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Abstract: The M-theory origin of the IIB gauged supergravities in nine dimensions,

classified according to the inequivalent classes of monodromy, is shown to exactly corre-

sponds to the global description of the supermembrane with central charges. The global

description is a realization of the sculpting mechanism of gauging (arXiv:1107.3255) and

it is associated to particular deformation of fibrations. The supermembrane with central

charges may be formulated in terms of sections on symplectic torus bundles with SL(2,Z)

monodromy. This global formulation corresponds to the gauging of the abelian subgroups

of SL(2, Z) associated to monodromies acting on the target torus. We show the existence of

the trombone symmetry in the supermembrane formulated as a non-linear realization of the

SL(2,Z) symmetry and construct its gauging in terms of the supermembrane formulated

on an inequivalent class of symplectic torus fibration. The supermembrane also exhibits

invariance under T-duality and we find the explicit T-duality transformation. It has a

natural interpretation in terms of the cohomology of the base manifold and the homology

of the target torus. We conjecture that this construction also holds for the IIA origin of

gauged supergravities in 9D such that the supermembrane becomes the origin of all type

II supergravities in 9D. The geometric structure of the symplectic torus bundle goes be-

yond the classification on conjugated classes of SL(2,Z). It depends on the elements of the

coinvariant group associated to the monodromy group. The possible values of the (p,q)

charges on a given symplectic torus bundle are restricted to the corresponding equivalence

class defining the element of the coinvariant group.
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1 Introduction

The M-theory origin of gauged supergravities is a interesting open problem. The aim

of this paper is to show that the 11D supermembrane compactified on a torus is the M-

theory origin of all supergravities in 9D: not only the maximal supergravity [1] but also the

gauged sector [2]–[9]. In the picture we propose, there are two well-differentiated sectors:

The first one is associated to trivial compactifications of the supermembrane on a 2-torus,

its low energy limit corresponds to the N = 2 maximal supergravity in 9D, and globally

it corresponds to a trivial symplectic torus bundle. The second sector corresponds to a
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formulation on a nontrivial symplectic torus bundle. It may occur because a nontrivial

monodromy or even in the case of trivial monodromy (the identity) because of a nontrivial

cohomology class of the base manifold. The central charge condition is exactly the condition

of non-trivial cohomology. The supermembrane with nontrivial central charges corresponds

to this sector ([10–12]). In particular we will analyze the formulation on a symplectic torus

bundle with nontrivial monodromy. From the physical point of view, the consequence of

being a nontrivial cohomology, is very relevant. The spectrum of the hamiltonian becomes

discrete with finite multiplicity. By this we refer to the spectrum of the exact hamiltonian,

not only to its semiclassical approximation.

It is well-established that the 11D supergravity equations of motion appear as a conse-

quence of imposing kappa symmetry to the supermembrane action formulated on a general

background. This supports the conjecture that the low energy description of the super-

membrane is the 11D supergravity.1 The maximal dimension for gauged supergravities is

9D. There are four different classes of gauging appearing in type IIB gauged supergravities

in 9D as was initially established by [2, 3]. If we include also the deformations coming

from the type IIA sector, there are four more, but only seven of them are independent

deformations and they constitute the type II 9D gauged supergravity [4], where it is also

included the gauging of scaling symmetries [5, 6]. Very recently the most general gaugings

in 9D (expressed in the tensor embedding formalism [7, 8]), have been found in [9].

Nowadays, the double field theory has become a interesting arena to try to realize in

a bottom-up approach, some of the properties of string theory. It is a global approach

that describe sigma models with double coordinates on a T 2d torus fibrations such that

the transition functions will be evaluated in the T-duality group O(d, d,Z). The type

II realization has been done recently in [13, 14]. The proposed action is such that it is

invariant under duality transformations. In 9D the duality transformations correspond to

SL(2,Z)× Z2 [15].

There is evidence that string theory can be consistently defined in non-geometric back-

grounds in which the transition functions between coordinate patches involve not only dif-

feomorphisms and gauge transformations but also duality transformations [16, 17]. Some

global aspects of T-duality in String theory were formerly analyzed in [18], and more re-

cently by [19]. Such backgrounds can arise from compactifications with duality twists [20]

or from acting on geometric backgrounds with fluxes with T-duality [16, 17, 21]. In spe-

cial cases, the compactifications with duality twists are equivalent to asymmetric orbifolds

which can give consistent string backgrounds [22–25]. In this type of compactifications, T-

folds are constructed by using strings formulated on a doubled torus T 2n with n-coordinates

conjugate to the momenta and the other n-coordinates conjugate to the winding modes [17],

plus a constraint to guarantee the correct number of propagating degrees of freedom.

T-duality transformation at the worldsheet level were studied in [41]. The relation of

duality and M-theory was also analyzed in [42]. In [16, 17] it was argued that a fundamental

formulation of string/M-theory should exist in which the T- and U-duality symmetries are

1Indeed this conjecture means that the groundstate of the 11D supermembrane corresponds to the

supermultiplet associated to the 11D supergravity, though, a rigorous proof of this difficult open problem

is still lacking.
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manifest from the start. In particular, it was argued that many massive, gauged supergrav-

ities cannot be naturally embedded in string theory without such a framework [21, 26–28].

Examples of generalized T-folds can be obtained by constructing torus fibrations over base

manifolds with non-contractible cycles. However, in spite of these important advances, up

to our knowledge, a full-fledged realization of these ideas in terms of worldvolume theories

in M-theory is still lacking.

The aim of this paper is to prove that the action of the Supermembrane with nontrivial

central charges, whose local structure was given in [10–12], may be globally defined in terms

of sections of a symplectic torus bundle with nontrivial monodromy characterizing at low

energies the gaugings of the type II supergravities. This global description was derived

following the sculpting mechanism in [61]. Earlier attempts to establish the connection

between the gauging of the supermembrane and that of 9D gauged supergravities can be

found in [29, 30].

We prove it in the context of IIB monodromies. The supermembrane formulation on

a symplectic torus bundle with monodromy has all the geometrical structure required to

derive at low energies the IIB gauged supergravities in 9D. At the level of the superme-

mbrane we are gauging the abelian subgroups of SL(2,Z), the group of isotopy classes

of symplectomorphisms or equivalently area preserving diffeomorphims. It is then natu-

ral to think that type IIB gauge supergravities can only interact with the corresponding

class of gauged supermembranes in this work. According to the inequivalent classes of

monodromies, more precisely, to the elements of the coinvariant group of the given mon-

odromy, there is a classification of the corresponding symplectic torus bundles that describe

globally the supermembrane. The monodromy is given as a representation of the funda-

mental group Π1(Σ) (where Σ is the base manifold of the supermembrane) into SL(2,Z),

the isotopy group of homotopic classes of symplectomorphisms (symplectomorphism group

on 2-dimensions or equivalently area preserving diffeomorphisms is the local symmetry of

the supermembrane in the Light Cone Gauge). The SL(2,Z) group acts naturally on the

first homology group of the fiber, which in our case corresponds to the target torus. The

monodromy defines an automorphism on the fibers providing the global structure of the

geometrical setting. We also show the existence of a new Z2 symmetry that plays the

role of T-duality in the supermembrane interchanging the winding and KK charges but

leaving the Hamiltonian invariant, so that the complete symmetry group in the ungauged

supermembrane corresponds to: (SL(2,Z)Σ× SL(2,Z)T 2)/Z2. T-duality becomes an exact

symmetry of the symplectic torus bundle description of the supermembrane by fixing its

energy tension.

In type IIB nine dimensional supergravities, there are four inequivalent gaugings of

GL(2,R) global symmetry: three of them are associated to the gauging of the SL(2,R)

global symmetry: the parabolic, elliptic and hyperbolic inequivalent classes and we find

their respective symplectic torus bundles. The fourth gauging corresponds to the gauging

of the trombone symmetry associated to the R+ scalings. At quantum level the realization

of this last gauging is more involved since the scaling is not included in the arithmetic

subgroup GL(2,Z). In [31] they provided a way to realize this symmetry as a rigid sym-

metry, by studying a nonlinear realization of this symmetry that was called active SL(2,Z)
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symmetry. A way to realize this scaling is by a nonlinear representation of SL(2,Z). We

show that this ‘symmetry’ is present in the ungauged supermembrane with central charges

theory. The symplectic torus bundle associated to the gauging of this scaling symmetry

is constructed and it corresponds from the point of view of fibration to a inequivalent

class of symplectic torus bundles. This proves the supermembrane origin of the type IIB

gauged supergravities. The monodromies with type IIA origin are infered from the fact

that T-duality invariance of the mass operator of the supermembrane with central charges.

The paper is structured in the following way: In section 2 we made a summary of the re-

sults of inequivalent classes of type IIB gauged supergravities in 9D and its relation with the

different monodromies. In section 3 we summarize the construction of the supermembrane

with central charges, the two SL(2,Z)Σ×SL(2,Z)T 2 discrete global symmetries. In section

4 we explain the sculpting mechanism in which principle torus fibration is deformed to

acquire a monodromy of the fiber bundle. The corresponding action is gauged with respect

to the one already published in several works, see for example [11, 12]. The new results are

presented in sections 5,6,7, and 8. In section 5 we show the explicit global construction of

the gauged supermembrane with central charges, and the inequivalent classes of symplectic

torus bundles associated to the the inequivalent classes of monodromies. It is important to

remark that for monodromies which include, elliptic, parabolic and hyperbolic classes there

are torsion elements in the second cohomology group of the base manifold with coefficients

in the module associated to the monodromy and this provides an extra restriction on the

possible values of the charges of the theory. In section 6 we present the classification of the

supermembrane theory formulated on the symplectic torus fibrations, and its relation to the

different gaugings. We also discuss the residual symmetries of the theory after the gauge

fixing. In section 7 we discuss the fiber bundle construction for the supermembrane with

the gauging of the trombone symmetry. The effect of the nonlinear representation of the

monodromy induces changes in the homology coefficients of the torus of the fiber leading to

inequivalent fibrations. In section 8 we show the existence of a new Z2 symmetry that plays

the role of T-duality in the supermembrane. For other approaches to the supermembrane

T-duality see [32–34]. In section 9 we present our discussion and conclusions.

