
A Framework for the Declarative Implementation

of Native Mobile Applications

Patricia Miravet∗, Ignacio Marin∗, Francisco Ortin†, Javier Rodriguez∗

June 28, 2013

Abstract

The development of connected mobile applications for a broad au-
dience is a complex task due to the existing device diversity. In order to
soothe this situation, device-independent approaches are aimed at im-
plementing platform-independent applications, hiding the differences
among the diverse families and models of mobile devices. Most of the
existing approaches are based on the imperative definition of applica-
tions, which are either compiled to a native application, or executed
in a Web browser. The client and server sides of applications are im-
plemented separately, using different mechanisms for data synchroniza-
tion. In this paper we propose DIMAG, a framework for defining native
device-independent client-server applications based on the declarative
specification of application workflow, state and data synchronization,
user interface, and data queries. We have designed DIMAG consider-
ing the dynamic addition of new types of devices, and facilitating the
generation of applications for new target platforms. DIMAG has been
implemented taking advantage of existing standards.

Keywords: Device fragmentation, mobile applications, data and state syn-
chronization, dynamic code generation, client-server applications

1 Introduction

The development of connected mobile applications is a promising field for
companies and researchers. Around 6 billion cellular connection subscrip-
tions (or 86 per 100 inhabitants) have been reached by the end of 2012 [1].

∗Research and Development Department, CTIC Foundation, C/ Ada
Byron 39, 33203, Gijon, Spain, {patricia.miravet, ignacio.marin,

javier.rodriguez}@fundacionctic.org
†Computer Science Department, University of Oviedo, Calvo Sotelo s/n, 33007, Oviedo,

Spain, ortin@lsi.uniovi.es

1

This means a potential market that exceeds that of the traditional market of
fixed lines users (about 1,270 million subscriptions, by the end of 2012 [1]),
so more and more software companies are looking for their slice of that
global pie.

The heterogeneity of device models and versions, features, operating
systems, and other elements of the software stack, makes it difficult to cre-
ate applications for all the mobile users. This problem is known as device
fragmentation [2] (or device diversity). A common approach to face that
problem is to create from scratch different versions of the same software for
different device models. This approach usually leads to different user expe-
rience for the same application in different devices, but it is also a source
of problems in terms of software maintenance. The companies that develop
software for mobile devices try to cover as many devices as possible. Thus,
it is advisable to build platforms that allow developers to create applications
once, and execute them in every mobile device.

A recent press release from IDC (International Data Corporation) in-
dicating the market share of mobile operating systems for smartphones in
the fourth quarter of 2012 [3] shows that Android is the most widely spread
mobile operating system (70.1%), followed by Apple iOS (21%), BlackBerry
RIM (3.2%), Windows Phone / Mobile (2.6%), Linux (1.7%) and others
(1.3%). In order to cover this ample variety of operating systems, some
software technologies allow developers to create applications once, and gen-
erate them for several software platforms. Titanium, Corona, Rhomobile
and PhoneGap are examples of systems to create platform-independent mo-
bile applications. Some facilitate the separation between presentation and
behaviour based on Web development languages (e.g., HTML, CSS and
JavaScript are used in PhoneGap and Titanium). However, all of them are
based on imperative approaches for client-side application definition. To
the knowledge of the authors, no approach seems to exist in the market that
provides a declarative application definition to generate native client-server
applications.

The main contribution of this paper is DIMAG, a Device-Independent
Mobile Application Generation framework that provides a software tool for
the dynamic generation of native client-server applications. Applications
are defined by means of simple declarative specifications. DIMAG has been
designed to facilitate the addition of new mobile platforms, supporting the
reutilization of the components provided for this purpose. Besides, DIMAG
follows the Convention over Configuration principle [4] to allow the dynamic
addition of new target platforms using reflection. Currently, DIMAG gen-
erates client applications for Android, Java ME and Windows Mobile.

The rest of the article is organized as follows. Section 2 defines the differ-
ent elements that comprise a DIMAG application. An example application,

2

the architecture and all the elements of the DIMAG framework are described
in Section 3. Section 4 presents its design and implementation. The related
work is described in Section 5, and Section 6 includes a qualitative evalua-
tion. Conclusions and future work are presented in Section 7.

2 Specification of DIMAG Applications

DIMAG uses a declarative approach to define applications. This way, de-
velopers have to express what the application is meant to do, instead of
expressing how to do it. The latter is the typical approach in the tradi-
tional programming languages used for building mobile applications (see
Section 5).

We have considered a declarative approach because we think it has many
benefits. First, it provides a higher abstraction level with sufficient expres-
sive power to generate code for different target platforms. Second, software
maintainability is improved because there is only one single implementation
of each mobile application. We also think that a declarative approach facil-
itates the translation of applications to different languages and platforms,
since different imperative strategies can be followed depending on the target
platform (see Section 4.3). Finally, it may allow people without previous
experience in imperative programming languages to create applications.

Applications in the DIMAG framework are conceived as distributed
client-server programs. Therefore, two different parts of an application are
generated: the server part, to be run in an application server; and the client
part, to be downloaded and run in the mobile client. The server side is
compiled for the Java EE platform, but the client side is generated and
compiled for different mobile operating systems and software environments
–depending on the actual device that demands the application.

DIMAG applications are divided into three modules:

– Workflow: An application is modelled as a state machine, made up of a
set of states (one of them considered as the initial one) and transitions
between states which take place when a given event happens.

– User interface: When the application requires displaying information
to (or receive data from) the user, a view is associated to a specific
state of the application.

– General information: This includes the application identification, its
description, definition of data sources, synchronization policies be-
tween the client and the server, and the external resources required
(e.g., images, audio and video).

3

3 The DIMAG Framework

3.1 A Motivating Example

The following example shows an example use of the framework at its cur-
rent stage. The example simulates a simple online shop in which users can
search products through different categories, and store the products in a
shopping cart until the final completion of the purchase. Figure 1 shows
the navigation flow, including the different synchronization points. In the
client-server architecture followed (Section 3.2), the client implements a sim-
ple persistence layer that reflects part of the persistence system in the server
side. Changes occur periodically in both sides of the application, and the
synchronization policy defines when these changes are propagated between
both sides. The data synchronization policy keeps the data layer up-to-date
in both sides transparently, while state synchronization maintains the server
side informed about the events triggered in the client side.

