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Abstract: The efficiency of linear power amplifiers can be 
improved by modulating its supply voltage according to 
the peak value of the signal that is being amplified in a 
technique usually known as Envelope Tracking. High 
bandwidth DC/DC converters called Envelope Amplifiers 
(EA) are used to carry out the supply modulation in an 
efficient manner. In the case of linear Radio Frequency 
Power Amplifiers, the bandwidth requirements over the 
EA strongly depend on the signal being amplified: in 
modern telecommunication applications it can range from 
several hundred kHz to a few tens of MHz. The path to 
achieve such bandwidths usually goes through increased 
switching frequencies and/or reduced ratio of switching 
frequency to converter bandwidth. However, these may 
lead to lower converter efficiency and increased distortion, 
making the design of Envelope Amplifiers a challenging 
task. 

This paper addresses the analysis and design of the 
output filter for Buck converters operating as EA. The 
output filter must provide enough attenuation at the 
switching frequency and harmonics to guarantee a desired 
level of distortion while enabling tracking of wide-
bandwidth envelope signals with high converter efficiency. 
This paper focuses on the use of high-order filters (up to 
sixth-order Bessel-Thomson, Butterworth and Legendre-
Papoulis filters) in a Buck DC/DC converter working as an 
Envelope Amplifier. The filters are analytically described 
and characterized, and a design procedure that takes into 
account the major design constraints is proposed, allowing 
the selection of the appropriate filter for a given 
application. The proposed analysis and design method are 
supported by simulation results, as well as by experiments 
obtained using a 1 MHz Buck converter operating as an 
EA.

I.  Introduction 
The use of Envelope Tracking (ET) techniques has become 

an attractive option to increase the efficiency of Linear Power 
Amplifiers (LPAs) [1]-[16]. As it is well known, the 
maximum theoretical efficiency of a LPA depends on the 
relationship between the peak value of the signal at its output 
and its supply voltage. As an example, the maximum 
theoretical efficiency of a Class-B amplifier based on a pair of 
complementary bipolar transistors is� π/4 (i.e., 78.5%); this 
value is reached when the peak output voltage is equal to the 

values of the positive-to-ground and the negative-to-ground 
power supplies. However, if the peak voltage of the signal to 
be amplified by the LPA varies over time, as it is common in 
most applications, the average efficiency of the LPA 
significantly departs from its theoretical maximum. This 
problem becomes especially severe when the signals to be 
amplified have a high peak-to-average ratio, as it usually 
happens in modern digital communication systems that use 
high data-rate modulations as Quadrature Amplitude 
Modulation, QAM or standards such as Orthogonal 
Frequency-Division Multiplexing (OFDM), Enhanced Data 
rates for GSM Evolution (EDGE), Wideband Code Division 
Multiple (WCDMA), etc. Thus, efficiencies as low as 10% 
(and lower) are reported. However, this situation is not only 
related to the field of Radio Frequency communications, but it 
is also present in other areas of power electronics [17-18].  

The ET technique alleviates this problem by changing the 
supply voltage of the LPA according to the peak value of the 
signal being amplified, i.e. by making the supply voltage of 
the LPA track the envelope of the input signal. Ideally, ET 
maintains the LPA efficiency as close as possible to its 
maximum theoretical limit (50% for ideal Class-A LPAs and 
78.5% in the case of ideal Class-B LPAs). Figure 1 shows a 
block diagram of a system that implements ET: the LPA has 
to be supplied by a DC/DC converter capable of tracking the 
envelope of the input signal. This converter is usually called 
Envelope Amplifier (EA). Note that, in the system shown in 
Fig. 1, the goal is to maximize the overall efficiency. For 
instance, the efficiency of the LPA can still be increased using 
the ET technique if the EA is a linear stage; however, the 
overall system efficiency would typically remain the same, as 
losses will just move from the LPA to the linear EA. Thus, a 
switching-mode EA has to be used to improve system 
efficiency. Many types of switching-mode DC/DC converters 
have been proposed as EA [1]-[16], but those derived from the 
basic Buck converter [1], [3], [5], [6], [8]-[16]are especially 
attractive due to their simplicity, high efficiency and fast 
dynamic response.  

Other techniques that have been proposed to increase the 
efficiency of Radio Frequency Power Amplifiers (RFPAs), for 
instance Envelope Elimination and Restoration (EER) [19]-
[27], also make use of a DC/DC converter operating as EA, in 
this case with even more stringent requirements than those 
needed to implement ET. The general scheme of an amplifier 
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Fig. 1. General scheme for a power amplifier system using the ET 
technique to improve the overall system efficiency.  �

system using EER is very similar to the one shown in Fig. 1, 
the main difference being the type of power amplifier  used 
(typically non-linear) and how the signal is split between the 
EA and the LPA. Thus, the major considerations stated in this 
work are also applicable to EER.  

The transient response of a DC/DC converter strongly 
depends on its reactive elements. In the case of the Buck 
converter, these elements are arranged as a low-pass LC filter, 
which is usually designed to fulfil a certain output voltage 
ripple specification that depends on the application. It also 
plays an important role in the dynamic model of the converter, 
which determines the feedback loop design. DC/DC 
converters operating as EA must be able to change their output 
voltage very fast to track wide-bandwidth envelope signals. 
Assuming that the input voltage of the EA is constant and 
neglecting the loading effect that the LPA might have over the 
converter (either because it is considered nearly constant or 
because it can be compensated for using other techniques), the 
fastest converter bandwidth can be achieved when it operates 
in open loop. Once again, Buck converters are especially 
suitable for this type of operation because they have a linear 
relationship between the duty cycle and the output voltage (if 
the input voltage is constant). However, note that this only 
holds if the converter operates in Continuous Conduction 
Mode (CCM); the duty cycle to output voltage relationship 
becomes non-linear when the converter operates in 
Discontinuous Conduction Mode (DCM) [28]. Therefore, to 
successfully operate a Buck EA in open loop, CCM operation 
must be maintained.  

This paper addresses the design of the LC output filter for a 
Buck EA operating in open loop with a constant load. This 
design is a complex task, as there is a major trade-off between 
wide-bandwidth tracking capabilities and attenuation of the 
switching-frequency and its harmonics to avoid signal 
distortion while maintaining high efficiency operation. High 
bandwidth could be achieved by increasing the output filter 
cut-off frequency; however, the switching frequency would 
have to be further increased to obtain sufficient attenuation of 
the switching frequency components at the filter output, what 
in turn leads to lower efficiencies.  The end goal of the design 

process should then be to design a filter that enables the EA to 
track a certain envelope with as low distortion and as high 
efficiency as possible. In order to accomplish this, several 
issues must be addressed: 

- Filter type. 
- Filter order.  
- Ratio between the converter switching frequency and the 

filter cut-off frequency.  
- Either maximum envelope component frequency that can 

be reproduced with a certain level of distortion, or maximum 
slew-rate at the EA output. 
- Component values for the actual filter implementation.  
All these issues will be considered in this paper, which is 
organized as follows: Section II reviews the classical theory of 
low-pass filters. The design of low-pass filters for EAs 
reproducing band-limited envelope signals is studied in 
Section III, whereas the design of the same filters for the case 
of broadband envelope signals is presented in Section IV. 
Section V addresses the implementation of different types 
(Butterworth, Bessel-Thompson and Legendre-Papoulis) and 
orders of filters. The conditions to guarantee CCM operation 
for a certain filter implementation are derived in Section VI, 
both for steady-state conditions and during transients. A 
design procedure for the above mentioned filters are presented 
in Section VII, whereas simulation and experimental results 
are shown in Section VIII. Finally, Section IX concludes the 
paper. 

II. Review of the classical low-pass filter theory 
There are several different types of low-pass filters that have 

traditionally been defined in terms of their pass-band and stop-
band frequency responses (Butterworth, Chevyshev, Bessel-
Thomson, Legendre-Papoulis, Cauer, etc.). Chevyshev filters 
have variable gain in the filter pass-band and Cauer (also 
called elliptic) filters have a huge rejection of specific 
frequencies, but they cannot guarantee enough rejection for a 
wide range of frequencies. Due to this, Chevyshev and Cauer 
type filters are not suitable to be used as output filter of a 
Buck DC/DC EA. Three main families of low-pass filters, 
namely Bessel-Thomson, Butterworth and Legendre-Papoulis, 
have appropriate pass-band and stop-band frequency 
characteristics for this application and thus are considered in 
this paper. 

