
Introduction

Tree biomass estimation is needed for the sustaina-
ble planning of forest resources, so the development
of biomass equations has been, and indeed remains,
one of the main lines of work of many researchers (Cunia,
1986, 1988; Waring and Running, 1998). In addition, the
importance of forests as carbon sinks is closely linked to
the amount of biomass available in them, which makes
it essential to have equations to quantify the contribu-
tion of forest areas to the global carbon cycle (IPCC, 2003).

The first studies arose from the need to estimate the
biomass productivity of different species, the studies
on Larix decidua and Picea abies in Switzerland (Burger,
1945, 1953) being the most notable. Subsequently re-
search began to focus on the determination of the dry
weight of tree components (e.g. wood, bark, branches),
especially those components of greater importance for
forest companies. The fields of ecology and physiology
also showed an interest in this research line and con-

tributed to the development of sampling methods, es-
pecially those to quantify foliage (Kittredge, 1944;
Ovington, 1957). Many forest studies develop equations
using regression techniques for specific geographic
areas and tree species. Biomass equations relate tree
biomass (kg) or stand biomass (t/ha), as well as their
components, with easily measurable variables. Tree
variables commonly used are diameter at breast height
(d) and total height (h), while in stand equations, stand
variables like stocking (trees/ha), basal area (G) and do-
minant height (H0) are used.

Studies of the estimation of forest biomass have
increased in recent decades, taking on importance and
incorporating a large number of species and stand
structures (Pardé, 1980; Zeide, 1987; Waring and
Running, 1998). Zianis et al. (2005) made a review of
biomass and volume equations for tree species in Euro-
pe and found 607 biomass equations, although only a
minority relevant to Southern Europe. In many cases,
these studies go beyond quantification or characteri-
zation, and cover more global aspects, such as those
concerning the harvesting and further use of the wood
(for pulp, firewood, biomass, etc.) and their application
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in research (e.g. study of carbon cycle, nutrient balance
of forest systems). In recent years, remote sensing has
proved to be an effective tool in quantifying forest bio-
mass (Montes et al., 2000; Drake et al., 2002), although
this method needs real data relating to tree size, so it
is always necessary to quantify individual trees to later
determine forest biomass and express it per unit area
(Diéguez-Aranda et al., 2003).

Several studies on radiata pine (Pinus radiata D.
Don) biomass have been developed, most of them
conducted in New Zealand, Chile and South Africa (e.g.
Madgwick, 1983, Guerra et al., 2005; Moore, 2010). In
Spain, tree biomass equations for this species have
been f itted in Galicia (Balboa-Murias et al., 2006),
along with general models for the country as a whole
(Montero et al., 2005). In addition, other studies have
been conducted that relate biomass production of ra-
diata pine with soil properties or nutrient accumulation
(Rey et al., 2001; Merino et al., 2003). Recently, Balboa-
Murias et al. (2006) carried out a study of the temporal
variations and distribution of carbon storage in radiata
pine and maritime pine pure stands under different silvi-
cultural management. Given these findings highlighting
the variability of growth depending on a number of diffe-
rent factors, it is evident that it is of interest to develop
models which are specific to different geographical
areas, with their own specific soil, meteorological and
geographical conditions, in this case Asturias.

This work is part of a total quantif ication of the
potential of radiata pine for carbon storage in Asturias
and for the use of residues (thinnings and final fellings)
for energy. The aim of this study was to develop equa-
tions to predict the biomass of above-ground com-
ponents (wood, bark and crown) for radiata pine in
Asturias. The analysis required the use of appropiate
statistical techniques to correct the heterogeneity of
variance of the residuals in the adjustment of different
biomass components equations, as well as a simulta-
neous adjustment to ensure additivity between the
estimates of biomass equations of the different compo-
nents and the total tree biomass equation.

Material and methods

Data

The data used to develop above-ground biomass
equations was based on a sample of 27 radiata pine
trees in five stands managed by Forest Services in As-
turias (sample size was dictated by the availability of

resources). Trees from all diameter classes were
selected (minimum diameter equal to 5 cm), avoiding
trees with severe defects or imbalances due to their
proximity to stand edges, forest tracks, etc.

