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Abstract. In this work, we describe a procedure to visualize nonlinear
process dynamics using a self-organizing map based local model dynam-
ical estimator. The proposed method exploits the topology preserving
nature of the resulting estimator to extract visualizations (planes) of
insightful dynamical features, that allow to explore nonlinear systems
whose behavior changes with the operating point. Since the visualiza-
tions are obtained from a dynamical model of the process, measures on
the goodness of this estimator (such as RMSE or AIC) are also applica-
ble as a measure of the trustfulness of the visualizations. To illustrate
the application of the proposed method, an experiment to analyze the
dynamics of a nonlinear system on different operating points is included.

Key words: System identification, self-organizing map, information vi-
sualization

1 Introduction

Information Visualization techniques have experienced a growing interest for
the analysis and interpretation of large volumes of multidimensional data. Bor-
rowed from other areas, such as bioinformatics, socioeconomics or medicine, in
last years these techniques have been also used for modelling and supervision of
industrial processes from data and previous knowledge. One powerful data vi-
sualization method is the self-organizing map (SOM), [6] that allows to project
data in a smooth manner on a 2D (or 3D) space that can be subject of graphical
representation. This link between process data and a 2D space may be used to
obtain 2D maps of the process states that allow to represent different features
of the process in an insightful manner, helping to exploit available data and
knowledge in an efficient way for process understanding [1].

However, while the SOM has been mostly used to model static relationships
among the input variables, it can also be used to model nonlinear dynamical
processes using local models that describe the dynamical behavior in a small
region in which the process behavior can be considered approximately linear. The



idea of assigning a dynamical model to each unit was already described in the
early 90’s by Kohonen as operator maps in [5], and variations of it using different
training approaches were later proposed in [9, 4, 2]. One particularly efficient
variant of this approach was proposed in [8] and later, with slight modifications,
in [3], with excellent results, for identification and control problems in systems
whose dynamics change over the operating regime.

Surprisingly, while the basic SOM has proven to be an excellent tool for
exploratory data analysis, very little work has been published on using it to
visualize the dynamical behavior of processes in an explicit way. In this paper,
we suggest the use of the local linear modelling approach proposed in [3] intro-
ducing the notion of selectors of dynamics for the visualization of meaningful
dynamical features of the local models, exploiting two major characteristics of
this approach: the superior estimation accuracy of this method with respect to
global approaches, that supports the accuracy of the resulting visualizations, and
the topological order of the resulting local models –which occurs under certain
mild hypotheses– that ensures a proper visualization.

2 Local linear modelling of dynamics

Let’s consider the following parametric Nonlinear AutoRegresive with eXogenous
inputs (p-NARX) system that express the present output as a function of past
outputs and inputs as well as of a set of parameters.

y(k) = f(y(k − 1), ..., y(k − ny), u(k), ..., u(k − nu), p1(k), ..., pp(k)) (1)

This model can be expressed in a more compact way as

y(k) = f(ϕ(k),p(k)) (2)

where ϕ(k) = [y(k − 1), · · · , y(k − n), u(k), · · · , u(k − m)]T is a vector of known

data at sample k, p = [p1(k), · · · , pp(k)]
T

is a vector of parameters, and f(·, ·) is a
given functional relationship that may be linear or nonlinear. Model (2) describes
a dynamic relationship between the process inputs and outputs determined by
the values of p1(k), ..., pp(k).

2.1 Clustering dynamics

Let’s consider a set of available process variables s(k) = [s1(k), · · · , ss(k)]
T
∈ S

that are known to discriminate different dynamical process behaviors, that is,
such that p(i) 6= p(j) =⇒ s(i) 6= s(j); under this hypothesis, these variables can
be regarded as selectors of dynamics, since information regarding the dynamic
relationship between the process’ inputs and outputs is preserved in the selectors.