The standard transfer functions of the aforementioned filters 
can be found in many text books [29]-[31]. The gain of these 
filters up to order six is plotted in Fig. 2. As this figure shows 
for any type of filter, the higher the order the higher the slope 
of the transfer functions in the stop-band, i.e., the higher the 
attenuation for a given pass-band frequency. Moreover, for a 
given filter order, Butterworth filters have better stop-band 
attenuation than Bessel-Thomson, but worse than Legendre-
Papoulis. However, Bessel-Thomson filters exhibit superior 
behaviour regarding the group delay. The group delay τ(ω) is 
defined as: 
            τ(ω) = -dφ(ω)/dω,                                (1)
where φ(ω) is the phase of the filter transfer function. A 
constant group delay in the filter pass-band guarantees that all 
the frequency components of the signal will experience equal 
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Fig. 2. Gain of the three types of filter under study: a) Bessel-
Thomson; b) Butterworth; c) Legendre-Papoulis. In all cases, the 
angular cut-off frequency is 1 rad/s.  
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Fig. 3. Relative variation of the group delay, τr0(ω): a) Bessel-
Thomson; b) Butterworth; c) Legendre-Papoulis. In all cases, the 
angular cut-off frequency is 1 rad/s. 

delay. A constant group delay in the pass-band can easily be 
compensated at a system level and usually leads to lower 
signal distortion. If the group delay changes considerably in 
the filter pass-band, the output voltage waveform can 
experience significant distortion. To quantify the relative 
variation of the group delay respect to the group delay at DC, 
the following parameter is defined: 

τr0(ω) = [τ(ω) - τ(0)]/τ(0).                   (2) 
  The values of τr0(ω) for the three filter families are shown in 
Fig. 3: it can be seen that Bessel-Thomson filters exhibit the 
best performance. 

In summary, Bessel-Thomson filters exhibit the best 
performances regarding the relative variation of the group 
delay, but their attenuation in the stop-band is the worst. On 
the other hand, Legendre-Papoulis filters exhibit just the 
opposite characteristics, whereas Butterworth filters have 
performances close to those of the Legendre-Papoulis filters, 
but less pronounced.  Next Section proposes a design 
procedure that includes group delay and stop-band attenuation 

characteristics to select the optimum filter family for a given 
signal bandwidth and allowable distortion.   

III. Design of low-pass filters for Envelope Amplifiers 
reproducing band-limited signals 

Figure 4 shows a Buck converter with an n-order output 
filter. The voltage across the diode vD is also the input voltage 
of the filter. As Fig. 5a shows, vD is a square waveform that is 
pulse-wide modulated with the information of the envelope 
signal. The spectrum of vD is given in Fig. 5b. This spectrum 
contains the baseband envelope signal, as well as the 
switching frequency, its harmonics and side-bands [32] and 
[33]. In this case, the envelope signal has been assumed to be 
band-limited, ωh_max been the angular frequency of its highest 
spectral component. The bandwidth of the envelope signal is 
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Fig. 4. General scheme of a Buck converter with an n-order low-

pass filter at its output.�
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Fig. 5. a) Waveform at the input of the output filter. b) 
Harmonics corresponding to that waveform.  

often limited in practice at a system level due to the real 
bandwidth limitations of any switching-mode converter when 
reproducing that envelope signal due to Nyquist-Shannon 
sampling theorem. In fact, additional linear stages are 
sometimes connected either in series or in parallel [14] and 
[15] to the switching-mode EA in order to increase the total 
bandwidth, in spite of the decrease in efficiency that the use of 
a linear stage implies. 

The spectrum of the envelope signal must be inside the pass-
band of the filter, which is defined by its angular cut-off 
frequency ωC. Therefore, ωh_max must satisfy: 

ωh_max ≤ωC.                   (3) 
On the other hand, the angular switching frequency ωS and 

its harmonics and side-bands must be inside the stop-band of 
the filter. Neglecting the effects of the components 
corresponding to the lower side-band near ωS, ωS must verify: 

ωC < ωS.                   (4) 

The design of the filter implies placing ωC between ωh_max

and ωS in such a way that ωh_max is reproduced with as low 
distortion as possible, which includes providing sufficient 
attenuation at the switching frequency and above. Note that 
both group delay and attenuation at the switching frequency 
impact signal distortion. However, group delay directly 
distorts the signal being transmitted, while poor switching 
frequency attenuation normally causes spectral broadening 
and out of band noise [34].  

Throughout this section, the angular frequency of the 
maximum spectral component of the envelope signal is 
normalized to 1 rad/s, i.e., ωh_max = 1 rad/s. A first design 
attempt is to select ωC = ωh_max = 1 rad/s. In this case, the 
angular frequency ωh_max will be attenuated 3 dB, no matter 
the filter type and order selected. However, the relative 
variation of the group delay τr0(ω) is very different for each 
type of filter, as Fig. 3 shows, and thus its effect on the signal 
distortion has to be quantified.  

To illustrate the influence of τr0(ω) on a real band-limited 
waveform, a simple example waveform has been used to 
compare the different filter families. This waveform is a 
square waveform (duty cycle 0.5) whose harmonic content has 
been limited to the fifth order harmonic. The angular 
frequency of the fifth order harmonic ωh_max has been set to 1 
rad/s, and thus the angular frequencies of the test waveform 
are  ω1 = 1/5 rad/s, ω3 = 3/5 rad/s and ω5 = ωh_max = 1 rad/s. 
The test waveform can be expressed as: 

venv_test(t) = 1+ cos[(1/5)·t] - (1/3)·cos[(3/5)·t] + (1/5)·cos(t)               
(5)    

Figure 6 shows the waveforms at the output of the fourth-
order versions of the filters under study when the 
aforementioned test signal has been introduced at the input. In 
what follows, the output waveforms of the filters are always 
delayed an amount corresponding to the group delay 
introduced by the filter at DC, τ(0), assuming as mentioned 
before that this can easily be compensated at a system level. 
The comparison between the input and output signals clearly 
shows that the Bessel-Thomson filter has superior 
performance. 

However, this conclusion does not take into account the 
attenuation provided by the filters at the switching frequency. 
For instance, in the aforementioned design conditions the 
Bessel filter provides 40 dB of attenuation at ω-40dB = 4.723 
rad/s, while Butterworth and Legendre-Papoulis filters provide 
more than 53 dB and are thus over designed. To establish a 
fair comparison, the cut-off frequencies of the Butterworth 
and Legendre-Papoulis filters (ωC_Bw and ωC_Lg, respectively) 
are increased  such that all the filters provide the same 40 dB 
of attenuation at the angular frequency ω-40dB = 4.723 rad/s. To 
obtain the new filter transfer functions, s must be replaced 
with s/ωC_Bw (Butterworth) or s/ωC_Lg (Legendre-Papoulis) in 
the transfer functions given in [29]-[31]. The cut-off frequency 
of the Bessel-Thomson filter is still ωC_Bs = 1 rad/s, whereas 
now ωC_Bw = 1.494 rad/s and ωC_Lg = 1.821 rad/s. In these 
conditions, the response of the modified fourth-order filters to 
venv_test is shown in Fig. 7; it can be seen that Butterworth and 
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Fig. 6. Response of the fourth-order versions of the filters under 
study when a test envelope waveform is introduced at their 
outputs. a) Bessel-Thomson.  b) Butterwort. c) Legendre-
Papoulis. The values of the group delays at ω = 0 are τBs(0) = 
2.114 s, τBw(0) = 2.613 s and  τLg(0) = 3.041 s. In all cases, the 
angular cut-off frequency is 1 rad/s. 
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Fig. 7. Response of the fourth versions of the Butterworth 
filter (a) and Legendre-Papoulis filter (b) when the 
angular cut-off frequencies are 1.494 rad/s and 1.821 
rad/s, respectively. The group delays at ω = 0 are τBw(0) 
= 1.749 s and  τLg(0) = 1.67 s. 

Legendre-Papoulis filters (Fig. 7) exhibit superior 
performance compared to Bessel-Thomson (Fig. 6c). 

To further clarify the behaviour presented by the filters in 
the former design condition (i.e. ωC_Bs = ωC_Bw =
ωC_Lg = 1 rad/s) and in the latter (ωC_Bs = 1 rad/s, 
ωC_Bw = 1.494 rad/s and ωC_Lg = 1.821 rad/s), Fig. 8 shows the 
highest spectral component of the input signal at the filter 
output, vO_5th(t), and the same component at the filter input,
vi_5th(t). As Figure 8 shows, when the filters are designed to 
provide the same attenuation at ω-40dB = 4.723 rad/s, 
Butterworth or Legendre-Papoulis filters clearly overcome 
Bessel-Thompson filters in terms of signal distortion. Note 
that the angular frequency ω-40dB = 4.723 rad/s would typically 
correspond to the angular switching frequency of the EA.  

Furthermore, from the results in Figs. 8a, 8d and 8e, it can 
be concluded that the waveform corresponding to the Bessel-
Thomson filter exhibits almost no delay, but significant 
attenuation (3 dB, because ωC_Bs = ωh_max = 1 rad/s).  On the 
other hand, output waveforms from Butterworth and 
Legendre-Papoulis filters are slightly delayed, but show 
negligible attenuation due to their higher cut-off frequency. 
Therefore, the attenuation has more impact on the error 
between the input and output waveforms than the variation of 
the group delay. It should be noted that, as it has been 

mentioned before, the group delay at a specific frequency 
(normally at ω = 0) can be compensated in the whole system 
by delaying the signal at the input of the LPA (see Fig. 1).  