2 Preliminars

The gauged supergravities were firstly discovered by [35] by compactifying the 11D su-

pergravity on a S7 a compact manifold with nontrivial holonomy, soon after this result,

the gauging mechanism was also applied to theories with noncompact symmetry groups

in [36]. The first paper of supergravity in nine dimensions containg a gauged sector was

studied long time ago by [37]. Since then, the field has been very active and it has been

found a number of ways to obtain a consistent deformation of a given maximal supergrav-

ity formulated in a target space with d < 11: by means of twisting in a Scherk-Schwarz

compactification (SS), through compactification on manifolds with fluxes, noncommutative

geometries etc.. For very nice reviews see for example: [28, 38].

In this section we will only review aspects -all of them previously found in the literature-

, that are relevant for our constructions: those in which monodromy plays a fundamental
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role. SS-compactifications appeared as a generalization of Kaluza-Klein (KK)-reductions

in which the fields are allowed to have a nontrivial dependence on the compactified vari-

ables, but in such a way that the truncation of the Langrangian in lower dimensions is

still consistent. SS-compactifications of supergravity may be expressed the D-dimensional

backgrounds in terms of principal fiber bundles over circles with a twisting given by the

monodromy [39, 40, 43]. The background possesses a group of global isometries G associ-

ated to the compactification manifold over which it is fibered. The principal fiber bundles

of fiber G have a monodromy M(g) valued in the Lie algebra g of the symmetry group

G. The invariant functional of the actions are expressed in terms of the local sections of

this bundle. The monodromy M(g) can be expressed in terms of a mass matrix M , as

M(g) = expM . The maps in terms of the compactified variables g(y) are not periodic,

but have a monodromy g(y) = exp(My) [43].

As explained in [20] twisted compactification induces a SS-potential in the moduli

space. For certain values of the moduli space it is equivalent to introduce fluxes along the

internal coordinates of the compactified torus. In [15] it is conjectured that at quantum

level the global symmetry of the supergravity action breaks to its arithmetic subgroup also

called the U-duality group G(Z) . The quantization condition is imposed to preserve the

quantization of lattice of charges of the p-brane considered. At quantum level all twisting

must then belong to the G(Z) duality group what implies also the restriction to quantized

parameters of mass matrix M . Indeed this condition was explored in further detail in [45]

for the case of gauged supergravities in 9D, where in addition to impose the elements of

the mass matrix to be integer, they have to satisfy in many cases, the diophantine equation

to guarantee that the monodromy lies in the inequivalent classes of SL(2,Z).

For the case of interest here, the type II gauged supergravities in 9D, the monodromies

are associated to the GL(2,R) = SL(2,R) × R+ global symmetry group. In the SL(2,R)

sector, there are three inequivalent classes of theories, corresponding to the hyperbolic, el-

liptic and parabolic SL(2,R) conjugacy classes and represented by the monodromy matrices

of the form [43]

Mp =

(
1 k

0 1

)
, Mh =

(
eγ 0

0 e−γ

)
, Me =

(
cos θ sin θ

− sin θ cos θ

)
, (2.1)

where each class is specified by the coupling constant (k, γ or θ). In 9D the theory can

also be described in terms of the mass matrix M with three parameters [2]

M =
1

2

(
m1 m2 +m3

m2 −m3 −m1

)
. (2.2)

This mass matrix, as already explained in [2], belongs to the Lie algebra sl(2,R) and

transforms in the adjoint irreducible representation. It is characterized by the vector of

mass
→
m= (m1,m2,m3). At low energies the gauged supergravity is determined by the mass

matrix M for a given monodromy M.

The field content of 9D II supergravity following the notation of [2, 4] is composed

of a supervielbein eµ
a, three scalars φ, ϕ, χ, three gauge fields (Aµ, {A(1)

µ , A
(2)
µ } ≡ ~A) two
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antisymmetric 2-forms {B(1)
µν , B

(2)
µν } ≡ ~B, a three form Cµνρ for the bosonic sector and in

the fermionic side the contribution is a spinor ψµ and two dilatinos λ, λ̃ where the D=9

global Λ =
(
a b
c d

)
∈ SL(2,R) symmetry acts in the ungauged theory in the following way:

τ → aτ + b

cτ + d
, ~A→ Λ ~A, ~B → Λ ~B, (2.3)

plus the fermionic transformations. One of the scalars ϕ and the three form C remain

invariant. As explained in [2, 4] the gauge transformations correspond to

A→ A− dλ ~B → ~B − ~Adλ. (2.4)

The massive deformations from the type IIB sector are labeled by four parameters

m = (mi,m4) i = 1, . . . , 3. Three of them ~m = (m1,m2,m3) belong to the SL(2,R)

deformations and the last m4 has its origin in the gauging of the scaling symmetry R+. The

parameters of m gauge a subgroup of the global symmetry SL(2,R) and R+ respectively,

with parameter Λ = eM̃λ and gauge field transformations become modified as follows:

A→ A− dλ ~B → Λ( ~B − ~Adλ). (2.5)

where we define M̃ = (M,m4), to group both type of deformations. Following [2, 4], con-

sider in first place the massive deformations associated to ΛSL(2,R) to the gauging of the

subgroup of SL(2,R) with generator the mass matrix M employed in the reduction. There

are three distinct cases depending on the value of ~m2 = 1
4(m1

2 +m2
2−m3

2) [43, 44] char-

acterizing the a set of three conjugacy classes already shown in (2.1): R,SO(1, 1)+,SO(2).

Since we will make use of them we will describe them shortly.2 Each of the subgroups is

generated by a SL(2,R) group element Λ with det Λ = 1. They are classified according to

their trace:

• The parabolic gauged supergravity is associated to the gauging of the subgroup R
with parameter ζ generated by

Λp =

(
1 ζ

0 1

)
. (2.6)

The conjugacy class corresponds to matrices with |TrΛp| = 2.

• The hyperbolic gauged supergravity is associated to the gauging of the subgroup

SO(1, 1)+ with parameter γ

Λh =

(
eγ 0

0 e−γ

)
. (2.7)

The conjugacy class is formed with matrices whose |TrΛh| > 2

2To simplify the notation we keep the one used in [4] and summarize their results focusing only in the

monodromy analysis.
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• The elliptic gauged supergravity is associated to the gauging of the subgroup SO(2)

generated by elements Λe of SL(2,R) with parameter θ,

Λe =

(
cos θ sin θ

−sin θ cos θ

)
. (2.8)

The elliptic conjugacy class correspond to matrices with |TrΛe| < 2.

The group R+ is a one-parameter conjugacy class. It corresponds to the scalings that

leave invariant the field equations but scale globally the lagrangian. These symmetries

where called trombone by [31]. Its gauging was studied for example in [5, 6]. It corresponds

to the reduction with m4 6= 0;m1 = m2 = m3 = 0. Following [4] the R+-symmetry has

been gauged with parameter ΛR+ = em4λ

As explained, in [4] the complete set of deformations {mi,m4} for the IIB reductions

corresponds to

ΛGL(2,R) = ΛSL(2,R)ΛR+ . (2.9)

At quantum level the realization of these symmetries G is proposed to be associated to

their arithmetic subgroups G(Z) [15]. The quantum realization of the trombone symmetry

is more involved. The problem at quantum level is the following: The group GL(2,R)

should break to its arithmetic subgroup to guarantee the quantization of the BPS charge

lattice, however the set of matrices Mat(2,Z) whose determinant is an integer does not

form a group since the inverse of an integer is not necessarily an integer. (The arithmetic

subgroup of GL(2,R) is the group GL(2,Z) = SL(2,Z)×Z2, but it does fail in incorporating

the scalings). In [31] they found a proper way to model out the scalings at quantum level

by introducing nonlinear representations of SL(2,Z) that they called active, to distinguish

from those associated to the U-duality. This symmetry is characterised by the fact that

it acts on the lattice charge transforming integer charges into integer charges by SL(2,Z)

transformation but leaving the moduli fixed. This is achieved by the use of a compensation

transformation, that it is applied once the U-duality transforms charges and moduli by the

linear SL(2,Z), acting on the transformed moduli to get it back to its original value.

3 The supermembrane with a topological condition

In this section we will make a self-contained summary of the construction of supermembrane

with central charges due to a topological condition. The hamiltonian of the D = 11

Supermembrane [46] may be defined in terms of maps XM , M = 0, . . . , 10, from a base

manifold R × Σ, where Σ is a Riemann surface of genus g onto a target manifold which

we will assume to be 11D Minkowski. Following [47, 48] one may now fix the Light Cone

Gauge, (LCG),

X+ = T−2/3P 0+τ = −T−2/3P 0
−τ, P− = P 0

−
√
W, Γ+Ψ = 0 (3.1)
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where
√
W is a time independent density introduced in order to preserve the density

behavior of P−. X−, P+ are eliminated from the constraints and solve the fermionic second

class constraints in the usual way [48].

The canonical reduced hamiltonian to the light-cone gauge has the expression [48]

H =

∫
Σ
dσ2
√
W

(
1

2

(
PM√
W

)2

+
1

4
{XM , XN}2 −ΨΓ−ΓM{XM ,Ψ}

)
(3.2)

subject to the constraints

φ1 := d

(
PM√
W
dXM −ΨΓ−dΨ

)
= 0 (3.3)

and

φ2 :=

∮
Cs

(
PM√
W
dXM −ΨΓ−dΨ

)
= 0, (3.4)

where the range of M is now M = 1, . . . , 9 corresponding to the transverse coordinates in

the light-cone gauge, Cs, s = 1, 2 is a basis of 1-dimensional homology on Σ,

{XM , XN} =
εab√
W (σ)

∂aX
M∂bX

N . (3.5)

a, b = 1, 2 and σa are local coordinates over Σ. φ1 and φ2 are generators of area preserving

diffeomorphisms, see [49]. That is

σ → σ
′ → W

′
(σ) = W (σ).

When the target manifold is simply connected dXM are exact one-forms.

We consider now the compactified Supermembrane embedded on a target spaceM9×T 2

where T 2 is a flat torus defined in terms of a lattice L on the complex plane C:

L : z → z + 2πR(l +mτ), (3.6)

where m, l are integers, R is real and represent the radius, R > 0, and τ a complex moduli

τ = Reτ + iImτ , Imτ > 0, T 2 is defined by C/L. τ is the complex coordinate of the

Teichmuller space for g = 1, that is the upper half plane. The Teichmuller space is a

covering of the moduli space of Riemann surfaces, it is a 2g − 1 complex analytic simply

connected manifold for genus g Riemann surfaces.