In a first stage, a SOM with N units is trained in the selectors space S
to cluster the process dynamics. Each unit i is associated to a s-dimensional
prototype vector mi in S and a position vector on a low dimensional regular



grid, gi, in the output space. For each vector s(k) the best matching unit is
computed as

c(k) = arg min
i
{s(k) − mi(t)} (3)

Then, an adaptation stage is performed according to

mi(t + 1) = mi(t) + α(t)h(c(k), i) [s(k) − mi(t)] (4)

where α(t) is the learning rate and h(., .) is the neighborhood function. After
convergence, the result is a set of prototype vectors that divide S into a finite
set of Voronoi regions each of which defines a different dynamic behavior.

2.2 Local model estimation

Once a SOM has been trained with the {s(k)}, a model i may be estimated for
each prototype mi using all the pairs {y(k), ϕ(k)} such that

‖g(c(k)) − g(i)‖ ≤ σloc where c(k) = arg min
i
{s(k) − mi(t)} (5)

that is, those pairs whose corresponding selectors s(k) are mapped onto a neigh-
borhood of mi of width σloc. A particular choice can be a linear model

y(k) = pT
i ϕ(k) + ε(k), for neuron i (6)

whose parameters pi can be obtained using least squares to fit the aforemen-
tioned pairs {y(k), ϕ(k)}. This corresponds to a local ARX model associated to
neuron i, that can be rewritten using the difference equation notation

y(k) =

ny
∑

j=1

ai
jy(k − j) +

nu
∑

j=0

bi
ju(k − j) + ε(k) (7)

or as a transfer function

G(z,pi) =
Y (z)

U(z)
=

∑nu

j=0 bi
jz

−j

1 −
∑ny

j=1 ai
jz

−j
(8)

being pi = [ai
1, ..., a

i
ny

, bi
0, b

i
1, ..., b

i
nu

]

2.3 Retrieval

Once the model is trained, a local model f(ϕ(k),pi) is assigned to each neuron i.
The problem of retrieval is stated as to get y(k) given ϕ(k) and the dynamic se-
lectors s(k). This is accomplished in two steps: 1) obtain the best matching unit,
c(k) = arg mini{s(k)−mi(t)} and 2) apply the local model y(k) = f(ϕ(k),pc(k)).
Note that depending on the problem (one or multiple step ahead prediction) data
vector ϕ(k) may contain real or estimated past outputs.



3 Visualization of dynamics

3.1 Election of the dynamic selectors

After the steps outlined in sections 2.1 and 2.2, the result is a set of prototype
vectors mi in the space of dynamic selectors, along with companion vectors pi

containing the model parameters, {mi,pi}.

A key issue for visualization is topology preservation. Since the prototype
vectors mi have been directly obtained from the SOM algorithm (3),(4), they
may be expected to be properly ordered for visualization as largely seen in the
literature [6, 7]. But, what about the pi?. Under the hypothesis of discriminat-
ing dynamic selectors stated in sec. 2.1 –i.e., different dynamical behaviors never
occur for the same values of the dynamic selectors– and requiring a somewhat
smooth relationship between the selectors and the process dynamics, the SOM
topology preservation will maintain this smoothness on the maps by transitivity.
In other words, smooth transitions between the dynamics of nearby prototypes
will emerge. This means that not only component planes obtained from proto-
type vectors mi but also planes of the elements of pi, or physically insightful
transformations of them, will be smooth and susceptible to be visualized.

Despite these apparently restrictive conditions a proper choice of the dynamic
selectors can be often done from problem domain knowledge. This is often the
case for nonlinear processes whose local dynamics at sample k, (say, p(k)) depend
on the current working point (say, s(k)). Also, proper choices can be made with
little prior knowledge inspired on the Takens embedding theorem, as suggested
in [8] and [3], such as using an embedded vector with delayed versions of one or
more process outputs as dynamic selectors

s(k) = [y(k − 1), y(k − 2), ..., y(k − q)]
T

(9)

Note however, that the dynamic selectors do not need to be restricted to the em-
bedding space of the outputs as suggested in [3]. Indeed, other process variables
–specially those suspected to define working points with different dynamics– may
be included in s(k) to evaluate their influence on the process dynamics by means
of the SOM visualizations.

