
Provided for non-commercial research and educational use only. 
Not for reproduction or distribution or commercial use. 

 
 
 

 
 
 

This article was originally published by IWA Publishing. IWA Publishing recognizes 
the retention of the right by the author(s) to photocopy or make single electronic 

copies of the paper for their own personal use, including for their own classroom use, 
or the personal use of colleagues, provided the copies are not offered for sale and 

are not distributed in a systematic way outside of their employing institution. 
 

Please note that you are not permitted to post the IWA Publishing PDF version of 
your paper on your own website or your institution’s website or repository. 

 
Please direct any queries regarding use or permissions to wst@iwap.co.uk 

 
 



1622 © IWA Publishing 2013 Water Science & Technology | 68.7 | 2013
Influence of conditioning agents and enzymic hydrolysis

on the biochemical methane potential of sewage sludge

Elena Marañón, Luis Negral, Yolanda Fernández-Nava

and Leonor Castrillón
ABSTRACT
Biochemical methane potential (BMP) tests have been carried out on sewage sludge from two

wastewater treatment plants to assess the effect of additives (FeCl3 and two cationic

polyelectrolytes) used in sludge dewatering. BMP tests were also carried out on the concentrated

solid phase from the enzymic hydrolysis pre-treatment (42 WC, 48 h). FeCl3 had no significant effect

on specific methane production, obtaining 242–246 LCH4/kgVSo. The effect of the combination of

polyelectrolyte and FeCl3 depended on the polyelectrolyte and the sludge, but generally led to an

increase in specific methane production (25–40%). When enzymic hydrolysis was applied as a pre-

treatment, specific methane production increased from 6.8% in the sludge containing FeCl3 to 20% in

the sludge without FeCl3, although the increases were not statistically significant. In terms of

LCH4/kgVSrem, a general improvement was achieved both by means of additives and by enzymic

hydrolysis. However, this improvement was only significant in the case of sludge which had

undergone previous enzymic hydrolysis (62%) and in the untreated sludge containing a

polyelectrolyte and FeCl3 (24%). Cationic polyelectrolytes inhibited solid–liquid separation during

enzymic hydrolysis and, although the presence of only FeCl3 did not affect this separation, a

significant decrease (32%) in LCH4/kgVSrem was observed.
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INTRODUCTION
Sewage sludge management has pursued better economic
efficiency of sludge treatment for decades. The European
Union (EU) is currently fostering the development of more

sustainable sludge management. One way to reduce costs
is via a decrease in sludge production. According to Gende-
bien et al. (), 10 million tonnes of sludge (expressed as

dry matter) was produced each year in the EU at the end
of the last decade. Reducing costs is a challenge promoted
by the deceleration in sludge production and energy recov-

ery (Murray et al. ).
Sewage sludge is a heterogeneous material rich in

organic matter whose composition is influenced both by
the characteristics of the influent and the processes

employed at wastewater treatment plants (WWTPs). How-
ever, sewage sludge presents a considerable organic load
due to the growth of the microorganisms that enable water
treatment (Ucisik & Henze ). If this organic load is
not sent to landfill for disposal (in accordance with restric-
tions introduced by the EU Landfill Directive 1999), other

alternatives such as incineration or anaerobic digestion
must be considered. The main differences between the two
techniques are that when applying incineration, the sludge

needs to be conditioned and ash is obtained as a final resi-
due, whereas conditioning is optional when applying
anaerobic digestion (depending on whether the digester is

on-site or off-site) and the final products are biogas and a
stabilized digested material (digestate) that can be used for
agricultural purposes (Appels et al. ).

The biomethanation of sludge is characterized by poor

bioavailability of substrates for the bacteria involved in
biogas production. In particular, biogas production is slow
due to the hydrolysis of the substrate, the first and
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rate-limiting stage for sewage sludge (Skiadas et al. ).
Siegrist et al. () studied the kinetics of sewage sludge
at 35 WC. These authors estimated a hydrolysis rate constant
of 0.25 d�1, versus 5.0 d�1 for acidogenesis, 0.8 d�1 for acet-

ogenesis, and 0.5 d�1 for methanogenesis of acetate-utilizing
methanogens and 2.5 d�1 for hydrogen-utilizing methano-
gens. Most of the organic matter in sewage sludge comes
from cell walls trapping nutrients inside cells or macromol-

ecules such as extracellular polymeric substances (EPS).
These fractions are not easily assimilated by microorganisms
(Appels et al. ). The major interest in accelerating

hydrolysis is thus understandable. The best hydrolysis strat-
egy will entail economic efficiency and feasibility and will
lead to the upgrade of sludge valorization at WWTPs.