The error introduced by the filter can be quantified in a 
general manner by considering only the highest spectral 
component of interest of the input signal. When this 
component is normalized to an angular frequency of �h_max = 1 
rad/s, the following quadratic error can be defined:  

�������� 	
�� � 
����������������������������������
���
�� 	
�� � �����!
���
�� ���
��� 	�� � 
����������������������������������
���
�� ������           (6) 
vdis_hmax(t) being the delayed highest spectral component of the 
input signal: 

vdis_hmax(t) = cos[t-τ(0)],                                     (7) 
(the amplitude is assumed to be normalized to 1 V) and 
vout_hmax(t, ωC)  is the filter output, which is explicitly written 
as a function of the filter angular cut-off frequency ωC. Its 
value is given by: 
      vout_hmax(t, ωC) = |Η(ωC, 1)|·cos[t+φ(ωC, 1)],         (8) 
where |Η(ωC, 1)| and φ(ωC, 1) are the filter gain and the filter 
phase at �h_max  =1 rad/s. Once again the dependence with ωC

is explicitly noted. The values of the error e(ωC) for the 
different design conditions shown in Fig. 8 are 8.6 % for the 
Bessel-Thomson case, 27.9 % for the Butterworth with 
ωC_Bw = 1 rad/s and 41 % for the Legendre-Papoulis with 
ωC_Lg = 1 rad/s, but this error is as low as only 2.2 % for the 
Butterworth with ωC_Bw = 1.494 rad/s and 0.63 % for the 
Legendre-Papoulis with ωC_Lg = 1.821 rad/s, thus confirming 
the conclusions qualitatively arising from Fig. 8. 

The systematic calculation of this error for the different filter 
families, up to order six and different values of ωC leads to the 
plots shown in Fig. 9. As ωh_max = 1 rad/s in all cases, ωC is 
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Fig. 8. Reproduction of the fifth harmonic in the example 
presented in Fig. 6 and Fig. 7. Bessel-Thomson (a), 
Butterworth (b) and Legendre-Papoulis (c) filters when their 
cut-off frequencies are 1 rad/s for the three filters. The angular 
cut-off frequencies has been increased up to 1.494 rad/s in the 
case of the Butterworth filter (d) and up to  1.821 rad/s in the 
case of the Legendre-Papoulis filter (e) to have the same 
attenuation (40 dB) as the Bessel-Thomson filter at 4.723 
rad/s.      
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Fig. 9. Quadratic error reproducing the highest order harmonic 
of a band-limited signal in Bessel-Thomson filters (a), 
Butterworth filters (b) and Legendre-Papoulis filters (c) as a 
function of the quotient ωC/ωh_max.

also the quotient between ωC and ωh_max, as it appears in these 
plots. Moreover, the desired attenuation for the angular 
switching frequency ωS determines the relationships between 

ωC and ωS. These relationships have also been plotted in Fig. 
10.  

The plots given in Fig. 9 and Fig. 10 allow the selection of 
the angular cut-off frequency for a given allowed error in the 
highest spectral component of interest. The design procedure 
is as follows: 

1. Select the type of filter, order and ratio ωC/ωh_max based on 
a desired error in the highest spectral component of interest to 
be reproduced using Fig. 9. 

2. Select of the ratio ωS/ωC from Fig. 10.  
3. Find the ratio ωS/ωh_max from the previous two values. 
 It should be noted that the lower this quotient, the higher the 

efficiency will be, because the switching losses will be lower. 
However, this quotient has a minimum value imposed by the 
Nyquist criterion applied to the EA, i.e., this quotient should 
be higher than 2. 
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Fig. 10. Attenuation of the angular switching frequency ωS as a 
function of the quotient ωS/ωC for Bessel-Thomson filters (a), 
Butterworth filters (b) and Legendre-Papoulis filters (c).  
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Fig. 11. Quadratic error reproducing the highest-order harmonic 
of a band-limited signal in Bessel-Thomson filters (a), 
Butterworth filters (b) and Legendre-Papoulis filters (c) as a 
function of the quotient ωS/ωh_max for 30 and 40 dB of switching-
frequency attenuation.   

The same information given in the plots shown in Fig. 9 and 
Fig. 10 is summarized in Fig. 11, where the quotient ωS/ωh_max
directly appears as a function of the desired error for a given 
attenuation of the angular switching frequency (30 and 40 dB). 
The value of the quotient ωS/ωh_max allows us to determine 
either the EA angular switching frequency ωS needed to 
reproduce an envelope signal with a given value of the error 
e(ωC) of  its highest-harmonic ωh_max, or the angular frequency 
ωh_max of the highest harmonic that can be reproduced with a 
given error e(ωC) by an EA working at a given angular 
switching frequency �S. Figure 11 shows that Legendre-
Papoulis filters give the best results, followed by Butterworth 
filters and with Bessel-Thompson in the last place.
Furthermore, the plots in Fig. 11 clearly indicate that the use 
of higher order filters leads to lower ωS/ωh_max ratio and thus 
higher EA performance. However, practical considerations 
impose a limit on the filter order. 

IV. An approach to the design of low-pass filters for 
Envelope Amplifiers reproducing high-slew-rate signals 
(broadband signals).  

If the waveform to be reproduced by the EA cannot be 
assumed to have a limited bandwidth, the study carried out in 
the previous section is no longer valid: only harmonic 
components below ωS/2 can be reproduced and all the 
remaining frequency components above that value will 
experience significant errors. Therefore, it is meaningless to 
set a given allowed error at a certain frequency. To overcome 
this conceptual difficulty, a time-domain based approach is 
used. A time-domain analysis reveals the impact of all the 
harmonics that cannot be reproduced by the EA. 

To test the behaviour of the filters under study in the time 
domain, a unit step is used as input signal. Figure 12 shows 
the normalized step responses for the Bessel-Thomson, 
Butterworth, and Legendre-Papoulis filters when all of them 
have been designed for the same angular cut-off frequency ωC. 
The main variables of interest corresponding to these 
waveforms are given in Table 1 (Bessel-Thomson), Table 2 
(Butterworth) and Table 3 (Legendre-Papoulis). In these 
tables, nslw0.5 is the normalized slew rate, defined as follows: ���������"�#$�%&��� �'��(������)�������� *���%&   ,                                        (9)         
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Fig. 12. Normalized step response versus the 
normalized time t·ωC for different types and 
orders of output filter, all of them designed for 
the same angular cut-off frequency ωC: a) 
Bessel-Thomson filters. b) Butterworth filters. c) 
Legendre-Papoulis filters.  

stp(ωC·t) being the normalized step response. The parameter γ
is the relative overshoot, whereas ωC·tnslw_0.5 is the normalized 
time corresponding to stp(ωC·t) reaching 50 % of its final 
value and ωC·tγ is the normalized time corresponding to the 
maximum overshoot.  

The actual slew rate just at tnslw_0.5 when a voltage step Vstep
is applied at the filter input can be easily calculated from 
nslw0.5 as follows: 
          �#$�%&��"�#$�%&����+���( .                                      (10) 

Equation (10) and the values shown in Table 1, Table 2 and 
Table 3 allow calculating the required value of ωC for a 
desired slew rate corresponding to a voltage step of Vstep volts. 
Once ωC is known, ωS can be found from the plots shown in 
Fig. 10 for a desired attenuation value. The design procedure 
can be summarized as follows: 

1. Chose filter type, order and ωC based on the desired slew 
rate. 

2. Chose ωS based on the desired attenuation at the switching 
frequency. 

The waveforms in Fig. 12 could easily lead to conclude that 
low order filters have superior performances compared to high 
order filters. However, note that results in Fig. 12 have been 
obtained again neglecting stop-band attenuation. In fact, the 
step responses shown correspond to very different values of 
attenuation for a given EA switching frequency. Once again, 
the design of all the filters can be modified to have the same 
attenuation, to establish a fairer comparison. As an example, 
this attenuation has been selected to be 30 dB for the filters 

�
Table 1. Main normalized variable of the step response of 

Bessel-Thomson filters. 

