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Abstract

Although some fish species have been shown to be able to discriminate between two groups (shoals) of conspecifics
differing in the number of members, most studies have not controlled for continuous variables that covary with number.
Previously, using angelfish (Pterophyllum scalare) we started the systematic analysis of the potential influence of such
continuous variables, and found that they play different roles in shoal discrimination depending on whether large ($4 fish)
or small (,4 fish) shoals were contrasted. Here, we examine the potential role of the overall body surface area of stimulus
fish in shoal preference, a prominent variable not yet examined in angelfish. We report that both when numerically large (5
versus 10 fish) and when small (2 versus 3 fish) shoals were contrasted, angelfish were unable to discriminate the
numerically different shoals as long as the surface area of the contrasted shoals was equated. Thus, we conclude that body
surface may be an important continuous variable in shoal discrimination. This conclusion was further supported by the
analysis of preference when shoals of the same numerical size but different body surface area were contrasted. We found
subjects to spend significantly more time close to the shoals with the greater overall surface area. Last, we conducted an
experiment in which we simultaneously controlled a set of continuous variables, including overall surface area, and found
angelfish to use the number of shoal members as a cue only in large shoal contrasts but not in small shoal contrasts. This
result suggests the potential existence of different processing systems for large and small numbers in fish.
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Introduction

In absence of speech, both human infants and non-human

animals have been shown to exhibit a range of number-related

abilities. Most often these abilities manifest as discrimination

between two sets of discrete elements that differ in number. Such

quantity-based judgment has been demonstrated in natural

environments where in numerous species it may confer adaptive

advantage in several functional contexts (e.g. foraging: [1,2];

intergroup conflict: [3,4,5]; brood parasitism: [6], or reproductive

decisions: [7]). Most studies on numerical competence, however,

have been carried out in laboratory settings. Successful discrim-

ination of which of two sets contains more items has been

documented in preverbal infants (see [8,9]), non-human primates

[10,11,12] and in several other mammals, including elephants

[13,14], bears [15], dolphins [16], coyotes [17], wolves [18], and

dogs [19]. Discrimination between different quantities of elements

has been shown in a wide variety of other taxa, including birds

[20,21], amphibians [22,23], fish [24,25], and even invertebrates

(reviewed in [26,27]). Overall, the results suggest that the ability to

discriminate between sets differing in the number of their elements

develops during ontogenesis before the appearance of speech and

also that this competence either has a common evolutionary origin

(homologous functions) or a similar natural selection force

(analogous functions) behind it across the variety of species studied

[8].

Although many species seem to share this capacity, the question

of how such relative comparisons between the sets are made has

been difficult to answer. Whereas some research has suggested that

infants and non-human animals are able to determine which of

two sets contains more items on the basis of number alone (i.e. a

true numerical process [9,28,29,30,31]), other studies have shown

that non-numerical continuous variables play important roles in

making the choice and the test subject could discriminate between

the sets without necessarily being able to use numerical

representation of the elements. For example, Clearfield and Mix

[32] have shown that human infants rely on contour length or area

rather than on number to discriminate small sets of items, and

similar results demonstrating the use of continuous variables have

been reported in other studies with human infants too [33,34,35].

Discrimination using continuous variables has also been reported

in non-human animal species [11,15,16,23,36,37,38,39].

The confusion in the literature about what aspects of the items

the test subject uses in making a choice may be due to the fact that

it is rather difficult to distinguish the effects of continuous variables

from those of number alone as these two types of cues most often

covary (see [40]). The understanding of the role potentially played

by non-numerical continuous variables is an important challenge

that studies on numerical competence must face.

Successful attempts have been made to prove the ability of fish

to utilize numerical information in their choice. These studies

attempted to control the continuous non-numerical variables and
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employed training procedures, i.e. relied upon learning in the

studied fish species. The examples include the mosquitofish

(Gambusia holbrooki) in which the training employed social reward

[41,42] or food reward [43,44] but other fish species have also

been utilized [24]. Another approach to study numerical

competence without the potential confounding effects of non-

numerical variables has been with the use of sequential

presentation of items. This procedure has been employed in

human infants (e.g. [45]) and non-human primates (e.g. [30]), and

has also been adapted to preference tests in fish [46,47]. In these

experiments, fish continue to select the larger shoal, thus, proving

their ability to rely upon numerical information alone in making

shoaling decisions.

One could argue, however, that the main question is not

whether an experimenter could force fish to use numerical

information alone in artificial laboratory procedures, but rather

what the natural, spontaneous (untrained) behaviour of the studied

fish species may be. That is, when presented with a task that may

be solved in multiple ways the question is what strategy the fish

would choose. The spontaneous binary shoal choice task may

allow us to answer this question. In this task the test fish is

presented with a shoal on each of the opposite sides of the test tank

and can choose between the two shoals of conspecifics that differ in

the numerical size of their members. Choice is quantified as the

relative distance to one vs. the other side of the tank. The live

stimulus fish move, change location and orientation, modify their

inter-individual distance, move into overlapping positions, i.e.,

dynamically alter numerous continuous variables including the

total visible surface area, the linear dimensions and the density of

the shoal.