Many enzymic pre-treatments add hydrolases as exogenous
enzymes to the substrate (Burgess & Pletschke ), result-
ing in an up to 10-fold improvement in hydrolysis constants
(Yang et al. ). Since anaerobic microorganisms produce

their own enzymes (Burgess & Pletschke ), an alterna-
tive would be to promote this enzymic activity. This means
using bacteria strains present in the sludge. Le et al. ()
proposed an enzymic hydrolysis method (inverted phase fer-
mentation, IPF) that favours endogenous activity in sludge.
The technique consists of keeping the sludge at 42 WC for

48 h under anaerobic conditions. As time passes, the nas-
cent CO2 drags solid particles to a new solid phase (SP)
which floats over a clarified layer, the liquid phase or

liquor. The SP reaches concentration factors for total
solids (TS) of up to 2.8 (defined as TS in the SP versus TS
in the initial sludge). Due to the enzymic hydrolysis, the
SP and the liquor present a higher content in soluble organic

matter than the sludge. The liquor, rich in soluble species
such as volatile fatty acids, is characterized by an almost
complete hydrolysis, as most of its total chemical oxygen

demand (tCOD) is present in the soluble form (sCOD)
(Negral et al. ). This particular form of enzymic hydroly-
sis is called IPF. The achievement of these distinct phases

has several advantages: different treatments for the phases,
thickening of sludge in the SP without the use of additives,
enhancement of enzymic hydrolysis to increase sCOD,

and 99.9% destruction of Escherichia coli.
The additives usually employed at WWTPs include

coagulants such as Al and Fe salts and lime (Thistleton
et al. ; Smith & Carliell-Marquet ) and flocculants

such as synthetic acrylamides and natural polymers (poly-
electrolytes) (El-Mamouni et al. ; Degrémont ).
The aim of these products is to clarify the effluent to

which they are added, whether this be the wastewater or
the sludge itself. As regards sludge, the purpose of additives
is to destroy its structure, thus freeing the bacteria, particles

and water from the EPS of the sludge. Altering the state of
the EPS-based matrix decreases the volume as a result of
destroying this structure. The structure of sludge consists

of a mucilaginous EPS matrix in which bacteria are
embedded (Burgess & Pletschke ). EPS are made up
of a variety of organic substances such as carbohydrates,
proteins, humic compounds, lipids, uronic acids and deoxyr-

ibonucleic acids (Tchobanoglous et al. ) which weave a
structure that gives volume to the sludge. Destabilization of
the colloidal structures that form EPS is carried out using

coagulants (e.g. FeCl3), while flocculants (e.g. high molecu-
lar weight polyacrylamides) favour the growth of flocs that
cause these structures to settle. Q1 The ζ potential explains

the work of sludge colloid destabilization by means of
coagulants, since positive charges (i.e. Fe3þ) are added to
the medium in which the EPS have negative charges. How-
ever, the Derjaguin, Landau, Verwey and Overbeek (DLVO)

theory, which predicts this behaviour, seems to require a
combination of hydrophobic forces and interactions, due
to the entanglement of the flocs, to more adequately explain

some deviations from the predictions of experiments carried
out with sludge (Mikkelsen & Keiding ). The attack by
additives on the structure of sludge has potential importance

for digestion on account of both altering hydrolysis (Wawr-
zynczyk et al. ) and mobilizing nutrients (Erden &
Filibeli ). In terms of sludge disintegration, enzymes

that can act on its matrix, i.e. extracellular enzymes, are of
importance. These may be exoenzymes, which are free in
the medium, or ectoenzymes, which are bound to the bac-
terial surface (Cadoret et al. ). There are doubts as to

the location and operation of exoenzymes; they are most
likely found in the EPS and not in the water (Boczar et al.
; Goel et al. ). Excessive EPS thus impair the hydro-

lytic activity of these exoenzymes, the dehydration of the
sludge and its sedimentation (Liu & Fang ; Tchobano-
glous et al. ). Regardless of the degree of functionality

and location of exoenzymes, the key seems to lie in the
level of contact between microbial cells and substrates (Bur-
gess & Pletschke ). As a result of nutrient mobilization,

additives can either inhibit or promote anaerobic digestion.
There has been much debate in the literature regarding this
issue for decades (Dentel & Gosset ; Smith & Carliell-
Marquet ). Several studies point to the decreased

activity of hydrolytic enzymes (Dentel & Gosset ; Wawr-
zynczyk et al. ). Another possible route via which the
addition of coagulants inhibits anaerobic digestion would

lie in the precipitation of phosphorus, making it a limiting
factor for anaerobic metabolism (Smith & Carliell-Marquet
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). Nevertheless, the adaptation of bacterial strains to

stressful situations is common (Chen et al. ). Moreover,
Lee & Shoda () found marked increases in methane
when digesting sludge with high concentrations of iron. As

regards flocculants, their benefits have been reported in
the granulation of sludge (El-Mamouni et al. ), with con-
sequent advantages for biogas production (Hulshoff Pol
et al. ).