�
Table 2. Main normalized variable of the step response of�

Butterworth filters.�

Table 3. Main normalized variable of the step response of�
Legendre-Papoulis filters.�

Order nslw0.5 ωωωωC·tnslw_0.5 γγγγ ωωωωC·tγγγγ
1st 0.5 rad-1 0.693 rad - -

2nd 0.464 rad-1 1.225 rad 0.433% 4.94 rad

3rd 0.449 rad-1 1.681 rad 0.754% 4.714 rad

4rd 0.444 rad-1 2.069 rad 0.835% 4.829 rad

5rd 0.444 rad-1 2.4 rad 0.773% 5.005 rad

6nd 0.447 rad-1 2.686 rad 0.642% 5.194 rad

Order nslw0.5 ωωωωC·tnslw_0.5 γγγγ ωωωωC·tγγγγ

1st 0.5 rad-1 0.693 rad - -

2nd 0.436 rad-1 1.433 rad 4.443% 4.321 rad

3rd 0.404 rad-1 2.135 rad 8.147% 4.922 rad

4rd 0.381 rad-1 2.82 rad 10.833% 5.598 rad

5rd 0.363 rad-1 3.496 rad 12.776% 6.313 rad

6nd 0.349 rad-1 4.166 rad 14.251% 7.037 rad

Order nslw0.5 ωωωωC·tnslw_0.5 γγγγ ωωωωC·tγγγγ
1st 0.5 rad-1 0.693 rad - -

2nd 0.436 rad-1 1.433 rad 4.443% 4.321 rad

3rd 0.377 rad-1 2.41 rad 7.5% 5.161 rad

4rd 0.352 rad-1 3.27 rad 11.243% 6.123 rad

5rd 0.326 rad-1 4.254 rad 13.275% 7.223 rad

6nd 0.31 rad-1 5.158 rad 15.227% 8.25 rad
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Fig. 13. Normalized step response of the Bessel-Thomson 
filters (a), Butterworth filters (b) and  Legendre-Papoulis 
filters (c), versus the normalized time t·ωC_1st , where ωC_1st  
is the angular cut-off frequency of the first order versions of 
these filters (which are the same in the three cases). The 
other angular cut-off frequencies have been selected to have 
30 dB of attenuation at the same frequency (31.607·ωC_1st

rad/s). 
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Fig. 14. Normalized step response of the third-order (a) and of the 
fourth-order (b) versions of the filters under study. The angular 
cut-off frequencies of these filters have been selected to have 40 dB 
of attenuation at the same frequency, ω-40dB. The angular cut-off 
frequency of the Bessel-Thomson filters ωC_Bs has been used as 
reference, in such a way that ω-40dB = 6.47·ωC_Bs rad/s in the case 
of the third-order filters and ω-40dB = 4.723·ωC_Bs rad/s in the case 
of the fourth-order filter.  

whose normalized step response is given in Fig. 13. The value 
of the angular frequency corresponding to this attenuation, ω-

30dB, has been chosen using the first order filters as a reference: 
assuming that the cut-off frequency of a first order filter is 
ωC_1st rad/s, then ω-30dB = 31.607 rad/s·ωC_1st, according to the 
transfer functions given in [29]-[31]. This definition results 
advantageous because the three types of filters under study 
have the same first-order transfer function. Figure 13 shows 

the results with the modified design parameters, where the 
best performances of the higher order filter can be easily 
observed, as expected. 

The comparison among the different types of filter for a 
given order is shown in Fig. 14. In this case, the angular cut-
off frequency of the Bessel-Thomson filter ωC_Bs is used as 
reference, whereas the angular cut-off frequency of the 
Butterworth and Legendre-Papoulis filters (ωC_Bw  and ωC_Lg, 
respectively) have been modified (increased) in such a way 
that all the filters have an attenuation of 40 dB at the same 
frequency, which is ω-40dB = 6.47·ωC_Bs rad/s in the case of the 
third-order filters and ω-40dB = 4.723·ωC_Bs rad/s in the case of 
the fourth-order filters.   

Figures 13 and 14 show that, although Bessel-Thomson 
filters provide slightly lower slew rate values compared to 
Butterworth and Legendre-Papoulis, they have almost no 
overshoot, making them the best choice to be used in the case 
of EAs. It should be noted that significant overshoot in the 
output signal may severely increase waveform distortion, 
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Fig. 15. Right implementations of the fourth-order Butterworth 
filter with ωC = 1 rad/s when Rg = 1Ω (a) and when Rg = 0 Ω
(b). In both cases, the gain of the filter is the one labeled as 
“right” in Fig. 15c. However, the gain of the filter becomes 
incorrect if the implementation corresponding to Rg = 1Ω (Fig. 
15a) is used with Rg = 0 Ω, as Fig. 15.c shows. 

cause spectral broadening and even lead to malfunction of the 
LPA. 

The analysis carried out in Sections III and IV yields two 
important conclusions. First, Butterworth and Legendre-
Papoulis filters are advisable if a band-limited envelope signal 
is to be reproduced by the EA. A design procedure has been 
established in this case for any filter selection, where the plots 
shown in Fig. 9, Fig. 10 and Fig. 11 allow determining �C for 
a given relative error of the highest-order harmonic and, 
afterwards, the value of the EA angular switching frequency 
�S for a desired attenuation of this frequency.  The second 
conclusion is that the Bessel-Thomson filters exhibit better 
performance for signals with high slew rate (broadband 
signals) due to the absence of overshoot when the envelope 
waveform to be reproduced by the EA experiences very fast 
variations. Design guidelines have also been provided, where 
�C can be calculated from a desired slew rate (corresponding 
to an ideal voltage step to be reproduced by the EA) by using 
(10) and the information shown in Table 1 (for Bessel-
Thomson filters). Once �C is known, �S can be once again 
obtained from the plots shown in Fig. 10.   

V. Implementation of the low-pass filters for Envelope 
Amplifiers 

The theoretical studies carried out in the previous sections of 
this paper (stop-band attenuation, quadratic errors reproducing 
a given waveform, step response, etc.) are based on the very 
well known transfer functions of the three types of low-pass 
filters under consideration [29]-[31] and they are independent 
from the physical implementation of these filters, that has not 
been taken into account yet. In fact, the conclusions obtained 
so far could be applied to other fields different from the power 
electronics and the physical implementation of these filters 
could be based on elements different from inductor and 
capacitors (for example, operational amplifiers, capacitors and 
resistors in the case of analog active filters for low frequency 
applications or transmission lines in the case of filters in the 
context of the microwave technology).  

The implementation of Bessel-Thomson, Butterworth and 
Legendre-Papoulis low-pass filters based on inductors and 
capacitors can be easily found in many basic text books [29]-
[31]. However, special attention must be paid to the type of 
voltage source connected at the filter input. In many 
occasions, the implementations provided by those text books 
correspond to the case of having an input voltage source vg
with the same value of its output resistance Rg as the one of 
the load resistance RL (typically normalized to 1 ohm), as Fig. 
15a shows for a fourth order Butterworth filter. The values of 
the inductors and capacitors required with other values of both 
resistances Rg and RL can be easily obtained by simple 
transformations. However, the aforementioned 
implementations are not valid in the case of having an ideal 
voltage source at the filter input, i.e., Rg = 0 Ω. This is because 
the standard filter implementations in analog signal processing 
circuits correspond to design the filter matched for maximum 
power transfer in the pass-band from the real voltage source 
(made up of vg and Rg) to the load. The filter implementation 
based on this criterion is meaningless in the case of an ideal 

voltage source at the input filter, because the available power 
of an ideal voltage source is infinity. As a consequence, the 
filter implementation cannot be based on matching the voltage 
source and the load for maximum power transfer.  

The implementation of low-pass filters having an ideal 
source at the input port is not new. Thus, the right 
implementation of these filters when an ideal current source is 
connected at the input port can be found in [31] and [35]. The 
interest for this case comes from the years when vacuum tubes 
were used as active devices in electronics and the filter can be 
synthesized without any problem in this situation, where the 
input source and the load are not matched for maximum power 
transfer.   The right values of the filter elements in the case of 
an ideal voltage source at the input port can be found in some 
handbooks and text books [31], [35] and [36]. Figure 15b 
shows the right values of the filter elements for the case of a 
fourth order Butterworth filter for a source with zero output 
impedance Rg = 0 Ω. This is the implementation that must to 
be used in the case of the output filter of any Buck DC/DC 
converter, because the switching network placed at the filter 
input operates as a nearly ideal square-waveform voltage 
source when the converter is working in the CCM, and thus 
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Table 4. Elements of Bessel-Thomson filters designed with ωC

=1 rad/s and RL = 1 Ω. 

Table 5. Elements of Butterworth filters designed with ωC =1 
rad/s and RL = 1 Ω.  

�
Table 6. Elements of Legendre-Papoulis filters designed with 

ωC =1 rad/s and RL = 1 Ω. �

Order l1 c2 l3 c4 l5 c6

1st 1 - - - - -

2nd 1.36165 0.45384 - - - -

3rd 1.463 0.84272 0.292671 - - -

4rd 1.50109 0.97811 0.61282 0.21139 - -

5rd 1.51252 1.02315 0.75323 0.47286 0.16191 -

6nd 1.51255 1.03297 0.81237 0.60718 0.37848 0.12868

Order l1 c2 l3 c4 l5 c6

1st 1 - - - - -

2nd 1.4142 0.7071 - - - -

3rd 1.5 1.3333 0.5 - - -

4rd 1.5307 1.5772 1.0824 0.3827 - -

5rd 1.5451 1.6944 1.3820 0.8944 0.3090 -

6nd 1.5529 1.7593 1.5529 1.2016 0.7579 0.2588

Order l1 c2 l3 c4 l5 c6

1st 1 - - - - -

2nd 1.4142 0.7071 - - - -

3rd 1.5909 1.4270 0.7629 - - -

4rd 1.6120 1.6616 1.4292 0.6399 - -

5rd 1.6372 1.7509 1.7358 1.3945 0.6445 -

6nd 1.6348 1.8088 1.8223 1.6795 1.3486 0.5793
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Fig. 16. Current and voltage at the input of the output filter of a 
classical DC/DC Buck converter (with a second-order LC filter):  
a) Converter operating in the CCM. b) Converter operating in 
the DCM. c) Operation in the CCM at light load when the 
rectifier diode has been replaced with a synchronous rectifier.     

has negligible output impedance compared to RL (see Fig. 4 
and 5).  