This binary choice paradigm has been the most frequently

employed method in studies of numerical competence. In a

number of fish species, results show that subjects spontaneously

discriminate and prefer the larger of the two shoals (swordtails

[48]; mosquitofish [49]; guppies [50]; zebrafish [51]; angelfish

[52,53]; red tail splitfin [25]). Many fish when placed alone in a

novel, potentially dangerous, environment (the test tank) seek

protection in larger groups, an effective antipredatory strategy

[54]. The response, thus, appears to have an adaptive value and

fish exhibit this behaviour spontaneously, i.e. in the absence of

prior training.

We have recently started to isolate the potentially operative

continuous non-numerical variables and systematically analyzed

the role played by the most prominent of them, one at a time, to

understand their influence on quantity discrimination. Our

previous research using the binary shoal choice paradigm, has

consistently shown that the individual angelfish (Pterophyllum scalare)

prefers to spend more time close to the larger of two groups of

conspecifics (shoals) placed in opposite sides of the test tank. This

choice was observed both when using large shoals ($4 members

[52]), e.g. for comparisons between 5 vs. 10 fish [55], and when

using small ones (,4 members), e.g. 2 vs. 3 fish shoals [53]. We

found that several continuous variables, including shoal density,

linear extent, or inter-fish distance, individually considered

[53,55], as well as the overall swimming activity of the stimulus

shoals [56] had diverse effects on performance of the test fish.

Some of these continuous variables were indeed found to affect the

choice between numerically different shoals made by angelfish, but

the relevance of these continuous variables was also found to

depend upon the numerical size of the contrasted shoals.

We have not studied the potential effect of an important non-

numerical continuous variable, the surface area of the contrasted

shoals. As the surface area encompassed by the larger shoal is

greater than that of the smaller one, this variable could, in

principle, be used by angelfish to judge the size of a shoal. The

goal of the current study is to examine the role of this continuous

variable. First, we sought to replicate and confirm some of our

previous findings and used two contrasts, shoals of large number of

individuals (5 vs. 10 fish) and shoals of small number of individuals

(2 vs. 3 fish), tests in which all cues, continuous and numerical,

were available (baseline performance). Subsequently, also using

the above large and small shoal contrasts, we attempted to control

for body surface area of the stimulus fish by minimizing the

difference in total surface area of the contrasted shoals. We

investigated whether angelfish could still distinguish between the

larger and the smaller shoals under these circumstances. In

addition, we also performed the opposite manipulation, i.e. in

which angelfish were exposed to pairs of shoals of equal numerical

size (5 vs. 5 fish, and 3 vs. 3 fish), but differing in body surface area.

A preference for the shoal with the greater overall surface area in

this treatment would underscore the importance of this variable.

Finally, we conducted an experiment in which several continuous

variables, including surface area, were simultaneously controlled

and thus we asked whether angelfish could discriminate numer-

ically different shoals (5 vs. 10 fish, and 2 vs. 3 fish) without these

continuous variables playing any potential role.

Materials and Methods

Ethics Statement
The experiments described here comply with the current laws of

the country (Spain) in which they were performed and were

approved by the Committee on the Ethics of Animal Experiments

of the University of Oviedo (permit number: 13-INV-2010).

Subjects and holding conditions
Wild type juvenile angelfish (Pterophyllum scalare) were obtained

from local commercial suppliers (Fig. 1). Only juveniles of this

sexually monomorphic species were studied so as to eliminate

possible confounding effects arising from courtship or agonistic/

territorial interactions. The fish were housed in glass holding

aquaria (length 6 width 6 depth: 60 cm630 cm640 cm) in

groups of 20–22 when fish were of small and medium size, and in

groups of 15 for large size fish. All fish were allowed a minimum of

a two-week acclimation period before behavioural testing.

Test fish and stimulus fish (which were used to elicit test fish

behaviour) were randomly chosen from the same cohort and were

housed separately, with no visual and olfactory communication

being possible between fish in the separate aquaria. Fish of

different size were also housed separately. Aquaria were filled with

dechlorinated tap water. Temperature of the water was kept at

25uC using thermostat-controlled heaters. Each aquarium was

illuminated by a 15-W white fluorescent light tube placed above

the tank. A 12:12-h light:dark cycle was maintained with lights on

at 08.30 hour. External filters continuously cleaned the aquaria,

which had a 2-cm deep gravel substratum. The fish were fed

commercial fish food (JBL GALA, JBL GmbH & Co. KG,

Neuhofen, Germany) twice daily, at 10.00 h and at 18.00 h.