The lack of consensus in the literature regarding the
effect of conditioning agents in anaerobic digestion led us
to design a series of tests to obtain the biochemical methane

potential (BMP) of conditioned sludge (with FeCl3, and with
FeCl3 plus polyelectrolytes) and also to study the SP that
separates off when applying IPF to the sludge (with and

without conditioning agents). To the best of our knowledge,
the latter has not yet been studied. According to Angelidaki
& Sanders (), biodegradability assays may be based on
the measurement of either the formation of products or

the measurement of substrate depletion. In this study,
BMP tests were carried out using sludge from two WWTPs
and the results are discussed in terms of both CH4 pro-

duction and substrate depletion (volatile solids (VS)
Table 1 | Characterization of initial sludge samples (A and B), solid phases (SP), inoculum (I) a

TS VS sCOD
Sample (g/L) (g/L) VS/TS (g/L)

Sludge

A1 37.23 29.52 0.79 4.87

A1 (SP) 85.08 66.70 0.78 10.24

A2 55.94 44.56 0.80 8.66

B1 32.61 24.07 0.74 4.95

B1 (SP) 64.31 43.78 0.68 16.75

B2 48.93 35.90 0.73 4.34

B2 (SP) 90.68 68.89 0.76 6.05

B3 75.11 39.61 0.53 2.52

Inoculum

I1 25.06 9.89 0.39 1.96

I2 20.21 8.81 0.44 1.49

I3 21.60 9.20 0.43 1.61

I4 19.78 9.49 0.48 1.38

I5 18.02 7.92 0.44 1.58

Polyelectrolyte

Poly 1 3.90 3.47 0.89 0.026

Poly 2 6.70 6.06 0.90 0.012

Sludge: A1, A2, B1, B2 and B3 refer to sludge samples taken from two WWTPs (A and B) on diff

sludge was used for enzymic pre-treatment. Inoculum: I1 [used in tests B1, B1 (SP)]; I2 [used in

Polyelectrolyte: Poly 1¼ Chemifloc CH80. Poly 2¼ Chemifloc CH50.
removal). As coagulants and flocculants need to be added

to the sludge for dewatering purposes, these products are
likewise considered so as to assess their influence on the
BMP. The BMP of the concentrated SP obtained after IPF

pre-treatment were also tested.
MATERIALS AND METHODS

Materials

Sewage sludge

Experimental work was carried out with sewage sludge

samples from two WWTPs. Table 1 provides the chemical
composition of the sludge samples and of the SPs obtained
after IPF pre-treatment. WWTP ‘A’ has an average flow

rate of 3,210 m3/h, with a high industrial contribution. At
this plant, activated sludge secondary treatment is carried
out directly after the pre-treatment, with no primary treat-

ment being performed. This secondary sludge is
conditioned with FeCl3 (final concentration up to
nd polyelectrolytes (Poly)

tCOD FeCl3
(g/L) sCOD/tCOD tCOD/VS pH (g/L)

52.73 0.09 1.79 5.41 0.14

127.58 0.08 1.91 5.63

96.96 0.09 2.18 5.14 0.10

39.41 0.13 1.64 5.87

85.41 0.20 1.95 6.30

66.93 0.06 1.86 3.31 5.60

94.07 0.06 1.37 3.13

54.44 0.05 1.37 5.16 5.60

12.62 0.16 1.28 7.98

11.14 0.13 1.26 7.85

18.52 0.09 2.01 7.61

17.83 0.08 1.88 7.59

17.02 0.09 2.15 7.79

0.031 0.84 <0.01 6.34

0.018 0.67 <0.01 3.14

erent dates. ‘(SP)’ after the name of a sample means that an aliquot of the corresponding

tests A1, A1 (SP)]; I3 [used in tests B2, B2 (SP)]; I4 [used in test B3]; I5 [used in test A2].



1625 E. Marañón et al. | Conditioning agents and enzymic hydrolysis on the BMP of sludge Water Science & Technology | 68.7 | 2013
0.10–0.14 g FeCl3/L sludge) and a cationic polyelectrolyte

before being dewatered in a centrifuge. FeCl3 is added, not
only for dewatering purposes, but also to enhance clarifica-
tion in the settling tank. Therefore, it was not possible to

carry out a BMP test on this sludge without the presence
of this coagulant. Two sludge samples were taken on differ-
ent dates, ‘A1’ and ‘A2’, and an aliquot of the former was
also enzymically pre-treated, ‘A1 (SP)’.

WWTP ‘B’ has an average flow rate of 900 m3/h and
produces primary and secondary sludge that is mixed
before dewatering. Due to the use of a filter press instead

of a centrifuge, FeCl3 (up to 6 g/L) and lime (up to 22 g/L)
are added prior to dewatering, no polyelectrolyte being
added at present. Three sludge samples, ‘B1’, ‘B2’ and ‘B3’,

were taken on different dates. Aliquots of B1 and B2 were
also used for enzymic pre-treatment, ‘B1 (SP)’ and ‘B2 (SP)’.