The implementation of a filter calculated for the case of 
having Rg = 1 Ω when the input voltage source has zero output 
impedance (i.e., Rg = 0 Ω) leads to a significant malfunction 
of the filter. Fig. 15c shows the gain of a fourth-order 
Butterworth filter designed for the case of being Rg = 1 Ω
when it is used in a filter with Rg = 0 Ω. As this figure shows, 
the behaviour is far from the expected from an ideal fourth 
order Butterworth filter.  

Table 4, Table 5 and Table 6 show the normalized values 
(RL = 1, �C = 1) of the inductor (lx) and capacitor (cx) for 
several filter orders and the three filter families under 
consideration. From these parameters, the actual values of the 
filter elements for a different angular cut-off frequency ωC and 
a load resistance RL can be easily calculated by denormalizing 
as follows: 

,-�� #-�.,��   ,                                                              (11) 

�-��  -���.,  .                                                              (12) 
The values of the elements given in Table 5 and in Table 6 

for Butterworth and Legendre-Papoulis low-pass filters have 
been obtained directly from [31]. However, it is worth noting 
that the values of lx and cx that can be found in [31] for the 
case of Bessel-Thomson  filters are normalized using a group 
delay of 1 second instead of �C = 1. Table 4 shows the values 
appropriately modified to the normalization RL = 1, �C = 1 
mentioned above. For example, the values of both the 
inductors and capacitors given in [31] must be multiplied by 
2.11392 in the case of the fourth-order filter. 

VI. The conduction mode with high-order low-pass filters 
The basic PWM DC/DC converters can operate in the CCM 

(see Fig. 16a), in the DCM (see Fig. 16b), or in the boundary 
between these modes, usually called Boundary Conduction 
Mode (BCM). If the converter has a synchronous rectifier, 
then only CCM operation can occur (see Fig. 16c). For a Buck 
converter operating in the CCM, the voltage waveforms at the 
filter input are as shown in Fig. 5, Fig. 16a and Fig. 16c, i.e., 
simple square-voltage waveforms whose average value 
determines the output voltage in steady state. In this case, the 
output voltage vO in steady state is a well-known linear 
function of the duty cycle dc: 

                  vO = dc.vDC                                               (13)
On the other hand, when the converter is operating in the 

DCM, the relationship between the output voltage vO and the 
duty cycle dc becomes more complex [28]:        
                       �/�� 
��0�

	12	13�4� 

�����������                                  (14) 

where k is the conduction mode dimensionless parameter 
defined in [28]: 
                             4�� 
,.,�56   .                                          (15) 

As (14) shows, the output voltage vO in the DCM is no 
longer a linear function of the duty cycle dc; furthermore, in 
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Fig. 17. Transfer functions between the input voltage and 
output voltage and between the input voltage and the voltage 
across capacitor C2, for the case of a fourth-order Bessel-
Thomson filter (a), a Butterworth filter (b) and a Legendre-
Papoulis filter (c).  

�
Table 7. Attenuations of the switching-frequency harmonic across 
C2 for the filters under study when they have been designed to 
have an attenuation of 30 dB and 40 dB across the load. �

Order
Bessel-Thomson Butterworth Legendre-Papoulis

30 dB 
@ ωωωωS

40 dB 
@ ωωωωS

30 dB 
@ ωωωωS

40 dB 
@ ωωωωS

30 dB
@ ωωωωS

40 dB 
@ ωωωωS

3rd 25.8 dB 33.39 dB 24.56 dB 31.95 dB 22.82 dB 30.05 dB

4rd 23.07 dB 29.23 dB 20.78 dB 26.26 dB 18.30 dB 23.95 dB

5rd 21.31 dB 26.57 dB 18.10 dB 23.06 dB 14.50 dB 19.12 dB

6nd 20.17 dB 24.81 dB 16.10 dB 20.43 dB 12.08 dB 16.06 dB

the DCM the output voltage depends on the inductor value L, 
the load RL and the switching period TS. Due to this, operation 
in the DCM is not adequate to use the Buck converter as EA 
operating in open loop. It should be noted that operation in 
closed loop to compensate the lack of linearity would decrease 
the overall system bandwidth. For this reasons, operation in 
the DCM must be avoided.   

The boundary between both modes depends on the value of 
the dimensionless parameter k and on the boundary value kcrit
[28]. The operation in CCM is guaranteed if k > kcrit, whereas 
the operation in DCM is guaranteed if k < kcrit. The value of 
kcrit for the Buck converter is [28]: 
                             kcrit = 1- dc                                       (16) 

Therefore, the operation in the CCM in a classical Buck 
converter in steady state is guaranteed for any duty cycle if k 
>1. To illustrate the analysis procedure, the following 
subsection addresses the study of the conduction mode of a 
Buck converter with a fourth order filter in steady state 
conditions. 

VI.1 Analysis of the conduction mode in steady state  
The first step is to analyse how the voltage across capacitor 

C2 is in comparison with the voltage across the load. To do 
that, the Bode plots corresponding to the transfer functions 
between the input voltage and the output voltage, vO/vg, and 
the transfer functions between the input voltage and the 
voltage across C2, vC2/vg, have been drawn in Fig. 17 for the 
fourth-order types of the filters under study. As this figure 
shows, the transfer functions of vC2/vg exhibit significant 
attenuation above the cut-off frequency, although lower than 
the corresponding to the transfer functions of vO/vg. However, 
they are sufficient to ensure that the component at the 
switching frequency, ωS, across C2 is relatively small. For 
example, assume a Buck converter operating with a duty cycle 
dc = 0.5 from a DC voltage source vDC = 12 V; the peak 
voltage corresponding to the switching-frequency harmonic at 
the input of the output filter is 7.64 V. If a fourth-order filter 
with 40 dB attenuation at ωS is used, then the attenuation at ωS
just across C2 will be 29.23 dB (Bessel-Thomson filter), 26.66 
dB (Butterworth filter) or 23.95 (Legendre-Papoulis filter). 
This means that the filter output voltage will have a DC 
voltage of 6 V and an AC ripple of approximately 76.4 mV in 
the three cases, whereas the DC voltage across C2 will have a 
DC value of also 6 V, but AC voltage ripples of 264 mV 
(Bessel-Thomson filter) or 355 mV (Butterworth filter) or 485 
mV (Legendre-Papoulis filter). Therefore, the relative ripples 
across C2 will be 4.4 %, 5.9 % and 8.1 %, respectively. These 
low values of relative voltage ripples across C2 suggest the 
following approximation to calculate the current through L1: 
the voltage across C2 can be considered approximately equal 
to the output voltage, i.e. vC2 � vO. Thus, the current through 
L1 is very similar to that of a conventional Buck, i.e., simple 
up and down ramps, as those shown in Fig. 16. Furthermore, 
under this assumption the current ripple in L3 is negligible and 
thus L1 is the only inductor that has to be considered to 
determine the conduction mode. 

Table 7 shows attenuation values provided by the first filter 
section L1C2 at ωS for the filters under consideration. It can be 

seen that these values are relatively high in all cases and thus 
the previous conclusion can be extended to all filter families. 
However, it should be noted that the proposed approximation 
should not be applied to very-high order filters (especially in 
the case of Butterworth and Legendre-Papoulis filters), as the 
attenuation decreases for higher order filters.  



�
Table 8. Values of the quotient π /l1 (i.e., the minimum values of 
the quotient ωS/ωC) needed to guarantee the CCM in steady-state 
when the Buck-derived converter has been implemented with a 
diode as rectifier.   

Order Bessel-
Thomson Butterworth Legendre-

Papoulis
1st 3.1416 3.1416 3.1416

2nd 2.3072 2.2215 2.2215

3rd 2.1474 2.0944 1.9747

4rd 2.0929 2.0524 1.9489

5rd 2.0771 2.0333 1.9189

6nd 2.0770 2.0230 1.9217
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Fig. 18. Attenuation of the angular switching frequency ωS as a 
function of the quotient ωS/ωC for Bessel-Thomson filters (a), 
Butterworth filters (b) and Legendre-Papoulis filters (c). In all 
cases, the areas of operation in both CCM and DCM have 
been highlighted.   

Provided that the aforementioned assumption vC2 � vO holds 
true, the criterion used to determine the conduction mode in a 
conventional DC/DC Buck converter with a simple LC filter 
and operating in steady state can also be applied here. Taking 
into account (11), the dimensionless parameter k given by (15) 
becomes:   
                        4�� #	� � �6���  .                                                 (17)                                                 

As the operation in the CCM in steady state is guaranteed if 
k > kcrit and the maximum possible value of kcrit is 1 
(according to (16)), then the operation in the CCM in steady 
state will be guaranteed if the ratio ωS/ωC satisfies: 
                          �6�� �7� �#	  .                                                    (18)                                                                                  

Table 8 shows the values of π/l1 for the different types and 
orders of the filters under study. These values also represent a 
lower limit for the quotient ωS/ωC in the plots given in Fig. 10 
when the operation in the DCM would occur. In most cases, a 
practical choice of the ratio ωS/ωC to have reasonable 
attenuation leads to operation in the CCM, as shown in Fig. 
18, where Fig. 10 has been re-drawn highlighting the above 
mentioned lower limits.  