Apparatus
The experimental apparatus to assess spontaneous shoaling

preference in binary choice tests was similar to what we used in a

previous study [56]. It consisted of a test aquarium with one

stimulus aquarium positioned at each end (Fig. 2a). The test

aquarium was identical in all respects to the holding aquaria and

was maintained under the same conditions. The stimulus aquaria

were of smaller dimensions (30630640 cm depth) but the side

facing the test aquarium was of the same size as the short lateral
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sides of the latter (30640 cm). Other conditions (e.g. water quality

and temperature) were identical to those of the holding and test

aquaria. A divider isolated a 10-cm compartment in the stimulus

aquaria where the stimulus shoals were presented. Before

preference tests commenced, the stimulus shoals were placed in

the part of the stimulus aquaria outside of the stimulus

compartment. Except for the front, all exterior walls of the

aquaria that were not adjacent to other aquarium walls were lined

with white cardboard to prevent the fish from being influenced by

external visual stimuli. Removable opaque white barriers placed

outside the two end sides of the test aquarium were used to visually

isolate the latter from the stimulus aquaria and these barriers were

removed when preference tests commenced (B in Fig. 2a).

Five vertical lines drawn on the front and back walls of the test

aquarium at a distance of 10 cm divided the test aquarium into six

equal zones and facilitated measurements of the test fish’s

movements and position. The two 10-cm zones closest to the

stimulus aquaria were considered to be the preference zones. At

least three-quarters of the body length of the fish had to be within

the boundary for the fish to be included in a particular zone.

Swimming activity of test fish was measured as the frequency

(number of times) the fish crossed the lines drawn on the walls of

the aquarium during the tests.

General procedure: Preference tests
The experimental procedure was the same as that adopted in a

previous study [55]. Briefly, in each trial a single test angelfish was

given a choice between two numerically different shoals of

conspecifics presented simultaneously and positioned in the

stimulus aquaria on opposite sides of the test aquarium. The

chosen number of fish that served as stimulus shoals were taken at

random from the stimulus fish holding aquaria and were gently

placed into the part of the stimulus aquaria outside of the stimulus

compartment. To control for any potential side bias the allocation

of the shoals to the stimulus aquaria was initially determined at

random and then counterbalanced across trials. All fish were

allowed a 15-min acclimation period in the new aquaria (see

below). Trials took place 15–30 min after feeding in the morning.

Test fish were randomly selected from a test fish holding tank,

and were introduced singly to the centre of the test aquarium. Test

fish were allowed to swim freely with the barriers between aquaria

removed, so they could see the 10-cm compartments where the

stimulus shoals would be presented. This acclimation period in the

absence of stimulus shoals lasted for 15 min and also allowed

stimulus shoals to settle in the respective stimulus aquaria. At the

end of this period, the barriers between aquaria were replaced and

the stimulus shoals were gently shepherded to the 10-cm stimulus

compartment. The test fish was confined in the centre of the test

aquarium via a transparent, open-ended, plastic cylinder (7 cm

diameter), in which it remained for 2 min. During this time, the

opaque white barriers between the aquaria were removed to reveal

the stimulus shoals, thus allowing the confined test fish to view the

stimulus shoals at both sides of the test aquarium from an equal

distance. The start cylinder was then gently raised and the test fish

released. Shoaling behaviour, recorded over a 15-min period, was

defined as the time spent by the test fish in the 10-cm preference

zones, i.e., within 10 cm from the wall adjacent to the stimulus

shoal aquaria on either side. Behavioural responses of the test fish

were recorded with a video camera (Sony video Hi8, model CCD-

Figure 1. One of the experimental angelfish (Pterophyllum
scalare).
doi:10.1371/journal.pone.0083880.g001

Figure 2. The experimental apparatus. (A) Diagram of the
experimental apparatus showing the central test tank and the two
stimulus tanks at each end of the test tank. Removable opaque white
dividers were used to separate a 10-cm compartment close to the test
tank, where the stimulus shoals were presented to the test fish. Opaque
white barriers (B) were used to visually isolate the two stimulus tanks
(containing the stimulus shoals) from the test tank. These barriers were
removed when preference tests commenced. The time test fish spent
within 10 cm of the stimulus shoals (preference zones) was recorded.
(B) The test tank and the stimulus compartments. Diagram showing the
test tank and the two stimulus compartments at each side. To
simultaneously control for several continuous variables, the stimulus
compartments were divided into 10 identical sectors by transparent
Plexiglas partitions and each fish of the stimulus shoals was individually
placed into each of the adjacent sectors. An example of 5 vs. 10 fish
contrast is shown (Exp. 1). When shoals of 2 vs. 3 fish were contrasted
(Exp. 2), fish were placed into the adjacent central sectors.
doi:10.1371/journal.pone.0083880.g002
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TR750E) concealed behind a blind. The recordings were later

replayed for analysis.