Inoculum

The inoculum used was mesophilic digestate from the con-
tinuous stirred-tank reactor (CSTR) co-digesting mixtures

of sewage sludge, food waste and cattle manure. The diges-
tate was kept in a closed recipient at 37 WC until being
mixed with the substrate. The digestate was allowed to

stand for a minimum of 2 d before being mixed with the
sludge for the BMP tests to ensure degasification of the
inoculum before making up the mixtures (Wan et al. ).
Table 1 shows the chemical characterization of the inocu-
lum samples. The VS content was 9.1± 0.8 g/L, the TS
content 20.9± 2.6 g/L, and the total and soluble COD
15.4± 3.3 and 1.6± 0.2 g/L, respectively. As not all the

BMP tests could be carried out simultaneously, different
inoculum samples had to be used.

Additives

FeCl3 and two cationic polyelectrolytes were employed for

these experiments. Due to the high pH in the samples con-
ditioned with lime, this additive was not considered for
the BMP tests. Lime acts as a stabilization agent, thus pre-

venting the biological degradation of the sludge. Solid
FeCl3 (as provided by the manufacturer) was diluted with
Milli-Q water to a solution (40% w/v). This solution was
poured into the corresponding sludge sample at a dosage

of 5.6 g/L (Table 1). Two cationic polyelectrolytes were
studied, both being high molecular weight polyacrylamides
(Chemifloc CH80 and Chemifloc CH50). Each solid poly-

electrolyte (as provided by the manufacturer) was diluted
with Milli-Q water to a solution (0.6% w/v). The solution
was poured into the sludge at a dosage of 88 mL/L. The con-

tent in solids, COD and pH of each flocculant solution is
presented in Table 1. Although the composition of these poly-
electrolytes is mostly organic, they are not easily oxidized due

to their great stability. Therefore, the values of COD are very
low. A homogeneous mixture between reagents and substrate
was ensured through mechanical stirring: 200 rpm for 3 min.

Analytical methods

Both tCOD and soluble sCOD were determined following

Method 5220 (closed reflux colorimetric method) of the
Standard Methods for the Examination of Water and Waste-
water (APHA ) on a Perkin Elmer Lambda 35 Visible-

UV system. Samples were centrifuged (3,500 rpm for
15 min) and filtered through 1.2 μm pore filter paper for
sCOD determination (Le et al. ). NH4-N was deter-

mined using an Orion 95–12 selective electrode for
ammonium. TS and VS were determined following
Method 2540 of the Standard Methods for the Examination
of Water and Wastewater (APHA ) and pH was deter-

mined using a Crison 25 pH-meter. All analytical
determinations were performed in triplicate.

Biogas composition was monitored on an Agilent 7890A

gas chromatograph using a thermal conductivity detector
(TCD) and a Porapack N packed column plus a molecular
sieve. The temperature ramp was: starting 35 WC (1.5 min),

increasing up to 55 WC at a rate of 1.5 WC/min. Biogas
volume was measured with a gas meter. All the gas volumes
in this paper have been converted to standard temperature
and pressure (273.15 K and 101.3 kPa).

Experimental procedure

All the sludge samples were characterized on reception at
the laboratory and were kept under refrigeration at 4 WC
for a maximum of 2 d before being used in the experiments

so as to prevent biodegradation. To carry out the IPF, two
25 L plastic bottles were filled with fresh sludge and an
outlet hose connected the bottles with a large flask contain-

ing water to achieve anaerobic conditions. The sludge was
heated to 42 WC and the SP at the top was removed after
48 h and characterized (Table 1).

The mixtures of sludge (or SP from the IPF) and inocu-

lum for the anaerobic biodegradability tests were made up
maintaining a ratio of VS contribution from the substrate
to VS contribution from the inoculum of 2:1. Subsequently,

1,750 g of the corresponding mixture were poured into glass
bottles sealed with rubber stoppers and silicone. To study
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the effect of the conditioning agents on the BMP, both the

coagulant (FeCl3) and the flocculants (poly 1 and poly 2)
were added to the sludge in similar proportions to those
used at the WWTPs. The 40% FeCl3 solution was added to

sludge B (the sludge A samples already contained FeCl3)
to achieve a concentration of 5.6 g/L. Solutions of polyelec-
trolytes containing 0.6% w/v were added to sludge A and
sludge B to achieve a concentration of 88 mL polyelectrolyte

solution/L substrate. No surplus nutrients were added to the
mixtures (Yang et al. ). In this respect, Wan et al. ()
observed that the addition of micronutrients to the co-diges-

tion of thickened activated sludge did not improve biogas
production or digestion stabilization. Once capped, bottles
were purged with nitrogen to remove air from the headspace

of the bottle. Although these experiments were batch tests,
the bottles were shaken every time the volume and compo-
sition of the gas were determined (Luste et al. ). Biogas
was collected in Tedlar bags and measured for volume and

composition. To monitor the biogas production from the
inoculum, two blanks were prepared with bottles solely
filled with 1,750 g of inoculum. Consequently, their biogas

production and chemical measurements were proportion-
ally subtracted in the other experiments.

