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REPRESENTATIONS OF EXCEPTIONAL SIMPLE
ALTERNATIVE SUPERALGEBRAS OF CHARACTERISTIC 3

M. C. LÓPEZ-DÍAZ AND IVAN P. SHESTAKOV

Abstract. We study representations of simple alternative superalgebras
B(1, 2) and B(2, 4). The irreducible bimodules and bimodules with super-
involution over these superalgebras are classified, and some analogues of the
Kronecker factorization theorem are proved for alternative superalgebras that
contain B(1, 2) and B(4, 2).

1. Introduction

The simple alternative superalgebras were classified in [6] and [5]. In particular,
it was proved in [5] that a simple alternative superalgebra B = B0+B1, which is not
just a Z2-graded alternative algebra, should necessarily have characteristic 3 and
be isomorphic to one of the following superalgebras over a field F of characteristic
3.

1) B = B(1, 2), where B0 = F · 1, B1 = F · x+ F · y, with 1 being the unit of B
and xy = −yx = 1, x2 = y2 = 0.

2) B = B(4, 2), where B0 = M2(F ), B1 = F ·m1 + F ·m2 is the 2-dimensional
irreducible Cayley bimodule over B0; that is, B0 acts on B1 by

eij ·mk = δikmj , i, j, k ∈ {1, 2},(1)
m · a = a ·m,(2)

where a ∈ B0, m ∈ B1, a → a is the symplectic involution in B0 = M2(F ). The
odd multiplication on B1 is defined by

m2
1 = −e21, m

2
2 = e12, m1m2 = e11, m2m1 = −e22.

3) The twisted superalgebra of vector type B = B(E,D, γ). Let E be a
commutative and associative algebra over F, D be a nonzero derivation of E such
that E is D-simple, and γ ∈ E. Denote by E an isomorphic copy of the vector
space E, with an isomorphism mapping a → a. Consider the vector space direct
sum B(E,D, γ) = E + E and define multiplication on it by the rules

a · b = ab, a · b = a · b = ab, a · b = γab+ 2D(a)b+ aD(b),
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where a, b ∈ E and ab is the product in E. A Z2-grading on B = B(E,D, γ)
is defined by B0 = E and B1 = E. In any characteristic, B is a simple right
alternative superalgebra; and when char F = 3, B is alternative.

In this work, we study birepresentations of B(1, 2) and of B(4, 2). First, we
classify the irreducible superbimodules over these superalgebras. It occurs that, be-
sides a certain two-parametric series of bimodules V (λ, µ) over B(1, 2), all the other
unital irreducible superbimodules for these superalgebras are regular or opposite
to them. As a corollary, we prove that every unital B(4, 2)-superbimodule is com-
pletely reducible. Besides, every alternative superalgebra B that contains B(4, 2) as
a unital subsuperalgebra admits a graded Kronecker factorization B = B(4, 2)⊗̃U
for a certain associative commutative superalgebra U .

It was shown in [5] that both B(1, 2) and B(4, 2) admit J-admissible superin-
volutions; that is, superinvolutions with symmetric elements in the nucleus. This
was used in [5] for constructing new simple exceptional Jordan superalgebras of
characteristic 3 as 3×3 Hermitian matrices over B(1, 2) and B(4, 2). Motivated by
the future study of representations of these Jordan superalgebras, we classify the
irreducible bimodules with J-admissible superinvolution over B(1, 2) and B(4, 2).
In the case of B(4, 2), the list of irreducible bimodules with superinvolution co-
incides with that of irreducible bimodules, and for B(1, 2) this list contains only
regular supermodules and their opposites, while the supermodules V (λ, µ) do not
enter in the list. As a corollary, every unital supermodule with J-admissible super-
involution over B(1, 2) is completely reducible; and every alternative superalgebra
with J-admissible superinvolution that contains B(1, 2) as a unital subsuperalgebra
admits a Kronecker factorization as above.

Now, let us recall some definitions and fix certain notation.
A superalgebra A = A0 +A1 over a field F is called alternative if it satisfies the

superidentities

(x, y, z) = −(−1)d(x)d(y)(y, x, z) = −(−1)d(y)d(z)(x, z, y),

where (x, y, z) = (xy)z − x(yz), x, y, z ∈ A0 ∪ A1, and d(r) stands for the parity
index of a homogeneous element r : d(r) = i if r ∈ Ai. In this case, it is easy to
see that A0 is an alternative algebra and A1 is an alternative bimodule over A0.

An A-superbimodule M = M0 +M1 is called an alternative superbimodule if the
corresponding split extension superalgebra E = A+M is alternative.

For an A-superbimodule M , the opposite superbimodule Mop = Mop
0 + Mop

1 is
defined by the conditions Mop

0 = M1, M
op
1 = M0, and the following action of A:

a · m = (−1)d(a)am, m · a = ma, for any a ∈ A0 ∪ A1, m ∈ Mop. If M is an
alternative A-superbimodule, then one can easily check that so is Mop.

A regular superbimodule, Reg A, for a superalgebra A, is defined on the vector
superspace A with the action of A coinciding with the multiplication in A.