At the conclusion of the recording session, the barriers between

aquaria were replaced and the positions of the stimulus shoals were

interchanged between stimulus aquaria to control for any potential

directional bias. After a second 15-min settling interval, another

15-min observation period was run with the same test fish

following the same procedure as described above. After the second

observation period, the aquaria were cleaned before being

replenished with dechlorinated tap water. None of the fish in the

stimulus shoals were used as test fish and vice versa. Within each

experiment, the order of testing was randomized according to

different treatment conditions. Stimulus shoals were rearranged

after each session, so that each test fish was exposed to a different

stimulus fish set. The fish were returned to the suppliers at the end

of the study.

Experiment 1: Discrimination of large shoals (5 vs. 10)
and control for surface area of the stimulus fish

In this experiment, we first attempted to replicate our previous

finding [55] that demonstrated the angelfish’s ability to discrim-

inate between large shoals when the ratio was 1:2. Test fish of

similar body size to that of the stimulus fish were presented with a

binary choice between a shoal of five conspecifics versus a shoal of

10 conspecifics. The number of test fish tested in this task was 12.

To examine whether the choice made by the test fish was based

upon, or was influenced by, the overall body surface of the shoal

members rather than their number, we measured the performance

of a new sample of 12 naı̈ve fish. Now, we controlled for the body

surface area by minimizing the difference in this continuous

variable between the stimulus shoals. To achieve our goal we first

took photographs of the fish with a digital camera and using the

tpsDig software [57] we calculated both the body surface area

(excluding fins) and standard length of stimulus fish from the

digitized images. To allow for accurate calibration of photographs

a background of 1 mm graph paper was placed behind the fish.

For surface area, 16 points (‘landmarks’) were defined on each

individual in tpsDig. Fish larger than the subjects were selected to

constitute the smaller stimulus shoal (that of five fish) whereas fish

smaller than the subjects were selected to constitute the larger

stimulus shoal (that of 10 fish), in such a way that the overall body

surface of the five large fish was approximately equal to that of the

10 small fish (body surface areas and standard lengths of the

stimulus fish and test fish in all the treatments are summarized in

Table 1).

In the subsequent treatment, we kept the number of fish in the

contrasted shoals identical but we made the surface area of these

shoals different. Both shoals were composed of five fish (5 vs. 5 fish)

but using the above described digital photography analysis and

selection procedure, one shoal was made to consist of individuals

with larger overall body surface area than the test fish and the

other to have individuals with smaller body surface area than the

test fish’s. The result of this arrangement was that the total surface

area of one stimulus shoal was nearly double that of the other

stimulus shoal. Another 12 naı̈ve test fish were studied in this test.

Finally, in an attempt to simultaneously control for a set of

continuous variables we minimized differences between stimulus

shoals (5 vs. 10 fish) in overall surface area, swimming activity,

density and inter-fish distance hoping that numerical information

alone would be the only prominent difference between the

contrasted shoals. We employed two removable transparent

Plexiglas frames with 10 individual small identical sectors that

were introduced into each stimulus compartment (see Fig. 2b).

Stimulus shoals of similar overall body surface area were confined

in these small sectors, thus providing control over the above

mentioned variables [56]. A set of 12 naı̈ve test fish were used.

Experiment 2: Discrimination of small shoals (2 vs. 3) and
control for surface area of the stimulus fish

Previous studies indicated the existence of a ‘set size limit’ of

three fish for small numbers in angelfish [53] and suggested that

this species uses a different mechanism of discriminating these

small shoals as compared to how they distinguish large (more

numerous) shoals. The present experiment entailed identical

protocols to those described in Experiment 1, except the test fish

were given a choice between two small stimulus shoals, one

composed of two conspecifics and the other composed of three

conspecifics. As above, the experiment had four treatments: one,

replication of prior analysis of discrimination between shoals of 2

vs. 3 fish (baseline, all continuous and numerical information

available to test fish); two, a treatment in which the total body

surface area of the stimulus shoals contrasted was minimized;

three, contrasted shoals with same number of shoal members (3 vs.

3 fish) but with different overall body surface area (one shoal had

approximately one and a half larger overall body surface area than

the other); and four, a treatment in which overall surface,

swimming activity, density and inter-fish distance were all

simultaneously controlled but the shoals differed in numerical size

(2 vs. 3 fish). As in Experiment 1, a naı̈ve set of 12 test fish was

studied in each of the four treatments of Experiment 2.

Statistical analysis
The time spent in the preference zones was recorded as a

measure of each test fish’s preference for a particular stimulus. We

calculated a preference index for each test fish as follows: time

spent in the preference zone near the larger stimulus shoal was

Table 1. Body surface area and length of the fish.