3.2 Visualization of dynamic features

The parameter vectors pi convey information about the process dynamics. As
seen in eqs. (7) and (8), in the linear case the pi is equivalent to a difference equa-
tion or a transfer function. A trivial approach to visualize the process dynamics
is to visualize the component planes of the elements of pi. Each component
plane [6] is obtained by assigning to each node gi in the SOM grid a gray or
color level proportional to the scalar values of the elements ai

j and bi
j of pi asso-

ciated to node i. To get some insight on the dynamics, however, there are other
possible representations that can be expressed as parametric transformations



T (pi, θ1, θ2, ...) of the elements of pi. A useful representation, for instance, is the
power density of a transfer function at normalized frequency θ

T (pi, θ) =

∣

∣

∣

∣

∣

∑nu

j=0 bi
je

−jθ

1 −
∑ny

j=1 ai
je

−jθ

∣

∣

∣

∣

∣

2

(10)

Of course any other straightforward transformations in the same idea of (10) are
suitable such as peak gains, resonant frequencies, bandwidth, etc.

4 Experimental results

The proposed method was tested on simulated data of a nonlinear system con-
sisting of a pendulum of mass m and length l mounted on a car whose basis is
subject to an acceleration u (see fig. 1).
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Fig. 1. On the left, the schematics of the pendulum; on the right, comparison of global
linear model against local models on test data.

Jθ̈ + Bθ̇ = mgl sin θ + mlu cos θ (11)

where J is the moment of inertia w.r.t. the pivot, B is the friction coefficient
and g = 9.8m/s2 is gravity acceleration. Choosing x = [x1, x2]

T = [θ, θ̇]T , and
y = θ, it can be expressed in state space form

ẋ1 = x2 (12)

ẋ2 =
1

J
(mgl sin x1 + mlu cos x1 − Bx2) (13)

y = x1 (14)



that reveals a nonlinear state space dynamics of the type ẋ = f(x, u) showing
different local behaviors on different state space regions. The linearized model for
small movements around an equilibrium point defined by θ0, in transfer function
form is

G(s, θ0) =
ml cos θ0

Js2 + Bs − mgl cos θ0
(15)

that, as seen, depends on θ0. This system is nonlinear and exhibits different local
dynamic behaviors depending on the working point defined by θ. An embedded
vector with delayed versions of the output, as shown in eq. (9), was selected as
dynamic selectors, as suggested in [8]. As in [3], good results were achieved with
low values of q, and we finally selected q = 2 to yield

s(k) = [θ(k − 1), θ(k − 2)]
T

(16)

Conceptually, this allows to take into account both the current angle and speed
of the pendulum, [θ, θ̇]T , since both states can be derived through linear trans-

formations of the elements of s(k) as θ ≈ θ(k − 1) and θ̇ ≈ θ(k−1)−θ(k−2)
∆t

To evaluate the proposed method, the system was simulated under random
steps of the car acceleration u of 5 seconds duration each, with a sample time
ts = 0.5 sec. and a total simulation time of 5000 sec., resulting in vectors θ(k)
and u(k) of 10000 samples. A 20×20 SOM was trained using the batch algorithm

on vectors s(k) = [θ(k − 1), θ(k − 2)]
T

with a PCA normalization and a gaussian

neighborhood hij(t) = e
−

d(i,j)

σ(t)2 where σ(t) was made to decrease monotonically
from 7 to 0.3.