Before felling, diameter at breast height (d) and total
height (h) were measured. After felling, total height
measurements were verified and trees were destructi-
vely sampled, separating above-ground biomass into
the following components: stem (logs with bark with
a thin-end diameter of 7 cm), branches of a diameter
larger than 7 cm, thick branches (2-7 cm) and branches
of a diameter less than 2 cm.

The fresh weight of each component was measured
in the field with a portable balance (accurate to 0.1 kg).
Disks, with bark, were cut from each stem at regular
intervals. These disks together with representative
samples of all tree components were then taken to the
laboratory where disks were separated into wood and
bark, and branches with a diameter of less than 2 cm
were further separated into needles, twigs (diameter
less than 0.5 cm at the insertion) and thin branches (0.5
to 2 cm diameter).

Subsamples of the different biomass components
were oven-dried at 105°C to determine field moisture
content, which was then used to convert fresh weight
to dry weight.

Table 1 gives the descriptive statistics of diameter
at breast height, total height, total dry weight and dry
weight of the different components (incorporating the
crown as the sum of branches and needles).

Adjustment of biomass equations

Once the dry weight of the different components had
been determined, different models were developed to
relate dry weight with measurable tree variables.
Diameter is the most common variable used in above-
ground biomass equations [w = f(d)], although the
inclusion of tree height as the second predictor variable
[w = f(d, h)] signif icantly improves the adjustments
(Wang, 2006), hence both were used for this study.

A variety of models have been used in the estimation
of tree biomass (Cunia and Briggs, 1984; Reed and
Green, 1985; Reed et al., 1996), although all are deri-
ved from three mathematical models: linear, non-linear
with additive error and non-linear with multiplicative
error (Pardé, 1980; Snodow, 1985; Parresol, 1999):

In this work, the first step was to fit an individual mo-
del for every component, using as independent varia-
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bles the diameter and total height of individual trees.
In the second step, in order to ensure additivity between
the sum of the estimates of the biomass equations of
the different components and the total biomass equation,
and considering it unrealistic to assume that the errors
of each equation are not correlated (Borders, 1989; Parresol,
1999, 2001), the equations of all the components of
above-ground biomass were fitted simultaneously.

Initially, models for every sampled component were
fitted, producing unsatisfactory results for branches,
twigs and needles. In addition there were problems of
convergence and high multicollinearity in the simulta-
neous adjustment, probably due to the sample size.
Branches, twigs and needles were therefore combined
in a single component named “crown”, which resulted
in increased accuracy of the estimations. This corres-
ponds with the three components (wood, bark and
crown) into which above-ground biomass is usually
divided (Evert, 1985; Parresol, 1999).

Individual adjustment

Linear and non-linear models were fitted for each
component considered in this study (wood, bark and
crown). Linear models were fitted using the method of
least squares with the REG procedure of SAS/STAT®

software (SAS Institute Inc., 2004a). Non-linear mo-
dels were fitted by least squares with the SAS/STAT®

NLIN procedure, using the iterative method of Gauss-
Newton (Hartley, 1961).

Normally, biomass data exhibit heteroscedasticity,
that is, the error variance is not constant (Parresol,
2001). Although it is true that in the presence of hete-
roscedasticity the least squares estimates of the para-
meters remain unbiased and consistent, they are

inefficient, and therefore their standard errors are not
correct and the usual signif icance test cannot be
applied. To confirm the presence of heteroscedasticity,
the graphics of studentized residuals vs. estimated
values were analyzed and White (1980) and Breusch
and Pagan (1979) tests were applied. Heteroscedas-
ticity was corrected by weighted regression (Schlaegel,
1982; Cunia, 1986; Parresol, 1999), applying to every
observation a weighting equal to the inverse of the
variance of the residuals, using the potential function
(Neter et al., 1996). The value of the exponent k was
calculated using the optimization methodology
proposed by Harvey (1976). Different weighted factors
were tested (d–k, d2h)–k depending on the independent
variables of each model.