Experiment 1 and 2 Experiment 1 Experiment 2

Measurements Test fish [32]
Stimulus fish
Intermediate [40]

Stimulus fish Large
fish [40]

Stimulus fish Small
fish [40]

Stimulus fish Large
fish [40]

Stimulus fish Small
fish [40]

Body surface area (mean
6 S.E.M.)

3.6660.04 3.6360.04 4.8260.13 2.4360.07 4.5860.07 2.9960.06

Standard length (mean 6

S.E.M.)
3.026.04 2.9760.05 3.5560.05 2.0360.05 3.4460.04 2.3960.04

Body surface area (cm2) and standard length (cm) of the test fish and stimulus fish used in experiments and contrasts. The sample size taken for measurement of each
fish size is indicated in square brackets [ ].
doi:10.1371/journal.pone.0083880.t001
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divided by the total time spent shoaling (i.e., the time spent within

10 cm from either stimulus shoals). A preference index equalling 1

would indicate complete preference for the larger shoal, whereas

an index value of 0 would indicate complete preference for the

smaller shoal. In the treatments with equal number of fish in the

contrasted shoals, the preference index was calculated similarly but

the numerator referred to the shoal with greater overall surface

area. A one sample two-tailed t–test was used to compare the

observed proportions against a chance value of 0.5 (null

hypothesis). The proportions were normally distributed. Statistical

probabilities reported are two-tailed. The null hypothesis was

rejected when its probability (P) was less than 0.05.

The effect of the treatments on preference was investigated with

one-way ANOVA for independent samples. In case of a significant

effect, Tukey Honestly Significant Difference (HSD) post hoc

multiple comparison test was performed to determine which

treatment group significantly (p,0.05) differs from one another.

Results

Experiment 1: Discrimination of large stimulus shoals and
control for surface area

In all trials, test fish visited both preference zones and thus had

the opportunity to assess each stimulus shoal. Overall, the level of

swimming activity (number of lines crossed) shown by test fish

prior to stimulus presentation was significantly higher than that

exhibited when in the presence of the stimulus shoals (mean 6

SEM: 67.6765.24 and 50.8763.92, respectively; paired t-test: t

47 = 4.854, P,0.001). The reduced shuttling activity during the

presence of stimulus shoals is due to subjects staying longer in the

preference zones close to the stimulus fish. This activity pattern

was confirmed in all treatments (Ps#0.043), except in the

treatment in which differences in overall surface area of fish were

reduced between the stimulus shoals (mean 6 SEM: 56.5069.62

and 45.2966.11, respectively; t 11 = 2.057, P = 0.064), suggesting a

greater difficulty in decision making subjects moving more

frequently from one stimulus shoal to the other.

The initial treatment, in which stimulus fish of similar size were

presented to the test fish (i.e. no control for surface area),

confirmed that angelfish are able to discriminate between large

stimulus shoals of conspecifics that differ in a 1:2 ratio (5 vs. 10

fish). Fish spent significantly more time near the larger shoal over

the smaller one (t11 = 5.728, P,0.001; Fig. 3). When the body

surface area of the fish in the stimulus shoals was controlled by

minimizing the difference in total surface area of the contrasted

shoals (5 vs. 10), the fish did not exhibit any significant preference

for either of the shoals, i.e. the test fish performed at chance

(t11 = 0.360, P = 0.725; Fig. 3). This result indicates that fish are

sensitive to the overall body surface area of the stimulus shoals and

that this variable affects discrimination of quantities in angelfish.

The effect of the body surface area of the stimulus fish was further

supported when we investigated the potential role of this variable

per se. Two shoals of the same numerical size (5 vs. 5) but differing

in surface area, were presented, and the test subjects showed

significant preference for, i.e. stayed closer to the shoal with the

greater total body surface area (t11 = 3.863, P = 0.003; Fig. 3).

Finally, when we minimized the potential differences in several

continuous variables simultaneously (including body surface area),

test subjects showed a significant preference for shoaling with the

larger, i.e. more numerous shoal (10 fish) versus the smaller (less

numerous) shoal (5 fish) (t11 = 2.242, P = 0.047; Fig. 3, right most

bar).

One-way ANOVA showed a significant difference between the

magnitude of the preferences among the four treatment groups

(F3,44 = 3.504, P = 0.023), and the Tukey HSD test indicated that

the group of fish receiving the equated overall surface area of the

stimulus shoals was significantly different from that for which the

total body surface area was not equated between the contrasted

shoals (P = 0.033) and from the treatment group that received the

same numerical size shoals (P = 0.044). These results support the

notion that the body surface area of the shoals plays a role in shoal

discrimination in angelfish. No significant difference was found

between the magnitude of the preference between the group for

which the treatment included controlling for the overall surface

area of the shoals and the treatment controlling for several non-

numerical variables (P = 0.439). The performance in the latter

treatment group was also non-significantly different from perfor-

mance of any of the other treatment groups. The differences (or

lack thereof) found among the treatment groups in preference

cannot be attributed to time spent by the test fish shoaling near the

stimuli during the tests (One-way ANOVA: F3,44 = 1.829,

P = 0.156).