We will denote, for any homogeneous a and b,

[a, b] := ab− (−1)d(a)d(b)ba,

a ◦ b := ab+ (−1)d(a)d(b)ba.

If not stated otherwise, throughout the paper F will denote a field of character-
istic 3. All the algebras and superalgebras will be considered over F .
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2. Representations of B(1, 2)

In this section, we classify irreducible superbimodules over the superalgebra
B(1, 2), defined in the Introduction.

We start with the following general result.

Proposition 2.1. Let B be a simple commutative non-associative alternative su-
peralgebra, and let V be an irreducible alternative B-superbimodule. Then V is
commutative, that is, for any v ∈ V0 ∪ V1, a ∈ B0 ∪B1, [v, a] = 0 holds.

Proof. Let us show first that for any homogeneous a ∈ B the set [V, a] := {[v, a]| v ∈
V } forms a subbimodule of V . Recall two identities that are valid in alternative
superalgebras (see [5, 7]):

[xy, z]− x[y, z]− (−1)d(y)d(z)[x, z]y − 3(x, y, z) = 0,(3)

[[x, y], z]− (−1)d(y)d(z)[[x, z], y]− [x, [y, z]]− 6(x, y, z) = 0.(4)

Since B is commutative and char B = 3, we have by (3) for any homogeneous
v ∈ V, b ∈ B

[v, a]b = (−1)d(a)d(b)[vb, a],
b[v, a] = [bv, a],

which proves that [V, a] is a subbimodule of V . Assume that there exists z ∈ B1

such that [V, z] 6= 0. Then, by irreducibility, V = [V, z] = [[V, z], z]. But it follows
from (4) that [[v, z], z] = −[[v, z], z] = 0; hence V = [[V, z], z] = 0, a contradiction.
Therefore,

[V,B1] = 0.
Now, the set B1 +B2

1 is an ideal in B. If it were zero, then B = B0 would be a
field; so we have B = B1 +B2

1 . Let x, y ∈ B1, v ∈ V . Then we have by (3)

[xy, v] = x[y, v] + (−1)d(v)[x, v]y = 0.

Thus, [B, V ] = 0, proving the proposition.

Corollary 2.1. Every unital alternative superbimodule V over the superalgebra
B = B(1, 2) satisfies the condition

[[[V,B], B], B] = 0.

Proof. It was proved above that, for any v ∈ V, z ∈ B1, the equality [[v, z], z] = 0
holds. Linearizing it, we have [[v, x], y] = −[[v, y], x]. In particular, [[V,B], B] =
[[V, x], y] = [[V, y], x]. Therefore,

[[[V,B], B], x] = [[[V, y], x], x] = 0,

and similarly [[[V,B], B], y] = 0, proving the corollary.

Denote by V (λ, µ), for λ, µ ∈ F , the commutative superbimodule over B(1, 2) =
F · 1 + F · x+ F · y, with the basis

v0, v1y, v0y
2 for V0, v1, v0y, v1y

2 for V1,

and the action of x and y defined as follows. Let v stand for any of the elements
v0, v1 and vsi = v1−i. Then

vyj · y = vyj+1, j = 0, 1; vy2 · y = µvs;
vyj · x = λvsyj + jvyj−1, j = 0, 1, 2.
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Proposition 2.2. The superbimodule V (λ, µ) is alternative for any λ, µ and irre-
ducible if λ 6= 0 or µ 6= 0.

Proof. It is easy to see that in any commutative superalgebra the equality

(a, b, c) = −(−1)d(a)d(b)+d(a)d(c)+d(b)d(c)(c, b, a)

holds. This implies easily that every right alternative commutative superbimodule
over a commutative superalgebra is also left alternative. Hence, it suffices to prove
that V (λ, µ) is right alternative. For this we need to check the following identities:

(u, x, y)− (u, y, x) = 0,(5)

(x, u, y) + (−1)d(u)(x, y, u) = 0,(6)

(y, u, x) + (−1)d(u)(y, x, u) = 0,(7)

(x, u, x) + (−1)d(u)(x, x, u) = 0,(8)

(y, u, y) + (−1)d(u)(y, y, u) = 0,(9)

where u is any element of the base. Let us start with (5). For u = vyj , j = 0, 1,
we have

(vyj , x, y) = λvsyj+1 + (j − 1)vyj ,

(vyj , y, x) = λvsyj+1 + (j + 1)vyj + vyj ,

which gives (5) since char F = 3. Similarly,

(vy2, x, y) = λµv + 2vy2 − vy2,

(vy2, y, x) = µvs · x+ vy2 = µλv + vy2,

which proves (5).
Furthermore, by commutativity,

(x, u, y) = (−1)d(u)(ux · y + uy · x),
(x, y, u) = u · xy + uy · x;

hence (x, u, y) + (−1)d(u)(x, y, u) = (−1)d(u)(ux · y + uy · x + u · xy + uy · x) =
(−1)d(u)(ux · y− uy · x− u · xy + u · yx) = (−1)d(u)((u, x, y)− (u, y, x)) = 0 by (5).
Similarly, we have (7). Finally, we have

(x, u, x) = (−1)d(u)(ux · x+ ux · x),
(x, x, u) = ux · x,

which proves (8) and, similarly, (9). Hence, the module V (λ, µ) is alternative. One
can easily check that if λ 6= 0 or µ 6= 0, then this module is irreducible.