Data synchronization happens when the application data layer is ac-
cessed. In the example, it occurs when the user is authenticated and when
the lists of categories and products are shown. Data synchronization also
takes place when the user adds an item to the shopping cart, and when
he/she decides to check out the selected items. It is worth noting that this
kind of synchronization does not always imply real synchronization against
the server. For example, when a user adds an item to the shopping cart,
only the local data layer is modified. However, for simplicity (as in most
cases both actions are directly related) and for legibility purposes (see Sec-
tion 3.4), every data layer access in DIMAG is encapsulated with a data
synchronization element.

State synchronization takes place when the user selects a specific cate-
gory or product (Figure 1). Then, the selected item is transmitted to the
server for statistical purposes, considering the categories and products com-
monly selected by the users.

3.2 Architecture

Figure 2 shows the architecture of the DIMAG framework. The left part of
the figure shows the server side of DIMAG applications, whereas the right
part presents the client side. Once the application definition is created, the
server side is deployed in the application server and the client side is made
available for remote users to download in their mobile devices.

The server side runs an instance of each application deployed in DIMAG,
and implements the following four modules (Figure 2):

4

Data

Sync.

State

Sync.

Data

Sync.

Data

Sync.

Data

Sync.

Data

Sync.

Data

Sync.

State

Sync.

Figure 1: Visual description of an example DIMAG application.

– The communication layer, which listens to HTTP requests from clients.
There are two types of requests: those initiated by the users when their
mobile Web browser downloads a mobile application, and those HTTP
requests performed by the mobile application logic. The DIMAG
framework uses Servlets to provide client applications; for Web ser-
vices, SOAP [5] and WS-I Basic Profile [6] are used to ensure Web
services interoperability among different implementations.

– The device detection and application provision module receives infor-
mation from HTTP requests when users download an application. Ev-
idences are extracted from those requests in order to identify the client
software platform, using a Device Description Repository (DDR). Af-
ter identification, this module looks for the appropriate version of the
application in its application repository, and sends it to the client de-

5

Application

Manager

Synchronization

Module

XML
Database

Media
Resources

Detection

Provision

DDR

Application

XML
Database

Media
Resources

Synchronization

Module
Client

Server

Synchronization Manager

Detection and Provision Manager

Mobile Client Application

C
o

m
m

u
n

ic
a

ti
o

n
 L

a
y
e

r

C
o

m
m

u
n

ic
a

ti
o

n
 L

a
y
e

r

ProvisionApplication
Repository

Workflow

Generation

GUI

Generation

Application

Application
Specification

Application

Data

Access

Code Generation Module

C
o

m
m

u
n

ic
a

ti
o

n
 L

a
y
e

r

C
o

m
m

u
n

ic
a

ti
o

n
 L

a
y
e

r

Figure 2: The DIMAG architecture.

vice for installation. If the repository does not have the appropriate
version of the application, a new version is generated by the code gen-
eration module. The standard W3C DDR Simple API [7] has been
used to design this module, choosing the DDR Simple API Reference
implementation within the Morfeo Project [8].

– The code generation module dynamically generates the specific-platform
client application selected by the user, as commanded by the device
detection mechanism. If the DIMAG framework does not support
code generation for a specific device, it will log information about the
identification evidences. This is done for maintainability purposes, so
that the administrator can identify the necessity to generate applica-
tions for unsupported platforms. This way, companies exploiting the
DIMAG framework are reported about unsupported devices or device
families willing to use specific mobile applications. The framework has
been designed to facilitate the addition of new software platforms at
runtime (Section 4.3).

– The synchronization module is aimed at synchronizing information be-
tween the server and the client. This includes the synchronization of
application data and workflow state between both sides of applica-
tions. The main goal is to obtain a simple declarative system that
enables tuning the synchronization level desired for each application.

6

For the sake of simplicity, data sources to be synchronized are sim-
ple files (e.g., XML documents and images). In the server side, there
is a connector between these files and the relational database that
transparently manages application persistence. When information is
updated in any of the tables of the database, data files are accordingly
updated. Similarly, changes in client data files also trigger updates of
the relational database. DIMAG uses the SyncML [9] protocol and
the Funambol open-source synchronization server [10] for client-server
file synchronization.

The client side includes a communication layer to perform HTTP re-
quests to the server (i.e., to invoke the remote methods of the server Web
services), a synchronization module corresponding to that in the server, and
the client-side of the application itself. The client application, in turn, con-
sists of a manager responsible for managing the application lifecycle, and
the specific application dynamically generated by the server. The imple-
mentation of the client side varies from one mobile platform to another.
For example, a C# Windows Mobile application makes DIMAG generate
code using the Windows Mobile API from Funambol, in order to syn-
chronize information between both sides; for SOAP interchange, a SOAP
client stub is generated from the WSDL Web service definition by means
of the .Net Framework SDK tools; and System.Net.HttpWebRequest and
System.Net.HttpWebResponse .Net Compact Framework classes are needed
for more specific REST HTTP messages. On the other hand, for Java ME
MIDlet-based applications, the DIMAG code generator module uses the Java
ME API from Funambol, the JSR-172 [11] Web Services implementation,
and the javax.microedition.io.HttpConnection class.

When deployment takes place, an instance of the server side is run and a
new download URI is available in the Web server. Then, when users access
that URI from their mobile Web browsers, a new version of the application
client side is dynamically generated for their specific device.

3.3 Declarative Definition of Applications

The DIMAG framework is based on a set of declarative languages which are
combined in order to define connected mobile applications. First, DIMAG-
Root is an XML language to define the general aspects of a DIMAG appli-
cation. It includes references to two external documents: user interface and
workflow definition. The former is expressed with the DIMAG-UI language,
a simplification of MyMobileWeb IDEAL [12]. This language separates the
UI content from its style, referring to external CSS files. Workflow defi-
nition is expressed in SCXML. However, we propose several extensions to

7

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE application SYSTEM "application.dtd">

<application xmlns='http://dimag.org/namespace/application'>

 <desc><appversion>1.8.0</appversion></desc>

 <flow><flowdir path="/dimag/resources/flow"/></flow>

 <ui>

 <xmldir path="/dimag/resources/xml"/>

 <cssdir path="/dimag/resources/css"/>

 </ui>

 <syncpolicy>

 <syncdataserver><URI>http://156.136.2.19:7777</URI></syncdataserver>

 </syncpolicy>

 <datamodel>

 <syncdir path="/dimag/resources/data"/>

 <entities>

 <entity id="Products" filename="products.data" defaultSync="preaccess"/>

 <entity id="Categories" filename="categories.data" defaultSync="both"/>

 <entity id="Users" filename="users.data" defaultSync="both"/>

 <entity id="ShoppingCart" filename="cart.data" defaultSync="postaccess"/>

 </entities>

 </datamodel>

 <server><URI>http://156.136.2.19:4567</URI></server>

 <resources>

 <lib path="/dimag/resources/externallib"/>

 <media path="/dimag/resources/media"/>

 </resources>

 <distribution><generatedcode path="/dimag/generatedcode"/></distribution>

</application>

Figure 3: Example DIMAG-Root document.