VI.2 Analysis of the conduction mode during transients 
The study carried out so far has assumed that the Buck 

converter is operating in steady-state. However, when this 
converter is used as EA it operates under highly-varying 
dynamic conditions, continuously changing its operating point 
as it tracks the envelope waveform to be reproduced. To 
address this case, the average value (averaged in a switching 
period) of the current through L1, iL1_avg, has been computed. 
This averaging operation eliminates all the harmonic 
components corresponding to the switching frequency, its 
side-bands and above. Current iL1_avg can be easily calculated 
from the average voltage (also averaged in a switching period, 
i.e., also excluding the switching frequency, its side-band and 
its harmonics) of the filter input voltage vD_avg (see Fig. 4) and 
from the voltage across C2, vC2, as follows: 

�,	���8�� �0���8���
�,	      .                             (19) 
This equation can be re-written taking into account that the 

vD_avg is equivalent to the input voltage vg of the filter in Fig. 
15b. The final result is: 

�,	���8�� 	���
�8�,	 ��8   .                               (20) 
Equation (20) allows determining the evolution of iL1_avg for 

a given evolution of vg, since the transfer function vC2/vg and 
the value of L1 are known. For instance, the average values of 
the normalized current through L1 when a voltage step is 
applied at the filter input (normalized to its final value) are 
given in Fig. 19. As this figure shows, this current does not 
suffer noticeable overshoot in the case of the Bessel-Thomson 
filters. Moreover, the evolution of the current is almost 
independent of the filter order for orders higher than 2. On the 
other hand, Butterworth and Legendre-Papoulis filters exhibit 
a moderate overshoot (lower than 16%) and their response 
depends on the filter order.  

To evaluate the validity of the previous approach to 
determine the conduction mode during a transient, Fig. 20 
shows the current though L1, iL1, the average value of iL1
during a switching period as given by (20), iL1_avg, and the 
steady-state value of iL1_avg according to the duty cycle the 
converter is operating at, iL1_avg_ss. It is assumed that the 
converter has been designed to operate in the CCM in steady 
state for any duty cycle dc, which means that not only (16) is 
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Fig. 19. Response of the normalized average current passing 
through L1 when a rising voltage step has been applied at the 
input of the filter. a) Bessel-Thomson filters. b) Butterworth 
filters.  c) Legendre-Papoulis filters.   
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Fig. 20. Current passing through L1 when a voltage step has been 
applied at the input of the filter. a) Rising voltage step for a Bessel-
Thomson filter. b) Falling voltage step for a Bessel-Thomson filter.  
c) Falling voltage step for a fourth-order Butterworth filter. d) 
Operation in DCM during a part of the transient response when 
iL1_avg  <  iL1_avg_ss.�

satisfied, but also (18). If a rising voltage step takes place at 
the filter input and the converter was operating in steady-state 
just before that event, then the converter will continue 
operating in the CCM after the step because the current 
through the inductor increases (see Fig. 20a for the particular 
case of a Bessel-Thomson filter). In the case of a falling 
voltage step (see Fig. 20b also for the particular case of a 
Bessel-Thomson filter), the converter will continue working in 
the CCM only if the value of iL1_avg is higher than iL1_avg_ss, 
since the converter has been designed to operate in CCM in 
steady state. As Fig. 20b shows, this is only guaranteed if the 
filter has no overshoot, i.e. only for Bessel-Thompson filters. 
However, iL1_avg may become smaller than iL1_avg_ss when a 
falling voltage step takes place at the input of Butterworth or 
Legendre-Papoulis filters, due to the overshoot that these 
filters exhibit. This situation is shown in Fig. 20c, where the 

transient response of a fourth-order Butterworth filter to a 
falling voltage step is given. As this figure shows, there is a 
time interval during which iL1_avg is lower than the value of 
iL1_avg_ss. Therefore, the converter is operating in the DCM 
during several cycles, although the value of L1 was chosen 
high enough to guarantee operation in the CCM in steady 
state.  

To derive an expression equivalent to (18) that guarantees 
CCM operation during transients, it is useful to compute the 
minimum value of iL1_avg during a falling step when the duty 
cycle dc changes from dc_up to dc_down: ���������,	���8���"�� �/., 9	� � ��(�� ���$"� ���$" :; %��                         (21)                   



Table 9. Design example 1, Implementation 1.1.�

fs [MHz] Att @ fs fC [kHz] e(320.5 kHz) L1 [μμμμH] C2 [nF] L3 [μμμμH] C4 [nF]

1 40 dB 384.6 < 10 % 4.27 107.43 3.79 41.38

� being the percentage overshoot in the step response of iL1_avg. 
The maximum value of � obtained in Fig. 19b and Fig. 19c is 
approximately 16%. 

It should be noted that the dimensionless parameter k is a 
measurement of the ratio between the average inductor current 
in steady-state (which is proportional to 1/RL) and the current 
ripple (which is proportional to T/L1). During the transient 
interval of the falling step, the average inductor current is not 
vO/RL but it is changing, its minimum value being given by 
(21). As a consequence, the minimum value of k during the 
transient will be: 

4�<�"����"� 
,	.,56 =	�
� ��(�� ���$"� ���$" :>�

��������������������������������������4 9	� � ��(�� ���$"� ���$" :; %�                  (22) 

Taking into account (16), (22) becomes:   

                             47 �	�� ���$"�� ���$"� ���$"�	1���� ��(� %                          (23)                                   

It should be noted that the use of (23) instead of (16) is only 
necessary when Butterworth or Legendre-Papoulis filters are 
used, as Bessel filters produce no current overshoot. 
Moreover, this expression is only valid for values of iL1_avg_min
> 0, which implies a limit value for the duty cycle:  

                      �� �#���� :	1: �� ��(%                                   (24) 
Taking into account (11), (23) finally becomes: 

                      �6�� �7� �#	 · �	�� ���$"�� ���$"� ���$"�	1���� ��(�  .                       (25)                                                                              

This is the condition to guarantee the operation always in 
CCM when a falling step from dc_up to dc_down takes place.  
However, operation always in the CCM during the transient is 
not possible if dc_down < dc_lim. 

VII. Design procedure 
The design procedure of the output filters described in this 

paper is illustrated in this section by two design examples.  

VII.1. Design example 1  
The objective is to design the output filter of a Buck EA 

operating at 1 MHz. The converter load is 6.4 Ω. The 
envelope waveform to be reproduced is chosen to be defined 
by (5), but its frequency should be as high as possible while 
keeping a 10 % maximum error when reproducing its highest-
frequency harmonic. The switching frequency must be 
attenuated 40 dB at the output of the filter.  

Implementation 1.1 
As the waveform to be reproduced is band-limited and in 

order to minimize implementation complexity, a fourth-order 
Legendre-Papoulis filter will be used. 

The design procedure begins by finding the ratio ωS/ωC from 
Fig. 10c (40 dB and fourth-order), which is ωS/ωC = 2.59. 
Similarly, the value of ωC/ωh_max = 1.2 is obtained from Fig. 
9c (error lower than 10%). Therefore, the filter cut-off 
frequency will be 1 MHz/2.59 = 384.6 kHz and the frequency 
of the highest harmonic of the waveform will be 384.6 
kHz/1.2 = 320.5 kHz. By definition of the waveform, this 
frequency corresponds to the fifth harmonic of the 
fundamental frequency component, and thus the fundamental, 

third and fifth harmonic frequencies are 64.1 kHz, 192.3 kHz 
and 320.5 kHz, respectively.  

The values of the inductors and capacitors of this filter can 
be computed from the values of Table 6 and from (11) and 
(12). Table 9 summarizes the results. Finally, operation in 
CCM in steady-state is guaranteed because ωS/ωC = 2.59 is 
higher than the ratio π/l1 =1.9489.  

To illustrate the impact of the order and the type of the filter 
over the waveform that the filter can reproduce in the above 
mentioned conditions, three additional designs are presented, 
two of them based on Legendre-Papoulis filters (second-order 
and sixth-order filters) and other based on a fourth-order 
Butterworth filter.  

Implementation 1.2 
In the case of a design based on a second-order Legendre-

Papoulis filter, the value of the ratio ωS/ωC must be 10 to 
obtain the desired attenuation (40 dB), whereas the value of 
ωC/ωh_max must be 1.008 (both values have been 
mathematically obtained because they are placed out of the 
range of values of Fig. 10c and Fig. 9c).  Therefore, the filter 
cut-off frequency in this design will be 1 MHz/10 = 100 kHz 
and the frequency of the highest harmonic of the waveform 
will be 100 kHz/1.008 = 99.21 kHz. Therefore, the 
fundamental, third and fifth harmonic frequencies of the 
waveform that could be reproduced in this case are 19.84 kHz, 
59.52 kHz and 99.21 kHz, respectively. Therefore, the 
frequencies corresponding to the waveform that can be 
reproduced in the same conditions as in the first 
implementation is 3.23 times lower, which means worse 
performance as EA.  