The biogas production rate was negligible after 25 d of

anaerobic digestion at 37 WC; the bottles were then unlocked
and the digestates analysed. Two replicates per experiment
were simultaneously performed. The standard deviation of

the replicates remained around or below 5% for the specific
production (LCH4/kgVSo), with the exception of exper-
iment B1 (standard deviation¼ 18%).
Statistical analysis

Analysis of variance (ANOVA) was applied to the variables
LCH4/kgVSo and LCH4/kgVSrem to test the null hypothesis

among the substrates. The Tukey test was then used to deter-
mine the significant differences (p-value< 0.05) in pairwise
comparisons of the substrates. R-project software was

employed for this purpose.
Kinetic modelling

The first-order kinetics for the digestion of the substrates

studied in this paper was modelled. The degradation of sub-
strate ‘S’ with time may be expressed as:

� dS=dt ¼ k1S (1)
where k1 is the kinetic constant. Integrating Equation (1):

Ln S(0)=S(t)
� � ¼ k1 � t

S(t) ¼ S(0) exp �k1 � tð Þ (2)

where S(t) is the concentration of substrate at time t and S(0)
is the concentration of substrate at the initial moment. More-
over, the concentration of substrate at the initial moment is
the sum of the concentration of the substrate at a given time

plus the concentration of degraded substrate, ‘S(d)’, which
can be expressed as:

S(0) ¼ S(t) þ S(d)
S(d) ¼ S(0) � S(t)

(3)

In anaerobic digestion, the substrate is transformed into
CH4, so a coefficient of the yield of substrate into CH4, ‘α’,

can be introduced:

α � S(d) ¼ CH4(t)

α � S(0) ¼ CH4(0)
(4)

where CH4(t) is the methane production at time ‘t’ and CH4(0)

is the methane production at the end of the anaerobic diges-
tion of the substrate.

Substituting Equation (3) into Equation (4), we obtain:

α S(0) � S(t)
� � ¼ CH4(t) (5)

Substituting Equation (2) into Equation (5) and operat-
ing, we obtain:

CH4(0) 1� exp �k2 � tð Þ½ � ¼ CH4(t) (6)

where the new kinetic constant, k2, now refers to methane

production rather than substrate degradation. Matlab soft-
ware was used to test each model.
RESULTS AND DISCUSSION

The characteristics of the different sludge samples and the
inoculum are shown in Table 1. The two samples from

WWTP A have different solid and COD contents. However,
the VS/TS ratios are quite similar (0.79–0.80). With respect
to samples from WWTP B, note that sample B3 had a higher

inorganic content than the other two samples, with a low
VS/TS ratio (0.53).



Table 3 | Results of the Tukey test when significant differences (p-value <0.05) were