The conformally equivalent tori are identified by the parameter τ modulo the Teich-

muller modular group, which in the case g = 1 is SL(2,Z). It acts on the Teichmuller

space through a Mobius transformation and it has a natural action on the homology

group H1(T 2).

We consider mapsXm, Xr fromM9×T 2 to the target space , with r = 1, 2;m = 3, . . . , 9

where Xm are single valued maps onto the Minkowski sector of the target space while Xr

maps onto the T 2 compact sector of the target. The winding condition corresponds to∮
Cs
dX = 2πR(ls +msτ)∮

Cs
dXm = 0

(3.7)
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where dX = dX1 + idX2 and ls,ms, s = 1, 2, are integers. We denote dX̂r, r = 1, 2, the

normalized harmonic one-forms with respect to Cs, s = 1, 2, a canonical basis of homology

on Σ: ∮
Cs
dX̂r = δrs . (3.8)

We now impose a topological restriction on the winding maps [10]: the irreducible

winding constraint, ∫
Σ
dXr ∧ dXs = nεrsArea(T 2) r, s = 1, 2 (3.9)

Using Area(T 2) = (2πR)2Imτ , condition (3.9) implies that the winding matrix W =(
l1 l2
m1 m2

)
has detW = n 6= 0. That is, all integers ls,ms, s = 1, 2 are admissible provided

detW = n when n is assumed to be different from zero. εrs is the symplectic antisym-

metric tensor associated to the symplectic 2-form on the flat torus T 2. In the case under

consideration εrs is the Levi Civita antisymmetric symbol.

We may decompose the closed one-forms dXr into

dXr = M r
s dX̂

s + dAr r = 1, 2 (3.10)

where dX̂s, s = 1, 2 is the basis of harmonic one-forms we have already introduced, dAr

are exact one-forms and M r
s are constant coefficients. This condition is satisfied provided

M1
s + iM2

s = 2πR(ls +msτ) (3.11)

Consequently, the most general expression for the maps Xr, r = 1, 2, is

dX = 2πR(ls +msτ)dX̂s + dA, (3.12)

ls,ms, s = 1, 2, arbitrary integers.

An important point implied by the assumption n 6= 0 is that the cohomology class in

H2(Σ, Z) is non-trivial. It also implies that at global level the theory is described by an

action formulated on a principal torus bundle over Σ. There exists a infinite set of possible

gauge connections associated to it.

The topological condition (3.9) does not change the field equations of the hamilto-

nian (3.2). In fact, any variation of Irs under a change δXr, single valued over Σ, is

identically zero. In addition to the field equations obtained from (3.2), the classical config-

urations must satisfy the condition (3.9). It is only a topological restriction on the original

set of classical solutions of the field equations. In the quantum theory the space of physical

configurations is also restricted by the condition (3.9). There is a compatible election for

W on the geometrical picture we have defined. We define

√
W =

1

2
εrs∂aX̂

r∂bX̂
sεab, (3.13)

it is a regular density globally defined over Σ. It is invariant under a change of the canonical

basis of homology.
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The physical hamiltonian in the LCG is given by

H =

∫
Σ
T−2/3

√
W

[
1

2

(
Pm√
W

)2

+
1

2

(
Pr√
W

)2

+
T 2

2
{Xr, Xm}2 +

T 2

4
{Xr, Xs}2

]

+

∫
Σ
T−2/3

√
W

[
T 2

4
{Xm, Xn}2 −ΨΓ−Γm{Xm,Ψ} −ΨΓ−Γr{Xr,Ψ}

] (3.14)

subject to the constraints

d(PrdX
r + PmdX

m −ΨΓ−dΨ) = 0 (3.15)∮
Cs

(PrdX
r + PmdX

m −ΨΓ−dΨ) = 0 (3.16)

and the global restriction (3.9). Cs is a canonical basis of homology on Σ. This is

the case with trivial monodromy and hence without the gauging of the SL(2,Z) sym-

metries described below. It is a symplectic gauge theory on a given isotopy class

of symplectomorphisms.

The Mass operator of the supermembrane with central charges and KK modes found

in [50] is

Mass2 = T 2((2πR)2nImτ)2 +
1

R2

(
m2

1 +

(
m|qτ − p|
Imτ

)2)
+ T 2/3H (3.17)

where the H is defined in terms of the above hamiltonian H once the winding contribution

has been extracted H = H− T−2/3
∫

Σ

√
W T 2

4 {X
r
h, X

s
h}2.

3.1 The SL(2,Z) symmetries of the supermembrane with central charges

The supermembrane is invariant under are preserving diffeomorphisms on the base mani-

fold. This symmetry is realized by the first class constraints on the theory. This is a gauge

symmetry associated to a trivial principle bundle with structure group the symplectomor-

phisms homotopic to the identity. Besides this standard symmetry of the supermembrane,

when the theory is restricted by the central charge condition (the irreducible winding con-

dition), the theory is invariant under two SL(2,Z) symmetries. One of them acting on the

homology basis of the base manifold Σ, a two-torus. This SL(2,Z) realizes the modular

transformations3 on the upper-half plane. The other SL(2,Z) acts on the target space, on

the moduli of the target torus: the complex τ and R parameters of the target torus. On τ

acts as a Moebius transformations, however since the transformation of R is nontrivial, the

equivalence classes of tori under this transformation are not conformally equivalent. Using

these two SL(2,Z) symmetries, it can be seen [50] that the mass contribution of the stringy

states in the supermembrane with central charges exactly agree with the perturbative mass

spectrum of (p, q) IIB and IIA superstring. Let us discuss it in more detail.

3In particular the supermembrane with central charges is invariant under the conformal maps homotopic

to the identity.
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3.1.1 SL(2,Z) of the Riemann surface

The supermembrane with central charges is invariant under area preserving diffeomor-

phisms homotopic to the identity. Those are diffeomorphisms which preserve dX̂r, r = 1, 2,

the harmonic basis of one-forms. W is then invariant:

W
′
(σ) = W (σ). (3.18)

Moreover the supermembrane with central charges is invariant under diffeomorphisms

changing the homology basis, and consequently the normalized harmonic one-forms, by

a modular transformation on the Teichmüller space of the base torus Σ. In fact, if

dX̂
′r(σ) = SrsdX̂

s(σ) (3.19)

provided

εrsS
r
t S

s
u = εtu (3.20)

that is S ∈ Sp(2, Z) ≡ SL(2,Z). We then conclude that the supermembrane with central

charge, has an additional symmetry with respect to the compactified D = 11 Supermem-

brane without the topological irreducibility condition. All conformal transformations on

Σ are symmetries of the supermembrane with central charges [51]–[57]. We notice that

under (3.19)

dX → 2πR(l
′
s +m

′
sτ)dX̂

′s + dA
′

(3.21)

where A
′
(σ
′
) = A(σ) is the transformation law of a scalar. Defining the winding matrix as

W =
(
l1 l2
m1 m2

)
, then

W→WS−1 (3.22)

3.1.2 The U-duality invariance

The supermembrane with central charges is also invariant under the following transforma-

tion on the target torus T 2:

τ → aτ + b

cτ + d
(3.23)

R → R|cτ + d|

A → Aeiϕ

W →

(
a −b
−c d

)
W

where cτ+d = |cτ+d|e−iϕ and Λ =
(
a b
c d

)
∈ Sp(2, Z). As shown in [50] the hamiltonian

density of the supermembrane with central charges is then invariant under (3.23). The

SL(2,Z) matrix now acts from the left of the matrix W.
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The two actions from the left and from the right by SL(2,Z) matrices are not equivalent,

they are complementary. The following remarks are valid. The general expression for the

dX maps is then

dX = dXh + dA (3.24)

The harmonic part of dX,

dXh = 2πR[(m1τ + l1)dX̂1 + (m2τ + l2)dX̂2]. (3.25)

Xh is a minimal immersion from Σ to T 2 on the target, moreover it is directly related

to a holomorphic immersion of Σ onto T 2. The extension of the theory of supermembranes

restricted by the topological constraint to more general compact sectors in the target space

is directly related to the existence of those holomorphic immersions.

4 The sculpting mechanism for gauging theories

In this section we summarize the results of the paper [61]. The mechanism of gauging

proposed there consists in a specific change in the global description of a theory in terms

of fibration, it is called sculpting mechanism. It consists in a deformation of the homotopy-

type of the complete fibration preserving the homotopy-type of the base and the fiber. We

will restrict here to the application of this mechanism to the supermembrane. Taking as

the un-gauged theory the compactified supermembrane on a 2-torus. It corresponds to

a invariant functional (action) over a Riemann base manifold whose fiber is the tangent

space: T 2 ×M9 for simplicity. The topologically nontrivial part of the fiber corresponds

to the torus manifold associated to the tangent space. The global formulation of the un-

gauged theory is a trivial torus bundle over a base manifold that for simplicity we also

choose to be homotopically a torus.

The change of the total fiber bundle can be viewed in terms of two main steps: the

first one is due to the introduction of a topological condition that we will explain below

(the central charge) by which the trivial torus bundle is deformed into a principal bundle.