Observe that the opposite bimodule (V (λ, µ))op is isomorphic to V (λ, µ) under
the isomorphism vyj 7→ vsyj . It is also easy to see that the modules V (λ, µ) and
V (λ′, µ′) are isomorphic if and only if (λ, µ) = ±(λ′, µ′).

Theorem 2.1. Every irreducible unital alternative superbimodule V over B(1, 2),
in the case where the ground field F (of characteristic 3) is algebraically closed, is
isomorphic to one of the bimodules: Reg B(1, 2), (Reg B(1, 2))op, V (λ, µ).1

1V. N. Zhelyabin informed the authors that a classification of irreducible alternative super-
bimodules over B(1, 2) was also obtained by M. Trushina.
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Proof. According to Proposition 2.1, we can assume that V is commutative; so we
may restrict ourselves to considering only the right actions ρ(x) and ρ(y) of x and
y on V . Let us prove first that the elements ρ(x)3 and ρ(y)3 lie in the centralizer
of V as a right B(1, 2)-module.

We will use in this proof non-graded (ordinary) commutators, which we will
denote by

[a, b]0 := ab− ba,
in order to distinguish them from the graded commutators, defined in the Intro-
duction. By super-rightalternativity, we have for any v ∈ V

(vx)y − (vy)x = v(xy − yx) = 2v = −v,
which gives

[ρ(x), ρ(y)]0 = −idV .(10)

Now

[ρ(x)3, ρ(y)]0 = ρ(x)2[ρ(x), ρ(y)]0 + [ρ(x), ρ(y)]0ρ(x)2 + ρ(x)[ρ(x), ρ(y)]0ρ(x)
= −3ρ(x)2 = 0.

Thus ρ(x)3 lies in the centralizer of V , and similarly so does ρ(y)3.
Consider the two possible cases separately.
1◦. ρ(x)3 = ρ(y)3 = 0.
Let us prove that in this case V is isomorphic to Reg B(1, 2) or to its opposite

bimodule. Observe first that ρ(x)2 6= 0. In fact, we have by (10)

[ρ(x)2, ρ(y)]0 = ρ(x)[ρ(x), ρ(y)]0 + [ρ(x), ρ(y)]0ρ(x) = −2ρ(x);

so ρ(x)2 = 0 would imply ρ(x) = 0, which is impossible. Assume that ρ(x)2|Vi 6= 0
for some i ∈ {0, 1}, that is, there exists v ∈ Vi such that u = (vx)x 6= 0, u ∈ Vi.
Then we have

ux = ((vx)x)x = 0.

Observe that, by (10), (ux)y − (uy)x = −u 6= 0; hence uy 6= 0. Furthermore,

(uy)x = (ux)y + u = u,

((uy)y)y = 0,
((uy)y)x = uy + ((uy)x)y = uy + uy = −uy.

Therefore, the elements u, uy, (uy)y span a B(1, 2)-submodule of V , which, by
irreducibility, coincides with V . It it easy to check that if i = 0, then V ∼=
(Reg B(1, 2))op, and if i = 1, then V ∼= Reg B(1, 2).

2◦. ρ(x)3 6= 0.
We claim that in this case V is isomorphic to a module of the type V (λ, µ). Let

A = algF 〈ρ(x), ρ(y)〉 be a subalgebra of EndFV generated by ρ(x), ρ(y). Since
V is irreducible, the center Z = Z(A) is a graded division algebra; besides, Z1 3
ρ(x)3 6= 0. It is easy to see that in this case Z = Z0 +Z0s for any fixed 0 6= s ∈ Z1;
in particular, ρ(x)3 = αs, ρ(y)3 = µs for some α, µ ∈ Z0. Let E = algF 〈α, µ, s2〉.
Then E ⊆ Z0 and A is spanned over E by the elements ρ(x)iρ(y)j , sρ(x)iρ(y)j , 0 ≤
i, j ≤ 2. In particular, V is finite dimensional over Z0. Since V is a commutative
supermodule, by [1, Proposition 4.2], it is irreducible as an ordinary (non-graded)
A-module. This implies, by the density theorem, that A = EndZ0V . Let us show
that Z0 = E. Consider some z ∈ Z0, z = α0 + α1ρ(y) + α2ρ(y)2, where αi depend
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only on ρ(x) and s. We have 0 = [z, ρ(x)]0 = α1 + 2α2ρ(y). Multiplying this
by ρ(y) and subtracting from z, we get z = α0 − α2ρ(y)2. Commuting z with
ρ(x) again, we get α2ρ(y) = 0 and so z = α0 = β0 + β1ρ(x) + β2ρ(x)2, where
β0, β2 ∈ E, β1 ∈ Es. Commuting now z with ρ(y) and arguing as before, we
obtain finally that z = β0 ∈ E.

