
Statistics for detecting DIF among multiple groups: A simulation study

12th European Congress of Psychology. Istanbul, July 4-8, 2011

Partially supported by the Spanish Ministry of Education and Science CONSOLIDER-C (SEJ2006-14086/PSIC), and by the Spanish Ministry of Science and Innovation (Research project PSI2009-08529).

Overview

- DIF is a potential threat to comparing scores of people belonging to different groups
- Many statistics and procedures for testing DIF when there are two comparison groups (RG and FC)
- But in some cases we need to compare multiple groups
 - cross cultural research
 - multilingual research
 - interactions between two relevant grouping variables

- Generalized Mantel-Haenszel (GMH)
- CFA with latent Mean & Covariance Structure (MACS)

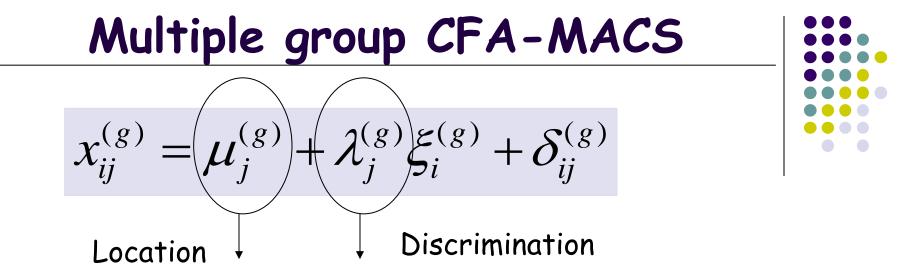
Objective

- Compare the adequacy of GMH and MACS to test DIF in polytomous items across multiple groups:
 - Can be more adequate for relatively small sample sizes than some othe procedures based on IRT
 - Global comparison can be made, no need to compare groups two by two

 Montecarlo simulation to test power and type I error rates of both procedures

Multiple group GMH

- GMH across multiple groups (Q:R*2) (Penfield, 2001)
 - Drawback: Limited to dichotomous items
- Recent extension for polytomous items (Q:R*C) (Fidalgo & Madeira, 2008)
 Response Variable Categories


$$Q_{GMH} = \left\{ \sum_{h=1}^{Q} \left(\mathbf{n}_{h} - \mathbf{m}_{h} \right)^{'} \mathbf{A}_{h}^{'} \right\} \left\{ \sum_{h=1}^{Q} \mathbf{A}_{h} \mathbf{V}_{h} \mathbf{A}_{h}^{'} \right\}^{-1} \left\{ \sum_{h=1}^{Q} \mathbf{A}_{h} \left(\mathbf{n}_{h} - \mathbf{m}_{h} \right) \right\}$$

where
$$\mathbf{A}_h = \mathbf{C}_h \otimes \mathbf{R}_h$$

	Response variable caregories							
Factor levels	1	2		j		С	Total	
1	n _{h 11}	n _{h12}		n _{h 1j}	•	n _{h1C}	<i>N</i> _{<i>h</i>1.}	
2	<i>n</i> _{h21}	n _{h22}		n _{h 2j}	•	<i>n</i> _{<i>h</i>2<i>C</i>}	N _{h2.}	
÷	÷	÷	:	:	÷	:	÷	
i	n _{hi 1}	n _{hi 2}		n _{hij}	•	n _{hiC}	N _{hi.}	
÷	:	÷	÷	:	÷	÷	:	
<i>R</i> Total	n _{hR 1} Nh·1	n _{hR2} Nh·2		n _{hRj} Nh∙j		n _{hRC} Nh·C	N _{hR.} Nh	

- MG-GMH Simulation studies (Fidalgo & Scalon, 2010): MG-GMH preferable to multiple pair-wise tests (even after Bonferroni)
 - Well-controlled Type I error
 - Equal or better power, especially for uniform DIF

- An item is DIF free if both parameters are invariant
- Hypothesis of invariance is typically tested by comparing significance of χ^2 for nested models

Simulation studies

(Stark et al., 2006, González-Romá et al., 2006; Hernández et al., 2008, Meade & Lautenshlager, 2004)

- Power generally adequate, especially for uniform DIF
- Type I error depends on the baseline model taken for comparison: Fully free or Fully constrained (better in 1st case)

Objective

 Montecarlo simulation to test power and type I error rates in detecting DIF in polytomous graded items of Multiple group GMH and MACS, when there are more than two groups.