On the physical side, it can be seen a restrictions on the maps allowed in the compactified

target space. Secondly, the process of extracting the gauge field from the closed form in a

consistent way implies the modification of the principal torus bundle in a symplectic torus

bundle with monodromy. The total fiber bundle may or may not be symplectic according

to the fact that the monodromy is given by the torsion class associated to the MCG of

the Π1(Σ) base manifold. The resulting supermembrane is therefore, gauged in this new

sculpting sense and it corresponds geometrically to a supermembrane minimally immersed

in the target space. As a result of this procedure, the global symmetry of the un-gauged

theory is partially broken to a subgroup H ∈ G. A new gauge symmetry A appears

due to the global as a restriction of the diffeomorphism invariance gauge symmetry of the

compact base manifold by the discrete symmetry subgroup Γ associated to the monodromy

representation ρ of the harmonic forms. This symmetry gets promoted to a connection by

the action of the principal fiber bundle to which the symplectic torus bundle is associated to.
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The change in the homotopy-type of the complete manifold is produced by extracting

properly the gauge connection from the closed 1-forms. The supermembrane with central

charges as a global manifold corresponds to a symplectic torus bundle with nontrivial mon-

odrodromy ρ. The Cohomology of the torus bundle change in this case in the following way

I H2(Σ,Z) H2(Σ,Zρ) (4.1)

being ρ a representation of the large diffeomorphims group of the base manifold. Notice

that arrows do not imply a spectral sequence. Closely following [61] we just emphasize

the three main steps needed to produce the sculpting deformation of the fiber bundle: I

The first step is to impose the central charge condition which represents a obstruction

to the triviality called that produces a twist in the fibration generating a principal fiber

bundle whose cohomology is H2(Σ,Z). The lagrangian of the undeformed fiber has the

following symmetries: a gauge symmetry DPA0(Σ2
1), target space susy N = 2, a discrete

global symmetry G ≡ Sp(2, Z) associated to the wrapping condition of the embedded

maps Σ2
1 → T 2: There exists a infinite set of connections that can be attached to the

principal bundle . The winding condition defines closed 1-forms dXr that admit a Hodge

decomposition in terms of harmonic one-forms dX̂r and a exact one-form dAr:

dXr = P sr dX̂s + dAr (4.2)

the matrix P sr is associated to the 4 global degrees of freedom associated to the winding

condition, whose coefficients depend on time. In presence of the central charge condition,

the matrix Psr becomes constant and non-degenerate, (we are freezing the wrapping).

The harmonic one-forms due to the wrapping condition have a global Sp(2,Z) symmetry

of the mapping class group. As a consequence of the nontrivial fibration now

P sr = M s
r = 2πRrSsr with Ssr ∈ SL(2,Z) (4.3)

Once a fixed basis {dX̂s}, is chosen , the decomposition is unique, and P sr is fixed (for

example to δrs) there is a partial fixing of the symmetry that breaks the original global

symmetry to a residual one, that leaves a global invariance under the subgroup that will

be related to the monodromies associated to the gauging.

The next step is to extract a one-form connection to the nontrivial fiber bundle. We

define a symplectic connection A preserving the structure of the fiber under holonomies.

To this end, first we define a rotated derivative associated to the Weyl bundle [63]:

Dr• = (2πRrlr)θrl
εab√
W (σ)

∂aX̂
l(σ)∂b• (4.4)

with θ ∈ SL(2,Z) which depends on the monodromy ρ.

In 2-dim the area preserving diffeomorphisms are the same as the symplectomorphisms.

The third relevant choice is the election for W on the geometrical picture we have defined.

We define

√
W =

1

2
εrs∂aX̂

r∂bX̂
sεab, (4.5)
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it is a regular density globally defined over Σ. It is invariant under a change of the canonical

basis of homology.

The matrix θ carries the information of the discrete global symmetry residual asso-

ciated to transition functions of the patching of the different charts in the compact base

manifold for a fixed base of harmonic forms. It plays a analogous role to the embedding

tensor in the Noether gauging of supergravities theories. Let us signal that here the place

where the discrete global symmetries appear together with the derivative operator instead

of appearing besides the gauge field since its origin its topological associated to the p-brane

base manifold compact surface.

The definition of this rotated derivative, we are performing an extension of the co-

variant derivative definition, in which the associated bundle has a nontrivial monodromy

from the π1(Σ) on the homology of the fiber H1(T 2) . The related derivative fixes a scale

in the theory and breaks the former H = Sp(2,Z) theory to a subgroup Γ ∈ Sp(2,Z)

by specifying the integers of Ssr . Fixing Rr also fixes the Kahler and complex structure

geometrical moduli.

The symplectic covariant derivative [63], is then:

Dr• = Dr •+{Ar, •} (4.6)

and then the connection transform with the symplectomorphism like:

δεA = Drε (4.7)

The sculpted fiber bundle is a symplectic torus bundle with cohomology H2(Σ,Zρ).
This symplectic form is one in particular different to the canonical one associated to the

flat torus t2 taken as a starting point in the compactified supermembrane case associated

to the trivial torus bundle. This means that the nontrivial fibration implies a deformation

in the base manifold, indeed the isometry group closely related to the harmonic group

of symmetry is not the associated to a flat torus.Since a Riemann manifold has three

compatible structures gab, J,Λab the metric is associated to the harmonic one-forms that

preserve the fiber associated to the MR-monopoles [62], the induced symplectomorphism

do not lie in the same conformal class of the flat torus. There is a compatible election for

W on the geometrical picture we have defined. We consider the 2g dimensional space of

harmonic one-forms on Σ. We denote dXr, r = 1, 2, the normalized harmonic one-forms

with respect to Cs, s = 1, 2, a canonical basis of homology on Σ:∮
Cs
dX̂r = δrs . (4.8)

We define

√
W =

1

2
εrs∂aX̂

r∂bX̂
sεab, (4.9)

it is a regular density globally defined over Σ. It is invariant under a change of the canonical

basis of homology.
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It also implies that there is an U(1) nontrivial principle bundle over Σ and a connection

on it whose curvature is given by dX̂r ∧ dX̂s. This U(1) nontrivial principal fiber bundle

are associated to the presence of monopoles on the worldvolume of the supermembrane

explicitly discussed in [62].

After replacing this expression in the hamiltonian (3.2) one obtain the gauged super-

membrane in this new sculpting sense gauging the SL(2,Z) that is the hamiltonian of the

supermembrane with central charges [11, 12]:

H =

∫
Σ

√
Wdσ1 ∧ dσ2

[
1

2

(
Pm√
W

)2

+
1

2

(
P r√
W

)2

+
1

4
{Xm, Xn}2 +

1

2
(DrXm)2 +

1

4
(Frs)2

+ (n2Area2
T 2) +

∫
Σ

√
WΛ

(
Dr
(
Pr√
W

)
+

{
Xm,

Pm√
W

})]
+

∫
Σ

√
W [−ΨΓ−ΓrDrΨ−ΨΓ−Γm{Xm,Ψ} − Λ{ΨΓ−,Ψ}]

where DrXm = DrX
m + {Ar, Xm}, Frs = DrAs −DsAr + {Ar, As},

Dr = 2πlrθ
l
rRr

εab√
W
∂aX̂

l∂b and Pm and Pr are the conjugate momenta to Xm and Ar
respectively. Dr and Frs are the covariant derivative and curvature of a symplectic non-

commutative theory [63], constructed from the symplectic structure εab√
W

introduced by the

central charge. The last term represents its supersymmetric extension in terms of Majorana

spinors. Λ are the lagrange multiplier associated to the constrains. The physical degrees

of the theory are the Xm, Ar,Ψα they are single valued fields on Σ.

5 The supermembrane as a symplectic torus bundle with monodromy in

SL(2,Z)

In this section we develop the global construction found in [64], characterizing in deeper

detail its connection with the SL(2,Z) gaugings in supergravity in 9D.

We consider in this section the global structure of the supermembrane in the Light

Cone Gauge when the fields X,Ψ are sections and A is a symplectic connection on a non-

trivial symplectic torus bundle. A symplectic torus bundle ξ is a smooth fiber bundle

F → E
π→ Σ whose structure group G is the group of symplectomorphisms preserving a

symplectic two-form on the fiber F . Σ is the base manifold which we consider to be a

closed, compact Riemann surface modeling the spacial piece of the foliation of the super-

membrane worldvolume, and E is the total space. We will take the fiber as the target-space

manifold M9 × T 2 consider in section 3, as in [61, 64]. The only topologically nontrivial

part corresponds to the T 2, so from now on, we will only refer to this part that is the one

that characterizes the fiber bundle. We consider in particular Σ, as already explained, a

genus g = 1 surface with a non-flat induced metric. We remark that when g > 1, the first

homotopy group Π1(Σ) is non-abelian allowing the construction of symplectic torus bundles

with non-abelian monodromies. In this paper we will restrict to the abelian case only.

On T 2, a flat torus, we consider the canonical symplectic 2-form. Its pullback, using

the harmonic maps from the base manifold to T 2, defines the symplectic 2-form ω on

Σ. In terms of a harmonic basis of one-forms dX̂r, r = 1, 2 in the notation of section 3:
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ω = [(2πR)2nImτ ]εrsdX̂
r∧dX̂s. The symplectomorphisms4 on Σ homotopic to the identity

are generated by the first class constraints (3.3), (3.4). Moreover, the symplectomorphisms

preserving ω define isotopic classes. These classes form a group Π0(G) where G is the

group of all symplectomorphisms. In the case we are considering, where the fiber is T 2,

Π0(G) is isomorphic to SL(2,Z). The action of G on the fiber T 2 produces an action on

the homology and cohomology of T 2. This action reduces to an action of Π0(G), since on

a given isotopy class two symplectomorphisms are connected by a continuous path within

the class, and hence one cannot change the element of the homology or cohomology group.

The action of G on the fiber over a point x ∈ Σ when one goes around an element of Π1(Σ)

defines a homomorphism

Π1(Σ)→ Π0(G) ≈ SL(2,Z) (5.1)

which may be called the monodromy of the symplectic torus bundle.5 The monodromy

may be trivial or not, but even when it is trivial, the symplectic torus bundle can be

nontrivial. In fact, one could have a nontrivial transition within the symplectomorphisms

on a isotopy class. If the monodromy is trivial, the symplectic torus bundle is trivial if and

only if there exists a global section. When Σ is a 2-torus, as we are considering, Π1(Σ) is

abelian and the homomorphism defines a representation ρ : Π1(Σ)→ SL(2,Z), realized in

terms of an abelian subgroup of SL(2,Z). It naturally acts on H1(T 2) the first homology

group on T 2. This provides to H1(T 2) the structure of a Z[π1(Σ)]-module which may be

denoted Z2
ρ . Given ρ there is a bijective correspondence between the equivalence classes

of symplectic torus bundles with base Σ and Z2
ρ−module, and the elements of H2(Σ, Z2

ρ),

the second cohomology group of Σ with coefficients Z2
ρ [66]. Following [66]: the element of

H2(Σ, Z2
ρ) is called the cohomology class of the symplectic torus bundle and it is denoted

C(E). C(E) = 0 if and only if there exists a global section on E. If ρ is trivial, C(E) = 0

if and only if E is trivial.