Thus, the field Z0 is a finitely generated algebra over F . Since F is algebraically
closed, this implies that Z0 = F . We can now choose s ∈ Z1 such that s2 = 1. Let
0 6= λ ∈ F be a root of the polynomial X3 − α and v ∈ V such that sρ(x)(v) =
vs · x = λv. We can assume, without loss of generality, that v = v0 ∈ V0. Denote
v1 := vs, ρ(y)j(vi) := viy

j for 0 ≤ j ≤ 2. Then we have

v0 · x = λv1, v1 · x = λv0;

viy
j · y = viy

j+1, j < 2; viy
2 · y = viρ(y)3 = µv1−i;

viy · x = vi[ρ(y), ρ(x)]0 + (vi · x) · y = vi + λv1−iy;

viy
2 · x = viy[ρ(y), ρ(x)]0 + (viy · x) · y = viy + λv1−iy

2 + viy = λv1−iy
2 + 2viy.

These relations show that V is a homomorphic image of the module V (λ, µ). In
order to prove that V is isomorphic to V (λ, µ), it suffices to prove that the elements
v0, v1y, v0y

2 are linearly independent over F . It is easy to see that they are nonzero.
Assume that

αv0 + βv1y + γv0y
2 = 0(11)

for some α, β, γ ∈ F . Applying s to this equality, we get

αv1 + βv0y + γv1y
2 = 0.(12)

On the other hand, multiplying (11) by x, we get

αλv1 + β(λv0y + v1) + γ(λv1y
2 + 2v0y) = 0,

which, by (12), gives

βv1 + 2γv0y = 0.(13)

Applying s to (13), we get βv0 + 2γv1y = 0, and multiplying (13) by x, we obtain

0 = βλv0 + 2γ(λv1y + v0) = λ(βv0 + 2γv1y) + 2γv0 = 2γv0.

Thus γ = 0, which implies easily that β = α = 0 as well. This finishes the proof of
the theorem.

3. Representations of B(4, 2)

We will use in this section certain results about alternative bimodules over com-
position algebras that were proved in [5]. For the convenience of the reader, we
state these results below.

Recall that a bimodule V over a composition algebra C is called a Cayley bi-
module if it satisfies the relation

av = va,(14)

where a ∈ C, v ∈ V , and a→ a is the canonical involution in C.
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Proposition 3.1 ([5, Lemma 11 and its proof]). Let B = B0 + B1 be a unital al-
ternative superalgebra over a field F which contains an even composition subalgebra
C with the same unit. Assume that a subspace V of B is C-invariant and satisfies
(14). Then, the following identities hold for any a, b ∈ C, r ∈ B, u, v ∈ V .

(ab)v = b(av), v(ab) = (vb)a,(15)
a(ur) = u(ar),(16)
a(uv) = u(va), (uv)a = (au)v,(17)

(u, v, a) = [uv, a].(18)

Proposition 3.2 ([5, Lemma 12 and its proof]). Let H be a generalized quater-
nion algebra. Then, any unital alternative H-bimodule V admits the decomposition
V = Va ⊕ Vc, where Va is an associative H-bimodule and Vc is a Cayley bimodule
over H; moreover, the subbimodule Vc coincides with the subspace (V,H,H).

In this section we are going to prove the following theorems which describe the
alternative superbimodules over the superalgebra B(4, 2).

Theorem 3.1. Let V be a unital irreducible alternative superbimodule over B(4, 2).
Then V is isomorphic to Reg(B(4, 2)) or to Reg(B(4, 2))op.

Theorem 3.2. Every unital alternative superbimodule over B(4, 2) is completely
reducible.

We divide the proof into a sequence of lemmas.
Let B = B(4, 2) = H + M , with H = M2(F ), M = F · m1 + F · m2, the

2-dimensional Cayley H-bimodule defined by (1) and (2), and let V be a unital
irreducible alternative superbimodule over B. By Proposition 3.2, V = Va ⊕ Vc
where Va is an associative H-bimodule and Vc is a Cayley H-bimodule.

Lemma 3.1. Let V = Va⊕Vc be a unital alternative superbimodule over B(4, 2) =
H +M . Then, for any v ∈ Vc, m ∈M, a ∈ H,

(vm)a = (av)m,(19)
(mv)a = (am)v,(20)

and for any u ∈ Va, m ∈M, a, b ∈ H,

(um)a = (ua)m,(21)
a(mu) = m(au),(22)

((um)a)b = (um)(ba),(23)
b(a(mu)) = (ab)(mu),(24)
(um, a, b) = (um)[b, a],(25)
(b, a,mu) = [b, a](mu).(26)

Proof. First, consider v ∈ Vc, m ∈M, a ∈ H. By (14), (vm)a− (av)m = (vm)a−
(va)m = (v,m, a)− (v, a,m)+v(ma−am) = (v,m, a)+(v, a,m) = 0, and similarly
(mv)a− (am)v = 0.

Now, let u ∈ Va, m ∈M, a, b ∈ H. Then (um)a−(ua)m = (u,m, a)−(u, a,m)+
u(ma − am) = 0, and similarly a(mu) − (au)m = 0, which proves (21) and (22).
Furthermore, by (21), (um)a · b = (ua ·m)b = (ua · b)m = (u · ba)m = (um)(ba),
which proves (23). Similarly, by (22), one gets (24). Finally, (25) and (26) follow
easily from (23) and (24).
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Lemma 3.2. Let V = Va⊕Vc be a unital alternative superbimodule over B(4, 2) =
H + M . Then, VaM , MVa, VcM and MVc are H-invariant subspaces. Moreover
VaM +MVa ⊆ Vc and VcM +MVc ⊆ Va.