Experiment 2: Discrimination of small stimulus shoals and
control for surface area

The results we obtained using small stimulus shoals were similar

to those found with large shoals. All test fish entered both

preference zones of the test aquarium in the presence of the

stimulus shoals. Overall, during the acclimation period with no

stimulus shoals, subjects also exhibited a significantly higher

swimming activity as compared to that shown in the presence of

the stimulus shoals (mean 6 SEM: 65.3864.72 and 40.9263.25,

respectively; paired t-test: t47 = 4.011, P,0.001). This pattern was

not maintained in the treatments in which total surface area of the

contrasting stimulus shoals was minimized (mean 6 SEM:

60.3367.28 and 38.0869.20, respectively; t 11 = 1.775,

P = 0.104) and when diverse continuous variables were simulta-

neously controlled (mean 6 SEM: 69.08613.15 and 41.1766.97,

respectively; t 11 = 1.708, P = 0.116). In these latter treatments fish

did not significantly reduced shuttling activity relative to the

acclimation period, which coincided with no clear preference

exhibited by the test fish for either shoal.

Subjects significantly preferred the larger shoal (3 fish) to the

smaller one (2 fish) when individual fish within the shoals had

similar body surface area (t11 = 5.970, P,0.001; Fig. 4). However,

as in Experiment 1, subjects failed to discriminate between the two

shoals (2 vs. 3) when the overall body surface area was similar in

both shoals (t11 = 0.623, P = 0.546; Fig. 4). This result suggests that

the choice of angelfish is influenced by total surface area of the

stimulus shoals both when numerically large (previous experiment)

and when small (current experiment) stimulus shoals are contrast-

ed. Consistent with the latter finding, a significant preference for

the shoal with the greater overall body surface area was found

when the stimulus shoals had the same number of fish (3 vs. 3:

t11 = 4.479, P = 0.001; Fig. 4). However, the test subjects could not

distinguish between shoals of 2 vs. 3 fish, and did not perform

significantly differently from chance, when several continuous

variables were simultaneously controlled (t11 = 0.202, P = 0.843;

Fig. 4, right most bar).

A subsequent one-way ANOVA showed a significant difference

between the magnitude of the preferences of the four conditions

(F3,44 = 5.255, P = 0.003), and the Tukey HSD test indicated that

test fish for which the overall surface area of the stimulus shoals

was equated performed significantly differently from, i.e. lower

than, test fish in the treatment group for which the total surface

area of the contrasted shoals was not minimized (P = 0.047) and

also compared to test fish whose choice was between shoals of the

same numerical size (P = 0.045), again confirming that discrimi-

Surface Area and Quantity Discrimination in Fish

PLOS ONE | www.plosone.org 5 December 2013 | Volume 8 | Issue 12 | e83880



nation of shoals was affected by the total surface area of the shoals.

Performance of the test fish under the latter two conditions also

differed significantly from performance of fish in the condition in

which several variables (including surface area) were equated for

the contrasted stimulus shoals (Ps#0.029). These differences in

shoaling preference were not due to putative differences in total

time spent by the groups in shoaling behavior. One-way ANOVA

showed no significant difference between treatment groups in this

parameter (F3,44 = 2.055, P = 0.120).

Discussion

Previously it has been shown that numerous species, including

the angelfish, can discriminate between large sets of elements as

long as the ratio between the sets reaches 1:2 ratio and between

small sets composed of 2 vs. 3 elements. Our current results

confirm these previous findings and show that angelfish reliably

prefer the larger shoal (1:2 ratio for large sets, i.e. 5 vs. 10 fish; and

2 vs. 3 fish for small sets). However, performance in these studies

could be influenced by both numerical characteristics of the

contrasted sets and the continuous variables that covary with

number.

We have started the investigation of whether and which

continuous variable(s) may influence or guide angelfish when

making a choice between shoals of conspecifics differing in

numerical size. In the current study, we focussed on a previously

uninvestigated continuous variable, the body surface area of the

stimulus fish. We found overall surface area of the shoal to have a

strong influence on the shoal choice (larger surface area shoals

were preferred). Comparable results indicating that body surface

area of the stimulus fish plays an important role in the

discrimination were found both when numerically large shoals

(Experiment 1, 5 vs. 10 fish) and also when numerically small

shoals (Experiment 2, 2 vs. 3 fish) were contrasted. We arrived at

this conclusion on the basis of two separate sets of findings. One,

when we minimized the difference between the contrasted shoals

in their overall body surface area, despite numerical differences

between the shoals, no significant preference was shown by

angelfish towards either shoal. Two, when we used shoals of

identical number of conspecifics differing in the total body surface

area, angelfish consistently chose the shoal with the larger surface

area.