The supermembrane theory with nontrivial central charge has C(E) 6= 0 and hence

E is always nontrivial. The supermembrane on a eleven dimensional Minkowski target

space [48] was formulated on a trivial symplectic bundle, as well as the supermembrane

on a compactified space in [67]. The C(E) 6= 0 condition is the relevant condition which

ensures a discrete spectrum of supermembrane with nontrivial central charges [51]–[57]. In

the case of a trivial symplectic torus bundle the spectrum spectrum of the supermembranes

was proven to be continuous from [0,∞) [68]. There is a third case , which has not

been discussed in the literature: C(E) = 0 but a nontrivial monodromy. The analysis

of the spectrum of a supermembrane on such a symplectic torus bundle could render a

supermembrane theory with discrete spectrum on the C(E) = 0 sector, which is excluded

by the supermembrane with the nontrivial central charges. This important point will be

analyzed elsewhere.

4On a 2-dimensional surface symplectomorphisms and area preserving diffeomorphisms define the

same group.
5It would be interesting to see if there is a relation (if any) with a construction on torus bundles with

monodromy that has recently appeared [65].
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The second cohomology H2(Σ, Z2
ρ) may be equal to Z, as in the case of the represen-

tation

ρ(α, β) =

(
1 α

0 1

)
, or ρ(α, β) =

(
1 β

0 1

)
(5.2)

where (α, β) denotes the element of Π1(Σ). But it may also have a finite number of elements

as in the case of [66],

ρ(α, β) =

(
−2mn+ 1 2mn2 + n

−m mn+ 1

)(α+β)

(5.3)

where the integers m,n > 0. In this case H2(Σ, Z2
ρ) = Zm ⊕ Zn. The number of

inequivalent symplectic torus bundles is, in this case, mn. Hence given ρ the number of

inequivalent symplectic torus bundles is in general not in the correspondence with Z as

one could in principle think. This remark has relevant consequences in the analysis of the

symmetry groups associated to the theory at quantum level. From a geometrical point

there is a qualitative difference between the symplectic torus bundle associated with the

representations (5.2) and (5.3). A theorem in [66] ensures the existence of symplectic 2-form

on E which reduces to the the symplectic 2-form on each fiber if and only if the element

H2(Σ, Z2
ρ) associated to E is a torsion element. In case (5.3) all elements are torsion

while in case (5.2) only C(E) = 0, which is excluded if we consider a supermembrane

with nontrivial central charge. Let us now consider the transformation law of the fields

describing the supermembrane with nontrivial central charge. In section 3, we showed

the transformation law under a rigid SL(2,Z) transformations. There are two SL(2,Z)

invariances, one associated to the basis Σ and one to the moduli on the target space. We

now consider a supermembrane on a symplectic torus bundle with monodromy ρ(α, β).

Under a rigid SL(2,Z) on the target the symplectic connection A(x) transforms with a

global factor eiϕ where e−iϕ = cτ+d
|cτ+d| and Λ =

(
a b
c d

)
∈ SL(2,Z) acts on the moduli and

winding matrix as already stated. On the symplectic torus bundle with monodromy ρ(α, β),

A(x) transforms with a phase factor eiϕρ with ϕρ ≡ ϕ(ρ(α, β)) but now Λ ≡ ρ(α, β). That

is a, b, c, d are integers which depend on (α, β). For example, if we consider α = β = 0

corresponding to a trivial element of Π1(Σ) then ϕ = 0, while if (α, β) 6= (0, 0) then ϕ can

be different from zero , for example in case (5.3). If we write A(x) = |A(x)|eiλ(x) then

associated to (α, β) ∈ Π1(Σ) we have A(x) = |A(x)|eiλ(x)+ϕρ . We then have,

d
(
|A(x)|eiλ(x)+eiϕρ

)
= dA(x)eiϕρ . (5.4)

In order to take into account the phase factor eiϕρ we may multiply the symplectic

covariant derivative in the formulation by this phase factor and leave A(x) as a single-valued

one-form connection. In the hamiltonian of section 3, the phase factor eiϕρ is canceled

by its complex conjugate contribution consequently, the hamiltonian is well-defined on

a symplectic torus bundle with nontrivial monodromy. Another important aspect of the

supermembrane formulated on a symplectic torus bundle with monodromy is that the (p, q)
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Kaluza-Klein charges in the mass squared formula take value on the Z2
ρ -module. In fact,

the (p, q) charges are naturally associated to the element of H1(T 2). We then have a nice

geometrical interpretation: The KK charges are associated to the homology of T 2 on the

target, while the winding is associated to the cohomology on the base Σ. In [64] we proved

that the hamiltonian together with the constrains are invariant under the action of SL(2,Z)

on the homology group H1(T 2) of the fibre 2-torus T 2. So that the supermembrane with

central charges may be formulated in terms of sections of symplectic torus bundles with a

representation ρ : π1(Σ) → SL(2,Z) inducing a Z[π1(Σ)]-module in terms of the H1(T 2)

homology group of the fiber. Locally the target is a product of M9 × T 2 but globally we

cannot split the target from the base Σ since T 2 is the fiber of the non trivial symplectic

torus bundle T 2 → Σ. The formulation of the supermembrane in terms of sections of

the symplectic torus bundle with a monodromy is a nice geometrical structure to analyze

global aspects of gauging procedures on effective theories arising from M-theory. The

allowed classes of monodromy are those subgroups corresponding to the elliptic, parabolic

and hyperbolic inequivalent classes of SL(2,Z) showed in the section 2. But as already

explained, the global classification depends on the cohomology class of the fibration, so it

is more refined at global level, i.e. there are more inequivalent classes of symplectic torus

bundles which may be related to different domain-wall solutions of supergravity.

6 Classification of symplectic torus bundles

Two conjugate representations ρ and UρU−1, with U ∈ SL(2,Z), define Z2
ρ and Z2

UρU−1

modules with isomorphic cohomology groups H2(Σ, Z2
ρ) ∼ H2(Σ, Z2

UρU−1). They define

equivalent symplectic torus bundles. An equivalent way to see it is to consider the group

of coinvariants associated to ρ and UρU−1. There is an isomorphism between the group of

coinvariants associated to ρ and to UρU−1, they define equivalent symplectic torus bundles.

In order to classify them, we must determine first the conjugacy classes of SL(2,Z) and

then then the associated coinvariants. Once this has been done the correspondence with

the nine-dimensional gauged supergravities follows directly. SL(2,Z) may be generated by

S and ST−1 where

S =

(
0 1

−1 0

)
and T =

(
1 1

0 1

)
. (6.1)

Every conjugacy class of SL(2,Z) can be represented by one of the following [71]

± S with Trace=0.

± T−1S, ±(T−1S)2, with |Trace| = 1.

± Tn, n ∈ Z with |Trace| = 2.

± T r0ST r1S . . . T rkS ri ≤ −2, r0 < −2, i = 1, . . . , k, and |Trace| > 2.

(6.2)

The representations:

ρ(α, β) = (±S)α+β

ρ(α, β) = (+T−1S)α+β (6.3)
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ρ(α, β) = (+(T−1S)2)α+β

ρ(α, β) = (−I)α+β

define finite subgroups isomorphic to Z4, Z6, Z3, Z2 respectively, associated to the mon-

odromies M4,M6,M3,M2 in [20]. The representations

ρ(α, β) = (−T−1S)α+β and ρ(α, β) = (−(T−1S)2)α+β (6.4)

define subgroups isomorphic to Z3 and Z6 respectively. The associated coinvariant groups

are the trivial one and Z6 respectively. In terms of the representation

ρmn(α, β) =

(
−2mn+ 1 2mn2 + n

−m 1 +mn

)α+β

(6.5)

with m,n > 0 [66], [(T−1S)2]α+β is conjugate to ρ31(α, β), Sα+β is conjugate to ρ21(α, β)

and [T−1S]α+β to ρ11(α, β). The inequivalent symplectic torus bundles associated to

ρmn(α, β) are mn and all of them correspond to the torsion classes in H2(B,Z2
ρ) ≡ Zn⊕Zm

equivalently to the coinvariant group Zn⊕Zm. It is interesting that beyond the finite group

cases (M2,M3,M4,M6) associated to the elliptic case, there are monodromies defining

non-finite subgroups associated to a finite number of symplectic torus bundle. For example

ρ41(α, β) is conjugate to (−T−1)α+β ≡
(−1 1

0 −1

)α+β
, which generates a non-finite subgroup,

the associated number of symplectic torus bundles is finite, four in this case. The group of

coinvariants is isomorphic to Z4. For the parabolic conjugacy class |Trace| = 2, there are

two cases, the first one is associated to monodromies with a positive trace, they generate

infinite symplectic torus bundles in correspondence to Z, while the second case, with neg-

ative trace, generates a finite number of inequivalent symplectic torus bundles. The group

of coinvariants is always Z4. In both cases the subgroups generated by the monodromy

representation are not finite. If mn > 4, Traceρmn(α, β) < −2. These are hyperbolic

representations of SL(2,Z). In this case there is a finite number of inequivalent symplectic

torus bundles generated by non-finite subgroups.

In this case, mn > 4, the matrix M ≡ ρmn(α, β) (6.5) with α + β = 1 is conjugate,

according to (6.3) to ±T r0ST r1S . . . T rkS, ri ≤ −2, r0 < 2, and i = 1, . . . , k. In particular,

we obtain for n = 1,m ≥ 5 that M is conjugate to −T−3S(T−2S)m−5. See appendix

B. The group of coinvariants associated to the corresponding monodromy is Zm, m ≥ 5.

There are m inequivalent symplectic torus bundles corresponding to this monodromy. The

sign is very relevant. For example, for m = 5 ρ51(α, β) = (−T 3S)α+β has a coinvariant

group Z5 while (+T 3S)α+β has a trivial coinvariant group, with only the identity element.

The latter case is not contained in (6.5), since it corresponds to positive trace.