Proof. Since Va, Vc, and M are H-invariant, it suffices to prove, for the first part
of the lemma, that the product of any H-invariant subspaces U and W in the split
extension superalgebra E = B + V is again H-invariant.

We have (UW )H ⊆ U(WH) + (U,W,H) ⊆ UW + (U,H,W ) ⊆ UW , and simi-
larly H(UW ) ⊆ UW .

Now, let us prove that VaM + MVa ⊆ Vc. Recall that, by Proposition 3.2,
Vc = (V,H,H). Choose a, b ∈ H such that [a, b]2 6= 0. Then 0 6= [a, b]2 ∈ F , and,
by (26),

MVa = [a, b]2(MVa) ⊆ [a, b](MVa) ⊆ (a, b,MVa) ⊆ (H,H, V ) = Vc,

and similarly VaM ⊆ Vc.
Finally, for any v ∈ Vc, m ∈M, a ∈ H, we have by (19) and (15)

((vm)a)b = ((av)m)b = (b(av))m = ((ab)v)m = (vm)(ab),

which proves that VcM ⊆ Va. Similarly, by (20) and (15), MVc ⊆ Va.

Corollary 3.1. In the notation of the lemma, Va 6= 0.

Really, if Va = 0, then V = Vc and VM = MV = 0, which yields, for any v ∈ V ,

v = v · (m1m2 −m2m1) = (vm1)m2 − (vm2)m1 = 0,

a contradiction.

Lemma 3.3. Let V be a unital alternative superbimodule over B = B(4, 2) =
H + M , and let Za = Za(V ) = {v ∈ Va | [v,H ] = 0}. Then, Za 6= 0 and satisfies
the following conditions:

i) [Za, B] = 0,
ii) (Za, B,B) = 0.

Proof. By Corollary 3.1, Va is a nonzero unital bimodule over H . The category of
unital H-bimodules is equivalent to the category of right unital H◦ ⊗H-modules
[4], where H◦ is the algebra anti-isomorphic to H . Since H◦ ⊗ H ∼= M4(F ), this
means that every unital H-bimodule is completely reducible and that any two unital
irreducible H-bimodules are isomorphic. The regular H-bimodule RegH is unital
and irreducible; therefore, the bimodule Va =

⊕
iWi, where each Wi is isomorphic

to RegH . It is now clear that Za 6= 0.
Let us prove first that

(Za, H,M) = 0.(27)

By Lemma 3.2, for any u ∈ Za, a ∈ H, m ∈M we have

(a, u,m) = (au)m− a(um)
(14)
= (au)m− (um)a

(21)
= (au)m− (ua)m = [a, u]m = 0,

which proves (27). Furthermore, consider the identity

([x, y], y, z) = [y, (x, y, z)],(28)

which holds in any alternative algebra. Using its superized linearization, we have
for any u ∈ Za, m ∈M, a, b ∈ H

([u,m], a, b) = −([u, a],m, b) + (−1)d(m)d(u)[m, (u, a, b)] + [a, (u,m, b)] = 0,
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since [u, a] = (u, a, b) = 0 and (u,m, b) = 0. Therefore, ([Za,M ], H,H) = 0.
By (15),

0 = ([u,m], a, b) = ([u,m]a)b− [u,m](ab) = [u,m](ba)− [u,m](ab) = [u,m][b, a].

Therefore, [Za,M ][H,H ] = 0, which yields [Za,M ] = 0, proving i).
Consider now the identity

2[(x, y, z), t] = ([x, y], z, t) + ([y, z], x, t) + ([z, x], y, t),(29)

which holds in every alternative algebra (see [7], Lemma 3.2). Using the corre-
sponding superidentity, we have for any u ∈ Za, m, n ∈M, a ∈ H ,

2[(u,m, n), a] = ([u,m], n, a) + ([m,n], u, a)− (−1)d(u)([n, u],m, a) = 0,

by i) and (27). Therefore, [(Za,M,M), H ] = 0, and by superized linearization of
(28) we have

0 = [a, (u,m, n)] = −(−1)d(u)[m, (u, a, n)] + (u,m, [n, a])− (u, a, [n,m]).

By (27) and the fact that Za ⊆ Va, this implies the equality (Za,M, [M,H ]) = 0.
But it is easy to see that [M,H ] = M ; hence (Za,M,M) = 0, yielding ii).

Proof of Theorem 3.1. Let V = Va ⊕ Vc be a unital irreducible alternative super-
bimodule over B = B(4, 2) = H + M . By Lemma 3.3, Za 6= 0; so we can choose
some homogeneous element 0 6= u ∈ Za. The conditions i) and ii) of Lemma 3.3
show that the subspace u ·B is a B-subbimodule of V and the mapping ϕ : a 7→ u ·a
is a B-bimodule homomorphism of Reg B onto uB, in the case where u is even, or
of (Reg B)op onto uB, in the case where u is odd. Since both Reg B and (Reg B)op

are irreducible, and ϕ(1) = u 6= 0, we have that uB = V is isomorphic to Reg B or
to (Reg B)op.