Mosquitofish were also shown to rely on this continuous

variable: when the contrasted shoals presented to this species had

similar surface areas, mosquitofish chose randomly both when

numerically large or when numerically small shoals were

contrasted [49]. Likewise, mosquitofish trained to discriminate

sets of geometric figures failed the discrimination of the trained

stimuli when the cumulative surface area of the geometric figures

was matched [41,42]. Very young guppies also failed the trained

discrimination between two small sets of dots when the area of the

contrasted dots was equal [58], although they did discriminate

between large sets under these circumstances [44]. Surface area

appears to be an important non-numerical variable that has also

been demonstrated to provide a basis for discrimination between

quantities in other animal species and in different contexts

[15,16,34,39].

In studies dealing with size assortment in shoals, it has been

shown that fish are capable of discriminating between conspecifics

Figure 3. Results of Experiment 1. Proportion of time (preference index, Mean 6 SEM) test fish spent in close proximity to the stimulus shoals.
Values above 0.5 indicate a preference for the more numerous shoal of stimulus fish or a preference for the stimulus shoal with the greater overall
surface area when the stimulus shoal is of the same numerical size. In the X-axis legend the numbers indicate the number of members of the
contrasted shoals. We also illustrate the size of the body surface area: the large font size means that the body surface area of the stimulus fish was
large and the smaller font size indicates that the surface area was small. Note that in case of the second condition (second bar) the total surface area
of the two contrasted shoals was made similar by increasing the surface area of the individual stimulus fish in the less numerous shoal and decreasing
it in the more numerous shoal. Numbers in between bars | | (fourth condition) represent stimulus shoals confined in small sectors of a transparent
compartment which was designed to minimize differences in several continuous variables that may have covaried with the sizes of these shoals (see
text for details). Significant departure from the null hypothesis of no shoal preference is indicated by asterisks: * P,0.05; ** P,0.01; *** P,0.001.
doi:10.1371/journal.pone.0083880.g003
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of different size using only visual cues, even when the size

differences are smaller than in the current study [59,60,61]. A

preference for shoaling with large conspecifis over smaller ones has

been shown in a number of fish species such as European minnows

[61], two-spotted gobies [60], guppies [62] and mosquitofish

[63,64]. Although this behaviour has associated costs, such as

increased resource competition, the preference may indicate that

benefits (e.g. finding food faster) are greater than the costs. On the

contrary, reluctance by large fish to join small ones may reflect a

greater cost [61]. The preference is often thought to be driven by

predation risk and it has been suggested that the oddity effect is

likely to prevent larger fish from joining shoals of smaller

individuals [65]. In our study we could not distinguish whether

our test fish preferred the overall surface area of the shoal or the

surface area of its individual members.

Despite the above uncertainty, our results clearly show that

body surface area is an important factor, a continuous variable

upon which angelfish can make its decision about which shoal to

choose. This result taken together with our prior findings that

suggested the role of other non-numerical variables suggests that

angelfish may indeed use a variety of cues when discriminating

between shoals of conspecifics. However, the question remained:

can angelfish base their shoaling decision upon numerical

information alone? Previously, our results implied that they can,

but only when the task involved distinguishing between numer-

ically small sets. In this latter case, angelfish hardly relied upon

continuous variables [53,55,56]. In the current study, we

attempted to more directly answer this question by minimizing

the difference between the contrasted numerically different shoals

in a number of possibly important continuous variables. Under

these circumstances, we found angelfish to still be able to show a

significant preference for the numerically larger shoal, but only

when the contrasted shoals had large number of members (5 vs.

10). Our results indicate that angelfish may not have to rely on

inter-fish distance, density, swimming activity or body surface area

for estimation of shoal size but instead may be able to utilize

numerical cues. This conclusion, however, contradicts our findings

showing that when the contrasted shoals were equated with regard

to total body surface area no significant preference was exhibited

by the test fish. Although in our last treatment we made every

attempt to control all non-numerical variables, it is possible that

we missed some. It is possible, for example, that our experimental

manipulations while addressing the intended continuous variables

made certain features of stimulus shoals, other continuous

variables, more salient. The linear extent occupied by the stimulus

shoals may be one such variable: large shoals occupy longer extent.

Notably, however, in a previous work, when linear extent of the

shoals was individually controlled, this variable was found not to

have a significant influence on the discrimination [55]. These

controversies highlight an important problem: when using living

animals as stimuli the simultaneous control of all continuous

variables may not be entirely possible [40], a problem to which we

return below.