found between substrates for LCH4/kgVSo and LCH4/kgVSrem

LCH4/kgVSo (pairwise comparison, substrates) p-value

Sludge A1þ FeCl3 Sludge A2þ FeCl3þ poly 2 0.0025

Sludge A1 (SP)þ FeCl3 Sludge A2þ FeCl3þ poly 2 0.0008

Sludge A1 (SP) þFeCl3 Sludge B3þ FeCl3þ poly 1 0.0499

Sludge A1þ FeCl3þ poly 1 Sludge A2þ FeCl3þ poly 2 0.0002

Sludge A1þ FeCl3þ poly 1 Sludge B3þ FeCl3þ poly 1 0.0177

Sludge A2þ FeCl3þ poly 2 Sludge B1 0.0017

Sludge A2þ FeCl3þ poly 2 Sludge B2þ FeCl3 0.0001

Sludge B2þ FeCl3 Sludge B3þ FeCl3þ poly 1 0.0118

LCH4/kgVSrem (pairwise comparison, substrates) p-value

Sludge A1þ FeCl3 Sludge B1 (SP) 0.0000

Sludge A1þ FeCl3 Sludge B3þ FeCl3þ poly 2 0.0004

Sludge A1 (SP)þ FeCl3 Sludge A1þ FeCl3þ poly 1 0.0000

Sludge A1 (SP)þ FeCl3 Sludge A2þ FeCl3þ poly 2 0.0004

Sludge A1 (SP)þ FeCl3 Sludge B1 (SP) 0.0000

Sludge A1 (SP)þ FeCl3 Sludge B2þ FeCl3 0.0446

Sludge A1 (SP)þ FeCl3 Sludge B2 (SP)þ FeCl3 0.0125

Sludge A1 (SP)þ FeCl3 Sludge B3þ FeCl3þ poly 1 0.0000

Sludge A1 (SP)þ FeCl3 Sludge B3þ FeCl3þ poly 2 0.0000

Sludge B1 Sludge B1 (SP) 0.0001

Sludge B1 Sludge B3þ FeCl3þ poly 2 0.0014

Sludge B1 (SP) Sludge B2þ FeCl3 0.0005

Sludge B1 (SP) Sludge B2 (SP)þ FeCl3 0.0026

Sludge B2þ FeCl3 Sludge B3þ FeCl3þ poly 2 0.0082

Sludge B2 (SP) þFeCl3 Sludge B3þ FeCl3þ poly 2 0.0310
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As expected, the SP presents a higher concentration in

solids and COD after the IPF pre-treatment compared to
the sludge (Le et al. ; Negral et al. ), achieving
solids concentration factors of around 2 in the three

sludge samples tested.
The determination of COD in such complex residual

matter as sludge is more prone to analytical errors (Angeli-
daki & Sanders ) than the determination of VS. This

is due to the presence of certain organic compounds
that are difficult to oxidize, as well as to the presence of
reduced inorganic compounds that can be oxidized (Fe2þ,

Cl�, S2�…). Accordingly, and bearing in mind the high
amounts of iron chloride present in some of the samples,
the results of the BMP tests are given in Table 2 as specific

methane production with respect to initial VS (LCH4/
kgVSo) and to removed VS (LCH4/kgVSrem). The standard
deviation of the replicates remained around 5% for specific
production (LCH4/kgVSo), with the exception of exper-

iment B1 (standard deviation¼ 18%).
Samples of the inoculum presented the lowest concen-

trations in solids and COD and also the lowest VS/TS

ratios (0.39–0.48), as most of the organic biodegradable
matter has been mineralized during bacterial metabolism
(Carrère et al. ; Marañón et al. ).

CH4 concentrations during the stable period ranged
from 63% in sample B2 plus FeCl3 and 72% in B1 (SP).
Of the negligible biogas produced by the inoculum, only

22% was CH4.
After the analysis of variance, the Tukey test was used to

search for significant differences in LCH4/kgVSo and
LCH4/kgVSrem among the substrates. Table 3 presents the
Table 2 | Degradation of solids and specific methane production in substrates after 25 d

of biodegradation

Sludge sample TS (%) VS (%)
LCH4/
kgVSo

LCH4/
kgVSrem

LCH4/
kgsubs

A1þ FeCl3 35 52 255 493 7.52

A1 (SP) þFeCl3 65 70 233 338 15.55

A1þ FeCl3þ poly 1 16 38 248 662 6.80

A2þ FeCl3þ poly 2 43 58 358 612 14.85

B1 35 50 246 496 5.92

B1 (SP) 17 37 296 804 12.98

B2þ FeCl3 14 45 242 541 8.69

B2 (SP) þFeCl3 28 52 276 545 18.99

B3þ FeCl3þ poly 1 14 52 302 582 11.08

B3þ FeCl3þ poly 2 12 40 269 672 9.92

Inoculum 12 1 7 548 0.07
results of the Tukey test for those pairwise comparisons

with significant differences (p-value< 0.05). This table
does not show the pairwise comparisons with the inoculum,
as this is not relevant for testing the effect of the condition-

ing agents and the pre-treatment.
Table 4 presents the kinetic parameters for methane pro-

duction after adjusting the experimental data to a first-order

reaction model. The experimental data were adjusted to
these kinetics with an acceptable fitting of the curve (R2¼
0.9407–0.9914). A 2-d lag period was observed in some

trials with sludge samples from WWTP B.

Effect of FeCl3 on the methane potential of sludge

The solids degradation in sample B1 (without FeCl3)

remained within the usual range observed by other authors
(Mottet et al. ). A 50% reduction in VS was achieved,



Table 4 | Parameters for the first-order model of the methane production, equation:

CH4(t)¼ CH4(0)[1–exp(�k2·t)]

Sludge sample
CH4(0) (LCH4/
kgVSo) k2 (d�1) R2 Lag period (d)