Proof of Theorem 3.2. Let U = Ua + Uc be a unital superbimodule over B =
B(4, 2) = H + M. It was shown in the proof of Lemma 3.3 that the bimodule
Ua is isomorphic to a direct sum of regular H-bimodules: Ua =

⊕
i Ui, where, for

every i, Ui = uiH , and ui ∈ Za(Ui) is the image of the unit 1 under the isomorphism
of RegH onto Ui. In particular, [ui, H ] = 0; hence, by Lemma 3.3, ui ∈ Za(U).

Consider W =
∑

i uiB. Evidently, W is a B-subbimodule of U and Ua ⊆ W .
Let v ∈ Uc. Then v = v(m1 ◦ m2) = (vm1)m2 − (vm2)m1. By Lemma 3.2,
vmi ∈ Ua ⊆ W ; so v ∈ W as well, and U = W . Since every bimodule ui · B is
irreducible, U = W is completely reducible.

4. Bimodules with superinvolution

Recall that a linear even mapping ∗ : A −→ A is called a superinvolution of a
superalgebra A, if it satisfies the conditions

(a∗)∗ = a, (ab)∗ = (−1)d(a)d(b)b∗a∗,

for any homogeneous elements a, b ∈ A.
Now, let V be a superbimodule over a superalgebra (A, ∗) with superinvolution.

By analogy with the non-graded case (see [2]), we will call V an A-bimodule with
superinvolution, if there exists a linear mapping − : V −→ V such that the mapping

a+ v 7→ a∗ + v
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is a superinvolution of the split null extension superalgebra E = A+ V . Evidently,
for a superalgebra with superinvolution A, the bimodules RegA and (Reg A)op

have the superinvolutions induced by that of A.
It was shown in [5] that the superalgebras B(1, 2) and B(4, 2) admit the following

superinvolutions:
In B(1, 2), a0 + a1 7→ a0 − a1; and in B(4, 2), a0 + a1 7→ a0 − a1, where the

mapping a 7→ a is the symplectic involution of the matrix algebra M2(F ).
Now, we will study the structure of superbimodules with superinvolution over

B(1, 2) and B(4, 2). Our first objective is to prove that every irreducible super-
bimodule with superinvolution over these superalgebras is of the type Reg B or
(Reg B)op.

In fact, we will consider the superbimodules with involution that satisfy the
additional condition of so-called J-admissibility (see [2]). A superbimodule with
superinvolution (V,−) over a superalgebra with superinvolution (A, ∗) is called J-
admissible if all the symmetric elements of the superalgebra with superinvolution
E = A+V lie in the associative center (the nucleus) of E. In fact, only J-admissible
bimodules are needed for applications to Jordan algebras.

Theorem 4.1. Every irreducible unital J-admissible superbimodule V with super-
involution over B = B(1, 2) is isomorphic to Reg B or to (Reg B)op.

Proof. Let V be a superbimodule under consideration, with a superinvolution v 7→
v. Observe first that for any a ∈ B, v ∈ V , we have

[a, v] = av − (−1)d(v)d(a)va = (−1)d(a)d(v)v a− a v = −[a, v].

This means that the subspace [V, a] is invariant with respect to the superinvolution
and so is a subbimodule with superinvolution. Now, all the arguments of the proof
of Proposition 2.1 are applied to our case, and we conclude that V is a commutative
B-supermodule.

It is clear that V = SymV ⊕ Skew V , where, for any h ∈ SymV, k ∈ SkewV ,
we have h = h, k = −k. Assume first that SymV 6= 0 and choose some 0 6= h ∈
SymV . By J-admissibility, (h,B,B) = 0, and so we have

(hx)x = (h, x, x) + h(xx) = 0, (hy)y = 0,
(hx)y = (h, x, y) + h(xy) = h(xy) = h, (hy)x = −h,
hx = (−1)d(h)xh = −(−1)d(h)xh = −hx, hy = −hy.

Therefore, the subspace U = Fh + F (hx) + F (hy) is a B-subbimodule with in-
volution of V , and hence U = V . It is clear that U ∼= Reg B for even h, and
U ∼= (Reg B)op for odd h.

Now, assume that SymV = 0, that is, v = −v for any v ∈ V . Then we have

vx = (−1)d(v)x v = (−1)d(v)xv = vx;

hence vx ∈ SymV = 0. Similarly, vy = 0, and finally v = v(xy − yx) = (vx)y −
(vy)x = 0, a contradiction.

Theorem 4.2. Every unital J-admissible alternative superbimodule V with super-
involution over the superalgebra B = B(1, 2) is completely reducible.

Proof. It suffices to prove that V is a sum of irreducible subbimodules with in-
volution, or, equivalently, that every element v ∈ V lies in a sum of irreducible
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subbimodules with involution. Assume first that v = h ∈ SymV . We know that
(h,B,B) = 0. Now let us show that also [h,B] = 0. Consider

(xhy)x = (xh · y)x = (xh, y, x) + (xh)(yx) = (y, x, xh)− xh = −xh− xh = xh.