6.1 Gauge fixing and residual symmetries

We may now consider the gauge freedom associated to the gauging of the abelian subgroups

of SL(2, Z). It corresponds to equivalent symplectic torus bundles arising in particular

from conjugate representations Uρ(α, β)U−1, U ∈ SL(2, Z). Two conjugate representa-

tions ρ and UρU−1, with U ∈ SL(2,Z), define Z2
ρ and Z2

UρU−1 modules with isomorphic
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cohomology groups H2(Σ, Z2
ρ) ∼ H2(Σ, Z2

UρU−1). They define equivalent symplectic torus

bundles. An equivalent way to see it is to consider the group of coinvariants associated

to ρ and UρU−1. In fact, the group H2(Σ, Z2
ρ) is isomorphic, via Poincare duality, to the

coinvariants group associated to ρ. There is then an isomorphism between the group of

coinvariants associated to ρ and to UρU−1, they define equivalent symplectic torus bun-

dles. Given Q ≡ ( pq ) ∈ H1(T 2), the group of coinvariants of monodromy ρ is the abelian

group of equivalence classes

{Q − ΛQ̂ − Q̂} (6.6)

for any Λ ∈ ρ and any Q̂ =
(
p̂
q̂

)
∈ H1(T 2). It follows that this class is mapped to the class

associated to UQ under the representation UρU−1:

{UQ− UΛU−1Q̃ − Q̃} (6.7)

where Q̃ = UQ̂, but any Q̃ ∈ H1(T 2) may always be expressed as UQ̂ for some other

Q̂ ∈ H1(T 2), since U is invertible. There is then an isomorphism between the group of

coinvariants associated to ρ and to UρU−1, they define equivalent symplectic torus bundles.

We may choose U in order to leave freezed the winding matrix under the action of the

monodromy transformation. The gauge fixing procedure goes as follows. We re-arrange

the winding matrix as M =
(
m1 l1
m2 l2

)
, with detM = n. Under the symmetry of section 3 it

transforms as (
s1 s2

s3 s4

)(
m1 l1
m2 l2

)
Λ−1 (6.8)

The SL(2, Z) symmetry associated to the base manifold may be interpreted as having

independence on the basis of homology on the base manifold. In fact, the winding matrix

is associated to a particular basis of homology. Hence, since the change of homology

basis corresponds to a SL(2,Z) transformations, the theory should only depend on the

equivalence classes constructed from the application from the left by a SL(2,Z) matrix:(
s1 s2

s3 s4

)(
m1 l1
m2 l2

)
. (6.9)

Under this transformation the winding matrix may always be reduced to the canonical form(
λ1 0

β λ2

)
(6.10)

with λ1λ2 = n the central charge defined in section 2, and |β| ≤ λ1/2. In particular, if

λ1 = n, λ2 = 1 then |β| ≤ n
2 . we notice that in addition to the central charge integer n there

are additional degrees of freedom represented by the integer β. We may now consider the

supermembrane formulated as a symplectic torus bundle with monodromy Uρ(α, β)U−1.

The action on the winding matrix is given by(
λ1 0

β λ2

)
Uρ−1U−1. (6.11)
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We may also act from the left by a SL(2,Z) matrix which we take of the form V −1ρ∗V .

We can take U and V both SL(2,Z) matrix in order to rewrite the winding matrix in

form which is left invariant under the action of ρ∗ and ρ−1. For example if we take

the monodromy

ρ(α, β) =

(
a nb1
c d

)α+β

∈ SL(2,Z) (6.12)

associated to a supermembrane with central charge n, for particular values of a, b, c, d and

n, this includes elliptic, parabolic and hyperbolic monodromies. Then we can take

ρ(α, β)∗ =

(
a b1
nc d

)
(6.13)

and V,U such that

V

(
λ1 0

β λ2

)
U =

(
1 0

0 n

)
(6.14)

Then

ρ∗(α, β)

(
1 0

0 n

)
ρ−1(α, β) =

(
1 0

0 n

)
(6.15)

We then have

V −1ρ∗V

(
λ1 0

β λ2

)
Uρ−1U−1 =

(
λ1 0

β λ2

)
(6.16)

that is, the winding matrix is left invariant under the monodromy ρ(α, β) provided we con-

sider an associated abelian representation of SL(2,Z) acting on the homology of the base

manifold. Having established the gauge fixing procedure arising from conjugate representa-

tions Uρ(α, β)U−1, we may now ask what is the residual symmetry of the supermembrane

on that symplectic torus bundle with monodromy Uρ(α, β)U−1. The residual symmetry

must leave invariant the elements of the coinvariant group of the monodromy. It must act

as the identity on the coinvariant group. Consequently it is the same abelian group defin-

ing the monodromy. In distinction, a group that commutes with the monodromy group

maps the coinvariant group into itself, but it does not need to act as the identity. The

latest corresponds to the residual symmetry of a theory when on considers the collection

of bundles associated to a given monodromy. The collection procedure occurs when we

construct gauged supergravities in 9D from the 11D compactified supermembrane theory

on the symplectic torus bundle with the central charge condition.

We may finally express the hamiltonian of the supermembrane with central charges on

a symplectic torus bundle with monodromy ρ(α, β) in the following way,

H =

∫
Σ
T 2/3
√
W

[
1

2

(
Pm√
W

)2

+
1

2

(
PP

W

)
+
T 2

4
{Xm, Xn}2+

T 2

2
DXmDXm +

T 2

8
FF

]
−
∫

Σ
T 2/3
√
W [ΨΓ−Γm{Xm,Ψ}+ 1/2ΨΓ−Γ{X,Ψ}+ 1/2ΨΓ−Γ{X,Ψ}], (6.17)
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subject to the first class constraints. We denote

D◦ = D ◦+{A, ◦},
F = DA−DA+ {A,A}

(6.18)

where

D =
εab√
W

2πR(lr +mrτ)θsr∂aX̂
s∂b (6.19)

and the matrix θ is given by

θ = (V −1(ρ∗)−1V )T . (6.20)

The matrix θ was derived by the sculpting approach. We have obtained its explicit expres-

sion here from the gauge fixing procedure introduced in this section. As mentioned before

in this section D and A acquire a phase factor eiϕρ as a consequence of the monodromy.

The hamiltonian is manifestly invariant under this transformation. The moduli R and τ

transform as (3.23) where Λ = UρU−1. The factor θrs in the expression of D arises from

the transformation of the basis of harmonic one-forms. It can be also interpreted as a

transfromation of the winding matrix with components lr and mr, r = 1, 2. If we take

this point of view the winding numbers belong then to an element of the coinvariant group

associated to the monodromy V −1(ρ∗)V acting on the cohomology of the base manifold

while the KK charges belong to an element of the coinvariant group of monodromy ρ. The

mass squared formula remains then invariant under transitions on the symplectic torus

bundle provided we interpret the winding numbers and KK charges as equivalence classes

of the corresponding coinvariant groups.

7 Gauging of the trombone symmetry on the supermembrane

In the previous section we showed that the supermembrane with central charges may be

formulated on a symplectic torus bundle with a nontrivial SL(2, Z) monodromy. Corre-

sponding to each monodromy we obtain the gauging of an abelian subgroup of SL(2,Z),

the isotopy group of symplectomorphisms preserving the symplectic 2-form introduced in

the construction of the supermembrane theory with central charges. The monodromy de-

fined as the homomorphism from Π1(Σ)→ Π0(G) ≈ SL(2,Z) was constructed in terms of

parabolic, elliptic and hyperbolic SL(2,Z) matrices. We are going to show that there is

also a supermembrane theory with central charges formulated on a symplectic torus bundle

with a monodromy corresponding to the gauging of the trombone symmetry introduced in

the context of supergravity [31]. See section 2. The first step will be to consider the super-

membrane formulated on a symplectic torus bundle with trivial monodromy and obtain the

transformation law of the mass squared formula presented in section 3 under the scaling

symmetry. We first follow the approach [31] and work out the general compensator in the

context of the supermembrane theory. The second step will be to gauge the trombone

symmetry in M-theory.
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7.1 The trombone symmetry on the compactified M2 with central charges

Let us obtain the transformation law of the mass squared formula presented in section 3

under the scaling symmetry. Following the lines of [31], we are going to generalize the

compensating transformation for arbitrary values of the moduli τ .

The general form of the compensating transformation: we consider a integer lat-

tice of KK charges parametrized by Q = ( pq ). The geometrical interpretation of Q is in

terms of the elements of the homology group H1(T 2) of the fiber, which is a 2-torus. Under

the U-duality transformation (3.23) Q → ΛQ with Λ ∈ SL(2,Z) with the corresponding

transformation of the moduli parameters as stated in section 3. We are interested in the

most general transformation mapping Qi → Qj : Qj = ΛijQi. For a given Qi we define

Λi ∈ SL(2,Z) : ΛiQ0 = Qi where Q0 = ( 1
0 ). Λi is not unique, its most general expres-

sion is Λig where g = ( 1 m
0 1 ) for any integer m 6= 0, and g ∈ H is the Borel group of

parabolic SL(2,Z) matrices. We then have Λji = ΛjgΛ−1
i for any g ∈ H. Under compo-

sition we have

ΛkjΛji = Λki. (7.1)

For Λji ∈ SL(2,Z) acting on Qi there is an associated transformation of the moduli

parameters as stated in section 3. The mass formula is invariant under the overall transfor-

mation. We consider equivalence classes of matrices Λji: two elements of the class differ in

an element g ∈ H. We denote the class Λ̃ij . We may now introduce the compensator in the

approach of [31]. The following result is valid: for each equivalence class Λ̃ji there exists

a unique matrix Hji ∈ GL(2,R), Hji = MjiΛji and a unique complex number hji ∈ C
such that

(i) HjiQi = Qj

(ii) Hji

(
τ

1

)
= hji

(
τ

1

)
Hji and hji depend only on the equivalence class, it is independent of g ∈ H. In distinction,

the compensator Mji depends explicitly on g ∈ H. Relation ii) is equivalent to the following

sequence of transformations:

τ
Λji→ τ̃

Mji→ τ (7.2)

where τ → τ̃ is the Moebius transformations associated to Λji ∈ SL(2,Z). The general

expression of the Hji matrix is,

Hji =

(
−pj
qj
u+ qi

qj
C pj

qi
+

pipj
qiqj

u− pi
qj
C

−u qj
qi

+ pi
qi
u

)
(7.3)

with u =
(pjqi−piqj)
|pi−qiτ |2 , C = detMji =

|pj−qjτ |2
|pi−qiτ |2 and hji =

pj−qjτ
pi−qiτ , where τ is the complex

conjugate of τ . It then follows that the compensator Mji depends explicitly on g ∈ H since

Mji = HjiΛ
−1
ji . Although Hji ∈ GL(2,R), the non-linear transformation maps integer
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charges Qi into integer charges Qj , as it should in order to satisfy the charge quantization

condition. It is straightforward to show that Hji defines a non-linear realization of the

SL(2,Z) group. In fact, if

Λ̃21 → H21, Λ̃32 → H32, Λ̃31 → H31 (7.4)

then H21Q1 = Q2, H32Q2 = Q3 hence H32H21Q1 = Q3. Analogously,

H32H21

(
τ

1

)
= λ32λ21

(
τ

1

)
= λ31

(
τ

1

)
(7.5)

The uniqueness of the transformation then implies H31 = H32H21.