SCXML to provide all the elements required in the DIMAG workflow de-
scriptions (Section 3.3.2). Synchronization information (data sources and
data synchronization policies) is currently placed in the DIMAG-Root and
the SCXML languages.

3.3.1 DIMAG-Root Language

The DIMAG-Root document that corresponds to the example described in
Section 3 is shown in Figure 3. A DIMAG-Root document includes the
following XML elements:

– <desc> describes the application version by means of its <appversion>
child element. In DIMAG, different versions of client-server applica-
tions can be executed concurrently.

– <flow> holds the URI to an SCXML document describing the appli-
cation workflow.

– <ui> provides a path to the DIMAG-UI documents defining the views
of the application. There is one DIMAG-UI document for each screen

8

to be displayed by the client side of the application. The name of each
document is built by appending the value of the id attribute of each
view state in the SCXML document to the XML filename extension.

– <syncpolicy> allows the definition of data and state synchroniza-
tion policies between the server and the client (<datamodel> and
<syncpolicy> will be described in detail in the next section).

– <datamodel> defines the data sources to be used by the application.
As mentioned, data sources are implemented by means of XML docu-
ments transparently synchronized with the server database (Section 3.4)

– <server> indicates the server endpoint used for data and state syn-
chronization, and remote method invocation.

– <resources> provides URIs to the external resources used by the ap-
plication, such as external software libraries (<lib>) or media files
(<media>).

– <distribution> indicates information about how to distribute the
application. Currently, it provides the path of the generated installers
for the different mobile platforms.

3.3.2 SCXML

Workflow definition is expressed in the SCXML language created by the
W3C Voice Browser working group. We have implemented the SCXML
processor by reusing the Apache Commons SCXML open-source project [13].

The state machine in Figure 4 models the dynamic behaviour of the
example application in Figure 1, and its corresponding SCXML document
is shown in Figure 5. SCXML allows the definition of states by means of
the <state> element, setting one of them as the initial one. It also allows
defining the transitions between states (<transition>), and the actions to
be performed when entering (<onentry>) or leaving (<onexit>) a state.

The explanation of some elements in the workflow related to synchroniza-
tion (<dimag:syncdata> and <dimag:syncstate>) and data management
(<dimag:query>) are omitted here because they are treated in depth in the
next section. These XML elements and attributes have been created within
the dimag namespace, allowing the SCXML language processor to differen-
tiate between the SCXML lexical elements (to be handled by itself) and our
language extensions. These extensions are handled by the additional mod-
ules we have specifically created for the DIMAG framework, which decorate
the data structure representing the workflow state machine.

9

Login ValidateLogin Error

ShopPresentation

Categories

Products Product

enterButton_onclick

backButton_onclickcategoryList_onclick

goButton_onclick

! loginOK

loginOK

ShopEnding
buyButton_onclick

enterButton_onclick

productList_onclick

backButton_onclick

addButton_onclick

Figure 4: State machine of the example application presented in Section 3.1.

The new <dimag:invokeMethod> element represents actions associated
to events. It has a scope attribute to differentiate between local and remote
invocations. The className attribute is interpreted differently for local and
remote method executions. If the scope is local, className provides the
fully-qualified class name (e.g., org.dimag.sample.Login), comprising the
namespace or package (org.dimag.sample) plus the name of class (Login).
For remote invocations, the relative path is obtained first (org/dimag/),
and then the name of the component that implements the remote call (the
sample.dll .Net Compact Framework assembly, or the sample.jar pack-
age for Java ME and Android). In both scenarios, method indicates the
method to be called.

For passing arguments and returning values, the framework uses context
variables by means of a Java-like expression language (e.g., the ${login}
variable in Figure 5). Variables belong to the same scope and are available
in all the states of the workflow, in the views of the user interface, and in
the methods invoked with <dimag:invokedMethod>.

The transitions between states are triggered considering the cond at-
tribute of the <transition> element. The conditions that activate a tran-
sition could be a user event (e.g., enterButton onclick) or even the result
of a method invocation (e.g., in the validateLogin method, the condition
is the result of the method, kept in the ${loginOK} context variable).

10

<scxml xmlns="http://www.w3.org/2005/07/scxml"

 xmlns:dimag="http://dimag.org/namespace/flow/custom"

 version="1.0" initialstate="applicationFlow">

<state id="applicationFlow" initial="login">

 <state id="login" category="view">

 <transition event="enterButton_onclick"

 target="validateLogin" />

 </state>

 <state id="validateLogin">
 <onentry>

 <dimag:syncdata id="Users" sync="preaccess"

 level="mandatory">

 <dimag:query>

 for $loginData in doc("users.xml")/users/user

 where $loginData/login="${textFieldLogin}" and

 $loginData/password="${textFieldPassword}"

 return $loginData

 </dimag:query>

 </dimag:syncdata>

 <dimag:invokeMethod scope="server"

 className="org.dimag.main.ValidateLogin"

 method="validateLogin" result="${loginOk}">

 <dimag:argument expression="${loginData}"/>

 </dimag:invokeMethod>

 </onentry>
 <transition cond="${loginOk == 'true'}"

 target=" shopPresentation" />

 <transition cond="${loginOk == 'false'}"

 target="error" />

 </state>

 <state id="shopPresentation" category="view">

 <transition event="enterButton_onclick"

 target="categories" />

 </state>

 <state id="categories" category="view">

 <onentry>

 <dimag:syncdata id="Categories" sync="preaccess"

 level="optional">

 <dimag:query>

 for $categoryListData

 in doc("categories.xml")/categories/category
 return $categoryListData

 </dimag:query>

 </dimag:syncdata>

 </onentry>

 <transition event="categoryList_onclick"

 target="productList">

 <dimag:syncstate

 value="${categoryList_selectedItem}"/>

 </transition>

 <transition event="buyButton_onclick"

 target="shopEnding">

 <dimag:syncdata id="ShoppingCart"

 sync="postaccess" level="mandatory"/>

 </transition>

 </state>

 <state id="products" category="view">

 <onentry>
 <dimag:syncdata id="Products" sync="preaccess"

 level="optional">

 <dimag:query>

 for $productListData

 in doc("products.xml")/products/product

 where $productListData/category =

 "${categoryList_selectedItem.category}"