On the other hand,

(xhy)x = (x · hy)x = x(hy · x) + (x, hy, x) = −xh+ (−1)d(h)(hy, x, x)

= −xh− (−1)d(h)hx.

Hence, [x, h] = xh− (−1)d(h)hx = 0. Similarly, [y, h] = 0, and so [B, h] = 0.
We can now apply the arguments from the proof of Theorem 4.1 which show

that the elements h, hx, hy span an irreducible subbimodule with involution of V .
So, in this case we are done.

Now, let v = k ∈ Skew V . By the previous arguments, the subbimodule
(SymV )B generated by symmetric elements of V is completely reducible; so it
suffices to prove that k ∈ (SymV )B. Below, for v ∈ V we will write v ≡ 0 if
v ∈ (SymV )B.

It is easy to see that

Skew V ◦B1 ⊆ SymV, [Skew V,B1] ⊆ Skew V ;(30)

hence k ◦ z ≡ 0 for any z ∈ B1. Moreover, we have

0 ≡ (k ◦ z)z = kz · z + (−1)d(k)zk · z = (k, z, z) + (−1)d(k)zk · z
= −(−1)d(k)(z, k, z) + (−1)d(k)zk · z = (−1)d(k)z · kz.

Linearizing this relation on z, we have

x · ky + y · kx ≡ 0.(31)

Now, consider the element (k ◦ x)y ∈ (Skew V ◦B1)B1 ⊆ (SymV )B1 = (SymV ) ◦
B1 ⊆ SkewV . We have

(k ◦ x)y = k + (k, x, y) + (−1)d(k)xk · y.
Since the elements k, (k, x, y), (k ◦ x)y are skewsymmetric, so is xk · y. We have

xk · y = (−1)d(x)d(k)+d(x)d(y)+d(y)d(k)y · k x = y · kx;

hence

xk · y = −y · kx.
Comparing this relation with (31), we get

xk · y = −y · kx ≡ x · ky,
which yields (x, k, y) ≡ 0. Now, we have by (30),

k = k · xy ≡ kx · y ≡ 1
2

[k, x]y ≡ 1
4

[[k, x], y] = [[k, x], y].

By Corollary 2.1, for any B-superbimodule V , the equality [[[V,B], B], B] = 0 holds.
Therefore, we have

k ≡ [[k, x], y] ≡ [[[[k, x], y], x], y] = 0,

which proves the theorem.

Corollary 4.1. Every unital alternative J-admissible superbimodule with superin-
volution over the superalgebra B(1, 2) is commutative.
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Now, we turn to bimodules with superinvolution over B(4, 2).

Theorem 4.3. Every unital J-admissible superbimodule with superinvolution V
over the superalgebra with superinvolution B = B(4, 2) is completely reducible and
is a direct sum of irreducible bimodules with superinvolution isomorphic to RegB
or to (Reg B)op.

Proof. By Theorem 3.2, V =
⊕

iBui for certain elements ui ∈ Za = Za(V ). In
particular, we always have Za 6= 0. Let us show that Za ⊆ SymV . First, it is
easy to see that Za is invariant under the superinvolution; so Za = (SymV ∩Za)⊕
(Skew V ∩ Za). Assume that there exists 0 6= u ∈ Za such that u = −u. Consider
the element s = um1 = 1

2u ◦m1 (recall that [u,B] = 0), where m1 is one of the two
basic elements of M . It is easy to check that s = s; hence, by J-admissibility of V ,
we should have (s,B,B) = 0. But, by Lemma 3.3, (um1,m2,m1) = −um1. Hence
s = 0, a contradiction.

Now, if V is irreducible then, for any homogeneous 0 6= u ∈ Za we have V = uB,
which is isomorphic to RegB or to its opposite, according to the parity of u, under
the isomorphism b 7→ ub.

In the general case, it suffices to notice that every ui generates an irreducible
subsuperbimodule which is invariant under the superinvolution and is isomorphic
to Reg B or to its opposite.

5. Factorization theorems

In this section, we will prove for the superalgebras B(1, 2) and B(4, 2) some
analogue of the Kronecker factorization theorem for Cayley algebras from [3].

Theorem 5.1. Let B be an alternative superalgebra with J-admissible superinvolu-
tion (that is, every symmetric element lies in the nucleus of B) such that B contains
B(1, 2) as a unital subsuperalgebra with superinvolution. Then B ∼= U⊗̃B(1, 2) for
a certain commutative associative superalgebra U , where ⊗̃ denotes a graded tensor
product, that is,

(u⊗̃a)(v⊗̃b) = (−1)d(a)d(v)(uv)⊗̃(ab)(32)

for any homogeneous u, v ∈ U, a, b ∈ B(1, 2). In particular, the superalgebra B is
commutative.

Proof. Consider B as a B(1, 2)-superbimodule with superinvolution. By Theo-
rem 4.2 and J-admissibility, we conclude that B =

∑
i uiB(1, 2), where ui =

ui, (ui, B,B) = 0. Moreover, [B,B(1, 2)] = 0, by Corollary 4.1. Let U = SymB =
{u ∈ B|u = u}. Then B = UB(1, 2), and we will show that this product is
isomorphic to the tensor product we are looking for.