Implementation 1.3 
A sixth-order Legendre-Papoulis filter is implemented in this 

case. The value of the ratio ωS/ωC obtained from Fig. 10c is 
1.685, whereas the value of ωC/ωh_max obtained from Fig. 9c is 
1.351. The filter cut-off frequency will be 1 MHz/1.685 = 
593.47 kHz and the frequency of the highest harmonic of the 
waveform will be 593.47 kHz/1.351 = 439.28 kHz. Therefore, 
the fundamental, third and fifth harmonic frequencies of the 
waveform that could be reproduced in this case are 87.86 kHz, 
263.57 kHz and 439.28 kHz, respectively. Although this 
design could seem to be more appropriate than the one based 
on a fourth order filter, several problems arise.  

Thus, this design does not verify the conditions to operate in 
the CCM in steady-state (π/l1 =1.9217 is higher than ωS/ωC = 
1.685).  As a consequence, it is not possible for the converter 
to operate in open loop when a diode is used as rectifier. It 
should be noted that the operation in closed loop with a high-
order filter exhibits huge limitations due to the phase lag of 
these filters around the cut-off frequency (for example, 352 
degrees at ωC and 142 degrees at ωC/2).  

Moreover, the voltage ripple at the output is likely to be 



Table 10. Design example 2.�

fs [MHz] Att @ fs fC [kHz] slw0.5 [V/μs] L1 [μμμμH] C2 [nF] L3 [μμμμH] C4 [nF]

1 40 dB 211.7 5.9 7.22 114.9 2.95 24.83
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Fig. 21. Simulated results obtained testing a waveform like the one 
given in (5) in a Buck converter with different types of fourth-
order filters, in all cases designed to attenuate the switching 
frequency by 40 dB: a) Bessel-Thomson filter. b) Butterworth 
filter. c) Legendre-Papoulis filter. �

higher than the expected due to the influence of the lower-side 
band around the switching frequency (see Fig. 5b). As the 
ratio ωS/ωC is so low in this design, the influence of this side 
band on the output voltage ripple will probably be significant 
in comparison with the one corresponding to the switching 
frequency, thus increasing the total output ripple.   

However, a so high-order filter would be useful if the 
switching-frequency attenuation needed were clearly higher 
(e.g., 60 dB). In this case, the ratio ωS/ωC obtained from Fig. 
10c would be 2.371 and, therefore, the converter would 
operate in the CCM. As the value of ωC/ωh_max would be 
1.351, the harmonic content reproduced by the EA would be 
62.44 kHz, 187.31 kHz and 312.19 kHz, which is very similar 
to the one obtained in Implementation 1.1.     

Implementation 1.4 
To compare the behaviour of Legendre-Papoulis and 

Butterworth filters, a fourth-order Butterworth filter has also 
been designed for this case. The ratios ωS/ωC and ωC/ωh_max
are 3.163 (Fig. 10b) and 1.202 (Fig. 9b), respectively. 
Therefore, the filter cut-off frequency is 316.16 kHz, whereas 
the harmonic content reproduced by the EA would be 52.60 
kHz, 157.81 kHz and 263.02 kHz, which is a slightly worse 
design than the one obtained in Implementation 1.1.   

  VII.2. Design example 2
The objective in this case is also to design the output filter of 

a Buck EA operating at 1 MHz and with a load of 6.4 Ω. As in 
the previous case, the switching frequency must be attenuated 
by 40 dB at the output of the filter. The input voltage is 12 V. 
On the other hand, the filter selected in this case must allow 
the highest possible slew rate, compatible with the absence of 
overshoot. Due to this, a Bessel-Thomson filter is selected. To 
balance performance and implementation simplicity, a fourth 
order filter is selected once again.  

The design procedure begins by obtaining the ratio ωS/ωC

from Fig. 10a (ωS/ωC = 4.723) and, therefore, the filter cut-off 
frequency (211.7 kHz). The normalized value of the slew rate 
just at the middle of a voltage step is given in Table 3 (nslw0.5
= 0.444 rad-1).  The maximum slew rate that can be achieved 
when a voltage step of 10 V takes place is easily obtained 
from (10), the result being slw0.5 = 0.444·2·π·211.7·103·10 = 
5.9 V/μs. The values of the inductors and capacitors of this 
filter are also computed using (11) and (12), but in this case 
from the values of lx and cx obtained from Table 4. The design 
parameters are summarized in Table 10.  The converter will 
operate in the CCM in steady-state because the ratio ωS/ωC = 
4.723 is higher than the ratio π/l1 =2.0929 (Table 8). 
Furthermore, as it is a Bessel-Thompson filter, this also 
guarantees operation in the CCM during transients. 

VIII. Simulation and experimental results 

VIII.1. Simulation results  
The operation of a Buck EA with different fourth-order 

output filters have been simulated using PSIM. 
The Bessel-Thomson filter has been designed to have a cut-

off angular frequency of 1 rad/s. The angular switching 
frequency has been selected to be attenuated by 40 dB by the 
filter, which means that it should be 4.723 rad/s. The converter 
where this filter is placed has been used to reproduce a test 
waveform like the one defined by (5), but its frequency has 
been selected in such a way that the angular frequency 
corresponding to the highest harmonic is 1 rad/s, which means 
that the first harmonic is 1/5 rad/s, and the third one is 3/5 
rad/s. The results obtained are shown in Fig. 21a. This figure 
shows the current through   inductor L1 and the output voltage 
vO compared with the signal to be reproduced venv_test. As 
explained in Section III, venv_test has been delayed the time 
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Fig. 22. Simulated results obtained testing a falling voltage step in 
a Buck converter with a Bessel-Thomson filter (a), a Butterworth 
filter (b) and a Legendre-Papoulis filter (c), in all cases designed 
to attenuate the switching frequency by 40 dB. In (d), the value of 
the reactive elements of the Legendre-Papoulis filter have been 
divided by 2 in order to force the converter to work in the DCM 
after the voltage step.  �

corresponding to the group delay at DC, τBs(0).  Both the filter 
and venv_test correspond to those shown in the theoretical 
example in Fig. 6a. As it can be observed, analytical and 
simulation results are in very good agreement.  

Figure 21b shows the results obtained replacing the Bessel-
Thomson filter with a Butterworth filter. The angular 
switching frequency is 4.723 rad/s (the same as in the previous 
case). The cut-off angular frequency of this filter has been 
selected to also attenuate the switching frequency by 40 dB, 
which means that it must be 1.494 rad/s (instead of 1 rad/s). 
The signal venv_test is the same as in the previous case. Once 
again, analytical results (shown in Fig. 6b) and simulation 
results are in good agreement. Moreover, the comparison 
between the results shown in Fig. 21a and Fig. 21b shows that 
better accuracy reproducing the test waveform is obtained 
with the Butterworth filter, as concluded by the analysis in 
Section III. 

Similar results (slightly better) have been obtained with a 
Legendre-Papoulis filter, as Fig. 21c shows.  The angular 
switching frequency (4.723 rad/s) and the test waveform are 
the same as in the two previous cases, whereas the cut-off 
angular frequency is 1.821 rad/s to attenuate the switching 
frequency by 40 dB.  

The three filters have also been simulated reproducing a 
falling voltage step, as shown in Fig. 22. To carry out this 
step, the converter duty cycle has been suddenly changed from 
0.75 to 0.25. The waveforms depicted in Fig. 22a, Fig. 22b 
and Fig. 23c show the actual current through L1 compared 
with its average value predicted using (19). These figures also 
show the simulated and the analytical waveforms of the output 
voltage vO, as well as the voltage across capacitor C2, vC2. It 
should be noted that the evolution of vC2 and vO are very 
similar in all cases, which confirms the validity of the 
proposed assumptions under the derivations of the conditions 
to ensure CCM operation. Also note that the voltage ripple 
across C2 is always higher than in the output, as expected from 
the bode plots given in Fig. 17. Regarding the conduction 
mode, the waveforms of iL1 depicted in Fig. 22a, Fig. 22b and 
Fig. 22c show that the converter is always operating in the 
CCM. This fact can be predicted by checking the values of the 
ratio ωS/ωC (4.723 for the Bessel-Thomson filter, 3.16 for the 
Butterworth filter and 2.59 for Legendre-Papoulis one) against 
the curves in Fig. 18 and the values given in Table 8. 
Moreover, the values of ωS/ωC are also higher than 1.041π/l1
(2.137 for the Butterworth and 2.029 for the Legendre-
Papoulis, respectively), which guarantees operation in CCM 
both in steady-state and in transient conditions.     