 return $productListData

 </dimag:query>

 </dimag:syncdata>

 </onentry>

 <transition event="productList_onclick"
 target="product" >

 <dimag:syncstate

 value="${productList_selectedItem}"/>

 </transition>

 <transition event="backButton_onclick"

 target="categories" />

 </state>

 <state id="product" category="view">

 <onentry>

 <dimag:syncdata id="Products" sync="preaccess"

 level="mandatory">

 <dimag:query>

 for $productData

 in doc("products.xml")products/product

 where $productData/id =

 "${productList_selectedItem.id}"
 return $productData

 </dimag:query>

 </dimag:syncdata>

 </onentry>

 <transition event="addButton_onclick"

 target="categories">

 <dimag:syncdata id="ShoppingCart" sync="disabled"

 level="optional">

 <dimag:query>

 update insert

 <product>

 <id>productList_selectedItem.id </id>

 <desc>productList_selectedItem.desc</desc>

 <prize>productList_selectedItem.prize</prize>

 </product>

 into //products
 </dimag:query>

 <dimag:query>

 update insert

 <product>

 <id>productList_selectedItem.id </id>

 <desc>productList_selectedItem.desc</desc>

 <prize>productList_selectedItem.prize</prize>

 </product>

 into //products

 </dimag:query>

 </dimag:syncdata>

 </transition>

 <transition event="backButton_onclick"

 target="products" />

 </state>

 <state id="shopEnding" category="view">

 <transition event="goButton_onclick"
 target="shopPresentation" />

 </state>

</state>

Figure 5: SCXML document defining the state machine in Figure 4.

3.3.3 DIMAG-UI Language

The declarative definition of a DIMAG application also requires the spec-
ification of the user interface. DIMAG uses a subset of the IDEAL lan-
guage from the MyMobileWeb project [12]. Presentation styles are defined
by means of CSS documents, referenced from DIMAG-UI. Figure 6 shows
the definition of the categories view associated to the categories state
in Figures 4 and 5. Note that an additional CSS document provides the
presentation style of the UI controls.

11

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet href="categories.css" type="text/css"?>

<dimag:presentation id="categories">

 <dimag:title>Online Shop Application</dimag:title>

 <dimag:head id="headApp">Category List</dimag:head>

 <dimag:list id="categoryList" value="${categoryListData}"/>

 <dimag:head id="headApp">Shopping Cart:</dimag:head>
 <dimag:list id="shoppingCart" value="${shoppingCartData}"/>

 <dimag:button id="buyButton">Buy</dimag:button>

</dimag:presentation>

Figure 6: User interface definition for the categories view.

Another important issue is the use of context variables in the presen-
tation (e.g., ${categoryListData}). Context variables are the communi-
cation mechanism between the application workflow and the user interface.
In some cases, context variables take their values from user input in the
application views. In some other situations, they take values from method
invocations or declarative data queries performed during the execution of
the application, defined in the SCXML document (Figure 5).

3.4 Synchronization Module

The synchronization module allows both data and state synchronization.
Data synchronization provides data consistency between the local database
in the mobile client and the relational database in the server side. State
synchronization is used to inform the server about the new state of the client
application, allowing clients to interchange their context variables with the
server. This information can be used for different useful purposes, such as
statistical reports of preferred user options.

Partially connected architectures are an important concern in mobile
environments. Synchronization is performed when connectivity is available;
otherwise, the level attribute of <syncdata> comes into play. This at-
tribute can take two different values: mandatory or optional. The former
implies that the synchronization is compulsory. In this case, if there is no
connectivity, the application will show an error. If level value is optional,
data synchronization will not be executed when there is no connectivity.
The task will be queued and performed when connectivity is re-established.

3.4.1 Synchronization Policies in DIMAG-Root

Default synchronization configurations can be specified in the DIMAG-
Root file (Figure 3), and specific fine-grained adjustments take place in
the workflow definition file. Default synchronizations are specified in the

12

<syncpolicy> and <datamodel> elements. <syncpolicy> simply indicates
the synchronization server name and port; <datamodel> specifies the direc-
tory that contains the data model, and the default synchronization policy
for each single data entity (the defaultSync attribute).

3.4.2 Synchronization Policies in SCXML

Figure 5 shows how the <syncdata> element in SCXML workflow docu-
ments has three attributes. First, id provides the identifier of the entity.
Then, sync admits four possible values: preaccess, postaccess, both and
disabled. preaccess and postaccess indicate that synchronization takes
place before and after the query, respectively; both performs the two previ-
ous synchronizations; and disabled indicates that data will only be stored
in the local storage. The third attribute, level, indicates whether the syn-
chronization is mandatory or optional.

Queries are executed during synchronization steps, saving their results
in context variables specified with the return keyword. The values of these
variables can be later used in the application workflow. The validateLogin
state in Figure 5 shows an example where the result of the query is saved in
${loginData}. Afterwards, that variable is the argument of the Validate-

Login method invocation in the same state.

The XQuery expressions used in the workflow definition provide a simple
and powerful mechanism to build declarative applications. They establish a
relationship between the application workflow and the data model defined in
DIMAG-Root files. Queries operate against the XML entities defined in the
data model, and use context variables to intercommunicate the data layer,
the application workflow, and the user interface.

Regarding state synchronization, the syntax is simpler than for data syn-
chronization. It is only necessary to indicate the <syncstate> element and
the context variable that the client wants to send to the server. For exam-
ple, Figure 5 shows how to send the categoryList seletedItem variable
to the server in the categoryList onclick transition of the categories

state, using state synchronization (<dimag:syncstate>).

4 Design and Implementation

Figure 7 shows the different phases and elements used in the dynamic gener-
ation of client DIMAG applications. When an application is first demanded
by a client, the program analysis phase takes the declarative description
of a DIMAG program and represents each file as an abstract syntax tree
(AST). These ASTs are traversed with different instances of the Visitor de-

13

Program Analysis

Synchronizer

Method Invoker

Local Code

DIMAG-
Root

DIMAG-
UI

CSS SCXML

ASTs

Root UI CSS SCXML

Declarative
DIMAG

Application
G

en
er

at
io

n
of

 th
e

C
lie

nt
 A

pp
lic

at
io

ns
 fo

r
M

ul
tip

le
 P

la
tfo

rm
s

C
lie

nt
 P

la
tfo

rm
-S

pe
ci

fic
 A

pp
lic

at
io

n

VisitorsCode Generation Generated Code

G
en

er
at

io
n

of
 th

e
C

lie
nt

 A
pp

lic
at

io
ns

 fo
r

M
ul

tip
le

 P
la

tfo
rm

s

Code Running in the ClientCode Running in the Server

Figure 7: Dynamic generation of DIMAG applications.

sign pattern [14], generating the target code by using the services provided
by the code generator package. The generated code is the client platform-
specific application that will be deployed in the mobile device. This code
requires the specific services of some packages implemented for each target
platform: synchronization, remote and local method invocation, and some
optional local method implementations. These packages and the generated
code are downloaded and executed in the client. If this application is de-
manded by other clients with the same platform, the compiled application
is simply downloaded. If one of the DIMAG specification files is modified,
a new application is generated following the same process.