- MG-GMH

- MG-MACS: Most efficient version that starts with the fully constrained baseline model and uses the MIs to flag DIF items

• Two possibilities: Applying Bonferroni correction for the number of items evaluated or not

Simulation conditions

- Took the parameters used by González-Romá et al. (2006) to simulate the data (used MACS model: generated continuous data and categorize afterwards)
 - 3 groups, equal latent distributions
 - 10 items with 5 graded response categories
 - One DIF item in one group
 - Four DIF conditions
 - None, small, medium, large (differences in item intercepts equal to 0, .10, .25 and .50)
 - •Two sample size conditions
 - 100/100 and 400/400
 - 100 replications

Results

- MACS showed too high type I error rates if no Bonferroni correction was applied (25%)
- GMH showed too low power if Bonferroni correction was applied

Comparison of the best results of both procedures

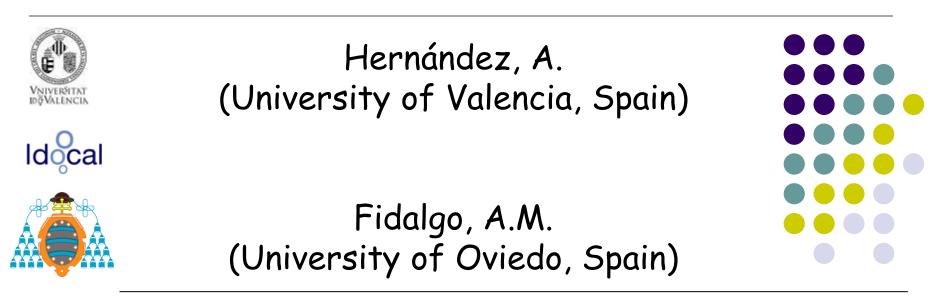
Results

			Power	Type I
		None		0,024
		Small	0,270	0,032
	MACS	Medium	1,000	0,043
		Large	1,000	0,087
400		None		0,048
		Small	0,310	0,053
	GMH	Medium	1,000	0,051
		Large	1,000	0,042

Results

			Power	Type I
		None		0,035
		Small	0,050	0,029
	MACS	Medium	0,500	0,024
		Large	1,000	0,029
100		None		0,049
	Generalized	Small	0,060	0,043
	MH	Medium	0,430	0,037
	1 V11 1	Large	0,980	0,041

Conclusions


- When applying MACS taking the fully-constrained baseline model: Bonferroni correction for the number of items analyzed is recommended
- When applying GMH Bonferroni correction should not be applied
- If recommendations are followed, both MACS and GMH
 - Good control for the type I error (MACS slightly worse with large DIF and bigger sample sizes)
 - Very high power with small samples if DIF is large
 - Very high power when DIF is medium if sample sizes are moderate

Conclusions

- LIMITATIONS AND FUTURE RESEARCH:
 - The conditions are limited: New studies under extended conditions
 - The model used to generate the data was MACS, which could affect the results
 - Despite the limitations results suggest that both procedures are efficient approaches to test DIF (at least uniform DIF) across more than two groups

Statistics for detecting DIF among multiple groups: A simulation study

12th European Congress of Psychology. Istanbul, July 4-8, 2011

Partially supported by the Spanish Ministry of Education and Science CONSOLIDER-C (SEJ2006-14086/PSIC), and by the Spanish Ministry of Science and Innovation (Research project PSI2009-08529).