Finally, the values of all the reactive elements in the 
Legendre-Papoulis filter have been divided by 2 in order to 
force the converter to partially operate in the DCM. The 
results obtained are given in Fig. 22d, where it can be 
observed that the converter operates in the CCM just before 
the falling voltage step (duty cycle dc = 0.75 in steady-state), 
but it enters into the DCM after the step (dc = 0.25 in steady-
state). Now both the ratio ωS/ωC and the value of l1 become 
divided by 2, which means that k is divided by 4, according to 
(17). Therefore, k = 2.59·1.612/(π·4) = 0.332, which is higher 
than the value of kcrit corresponding to dc = 0.75 (kcrit = 1-0.75 
= 0.25), but lower than the value of kcrit corresponding to dc = 
0.25 (kcrit = 1-0.25 = 0.75). Therefore, in steady state it is 
expected that the converter will operate in the CCM when dc = 
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Fig. 23. Experimental results obtained in a Buck EA with a 
fourth-order Legendre-Papoulis filter: a) Waveforms of iL1 (0.5 
A/div), ripple of vO (0.2 V/div) and ripple of vC2 (0.2 V/div). b) 
Testing a waveform like the one given in (5); the time scale is 
2.4 μs/div. c) Testing a falling voltage step from 6 V to 2 V; the 
time scale is 1.28 μs/div.  

0.75 and in the DCM when dc = 0.25. Simulation results 
shown in Fig. 22d confirm these calculations. Moreover, it 
should be noted that the design of the output filter in these 
conditions causes significant output voltage ripple, as well as 
voltage ripple across C2. Thus, this design would have a very 
poor performance and should be avoided.          

VIII.2. Experimental results  
Two Buck converters have been built to test their operation 

as EA. Both converters have the same switching frequency (1 
MHz), load (6.4 Ω) and input voltage (8 V). The power 
devices and all the auxiliary circuitry are also the same in both 
converters. Thus, the transistor used as power switch is an 
IPD135N03LG (Infineon), whereas the power diode is a 
MBRA130 (Semtech Electronics). The floating driving system 
for the power switch has been designed using a very fast 
digital isolation integrated circuit IL610 (NVE) and a high 
frequency driver integrated circuit EL7156 (Intersil). The 
inductors have been built using iron powder toroidal cores 
T72-8/90 (Micrometals). The capacitance needed for the filter 
capacitors have been obtained connecting ceramic and MKT 
film capacitors (Siemens) in parallel. The PWM control signal 
is digitally generated using a Virtex 4 FPGA.  

The only difference between both converters is the output 
filter. Thus, one of them has a Legendre-Papoulis filter with 
the main characteristics of the one corresponding to “Design 
example 1, Implementation 1.1” in Section VII, whose 
reactive components are given in Table 9.  On the other hand, 
the other one has a Bessel filter with the main characteristics 
of the “Design example 2”.  Its reactive components are given 
in Table 10.   

Figures 23 and 24 shows the results obtained from these 
prototypes. The voltage ripples across C2 and across the load 
when the converter is operating with a fixed value of the duty 
cycle (dc = 0.5) is shown in Fig. 23a (Legendre-Papoulis) and 
Fig. 24a (Bessel).  As the input voltage is 8 V and the duty 
cycle is 0.5, the AC component at the input of the filter is a 
square waveform of 4 V, whose first harmonic has a peak 
value of 4 V·4/π = 5.1 V. Therefore, the voltage ripple at the 
output should be 51 mV in both designs, because both filters 
have been designed to attenuate 40 dB. As Fig. 23a and Fig. 
24a show, the ripple obtained is very close to this theoretical 
value.   

Figure 23b shows the main waveforms obtained when the 
test signal venv_test of “Design example 1, Implementation 1.1”
is reproduced by the prototype with Legendre-Papoulis filter. 
As it can be seen, the current passing through inductor L1 is 
made up of positive and negative ramps, as in the case of a 
DC/DC converter with a standard second-order filter. As 
predicted in the theoretical analysis, the converter is working 
in the CCM, although it is close to DCM operation when 
reproducing the lower level of the test waveform. The output 
voltage vO does not have appreciable voltage ripple, which 
means that the selected attenuation (40 dB) is high enough for 
practical applications.  The results obtained are in good 
agreement with those shown in Fig. 21c, the main difference 
being that the reference signal venv_test has not been delayed as 
in Fig. 21. Also, the time scale is different, due to the different 

frequencies used in the simulation and experimental results.  
Slight asymmetries are observed in the experimental 
waveform, which are mainly due to the non-ideal behaviour of 
the digital control system.  

The test signal venv_test of “Design example 1, Implementation 
1.1” (Legendre-Papoulis filter) has been reproduced by the 
prototype with Bessel filter, whose cut-off frequency is 211.7 
kHz. The ratio ωC/ωh_max is in this case 211.7/320.5 = 0.66, 
which leads to a quite high value of the quadratic error defined 
in (6) (in fact, its value is 34%). This is reflected in Fig. 24b. 
Comparing this figure (Bessel filter) and Fig. 23b (Legendre-
Papoulis filter), it can be observed that better accuracy 
reproducing the test waveform is obtained with the Legendre-
Papoulis filter, as concluded by the analysis in Section III. 

Both converters have also been tested under a negative 
voltage step (from dc = 0.75 to dc = 0.25), as shown in Fig. 23c 
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Fig. 24. Experimental results obtained in a Buck EA with a 
fourth-order Bessel filter: a) Waveforms of iL1 (0.5 A/div), 
ripple of vO (0.2 V/div) and ripple of vC2 (0.2 V/div). b) Testing a 
waveform like the one given in (5); the time scale is 2.4 μs/div. 
c) Testing a falling voltage step from 6 V to 2 V; the time scale 
is 1.28 μs/div.  

and Fig. 24c. The results obtained are in very good 
concordance with the ones given in Fig. 22c (Legendre-
Papoulis filter) and Fig. 22a (Bessel filter), but obviously at 
the corresponding time scale. The operation in CCM in all 
conditions clearly appears in these figures. No appreciable 
ripple is observed on the output voltage vO (as predicted in 
Fig. 22c and Fig. 22a), but there is appreciable ripple on the 
voltage across capacitor C2 in both cases, as it is also predicted 
by the simulations. This voltage ripple is properly attenuated 
by the second part of the filter (inductor L3 and capacitor C4). 
Figure 24c shows that the response corresponding to the 
Bessel filter does not exhibit any overshoot (as predicted), 
whereas some overshoot appears in the case of the converter 
with Legendre-Papoulis filter (see Fig. 23c).  

Finally, as the falling step goes from 6 V to 2V, the 
theoretical slew rate of the output voltage just at the middle of 
the step should be slw0.5 = 0.444·2·π·211.7·103·(6-2) = 2.36 

V/μs in the case of the Bessel filter, whereas the slew rate 
measured in the prototype has been 2.08 V/μs. On the other 
hand, the theoretical slew rate in the case of the converter with 
Legendre-Papoulis filter should be slw0.5 = 
0.352·2·π·384.6·103·(6-2) = 3.4 V/μs; the slew rate measured 
in the prototype has been 3.47 V/μs in this case.  

IX. Conclusions  
Bessel-Thomson, Butterworth and Legendre-Papoulis low-

pass filters are suitable filters to be used as output filters of 
Buck DC/DC converters. The proper design of these filters 
shows that Butterworth and Legendre-Papoulis filters have 
superior performance compared to Bessel-Thomson filters 
when reproducing band-limited envelopes. However, they 
exhibit overshoot when very fast transients (like voltage steps) 
appear in the envelope signal to be reproduced. From this 
point of view, Bessel-Thomson filters have better behaviour 
due their absence of overshoot when a voltage step must be 
reproduced, although the output voltage variation is slower.  

The values of the reactive components in these filters must 
be calculated from the proper tables, different to the usual 
ones. This is because the usual tables are for applications 
where the input voltage source has a specific value of output 
impedance and the design of the filter is based on obtaining 
maximum power transfer from this source to the load.  

The conduction mode of a Buck converter with a high-order 
filter has also been addressed in this paper. The conduction 
mode is important when the converter has been designed with 
no output-voltage feedback loop (in order to achieve as 
maximum bandwidth as possible) and with a diode instead of 
a synchronous rectifier (in order to operate at as high 
switching frequency as possible). In these conditions, linear 
dependence between the converter duty cycle and the output 
voltage only exists if the converter is operating in the CCM. 
Fortunately, the criterion to guarantee the operation in CCM in 
the case of standard Buck converters (with a second-order 
filter) operating in steady-state can be used in the case of high-
order filters when they have been designed for reasonable 
switching-frequency attenuations (e.g., higher than 30 dB for 
filter orders up to the fourth one). Moreover, the operation in 
the CCM in transient response can be guaranteed many times 
if the value of the dimensionless conduction parameter k is 
properly increased over its critical value kcrit. 

Finally, the theoretical behaviour of a Buck converter with 
high-order filters operating in several different situations has 
been deeply verified by simulating the converter operation 
with PSIM, showing and excellent concordance with the 
theoretical assumptions. Moreover, two experimental 
prototypes using Legendre-Papoulis and Bessel filters have 
been built and tested, also with good concordance with the 
theoretical assumptions.            
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