4.1 Program Analysis

The DIMAG-Root, DIMAG-UI, CSS and SCXML documents describing a
DIMAG application are analysed before generating the target code. For
each document, an AST structure is built in memory. An application may
have multiple DIMAG-UI and CSS documents comprising the application
presentation layer. All of them are stored in a dictionary of ASTs [15].

We have used the Apache Commons SCXML implementation to process
the workflow documents. We have enhanced that tool with specific modules

14

Code GenerationVisitorsVisitors

visitLabel()
visitList()
visitTextField()
visitTextArea()

VisitorCGUI
uiStart()
uiFinish()
label()
list()

UICG

stateStart()
stateFinish()
state(
transition()

FlowCG

visitState()
visitTransition()
visitSynch()
visitAction()

VisitorCGFlow
visitLabel()
visitList()
visitTextField()
visitTextArea()

VisitorCSS

createListener()
setEvent()
getEvent()

ListenerCG

1
1

1

T extends UICGT extends ListenerCG T extends FlowCG

visit()

DefaultVisitor

visitState()
visitTransition()
visitSynch()
visitAction()

VisitorCGL

JMEVisitorCGL

WMobileVisitorCGL

JMEVisitorCGUI

AndroidVisitorCGUI

JMEUICG

AndroidUICGAndroidVisitorCGL

WMobileUICG

JMEFlowCG

AndroidFlowCG

WMobileFlowCG

JMEListenerCG

AndroidListenerCG

WMobileListenerCG

JMEVisitorCSS

WMobileVisitorCSS

AndroidVisitorCSS

WMobileVisitorCGUI

JMEVisitorCGFlow

AndroidVisitorCGFlow

WMobileVisitorCGFlow

T extends WMobileListenerCG

T extends AndroidListenerCG

T extends JMEListenerCG T extends JMEUICG

T extends AndroidUICG

T extends WMobileUICG T extends WMobileFlowCG

T extends AndroidFlowCG

T extends JMEFlowCG

Figure 8: Code generation of DIMAG client applications.

that process the extensions we added to the language. These modules are
executed when a dimag element is processed by the tool.

4.2 Client-Side Application Generation

The program analyser parses the files specifying a DIMAG application and
creates a collection of ASTs in memory. These ASTs are then traversed
following the Visitor design pattern [14]. Four types of ASTs are defined
in DIMAG: user interface (UI), style information (CSS), application work-
flow taken from SCXML (Flow), and controllers in the MVC architectural
pattern (Listener).

As shown in Figure 8, there is one visitor for each type of AST, all of
them placed in the Visitors package: VisitorCGFlow takes the application
workflow AST obtained from a SCXML document and generates the appli-
cation model; VisitorCSS traverses the UI AST and decorates the tree with
the information stored in the CSS AST (i.e., applies the appropriate styles
to the UI, without generating code); VisitorCGUI generates the specific UI
of the application, once the AST is decorated with the style information;
and VisitorCGL generates the controllers (listeners) in order to map the
events triggered by the UI components to the appropriate methods of the
application workflow. All the visitor classes derive from DefaultVisitor to
inherit a default dispatcher using introspection [16].

Figure 8 shows how each visitor hierarchy aimed at generating code
(VisitorCSS just decorates the UI AST) is associated to a parallel hierarchy
of the CodeGeneration package, following the Parallel Hierarchies design
pattern [17]. The responsibility of each visitor class is traversing a specific

15

type of AST, delegating the work of generating code in the corresponding
class of the CodeGeneration package. For instance, VisitorCGFlow im-
plements the general algorithm for traversing workflow ASTs, calling the
methods of the parallel FlowCG class that provides the abstract methods
for generating the code of application workflows. Following the Template
design pattern [14], the methods in FlowCG can be overridden in the derived
JMEFlowCG, WMobileFlowCG and AndroidFlowCG classes that specify how
to generate code for the concrete Java ME, Windows Mobile and Android
platforms, respectively.

The Parallel Hierarchies design pattern also provides the capability of
modifying the way an AST is visited for a particular platform. These mod-
ifications are implemented in the derived classes of each visitor class (e.g.,
in the three derived classes of VisitorCGFlow). As shown in Figure 8,
these derived classes use constraint (or bounded) generics (i.e., the T type
variable should extend another type). This allows specializing the type
of the association between the two parallel hierarchies. For instance, the
JMEVisitorCGFlow class is associated with an instance of type JMEFlowCG

instead of FlowCG, permitting the access to all the specific services provided
by the derived class. This use of bounded generics is represented with the
dependency relation in Figure 8 between each pair of elements in the two
parallel hierarchies1. A more detailed explanation of this design pattern is
presented in [18].

4.3 Dynamic Addition of New Platforms

DIMAG allows the dynamic addition of new mobile platforms and devices,
without restarting the execution of the application server [19]. When a
Web browser requests an application, the device platform is identified us-
ing the server detection module (Figure 2). As shown in Figure 9, the
AbstractFactory class loads and instantiates the appropriate visitor and
code-generation classes for the selected platform. We use a naming crite-
rion to follow the Convention over Configuration (CoC) principle [4], re-
ducing the use of configuration files. For instance, when a DIMAG ap-
plication is demanded by an Android client, the createVisitorCGFlow

method is called, passing “Android” as the first parameter. An instance
of the AndroidFlowCGclass is created and passed to the constructor of the
AndroidVisitorCGFlow class, using Java reflection. The visitor obtained is
used to generate the application workflow for the Android device, travers-
ing the SCXML AST. This process is applied to the four visitors shown in
Figure 8.