The other usual problem in the adjustment of bio-
mass equations is multicollinearity, which arises when
the independent variables in the model are themselves
correlated. The presence of severe multicollinearity
makes parameter estimates unstable, i.e. they depend
too much on the particular dataset used in the adjust-
ment (Myers, 1990). To analyze the presence of multi-
collinearity in each evaluated model, the condition
number (CN) was used. According to Belsey (1991,
pp: 139-141), a CN < 10 indicates that collinearity is
not a major problem, if 30 ≤ CN ≤ 100 there are pro-
blems of multicollinearity and if 1,000 < CN < 3,000
the problems are severe.

Simultaneous adjustment to ensure additivity

One of the most important properties of biomass
equations for the different components is that the sum
of their estimations should be equal to the estimation
provided by the total biomass equation; a property known
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Table 1. Descriptive statistics of sample of 27 trees used in the adjustment

Variable n Min. Max. Mean Std. Dev.

Diameter at breast height (cm) 27 14.6 63.6 35.9 13.6
Total height (m) 27 12.4 32.9 20.6 5.51
Total dry weight (kg) 27 63.0 1,856.4 605.2 528.9
Wood dry weight (kg) 27 39.4 1,464.6 435.9 399.3
Bark dry weight (kg) 27 4.13 192.0 62.2 57.6
Dry weight of branches 7 cm (kg) 11 2.53 72.6 30.1 27.4
Dry weight of thick branches 2-7 cm (kg) 27 4.20 174.9 45.5 41.4
Dry weight of thin branches 0,5-2 cm (kg) 27 3.89 81.3 31.4 25.3
Dry weight of twigs (kg) 27 1.50 36.2 13.00 8.57
Dry weight of needles (kg) 27 0.61 26.9 6.56 5.75
Dry weight of crown (kg) 27 10.5 356.9 107.1 94.7



as additivity. Studies by Kozak (1970), Chiyenda and
Kozak (1984) and Cunia and Briggs (1984, 1985)
resulted in three different methods for forcing additi-
vity in a lineal system of biomass equations. Parresol
(1999) concluded that the most flexible and general is
the method based on simultaneous adjustment using
Zellner’s (1962) seemingly unrelated regression (SUR).
It allows the use of different mathematical models,
with different independent variables and weighting
factors, for each fraction. Furthermore, this method
corrects the problem of inherent errors between the
estimations of each model. In this case, the indepen-
dent variables of the total biomass equation are all the
independent variables of the rest of the models and
additivity is ensured by setting restrictions on the regression
coefficients. SUR takes into account the existing corre-
lations between biomass components and results in
lower variance. The greatest benefit in using SUR metho-
dologies is that confidence and prediction intervals for
biomass estimates are reduced (Parresol, 2001). In the
case of systems of non linear equations, the simulta-
neous adjustment requires the use of NSUR (Nonlinear
Seemingly Unrelated Regressions) (Parresol, 2001).

In this study, once individual models were selected
for each component the parameters were estimated
again by NSUR methodology, using the MODEL
procedure of SAS/ETS® (SAS Institute Inc., 2004b).
In the simultaneous adjustment, the same weighting
factors for every component were used, ensuring the
additivity of biomass estimations, thus allowing the
calculation of the biomass of two or more components,
or total biomass, simply by adding together the dry
weight of each component.

Model evaluation

Comparison of the performance of the models for
each component was based on numerical and graphical

analyses of the residuals. For this purpose, the follo-
wing statistics were calculated: coefficient of determi-
nation (R2), root mean square error (RMSE) and Akaike’s
information criterion differences (AICd).

Besides the statistics above, one of the most efficient
ways of evaluating model performance is by visual
inspection. Therefore, scatter plots of studentized re-
siduals against the estimated values were analyzed to
check for the presence of heteroscedasticity.