Hji realizes then a nonlinear representation of SL(2,Z) and it represents the trombone

symmetry at the quantum level.

The mass operator transformation under trombone symmetry: having deter-

mined the transformation law for the KK charges and the complex moduli τ we may now

consider the transformation of the other moduli R, and the winding matrix. From (3.23)

we know their transformation law under Λji ∈ SL(2,Z), we may now determine the com-

pensator action on them . We will do so by imposing the condition that the hamiltonian

remains invariant under its action. The transformation for the complex moduli τ may be

re-written as: (
τ

1

) Λji
lji→

(
τ
′

1

) lji
hji

Mji

→

(
τ

1

)
(7.6)

where lji ≡ cτ + d and Λ ∈ SL(2,Z), see (3.23) while 1
|hji|Mji ∈ SL(2,R) and hji was

defined as in the previous section. The harmonic sector of the supermembrane may be

expressed as

2πR(dX̂1, dX̂2)

(
m1 l1
m2 l2

)(
τ

1

)
. (7.7)

Under the first transformation in the composition 7.6 the factor |lji|−1 is canceled by the

transformation of R:

R
|lji|→ R

′
= R|lji|. (7.8)

We must then consider

R
′′

=
R
′

|lji|
(7.9)

in order to compensate the factor |lji| in the second transformation in 7.6. We then have

R→ R
′ → R. (7.10)
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Finally, under Λji the winding matrix transform as:(
m1 l1
m2 l2

)
→

(
m
′
1 l
′
1

m
′
2 l
′
2

)
=

(
m1 l1
m2 l2

)
Λ−1
ji (7.11)

Consequently, the compensating action must be(
m
′
1 l
′
1

m
′
2 l
′
2

)
Λ−1
ji→

(
m1 l1
m2 l2

)
(7.12)

in order to have an invariant hamiltonian under that action. We notice that the harmonic

sector is not invariant but its contribution together with the one of its complex conju-

gate yields an invariant hamiltonian. The winding term in the mass formula also remain

invariant while the KK therm varies according to:

|pi − qiτ |
RImτ

→ |pj − qjτ |
RImτ

(7.13)

7.2 Gauging the trombone

We may finally consider the gauging of the trombone symmetry. The main point in the

construction is the geometrical description of the KK charges (p, q) in terms of the elements

of the homology group H1(T 2) of the fiber T 2. The homomorphism Π1(Σ) → Π0(G) ≈
SL(2,Z) determines a representation ρ : Π1(Σ)→ SL(2,Z). If we denote ρ(α, β) ∈ SL(2,Z)

the element of SL(2,Z) associated to (α, β) ∈ π1(Σ), its action on H1(T 2) yields

Qj = ρ(α, β)Qi (7.14)

Form section (6.1) we then conclude that ρ(α, β) = Λji and there exists an associated

non-linear representation realized in terms of the matrix Hji. The monodromy is then

constructed with this non-linear representation of SL(2,Z). we notice that the Z[Π1(σ)]-

module is the same as the one arising from the linear representation ρ, however its action

on τ,R and the winding matrix is different since their transformation is done in terms

of Hji matrices. We thus obtain a different global structure for the supermembrane on

this symplectic torus bundle. Following the analysis of section 5, the hamiltonian of the

supermembrane is well-defined on this symplectic torus bundle. We notice that the (p, q)

charges in the KK term of the mass squared formula do not have arbitrary values. In fact

the only allowed values are the ones determined from the Z2
ρ -module. In order to obtain

the invariance of the mass squared formula we may consider summation on all the (p, q)

values allowed by the Z2
ρ - module. One arrives to the family of symplectic torus bundle

whose monodromy realizes the gauging of the trombone symmetry.

8 T-duality in the supermembrane theory

In this section we introduce the T-duality transformations for the supermembrane theory.

This goes beyond the T-duality of superstring theory. In fact, the latter may be directly
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obtained from the membrane theory by freezing membrane degrees of freedom and quan-

tizing the remaining string states [50]. In this section we present the T-duality of the full

degrees of freedom of the supermembrane, when formulated on a dual symplectic torus

bundle (i.e. a symplectic torus bundle defined under the T-duality transformation acting

on the moduli). It acts on the moduli as well as on the bosonic and fermionic fields. We

will see that T-duality become a natural symmetry of the theory that fixes the scale of

energy of the supermembrane tension T . The T-duality transformation is a nonlinear map

which interchange the winding modes W, previously defined associated to the cohomology

of the base manifold with the KK charges, Q = (p, q) associated to the homology of the

target torus together with a transformation of the real moduli R→ 1
R and complex moduli

τ → τ̃ , both in a nontrivial way. In the following all transformed quantities under T-duality

are denoted by a tilde, to differenciate from other symmetries. Given a winding matrix W

and KK modes there always exists an equivalent winding matrix W′
=

(
l
′
1 l

′
2

m
′
1 m

′
2

)
, under

the SL(2,Z) symmetry (3.22) such that for KK charges Q = ( pq ),(
l
′
1

m
′
1

)
= Λ0

(
p

q

)
(8.1)

where Λ0 =
(
α β
γ δ

)
∈ SL(2,Z) with α = δ. This is an intrinsic relation between the

equivalence classes of winding matrices and KK modes. In fact, it is preserved under a

U-duality transformation (3.22):(
l
′
1

m
′
1

)
−→

(
l̂1
m̂1

)
=

(
a −b
−c d

)(
l
′
1

m
′
1

)
(
p

q

)
−→

(
p̂

q̂

)
=

(
a b

c d

)(
p

q

) (8.2)

Hence (
l̂1
m̂1

)
= M

(
p̂

q̂

)
(8.3)

where

M =

(
a −b
−c d

)
Λ0

(
a b

c d

)−1

. (8.4)

The matrix M ∈ SL(2,Z) and has equal diagonal terms, provided Λ0 has α = δ.

In order to define the T-duality transformation we introduce the following [50](47)

dimensionless variables

Z := TAỸ Z̃ := TÃY (8.5)

where T is the supermembrane tension, A = (2πR)2Imτ is the area of the target torus

and Y = RImτ
|qτ−p| . The tilde variables Ã, Ỹ are the transformed quantities under the T-
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duality.6 See (8.9) for the explicit value of Z. The T-duality transformation we introduce

is given by:

The moduli : ZZ̃ = 1, τ̃ =
ατ + β

γτ + α
;

The charges :

(
p̃

q̃

)
= Λ0

(
p

q

)
,

(
l̃1 l̃2
m̃1 m̃2

)
= Λ−1

0

(
l
′
1 l

′
2

m
′
1 m

′
2

)
.

(8.7)

We notice that the T-duality transformations for the winding matrix, having Λ0 equal

diagonal terms, becomes of the same form as in (3.22). The main difference is that Λ0 is

determined in terms of the winding and KK modes, defining a nonlinear transformation on

the charges of the supermembrane, while (3.22) is a linear transformation on them. With

the above definition of T-duality transformation we have(
p

q

)
→

(
p̃

q̃

)
=

(
l
′
1

m
′
1

)
(
l
′
1

m
′
1

)
→

(
l̃
′
1

m̃
′
1

)
=

(
p

q

) (8.8)

See the appendix A for the construction of Λ0. That is, the KK modes are mapped onto

the winding modes and viceversa. The property together with the condition ZZ̃ = 1 ensure

that (T-duality)2 = I, the main property of T-duality. The explicit transformations of the

real modulus, obtained from the above T-duality transformation is

R̃ =
|γτ + α||qτ − p|2/3

T 2/3(Imτ)4/3(2π)4/3R
,with τ̃ =

ατ + β

γτ + α
and Z2 =

TR3(Imτ)2

|qτ − p|
(8.9)

The winding modes and KK charge contribution in the mass squared formula transform in

the following way:

Tn2A2 =
n2

Ỹ 2
Z2

m2

Y 2
= T 2m2Ã2Z2

(8.10)

To see how the H1 (3.17) transforms under T-duality it is important to realize the trans-

formation rules for the fields,

dXm = udX̃m, dX̃ = ueiϕdX, A = ueiϕÃ

and Ψ = u3/2Ψ̃, Ψ = u3/2Ψ̃
(8.11)

6This definition can be more naturally understood in terms of a vector of the 2-torus moduli V =

(TA,Z/Y ) defined in terms of the moduli (R, τ) as

Ṽ = ΩV (8.6)

being Ω = ( 0 1
1 0 ).
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Where u = Z2 = R|γτ+α|
R̃

, ϕ was defined in (3.23) and dX = dX1 + idX2 and respectively,

its dual dX̃ is

dX̃ = 2πR̃[(m̃1τ̃ + l̃1)dX̂1 + (m̃2τ̃ + l̃2)dX̂2] (8.12)

The phase eiϕ cancels with the h.c. the transformation of the Hamiltonian. The relation

between the hamiltonians through a T-dual transformation is

H =
1

Z̃8
H̃, H̃ =

1

Z8
H. (8.13)

We thus obtain for the mass squared formula the following identity,

M2 = T 2n2A2 +
m2

Y 2
+ T 2/3H =

1

Z̃2

(
n2

Ỹ 2
+ T 2m2Ã2

)
+
T 2/3

Z̃8
H̃. (8.14)

8.1 T-duality on symplectic bundles

There is bijective relation between the symplectic torus bundles with monodromy ρ(α, β)

and the elements of the cohomology group H2(Σ, Zρ) of the base manifold Σ with coeffi-

cients on the module Z2
ρ , and hence with the elements of the coinvariant group associated

to the monodromy group G. That is each equivalence class

{Q+ gQ̂ − Q̂}, (8.15)

for any g ∈ G and Q̂ ∈ H1(T 2), characterizes one symplectic torus bundle. In the formu-

lation of the supermembrane on that geometrical structure Q are identified with the KK

charges. The action of G, the monodromy group, leaves the equivalence class invariant. G

acts as the identity on the coinvariant group. We now consider the duality transformation

introduced previously. It interchanges KK modes Q into components of the winding matrix

through the relation (8.1) (
l1
m1

)
= Λ0

(
p

q

)
(8.16)

Under the duality transformation the equivalence class transform as

{Λ0Q+ (Λ0gΛ−1
0 )Λ0Q̂ − Λ0Q̂}, (8.17)

hence for the dual bundle it holds,{
Λ0

(
l1
m1

)
+ (Λ0gΛ−1

0 )

(
l̂1
m̂1

)
−

(
l̂1
m̂1

)}
, (8.18)

That is, as an element of the coinvariant group of Λ0GΛ−1
0 . We then conclude that the

duality transformation, in addition to the transformation on the moduli R, τ , also maps

the geometrical structure onto an equivalent symplectic torus bundle with monodromy

Λ0GΛ−1
0 . We notice that the transformation depends crucially on the original equivalence
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class of the coinvariant group. So for a nonequivalent symplectic torus bundle the dual

transformations is realized with a different SL(2, Z) matrix Λ0. Consequently, this dual

transformation between supermembrane on symplectic torus bundles cannot be seen at

the level of supergravity theory which only distinguish the monodromy group but not its

coinvariant structure.