1For the sake of readability, we do not show the relationship between the classes de-
rived from VisitorCGL and VisitorCGUI and the corresponding subclasses of UICG and

16

JMEVisitorCGL JMEVisitorCGUI

AndroidVisitorCGUIAndroidVisitorCGL

JMEVisitorCSS

WMobileVisitorCSS

AndroidVisitorCSS

VisitorCSS VisitorCGUI

JMEVisitorCGFlow

AndroidVisitorCGFlow

WMobileVisitorCGFlow

VisitorCGFlowVisitorCGL

AbstractFactory

+createVisitorCGL(platform:String,filename:String):VisitorCGL
+createVisitorCGFlow(platform:String,filename:String):VisitorCGFlow

<<create>>

<<create>>

<<create>>

WMobileVisitorCGL WMobileVisitorCGUI

<<create>>

<<create>>

JMEUICG

AndroidUICG

WMobileUICG

UICG

JMEFlowCG

AndroidFlowCG

JMEListenerCG

AndroidListenerCG

WMobileListenerCG

FlowCGListenerCG

1
1

1

+createVisitorCSS(platform:String,ast:CSSAST):VisitorCSS
+createVisitorCGUI(platform:String,filename:String):VisitorCGUI

<<create>><<create>>

WMobileFlowCG

Figure 9: Reflective abstract factory to allow the dynamic addition of new
mobile platforms.

In its first prototype, DIMAG generated code for the .Net Compact
Framework and the MIDP Java ME platform, using Sun’s LWUIT for the
user interface [20]. We chose two different languages and platforms to test
the language and platform neutrality of DIMAG. Considering the evolution
of Smartphones in the last years, we have recently added the support for
Android because it covers more than 70% of the market share [3].

DIMAG generates source (C# and Java) code that is later compiled to
obtain the binary application. It is worth noting that code generation has
to consider not only the different user interfaces, but also the syntactic and
semantic differences among the target languages. The main difference to be
considered between Java ME and the .Net Compact Framework was prob-
ably the way they both implement controllers: LWUIT follows the Observer
design pattern [14], whereas .Net uses delegates to implement UI events.
The introduction of Android applications implied more significant changes.
Lifecycles of Java ME and Windows Mobile applications are quite simi-
lar (Windows Mobile provides an additional not running state besides the

ListenerCG.

17

paused and active ones), whereas Android defines two more states (created
and started) and more transitions among them. This difference is controlled
by the application manager module shown in Figure 2, which considers both
the application lifecycle and workflow states. Another important difference
we had to deal with was the user interface definition. In Android, view
layouts and components are specified in XML files, and UI resources are
accessed by the controllers using the R class.

4.4 Client Application Services

The visitor classes generate code for the application workflow, user inter-
face and controllers (listeners). The generated code makes use of services
that are added to the generated application upon client deployment (Fig-
ure 10), but do not need to be generated for each application. These ser-
vices comprise synchronization, remote and local method invocation, and
application-specific native code.

– Synchronizer provides the pre- and post-access data synchronization
services using SyncML (Funambol). Those states that specify trans-
parent data synchronization use this facility (e.g., Categories in Fig-
ure 5).

– MethodInvoker offers both remote and local method invocation. The
RemoteMethodInvoker implements SOAP to perform remove invoca-
tion to those methods provided by the server as Web services (e.g., the
validateLogin method used in Figure 5). Local method invocation
concerns local native code (next element).

– NativeCode. In occasions, it is necessary to implement platform spe-
cific routines in a portable application. For example, to access the
platform-specific services of the compass in a target device. In DIMAG,
a unique interface of this code is defined, but all the implementations
for each target platform should be provided (in the LocalCode pack-
age). As shown in Figure 10, LocalMethodInvoker calls the appro-
priate native implementation using reflection.

4.5 Server-Side Application Generation

The generation of the server side of DIMAG applications is much simpler
than generating the client side. First, applications are not generated on de-
mand; an explicit application generation process is run by the administrator.
The process takes the SCXML application workflow specification and the

18

Generated Code

Synchronizer

Synchronize

+ synchronizeData(category :String) : boolean
+ synchronizeDataPostAccess(category :String) : boolean
+ synchronizeDataPreAccess(category :String) : boolean

LoginForm LoginState

ValidateLoginStateWindowManager

...

1

1

Method Invoker

Local Code

MethodInvoker

+ invoke(className :String, methodName :String, args :List<String>) : String

RemoteMethodInvoker

+ invoke()

LocalMethodInvoker

+ invoke()

NativeCode

+ nativeMethod() : void

1

Figure 10: Elements of a client-side DIMAG application.

implementation of all the remote methods. The framework generates the
Web services identified as remote methods in the SCXML document, asso-
ciating their implementations to those provided by the programmer. Finally,
a configuration file for the Funambol SyncML server also is created.

5 Related Work

In this section we analyse the existing works related to ours, analysing those
systems aimed at the target-agnostic development on mobile devices. We
only consider the cross-platform mobile development systems (XMTs) that
generate compiled applications, excluding the Web-based approaches (e.g.,
Sencha Touch). The main differences between Web and native mobile appli-
cations are the use of native UI components, variations in user experience,
easier access to specific hardware features, and runtime performance [21].

Appcelerator Titanium is an open, extensible development environment
for creating mobile applications across different mobile devices and OSs
including iOS, Android and BlackBerry [22]. Titanium offers an API to
access system functions and to define the graphical user interface (GUI).
Applications are imperatively implemented in JavaScript, and the code is
interpreted in the client. With a compilation process, Titanium converts the

19

GUI specification into native views. For data synchronization they provide
Titanium Cloud Services, a Mobile Backend as a Service (MBaaS), offering
a transparent mechanism to interconnect mobile applications.

PhoneGap is an open-source framework to create mobile applications
using standard Web technologies such as HTML, CSS and JavaScript [23].
PhoneGap runs on iOS, Android, Windows Phone, BlackBerry, Symbian
and WebOS. Views are expressed in HTML and CSS, and they are executed
in the context of an embedded Web browser instead of using the platform
native components. Imperative applications are implemented in JavaScript,
which is executed in the client device by a native engine. PhoneGap also
provides a plug-in structure to allow accessing platform-specific code via
native-to-JavaScript PhoneGap bridges.

Xamarin (formerly MonoTouch) is a commercial platform for creating
cross-platform mobile applications using .Net technologies [24]. It pro-
vides a library that exposes a set of APIs for accessing common mobile
device functionality across iOS, Android, and Windows Mobile. Xamarin
is distributed with the Mono implementation of the .Net runtime, provid-
ing JIT-compilation, memory management and the .Net base class library.
Applications are coded in the C# imperative programming language. Both
the application flow and the GUI are (JIT- or AOT-) compiled to native
binaries.

MobDSL addresses the problem of device fragmentation by defining a
declarative Mobile Domain Specific Language called MobDSL [25]. This
language is later processed to create platform specific applications. The
proposed architecture identifies the tier representing applications written
in MobDSL, the MobDSL language engine and libraries, and the target
platform tier. MobDSL allows defining display elements, events, hardware
features and widget containers. Each widget is a state machine that han-
dles events by making a state transition to a new widget. Neither remote
method invocation nor client-server development is considered. The current
implementation is a Java interpreter prototype running on Android [25].

