGold DNA Poly-
merase (Applied Biosystems), and the reaction mix contained a 13

final concentration of 103 GeneAmp and 103 PCR Gold buffers
(Applied Biosystems), 100 mM dNTP mix (Invitrogen), 100 nM for-
ward and reverse primers, 1.5 mM MgCl2, and 1 U AmpliTaqGold
DNA polymerase in a final reaction volume of 50 mL. Quantitative
PCR experiments were done in triplicate in a ViiA7 Real-Time PCR
System using Fast SYBR Green Master Mix (Applied Biosystems).
The relative expression of each gene was quantified by the Log 2
RQ (relative quantity, RQ = 2�DDCT), using beta-glucuronidase as
an endogenous control. Expression levels are given as arbitrary
quantitative PCR units referenced to a calibrator sample. All the
PCR products have been run in a capillary electrophoresis gel
(Qiagen) with the QIAxcel DNA screening kit (Qiagen). Sequences
for the primers used are listed in Supplemental Tables S5 and S6.
For the chimeric junctions, cDNA was synthesized from 500 ng of
total RNA using MMLV reverse transcriptase (Invitrogen) following
the manufacturer’s instructions and amplified by PCR. Amplification
was performed using AmpliTaqGold DNA polymerase (Applied
Biosystems), 1 mL of cDNA, and the reaction mix contained 13 PCR
buffers (Applied Biosystems), 200 mM dNTP mix (Invitrogen), 100
nM forward and reverse primers, 1.5 mM MgCl2, and 1.25 U
AmpliTaqGold DNA polymerase in a final reaction volume of 50 mL.
Sequences for the primers used are listed in the Supplemental
Material.

Statistical clinical analysis

The SPSS Statistics 20.0 (SPSS Inc) package was employed to cor-
relate clinical and biological variables by means of Fisher’s exact
test or a nonparametric test when necessary. Time to treatment
from sampling (TTT) was defined as the interval between sampling
date and the date of treatment or last follow-up. Overall survival
from sampling (OS) was calculated from sampling date to date of
death or last follow-up. Survival curves were analyzed according to
the Kaplan and Meier method and compared using the log-rank
test (Peto and Pike 1973). Multivariate analysis was performed
according to the Cox regression method (Cox 1972). All statistical
tests were two-sided and the level of statistical significance was 0.05.

Data access
Sequencing and expression array data have been submitted to the
European Genome-Phenome Archive (EGA; http://www.ebi.ac.uk/
ega/), which is hosted by the European Bioinformatics Institute
(EBI), under accession number EGAS00001000374.
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