Numerical information driving the selection of the larger

quantity, both with large and small numbers, has been claimed

in a number of fish species when non-numerical variables were

Figure 4. Results of Experiment 2. Proportion of time (preference index, Mean 6 SEM) test fish spent in close proximity to the stimulus shoals.
Values above 0.5 indicate a preference for the more numerous shoal of stimulus fish or a preference for the stimulus shoal with the greater overall
surface area when the stimulus shoal is of the same numerical size. In the X-axis legend the numbers indicate the number of members of the
contrasted shoals. We also illustrate the size of the body surface area: the large font size means that the body surface area of the stimulus fish was
large and the smaller font size indicates that the surface area was small. Note that in case of the second condition (second bar) the total surface area
of the two contrasted shoals was made similar by increasing the surface area of the individual stimulus fish in the less numerous shoal and decreasing
it in the more numerous shoal. Numbers in between bars | | (fourth condition) represent stimulus shoals confined in small sectors of a transparent
compartment which was designed to minimize differences in several continuous variables that may have covaried with the sizes of these shoals (see
text for details). Significant departure from the null hypothesis of no shoal preference is indicated by asterisks: *** P,0.001. Note that the difference
between figures 3 and 4 is that in the latter the number of fish in the contrasted shoals is small (2 vs. 3).
doi:10.1371/journal.pone.0083880.g004
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controlled for by using a paradigm involving spontaneous

discrimination of sequential presentation of fish in the stimulus

shoals [46,47], and also by training fish to discriminate between

patterns of geometric figures [41,42,66]. Our results now clearly

demonstrate that angelfish are able to attend both to continuous

variables and to numerical information, and perhaps they may be

able to utilize these two types of information simultaneously. It is

also plausible that even in nature, depending on the context or the

particular characteristics of the situation, the relative salience of

these features may be different and angelfish use them accordingly.

Such context specificity has been shown in other species too. For

example, human infants and non-human primates attend to

number over continuous variables when tested with large sets of

objects [9,28,30].

The results of Experiment 2 with small number of fish in the

contrasted shoals showed that our test fish did not discriminate the

numerically larger shoal when non-numerical variables were

controlled and equated between the shoals. This result is in

apparent contradiction to what we found in prior studies in which

we obtained little evidence for the use of non-numerical variables

in contrasts between small shoals. It is notable, however, that our

procedure used live stimulus fish, and it is plausible that live fish

can provide numerous cues other than those we controlled and

were aware of. For example, stimulus fish may provide subtle

behavioural cues and a smaller number of stimulus fish confined

and controlled in a manner we did in Experiment 2 may behave

differently from the large number of stimulus fish we employed in

Experiment 1. Such difference could have influenced the response

of our test fish, a working hypothesis that we will test by

conducting a detailed behavioural analysis of our stimulus fish.

Furthermore, it is also notable that lack of preference for the more

numerous shoal when the contrasted shoals had only a small

number of fish in them may be due to the ‘oddity effect’ [67]. Fish

that appear different from their shoal mates may stand out and

may be easily detectable for predators. Thus fish tend to prefer

shoals with members whose characteristics (size, colour) are similar

to their own. In case of a pair of shoals of two large fish vs. three

small fish the test fish may be facing a conundrum: the more

numerous shoal has only three individuals and thus it will not

provide much more protection but all three are smaller and thus

the joining test fish may stand out as the largest target (and thus

potentially more attractive to predators). The smaller shoal (two

fish) may provide even less protection but at least the joining test

fish will be the smallest in the group. Such possible balancing

aspects of body size and shoal member number may not happen

the same way in more numerous shoals, where the effect of the

larger number of members may dominate (the test subject may not

stand out that much but the larger number of shoal members may

provide better antipredatory protection). Whether the above

speculation is correct will be experimentally tested in the future.

Nevertheless, using a training procedure to discriminate

between patterns of geometric figures, Miletto Petrazzini et al.

[58] found similar results to ours in newborn guppies. These fish

were successful in the discrimination of small number sets only

when they could use both number and continuous variables

(including area of the figures), otherwise guppies failed the

discrimination.

The contrasting findings we obtained for the experiments in

which angelfish chose between shoals having large number of

members or between shoals having small number of members

support the hypothesis already suggested in previous studies

[53,55,56]. Angelfish, similarly to other species, may be influenced

by numerical and non-numerical features of the contrasted sets

depending on the numerical size of these sets. Also this species may

use different processing systems to discriminate small (signature

limit 3–4) and large quantities ($4). To control and systematically

manipulate all possible continuous variables one may need to use

computer animated images in a manner similar to the methods

developed for zebrafish [68,69]. This more rigorous control may

also allow one to investigate whether the apparently distinct

mechanisms utilized for small set comparisons vs. large sets

comparisons are indeed distinct.
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