Corona is a mobile application development framework for iOS, Android,
Kindle Fire and Nook [26]. Both the imperative applications and the display
elements are implemented in Lua. The program is compiled obtaining a
native application and GUI for the target platform. It provides an OpenGL
rendering engine to allow full hardware acceleration of graphics. The Cloud
Sync functionality of the Corona Cloud service allows synchronizing cloud-
based application data across multiple platforms.

RhoMobile (formerly Rhodes) is an open-source XMT developed for
building native mobile applications [27]. It follows the MVC architectural
pattern. Views are written in HTML and controllers in the Ruby imperative

20

language. RhoMobile programs are compiled, generating native applications
for iOS, Android, Windows Mobile, BlackBerry and Windows Phone. Rho-
Connect implements a synchronization engine that tracks the data on each
device, identifying and synchronizing only the data that has changed on
mobile devices and servers.

MoSync is a free open-source software development kit for mobile appli-
cations, integrated with the Eclipse development environment [28]. The
MoSync framework produces native mobile applications using C, C++,
HTML 5, CSS and JavaScript. MoSync applications can be compiled to
Android, iOS, Symbian and Windows Phone. Applications can access the
native GUI system of Android, iOS and Windows Phone devices. It also
supports widgets for embedding Web pages and OpenGL views in applica-
tions.

The DIMAG framework presented in this paper is an improvement of a
previous version [20]. In the first prototype, we covered the generation of
Java ME (MIDP) and Windows Mobile (.Net Compact Framework). Due
to the current market trend indicating that Android is the most widespread
mobile operating system (70.1% at the end of 2012 [3]), we included An-
droid OS to the new version. We have also added the support of XQuery
as a declarative language to retrieve and update data expressed in XML.
Furthermore, the SyncML protocol has been incorporated in DIMAG, pro-
viding a transparent way to synchronize data between the server and the
client. Three synchronization policies have been defined for this purpose:
preaccess, postaccess and both. We have redesigned the existing code
generation module to add the support of Android. For this purpose, we have
used the Parallel Hierarchies pattern described in Section 4.2, improving the
dynamic generation of platform-neutral client applications. We think this
design, which has been successfully used before to implement a retargetable
compiler [29], will facilitate the future generation of applications for new
platforms.

6 Qualitative Evaluation

We have qualitatively evaluated the systems analysed in the previous section.
The objective of this evaluation is not to say which system is best, but to
identify the main contributions and limitations of each approach. These are
the features evaluated for each platform, along with the general assessment
criteria used (results are presented in Table 1):

1. Scalability of the analysed system to support complex applications.
DIMAG has only been used to create simple applications, and MobDSL

21

Feature T
it

a
n

iu
m

P
h

o
n

eG
a
p

X
a
m

a
ri

n

M
o
b

D
S

L

C
o
ro

n
a

R
h

o
M

o
b

il
e

M
o
S

y
n

c

D
IM

A
G

1. Scalability a a a d a a a r

2. Support of new platforms r r r r r r r a

3. Declarative workflow specification d d d a d d d a

4. Real applications a a a d a a a d

5. Transparent synchronization r d d d r r d a

6. No performance overhead of app. generation r r a r r r r d

7. Native GUI a d a a a a a a

8. Declarative description of data d d d d d d d a

9. Number of target platforms a a r d r a r r

10. Compiled execution d d a a a a a a

Table 1: Comparison of the existing cross-platform mobile development sys-
tems (a represents that the feature is fully supported, r means partial sup-
port, and d indicates no support).

does not seem to have a stable prototype yet. The rest of systems have
been used to create complex programs.

2. Services for supporting new platforms. The analysed XMTs use their
existing code when new platforms need to be supported. DIMAG
has been designed to facilitate this process, providing an open code-
generation approach, and following the Convention over Configuration
principle to allow adding new platforms at runtime (Section 4.3).

3. Declarative specification of application workflow. Only DIMAG and
MobDSL provide a declarative specification of application workflows;
the rest of systems follow an imperative approach.

4. Use of the platform for the development of real applications. All
the systems have been used to create production applications except
DIMAG and MobDSL, which are research prototypes.

5. Transparent synchronization of data between client and server. DIMAG
is the only approach that declaratively identifies the transparent syn-
chronization of data in the application workflow. Titanium, Corona
and RhoMobile provide different services for synchronizing data be-
tween the server and client applications.

6. No runtime performance overhead caused by the dynamic generation
of applications. DIMAG is the only platform that dynamically gener-
ates an application the first time it is demanded for a specific platform.
Although the binaries are not re-generated and re-compiled the follow-
ing times the same version is demanded, the dynamic generation and
compilation of client applications involves a runtime performance cost

22

in the DIMAG server. The rest of systems except Xamarin require
the compilation of applications, but this compilation does not neces-
sarily have to be done at runtime. Xamarin support JIT-compilation
of applications in the client devices.

7. Native GUI. All the systems generate native GUIs except PhoneGap.

8. Declarative description of the data to be synchronized. Only DIMAG
describes the data to be synchronized declaratively.

9. Target platforms. We have assigned the maximum score to those
XMTs that generate code for the three most widespread platforms [3]
(Android, iOS and BlackBerry): Titanium, PhoneGap and RhoMo-
bile. Intermediate score is assigned to the platforms that provide more
than 75% of the market share, according to IDC [3]: Xamarin, Corona,
MoSync and DIMAG.

10. Compiled execution of the application workflow (no interpretation).
All the systems but Titanium and PhoneGap generate a native imple-
mentation of the application workflows.

Compared to the related systems, the distinguishing feature of DIMAG is
the declarative specification of application workflow and data that facilitates
the transparent synchronization of application data and state. This feature,
together with the use of flexible code-generation techniques, is used to reduce
the cost of adding new platforms and devices, and to generate the native
implementation of applications. Currently, its main disadvantage is that
the platform has not been tested in the development of real and complex
applications.

7 Conclusions

The DIMAG framework shows how the declarative specification of client-
server mobile applications can be an appropriate approach to implement a
platform-independent development system capable of generating both client
and server sides of native applications. In this paper, we propose a specific
declarative description of this kind of applications, the architecture and de-
sign of a flexible and extensible system to generate target applications, and
the technologies and standards used for its implementation. All these ele-
ments make up DIMAG, a framework for creating native mobile applications
for multiple software platforms. DIMAG facilitates the addition of new tar-
get platforms and devices at runtime. The feasibility of the proposed system
has been tested with the implementation of three different target platforms:
Android, Java ME and Windows Mobile.