Results

Individual adjustment

Once the different models for each component were
adjusted, the best model was selected in each case ba-
sed on goodness-of-fit statistics and graphical analyses.
After the graphical analysis and the White (1980) and
Breusch and Pagan (1979) tests, heteroscedasticity was
detected in all the selected models for every compo-
nent, so these were f itted again using weighted re-
gression, selecting the weighting factor according to
the optimization methodology proposed by Harvey
(1976). Results of the heteroscedasticity tests and
weighting factors used in the individual adjustments
are shown in Table 2 and the correction can be observed
(p-value greater than 0.05). Scatter plots of studentized
residual against predicted values using the weighting
factors also demonstrated heteroscedasticity to be
corrected through weighted regression.

Table 3 shows the parameter estimates and their
corresponding approximated standard errors for the
selected models for each component using weighted
regression. All the parameters were found to be signi-
ficant at the 5% level. Additionally, this table shows
the condition numbers and goodness-of-fit statistics
calculated from the residuals obtained with the weighted
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Table 2. Weighting factors used in the adjustment by weighted regression of different component biomass equations and re-
sults of heteroscedasticity tests

Model Weighting factor Test Statistic d.g. Pr. > χ2

White 5.19 5 0.3935
Breusch-Pagan 2.35 1 0.1250

White 2.85 2 0.2408
Breusch-Pagan 1.26 1 0.2607

White 14.49 8 0.0698
Breusch-Pagan 5.24 2 0.0728d 2h( )−0,8629w

crown
= β

0
+ β

1
d + β

2
d 2 + β

3
d 2h

d 2h( )−1,878
w

bark
= β

1
d 2h

d 2h( )−1,866
w

wood
= β

1
d 2h( )b2

wi: dry weight of component i (kg). βj: parameter of the model. d: diameter at breast height (cm). h: total height (m).



regression. The condition numbers calculated allow
the conclusion to be drawn that the models have no
problems of multicollinearity.

Simultaneous adjustment

Once each biomass component was individually
adjusted, the best models selected were simultaneously
fitted using NSUR methodology in order to ensure the
additivity of the biomass components.

All the independent variables that appear in the
models of wood, bark and crown biomass are included
in the model of total biomass; the additivity is guaran-
teed by imposing restrictions on the parameters. The
models of different components were adjusted using
the same weighting factors as in the individual adjust-

ments (Table 2). Table 4 shows the parameter estimates,
significance tests and goodness-of-fit statistics for the
models obtained by simultaneous adjustment of the
system of the four biomass equations. All parameters
were significant at the 5% level. The homogeneity of error
variance was confirmed by graphical analyses of the stu-
dentized residuals and White and Breusch-Pagan tests.

The equations finally proposed for the estimation
of above-ground biomass of radiata pine trees in Astu-
rias are then:

[1]

[2]

[3]w
crown

= 61.57 − 6.978 ⋅d + 0.3463 ⋅d 2 − 0.006097 ⋅d 2h

w
bark

= 0.001757 ⋅d 2h

w
wood

= 0.009892 ⋅ d 2h( )1,023
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Table 3. Selected equations for each component, parameter estimates, associated approximate standard errors, condition
number and goodness-of-fit statistics of the individual adjustments using weighted regression

Model Parm Estimate
Std.

t
Approx.

CN R2 RMSE
error Pr. > |t|

β1 0.01061 0.00398 2.666 0.0132 20.5 0.9246 111.8
β2 1.016 0.037 27.72 < 0.0001

β1 0.001927 0.000145 13.27 < 0.0001 1.0 0.7378 29.48

β0 66.21 31.40 2.109 0.460 42.9 0.8879 33.70
β1 –7.256 2.438 –2.976 0.0068
β2 0.3402 0.0665 5.116 < 0.0001
β3 –0.005684 0.001425 –3.989 0.0006

w
crown

= β
0

+ β
1
d + β

2
d 2 + β

3
d 2h

w
bark

= β
1
d 2h

w
wood

= β
1

d 2h( )b2

Table 4. Parameter estimates, significance tests and goodness-of-fit statistics for the biomass equations of each component
and total biomass obtained by simultaneous adjustment (NSUR)

Model Parameter Estimate
Std. error

t
Approx.