Consider the following identity, which is valid in any alternative algebra (see [7]):

[a, b](a, b, c)− (a, b, (a, b, c)) = 0.(33)

Superlinearizing it, we have for any u, v ∈ U, a, b, c ∈ B(1, 2)

[u, v](a, b, c) = ±[a, v](u, b, c)± [u, b](a, v, c)± [a, b](u, v, c)± (u, v, (a, b, c))
±(a, v, (u, b, c))± (u, b, (a, v, c))± (a, b, (u, v, c)) = 0.

It is easy to see that (B(1, 2), B(1, 2), B(1, 2)) = (B(1, 2))1 = Fx + Fy; hence
[u, v]x = [u, v]y = 0 and [u, v] = −[u, v](xy − yx) = −([u, v]x)y + ([u, v]y)x = 0.
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Therefore, [U,U ] = 0. Since U ◦ U ⊆ U , this proves that U is a commutative (and
associative) subsuperalgebra of B.

Furthermore, we have for any u, v ∈ U, a, b ∈ B(1, 2),

(ua)(vb) = u(avb) = u([a, v]b+ (−1)d(a)d(v)vab) = (−1)d(a)d(v)u(vab)

= (−1)d(a)d(v)(uv)(ab),

which shows that B is a homomorphic image of U⊗̃B(1, 2). Assume that u +
vx + wy = 0 for some u, v, w ∈ U . Then u ∈ SymB, vx + wy ∈ SkewB; hence
u = vx+wy = 0. Moreover, we have 0 = (vx+wy)x = −w and 0 = (vx+wy)y = v.
Therefore, B ∼= U⊗̃B(1, 2).

One can easily see that, since U and B(1, 2) are commutative superalgebras, so
is B.

Theorem 5.2. Let B be an alternative superalgebra such that B contains B(4, 2)
as a unital subsuperalgebra. Then B ∼= U⊗̃B(4, 2) for a certain commutative asso-
ciative superalgebra U .

Proof. As before, consider B as a B(4, 2)-superbimodule. By Theorem 4.3, B =∑
i uiB(4, 2), where ui ∈ Za(B) = {u ∈ B|[u,B(4, 2)] = 0}. Set U = Za. Then

B = UB(4, 2), and we will show that U is the desired superalgebra.
Let us see first that U is a subsuperalgebra of B. Fix arbitrary u, v, w ∈

U, a, b, c ∈ B(4, 2). Then, by (3),

[uv, a] = u[v, a] + (−1)d(v)d(a)[u, a]v = 0;

hence UU ⊆ U . Furthermore, by Lemma 3.3, (U,B(4, 2), B(4, 2)) = 0, and so, by
superization of (29),

([a, b], u, v) = ±([b, u], a, v)± ([u, a], b, v)± [(a, b, u), v] = 0.

Since B(4, 2) = F1 + [B(4, 2), B(4, 2)], this yields that (U,U,B(4, 2)) = 0.
Furthermore, by superized linearization of (33), we have

[a, b](u, v, w) = ±[a, v](u, b, w)± [u, b](a, v, w)± [u, v](a, b, w)± (a, b, (u, v, w))
±(a, v, (u, b, w))± (u, b, (a, v, w))± (u, v, (a, b, w)) = 0.

Choose a, b ∈ B(4, 2)0 = M2(F ) such that [a, b]2 = α ∈ F, α 6= 0. Then
α(u, v, w) = [a, b]2(u, v, w) = [a, b]([a, b](u, v, w)) = 0 and (u, v, w) = 0. Thus,
U is associative.

Applying again the superized linearization of (33), we get

[u, v](a, b, c) = ±[a, v](u, b, c)± [u, b](a, v, c)± [a, b](u, v, c)± (u, v, (a, b, c))
±(a, v, (u, b, c))± (u, b, (a, v, c))± (a, b, (u, v, c)) = 0.

Since mi = −(eii, eji,mj), i, j = 1, 2, i 6= j, this implies [u, v]mi = 0, i = 1, 2, and
finally

[u, v] = [u, v](m1m2 −m2m1) = ([u, v]m1)m2 − ([u, v]m2)m1 = 0.

Therefore, U is a commutative and associative subsuperalgebra of B.
It is clear that B is a homomorphic image of U⊗̃B(4, 2). Assume that w =∑
ij uijeij + u1m1 + u2m2 = 0 for some ui, uij ∈ U . Then we have

0 = (e11, e21, w) = −u2m1,

0 = (e22, e12, w) = −u1m2,
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2758 M. C. LÓPEZ-DÍAZ AND IVAN P. SHESTAKOV

which implies easily that u1 = u2 = 0. Furthermore,

0 = (eiiw)ejj = uijeij ,

which yields easily uij = 0 for all i, j.
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Departamento de Matemáticas, Universidad de Oviedo, C/ Calvo Sotelo, s/n, 33007,

Oviedo, Spain

E-mail address: cld@pinon.ccu.uniovi.es
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