A1þ FeCl3 270 0.1250 0.9751

A1 (SP)þ FeCl3 247 0.1513 0.9731

A1þ FeCl3þ poly 1 272 0.1071 0.9743

A2þ FeCl3þ poly 2 406 0.0998 0.9766

B1 280 0.1135 0.9407

B1 (SP) 314 0.1495 0.9719 2

B2þ FeCl3 250 0.1751 0.9839 2

B2 (SP)þ FeCl3 270 0.2353 0.9864 2

B3þ FeCl3þ poly 1 309 0.1723 0.9820

B3þ FeCl3þ poly 2 271 0.1925 0.9892

Inoculum 6.46 0.1612 0.9914
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producing 246 LCH4/kgVSo (Table 2). There was no signifi-

cant effect on methane potential or biodegradation due to
the presence of FeCl3, obtaining specific productions of
255 LCH4/kgVSo and 242 LCH4/kgVSo for sludges A1

and B2, respectively. Note that the low pH in sample B2,
due to the high concentration of FeCl3 (5.6 g FeCl3/L), did
have a slight effect on biodegradation; the VS removal

being 45% instead of 50% (the value obtained in the
sample not containing FeCl3). Regarding the specific pro-
duction per VS removed, it should likewise be noted that,
although the VS removal was higher in the sludge sample

without FeCl3, the conversion of these VS to methane
improved when the sludge had FeCl3 added (from 496 to
541 LCH4/kgVSrem), although the difference was not stat-

istically significant (Table 3).
Dentel & Gosset () obtained lower biogas pro-

ductions when adding FeCl3 to the substrate. They stated

that, working with concentrations of up to 800 mgFeCl3/L,
the decrease was not due to deleterious effects of the salt
on the inoculum. These authors pointed to reduced extra-

cellular enzymic activity as the reason for the decrease.
Wawrzynczyk et al. () studied the influence of metallic
cations on the hydrolytic enzyme activity of sewage sludge.
In their study, they reported that hydrolytic activity

decreased with increasing Fe3þ concentration. Fe3þ would
bind EPS, which in turn would hinder contact between
enzyme and substrate.

Many basal mineral media in biodegradability assays
incorporate iron in the FeCl2·4H2O form from 2 g/L
mother solutions (Ferreiro & Soto ; Skiadas et al.
). The samples from WWTP B containing FeCl3 have
a three-fold higher iron concentration than these mother sol-

utions. There is much discussion in the literature regarding
the benefits and drawbacks of coagulation for anaerobic
digestion of sewage sludge (Dentel & Gosset ; Smith

& Carliell-Marquet ). However, in line with the present
study, Lee & Shoda () showed that concentrations of up
to 6 gFe/L increased CH4 production in sludge digestion. In
fact, after the 2-d lag period, the kinetic constant was higher

when FeCl3 was present in the sludge (Table 4).
Smith & Carliell-Marquet () justified the worsening

of methane production in the anaerobic digestion of sewage

sludge conditioned with FeCl3. According to these authors,
the probable cause is the precipitation of the phosphorus
contained by iron in the sludge. The phosphorus would

thus not be bioavailable to the microorganisms, which
would have a deleterious effect on their metabolism and
hence worsen methane production. However, the expla-
nation for the different findings in the literature regarding

the effects of the metal may lie in the handling of the sedi-
mented flocs themselves. Vlyssides et al. () argued that
iron favoured granulation in the digester, thereby resulting

in an improved methane yield. Once the flocculated nutri-
ents settle, they remain in contact with the granules that
have already formed in the digester, thus facilitating contact

between bacteria and nutrients. Johnson et al. (), on the
other hand, reported that the addition of iron decreased
H2S. That H2S removal would be the result of the formation

of FeS (Vlyssides et al. ) and, under anaerobic con-
ditions in the reactor, the reduction of Fe3þ to Fe2þ is
totally feasible (Novak & Park ). This iron would orig-
inate from the nutrient flocs. Several benefits would thus

be obtained by the formation of the inorganic salt (FeS):

(a) Decrease in the concentration of H2S, which is a coun-
terproductive agent in biomethanization.

(b) The iron that the nutrients had taken to the bottom of

the digester, where granules naturally accumulate,
would free those nutrients in direct contact with the
granules. Nielsen & Keiding () reported that 10%

of the organic matter of the flocs is solubilized due to
their weakening as a result of the formation of FeS.

(c) The formation of the FeS salt would constitute a new
inorganic support matrix to enable the formation of

new granules. In fact, the granules constitute a symbiosis
of bacterial communities in which anaerobic digestion is
synergistic (Hulshoff Pol et al. ).

A review of the scientific papers that lean towards the

benefit (or neutrality) of iron in anaerobic digestion reveals
that digestion takes place under no mechanical stirring
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conditions in these studies (e.g. upflow anaerobic sludge blan-

ket (UASB) reactors and digesters stirred once a day, as in
our study). In contrast, the presence of iron in the sludge
tends to be deleterious when digestion is carried out under

vigorous stirring conditions, as stirring destroys the granules.