Once the SOM was trained, local ARX models in the form (7) were trained
for all combination of orders ny = {1, 2, 3} and nu = {1, 2, 3} and using local
model widths σloc = {2, 3} in eq. (5). For each pair (ny, nu) the model was
evaluated against validation data, and the Akaike’s information criterion (AIC)

AIC = log

(

N
∑

i=1

[y(i) − ŷ(i)]2

)

+ 2d/N (17)

was computed for all the local models to select the best model order, where d =
ny +nu+2 is the total number of model parameters including a bias term, and N
is the number of estimation data. From table 1 the best performance is achieved
by the 10th model type consisting of ARX(2,2) using a local model width σloc =
3. The prediction ability of this model on test data is compared to the global
linear model in fig. 1, showing that it clearly outperforms the global linear model.
This suggests that information regarding the system’s dynamical behavior is
present in the dynamical model based on the local approach. Since the local
models are topologically ordered by the SOM, meaningful properties for single
local ARX models (such as e.g. spectral densities at given frequencies) can be
visualized for all the models by means of SOM maps, providing a comprehensive
description of all the dynamic modes of the nonlinear system –see fig. 2.



nu ny σloc RMSE (loc) RMSE (lin) AIC (loc)

1 1 1 2 0.163 0.252 −3.59
2 1 1 3 0.143 0.252 −3.84
3 1 2 2 0.168 0.328 −3.52
4 1 2 3 0.145 0.328 −3.81
5 1 3 2 1.18 0.532 0.396
6 1 3 3 0.231 0.532 −2.87
7 2 1 2 0.0557 0.222 −5.72
8 2 1 3 0.06 0.222 −5.58
9 2 2 2 0.0545 0.223 −5.76

→ 10 2 2 3 0.0528 0.223 −5.86
11 2 3 2 18.8 0.493 5.94
12 2 3 3 0.534 0.493 −1.18
13 3 1 2 0.0528 0.235 −5.82
14 3 1 3 0.0645 0.235 −5.46
15 3 2 2 0.108 0.26 −4.38
16 3 2 3 0.451 0.26 −1.57
17 3 3 2 1.18 0.257 0.418
18 3 3 3 100 0.257 100

Table 1. Comparison of different model orders against validation data.

As a matter of fact, the dc gain can be computed at s = 0 in the linearized
model (15) for all equilibrium points as G(0) = −1/g, regardless the value of
the equilibrium point θ0. However, in the nonlinear system, the angle θ for a
constant acceleration u0 can be shown to be θ0 = arctan (−u0/g) at steady

state, that is, the dc gain is arctan(−u0/g)
u0

, that approximately coincides with
−1/g for small values of u0, near the working point θ0 = π. This real behavior is
shown in the frequency map for ω = 0 (dc gain), where the dc gain of the system
is approximately -20 dB (= 0.1 ≈ 1/g) for values of θ around π, but decreases
as the pendulum approaches to the horizontal positions θ around π/2 or 3π/2.

Finally, other more subtle dynamical relationships can also be observed, such

as the relationship between map of angular speed (∆y(k−1)
def
= y(k−1)−y(k−2))

and the harmonics at 0.3fs and 0.35fs, for which it seems that the nonlinear
model of the pendulum exhibits surprisingly lower gains for large angular speeds
regardless the sign of this speed.

5 Conclusions

In this work we have proposed a method to visualize the local dynamical be-
haviors of nonlinear processes using the SOM local linear approach described in
[3] with some assumptions that require some prior knowledge –usually available
from problem domain– about the variables that can have an influence on the
process dynamics. Since the visualizations are derived from a dynamical model
used for estimation, the accuracy of the visual descriptions of dynamics may be
measurable, in some sense, using standard performance indices (such as RMSE
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Fig. 2. Frequency response maps. Frequencies are expressed in p.u. with respect to the
sample rate fs; gains at each frequency are expressed in dB.

or AIC) of the estimator on test data. Experimental results with simulated data
of a nonlinear system are included to show its application.

While the proposed method has proven to work well under reasonable con-
ditions in other problems, some unsolved questions still remain, such as the
requirable conditions for adequate persistence of excitation of the training data,
as well as the interpretability of deficient rank or locally unstable models, that
may arise even for a good accuracy of the underlying estimator.
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