Now we are in position to determine the T-duality as a natural symmetry for the family

of supermembranes with central charges. We take:

Z̃ = Z = 1⇒ T0 =
|qτ − p|
R3(Imτ)2

. (8.19)

It imposes a relation between the energy scale of the tension of the supermembrane and the

moduli of the torus fiber and that of its dual. Indeed we can think in two different ways:

given the values of the moduli it fixes the allowed tension T0 or on the other way around, for

a fixed tension T0, the radius, the Teichmuller parameter of the 2-torus, and the KK charges

satisfy (8.19). When this T-duality extended to M-theory acts on the stringy states of the

supermembrane with central charges wrapping on a T̃ 2 one recovers the standard T-duality

relations in string theory [50]. The contribution of the stringy states of the supermembrane

with central charges wrapping on a dual T̃ 2 torus was already found in [50]. At the level

of supergravity the structure of the fiber bundle base manifold of the supermembrane with

central charges is lost and a remanent of it appears as nonvanishing components of the

3-form, which for the supermembrane in the LCG corresponds to C−rs [59]. Following the

lines of the noncommutative torus of [58],7 we can interpret C−rs = Frs in our case the

nondegenerate 2-form associated to the central charge condition, then
∫

Σ Frs = n and at the

level the noncommutative structure of the 2-torus in string theory the nonvanishing three

form corresponds to the presence of nonvanishing Bij field [60] in the closed string sector.

The formulation of the supermembrane in the presence of nonvanishing 3-form has been

analyzed in [59]. In our formulation there is a particularity, since the magnetic field on the

worldvolume of the supermembrane induced by the monopole contribution is nonconstant

and consequently it should be associated to a nonvanishing 4-form flux G = dC in 11D.

In [60] the double T-duality is realized for the the closed strings sector and its associated

noncommutativity, it would be interesting to see if there is a connection with our results.

9 Discussion and conclusions

We showed that the formulation of the supermembrane in terms of sections of the symplectic

torus bundle with a monodromy is a natural way to understand the M-theory origin of the

gauging procedures in supergravity theories [64]. Its low energy limit corresponds to the

type II SL(2,R) gauged supergravities in 9D. We have explicitly shown the relation with

the type IIB gauged sugras in 9D. The global description is a realization of the sculpting

7The work of [58] is mainly done in flat space with Moyal star product in which the noncommutative

parameter is given by the 2-form, however as it is signalled in the paper, it can be generalized to curved man-

ifolds, for which the star product is changed to a deformation quantization star product ( for example in our

case it corresponds to a Fedosov-like product) and then, an additional choice of Poisson structure appears.
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mechanism found in [61] and it is associated to the inequivalent classes of symplectic

torus bundles with monodromies in SL(2,Z). The geometrical description of these kind

of bundles has been developed in [66]. As already conjectured in [61] we claim that the

following diagramme applies:

(9.1)

The supermembrane without any extra topological condition compactified on a 2-torus

is a gauge theory on a trivial principle bundle with structure group of the symplectic group

homotopic to the identity. The supermembrane with nontrivial central charge is also in-

variant under the isotopy group of symplectomorphisms, which in the case considered is

SL(2,Z). In this paper we analyze the gauged supermembrane arising from the gauging of

the abelian subgroups of this SL(2,Z) group which has an intrinsic meaning in the theory.

The gauging is automatically achieved by formulating the supermembrane with central

charges as sections of a symplectic torus bundle with monodromy. The monodromy is also

intrinsically defined by considering representations of Π1(Σ), the fundamental group of the

Riemann base manifold of genus one (Σ), onto Π0(G) the isotopy group of the symplec-

tomorphisms group G. The abelian subgroup of SL(2,Z) acts naturally on the homology

of the target torus (the fiber of the bundle8) H1(T 2). We identify, in our formulation of

the supermembrane, the elements of H1(T 2) with (p, q) KK charges. Besides, the wind-

ing numbers are directly related to the cohomology of the base manifold Σ. For a given

monodromy there is a one to one correspondence between the symplectic torus bundle

with that monodromy and the elements of the coinvariant group of the monodromy [66].

These elements are equivalence clases of KK (p, q) charges which we explicitly described

for the elliptic, parabolic, and hyperbolic monodromies. We classified the symplectic torus

bundles in terms of the coinvariant group of the monodromy. It turns out that at the

level of the supermembrane what is relevant are the elements of the coinvariant group of

a given monodromy group. The possible values of the (p,q) charges on a given symplectic

torus bundle with that monodromy are restricted to the corresponding equivalence class

defining the element of the coinvariant group associated to the bundle. We also analyse the

presence of torsion elements in the cohomology of the base of the manifold or equivalently

Zm ⊕ Zn groups as the coinvariant group of the monodromy. We also obtained, using the

same geometrical setting, the gauging of the trombone symmetry. It is constructed from

a nonlinear representation of SL(2,Z) and gives rise to a different symplectic torus bundle

in comparison to the previous constructions in terms of linear representations.

We showed the existence of a new Z2 symmetry that plays the role of T-duality in M-

theory interchanging the winding and KK charges but leaving the hamiltonian invariant.

8The complete fiber corresponds in this set-up to the target space, that in the case considered is M9×T 2

but the nontrivial topological properties are only associated to the compact sector.
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We expect that all monodromies associated to type IIA will arise from the dual symplectic

torus bundle obtained from this new T-duality symmetry. Consequently, we expect that

the global geometrical formulation of supermembranes we are proposing will provide a

unified origin of all type II gauged supergravities in 9D. We may then conjecture that the

supermembrane becomes the M-theory origin of all type II nine dimensional supergravities.

From this construction of the supermembrane on symplectic torus bundle one may

identify directly corresponding gauged supergravities in 9D. Moreover, a given gauged su-

pergravity can only interact with a corresponding supermembrane on a symplectic torus

bundle associated to a coinvariant element of the same monodromy, otherwise, an incon-

sistency with the transition functions on the bundle will occur. We also obtain the explicit

gauge degree of freedom of the theory, discuss a gauge fixing procedure and obtain the

residual symmetry once the monodromy has been assumed.

Recently in type II String Phenomenology the role of M2-branes wrapping homologi-

cal 2-cycles with torsion has been used as a M-theory realization of the so-called discrete

gauge symmetries ZN . These symmetries may have a potential number of bondages from

the phenomenological viewpoint as for example to be discrete symmetries that can help to

realize proton stability or help to suppress some dangerous operators. It has been conjec-

tured that this M2-branes at low energies would produce Bohm-Aranov particles [72]–[73].

In our constructions many of the M2-branes fiber bundles naturally are wrapped on homo-

logical 2-cycles with torsion. It would be interesting to see whether in compactifications

down to 4D, it could be a possible connection with our construction.
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A Computation of Λ0 matrix of the T-dual transformations

We are going to determine Λ0. Without loss of generality we may assume l1 and m1 to be

relatively prime integers. We have det(W) = n It is important to notice that ( p1
q1 ) are also

relatively prime integers. There always exists Λ0 ∈ SL(2,Z) such that(
l1
m1

)
= Λ0

(
p1

q1

)
(A.1)

We thus have from (5.2): (
p̃1

q̃1

)
=

(
l1
m1

)
. (A.2)
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We now introduce (
r2

r1

)
= Λ−1

(
l2
m2

)
. (A.3)

Now we define A = ( p1 r2
q1 r1 ) consequently A = Λ−1

(
l1 l2
m1 m2

)
, with detA = n. We notice

that det
(
l̃1 l̃2
m̃1 m̃2

)
= A. We thus have a transformation interchanging winding and KK

modes. The expression for Λ0 may be obtained in the following way: There always exists

integers (b2, b1, d1, c1) such that there are B =
(
p1 b2
q1 b1

)
, and C =

(
l1 d1
m1 c1

)
, with(

p1

q1

)
= B

(
1

0

)
,

(
l1
m1

)
= C

(
1

0

)
, (A.4)

where B,C ∈ SL(2,Z). Finally we can determine the transformation matrix Λ0 . It

corresponds to,

Λ0 =

(
l1 d1

m1 c1

)(
p1 b2
q1 b1

)−1

. (A.5)

and together with the (8.6) condition implies that the T-dual transformation (8.7)

(T-duality)2 = I.

B An example of equivalence between the two monodromy representa-

tions considered

In this appendix we are going to prove that the matrix of (6.5) particularized to the

values corresponding to n = 1, m > 0,
(−2m+1 2m+1
−m m+1

)
= T 2STm+1STS is conjugate to

−T−3S(T−2S)m−5. We denote by ∼ two conjugate matrices. We then have

T 2STm+1STS = −T 2STmST−1 ∼ −TSTmS ∼ (−1)mT (STS)m

∼ T (T−1ST−1)m ∼ (T−1ST−1)m−1T−1S ∼ (T−1ST−1)m−2S

∼ (T−1ST−1)m−4T−1 ∼ −T−1ST−1(T−1ST−1)m−5T−1

∼ −(T−1ST−1)(T−1ST−1)m−6T−1ST−2

∼ −T−3ST−1(T−1ST−1)m−6T−1S

= −T−3S(T−2S)m−5. �

(B.1)

Where we have used STS = −T−1ST−1.
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