Effect of polyelectrolytes in combination with FeCl3 on
the methane potential of sludge

The combination of polyelectrolyte 1 with FeCl3 had a detri-
mental effect on solids degradation in sludge A, with VS
removal decreasing from 52 to 38% (Table 2), although the

effect on specific methane potential was not statistically sig-
nificant, decreasing from 255 to 248 LCH4/kgVSo. In sludge
Figure 1 | Specific methane production values refer to initial volatile solids.
B, however, the combination of polyelectrolyte 1 with FeCl3
led to an increase in both VS degradation (from 45 to 52%)
and specific methane production (242–302 LCH4/kgVSo, p-
value< 0.05). The combination of polyelectrolyte 2 with

FeCl3 led to a higher specific methane potential in both
types of sludge, resulting in a significant increase from 255
to 358 LCH4/kgVSo in sludge A, although the increase from
242 to 269 LCH4/kgVSo in sludge B was not significant.

The effect of this combination of polyelectrolyte 2 with
FeCl3 was also observed in the organic matter biodegradation
of sludge A, with VS removal increasing from 52 to 58%. The

combination of polyelectrolytes with FeCl3 always enhanced
the conversion of VS into CH4 for both sludge types, being
statistically significant for polyelectrolyte 2.
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These effects can be observed in Figures 1 and 2 and

Table 4. It is worth noting that, with the exception of the
combination of polyelectrolyte 1 with FeCl3 added to
sludge A, an acceleration in CH4 production was observed,

even leading to the avoidance of the lag period in sludge B.
Along these same lines, Chu et al. () reported that

the addition of cationic polyelectrolytes in similar amounts
to those added in this study accelerated CH4 production in

the initial stages. The upgrade in CH4 production by
adding coagulants and flocculants was somewhat surprising,
as they produce super-structures which, a priori, are less

available to bacteria. In other words, the contact between
substrate and bacteria/enzymes would be hindered in an
initial stage. On the other hand, the formation of flocs
Figure 2 | Specific methane production values refer to removed volatile solids.
may enable nutrients to come into contact with bacteria/

enzymes. Thus, additives would enhance the ‘transport’ of
nutrients to bacteria. In fact, El-Mamouni et al. ()
observed that flocculants added to a UASB favoured granu-

lation, with the known benefits for biogas production
(Hulshoff Pol et al. ).

Effect of IPF on the methane potential of sludge

Whenapplying IPF to sludgeB, theSP thus obtained increased
the solids concentration by a factor of 1.9. Although the solids
degradationachieved in theSPwas lower than in theuntreated

sludge, the CH4 conversion yield was significantly higher,
increasing from 496 to 804 LCH4/kgVSrem. Note that this
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result considered only the SP as the substrate, although a

liquor, rich in volatile fatty acids, is also obtained after IPF.
Therefore, the enzymically hydrolyzed sludge would produce
an even better methane yield than sludge. This research

forms part of an on-going study.
Although the addition of FeCl3 led to higher degra-

dations in solids, the specific methane potential decreased,
though not significantly, from 296 to 276 LCH4/kgVSo in

sludge B. A significant decrease was found with respect to
the CH4 conversion yield, from 804 to 505 LCH4/kgVSrem.

In contrast with the experiments carried out with sludge,

in which the addition of FeCl3 led to an increase in methane
production per VS removed, no common pattern was
observed with the SP. In fact, when applying IPF to sludge

B, the SP achieved the highest result (804 LCH4/kgVSrem).
When IPF was performed with the coagulant, this exper-
iment achieved a significantly lower upgrade (545 LCH4/
kgVSrem), somewhat similar to the enhancement achieved

by the non-hydrolyzed sludge with an added coagulant
(541 LCH4/kgVSrem). For sludge A, IPF yielded the poorest
methane conversion in all experiments (338 LCH4/

kgVSrem). These dissimilarities between the two types of
sludge could probably be explained by the different working
conditions at the WWTPs.
CONCLUSIONS

The addition of FeCl3 had no significant effect on specific
methane production, decreasing from 246 to 242 LCH4/
kgVSo in the sludge with a higher concentration of FeCl3
(5.6 g/L). The combination of Chemifloc CH80 with FeCl3
achieved a significant increase of 25% when working with
sludge B. The combination of Chemifloc CH50 with FeCl3
led to a significant increase of 40% in sludge A. When
these results are compared with those in the literature, the
reason for the absence of worsening observed in our exper-

iments might lie in the absence of stirring of the reactor that
might favour granulation with these additives, thereby over-
coming the deleterious effects (e.g. the limiting phosphorus

bioavailability) reported elsewhere.
When applying IPF as a pre-treatment, a 20% increase

was observed in sludge B without FeCl3. Although this
increase was not statistically significant, these experiments

only considered the SP, so the contribution from the
liquor is expected to improve the yield. Cationic polyelectro-
lytes inhibited IPF.

First-order modelling was carried out on the methane
production from all substrates. A 2-d lag period was observed
for sludge B with FeCl3, and for the IPF of this sludge,

regardless of the presence of FeCl3. The kinetic constant
was always higher when employing IPF as a pre-treatment,
although no common pattern was observed for this constant

with respect to the additives employed in the study.
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