R2 RMSE
error Pr. > |t|

β11 0.009892 0.0034831 2.839 0.0088 0.9238 110.2
β12 1.023 0.034 29.80 < 0.0001

β21 0.001757 0.000120 14.64 < 0.0001 0.7692 27.40
β30 61.57 15.42 3.993 0.0005 0.8888 32.19

β31 –6.978 1.396 –4.999 < 0.0001
β32 0.3463 0.0424 8.167 < 0.0001
β33 –0.006097 0.000935 –6.520 < 0.0001

0.9376 139.0

wi: dry weight of component i (kg). βj: parameter j of component i (wood, bark or crown). d: diameter at breast height (cm). 
h: total height (m). R2: coefficient of determination. RMSE: root mean square error.

w
total

= β
11

(d 2h)β12 + (β
21

+ β
33

)d 2h
+ β

30
+ β

31
d + β

32
d 2

w
crown

= β
30

+ β
31

d + β
32

d 2 + β
33

d 2h

w
bark

= β
21

d 2h

w
wood

= β
11

d 2h( )β12

wi: dry weight of component i (kg). βj: parameter of the model. d: diameter at breast height (cm). h: total height (m). CN: condi-
tion number. R2: coefficient of determination. RMSE: root mean square error.



[4]

where wi is the dry weight of each biomass component
i (kg), d the diameter at breast height (cm) and h the
total height (m).

Fig. 1 shows the graphics of the observed values of
the different biomass components and of the total
biomass compared to predicted values using the corres-
ponding equation.

Discussion

The simultaneous adjustment provided a sensitive
improvement in most of the goodness-of-fit statistics.
Other authors have also verified such an increase in
some of the statistics, as well as a slight decrease in others
(Paulo et al., 2002; Carvalho and Parresol, 2003).

Although the changes in the goodness-of-fit statis-
tics were small and the parameters estimated through
simultaneous adjustment were similar to those
obtained by individual adjustment, the parameter stan-
dard errors decreased noticeably (a direct result of
taking into account the contemporaneous correlation
between the components), and hence the parameter
estimation was more eff icient. Similar results have

been obtained in other studies which verif ied that
NSUR methodology improves the accuracy of biomass
predictions (Parresol, 1999, 2001; Carvalho and
Parresol, 2003).

The best adjustments were obtained in the equations
of wood and total biomass. For crown biomass, varian-
ce in its estimation was greater, in relative terms, than
that obtained in the estimations of wood biomass,
which is due to the variability of the crown structure,
the number of branches and variation in wood density
along branches (Pardé, 1980). Maybe the inclusion of
other independent variables (e.g. live crown length)
could improve the quality of the adjustment, although
it involves a great sampling effort to be able to apply
the model. The condition number in the simultaneous
adjustment was 51.7, indicating that the model does
not have serious problems of multicollinearity.

Conclusions

In this study a system of equations of above ground
biomass for radiata pine in Asturias was developed
through simultaneous adjustment with the generalized
least squares method known as NSUR (Nonlinear
Seemingly Unrelated Regressions), which ensured the
additivity of the equations. A system of four biomass
equations (wood, bark and crown biomass and total

61.57 − 6.978 ⋅d + 0.3463 ⋅d 2

w
total

= 0.009892 ⋅ d 2h( )1.023
− 0.004340 ⋅d 2h +
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Figure 1. Scatter plots of observed values against predicted values of the different biomass components and total biomass.



biomass) was developed, such that the sum of the
estimations of the three biomass components is equal
to the estimate of total biomass. The wood and total
biomass equations explained more than 92% of the
variability of the observed data, while the bark and
crown biomass equations accounted for 77% and 89%
respectively. In further studies it would be advisable
to increase the sample size in order to obtain a system
of equations which consider all the components
initially sampled individually (stem, bark, branches,
twigs and needles) and thus improve the quality of the
fit. However, the results obtained in the current work
allow the estimation of the dry weight of different
components and total dry weight with sufficient accu-
racy for the aim of this study, and, furthermore, these
equations have better behavior than the models that
have existed until now for this species in Spain.
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