23

We are currently working on generating iOS applications to cover more
than 90% of the Smartphone OS market share [3]. The main differences
between iOS and the existing target platforms (e.g., a different native pro-
gramming language, defining views and transitions based on storyboards,
and the generation of XIB files) entail a challenge to validate the design
of the code generation module. We will also use DIMAG to define more
complex real applications. These applications will be implemented with the
XMTs analysed in Section 5, comparing the runtime performance, memory
usage and battery consumption of those approaches and DIMAG. Finally,
due to the involvement of the authors in the W3C MBUI working group,
another future task will be the alignment of the user interface definition with
the recommendations released by the W3C.

Acknowledgements

We would like to thank the anonymous reviewers for their detailed lists of
indications, corrections and suggestions that have helped us to improve the
article. This work has been partially funded by the European Commission’s
Seventh Framework Program under grant agreement number 258030 (FP7-
ICT-2009-5; Internet of Services, Software and Virtualization STREP). We
have also received funds from the Department of Science and Technology
(Spain) under the National Program for Research, Development and In-
novation: project TIN2011-25978 entitled Obtaining Adaptable, Robust and
Efficient Software by including Structural Reflection to Statically Typed Pro-
gramming Languages.

References

[1] International Telecommunication Union. Measuring the Infor-
mation Society, The ICT Development Index; 2012. http:

//www.itu.int/ITU-D/ict/publications/idi/material/2012/

MIS2012_without_Annex_4.pdf.

[2] Rajapakse DC. Fragmentation of Mobile Applications. Handbook of
Research on Mobile Software Engineering; 2008.

[3] International Data Corporation (IDC). Android and iOS Combine for
91.1% of the Worldwide Smartphone OS Market in Fourth Quar-
ter of 2012; 2013. http://www.idc.com/getdoc.jsp?containerId=

prUS23946013.

24

[4] Thomas D, Hansson DH, Schwarz A, Fuchs T, Breed L, Clark M. Agile
Web Development with Rails. A Pragmatic Guide. Pragmatic Book-
shelf; 2005.

[5] Gudgin M, Hadley M, Mendelsohn N, Moreau JJ, Nielsen HF, Kar-
markar A, et al.. SOAP Version 1.2; 2007. http://www.w3.org/TR/

soap12-part1.

[6] Ballinger K, Ehnebuske D, Gudgin M, Nottingham M, Yendluri P. WS-I
Basic Profile Version 1.0; 2004. 2.

[7] Rabin J, Fonseca JMC, Hanrahan R, Marin I. Device Description
Repository Simple API, W3C Recommendation; 2008. http://www.

w3.org/TR/DDR-Simple-API.

[8] Cantera JM. DDR Simple API, Java Reference Implementation; 2012.
http://forge.morfeo-project.org/projects/ddr-ri.

[9] Open Mobile Alliance. SyncML Specifications; 2012. http://www.

openmobilealliance.org/syncml.

[10] Funambol. The leading mobile cloud sync solution; 2012. http:

//sourceforge.net/projects/funambol.

[11] Bitterlich JY. JSR 172: J2ME Web Services Specification; 2011. http:
//jcp.org/en/jsr/detail?id=172.

[12] Cantera JM. The MyMobileWeb Project (TSI-020400-2010-118); 2012.
http://mymobileweb.morfeo-project.org.

[13] The Apache Software Foundation. State Chart XML (SCXML); 2012.
http://commons.apache.org/scxml.

[14] Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional
Computing Series; 1995.

[15] Ortin F, Zapico D, Cueva JM. Design Patterns for Teaching Type
Checking in a Compiler Construction Course. IEEE Transactions on
Education. 2007 Aug;50(3):273–283.

[16] Ortin F, Garcia M, Redondo JM, Quiroga J. Achieving Multiple Dis-
patch in Hybrid Statically and Dynamically Typed Languages. vol. 206
of Advances in Intelligent Systems and Computing. Berlin, Heidelberg:
Springer Berlin / Heidelberg; 2013. p. 703–713.

[17] Ortin F, Garcia M. A Type Safe Design to Allow the Separation of
Different Responsibilities into Parallel Hierarchies. In: Maciaszek LA,

25

Zhang K, editors. International Conference on Evaluation of Novel Ap-
proaches to Software Engineering. ENASE 2011. SciTePress; 2011. p.
15–25.

[18] Ortin F, Garcia M. Modularizing Different Responsibilities into Sepa-
rate Parallel Hierarchies. In: Communications in Computer and Infor-
mation Science. vol. 275. Springer; 2013. p. 16–31.

[19] Ortin F, Redondo JM, Perez-Schofield JBG. Efficient Virtual Machine
Support of Runtime Structural Reflection. Science of Computer Pro-
gramming. 2009;74:836–860.

[20] Miravet P, Marin I, Ortin F, Rionda A. DIMAG: a framework for
automatic generation of mobile applications for multiple platforms. In:
Proceedings of the 6th International Conference on Mobile Technology,
Applications, and Systems. Nice, France: ACM; 2009. .

[21] Corral L, Sillitti A, Succi G. Mobile Multiplatform Development: An
Experiment for Performance Analysis. Procedia Computer Science.
2012;10:736–743.

[22] Appcelerator. Titanium Mobile Development Environment; 2013.
http://www.appcelerator.com/platform/titanium-platform.

[23] PhoneGap. Easily create apps using the web technologies you know and
love: HTML, CSS, and JavaScript; 2013. http://phonegap.com.

[24] Xamarin. Create iOS, Android, Mac and Windows apps in C#; 2013.
http://xamarin.com.

[25] Kramer D, Clark T, Oussena S. MobDSL: A Domain Specific Lan-
guage for multiple mobile platform deployment. In: Proceedings of the
IEEE International Conference on Networked Embedded Systems for
Enterprise Applications, NESEA 2010, November 25-26, 2010, Suzhou,
China. IEEE; 2010. p. 1–7.

[26] Corona. Corona SDK, the ultimate 2D development platform; 2013.
http://www.coronalabs.com.

[27] RhoMobile. RhoMobile Suite, develop applications for the next gener-
ation of business mobility; 2013. http://rhomobile.com.

[28] MoSync. App development made easy; 2013. http://www.mosync.com.

[29] Ortin F, Palacio DZ, Perez-Schofield JBG, Garćıa M. Including both
static and dynamic typing in the same programming language. IET
Software. 2010;4(4):268–282.

26

