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Abstract

Given X a set endowed with a partial order �, we can consider the class of
�-preserving real functions on X characterized by x � y implies f(x) ≤ f(y). Such
a class of functions generates a stochastic order �g on the set of probabilities asso-
ciated with X by means of P �g Q when

∫
X f dP ≤ ∫X f dQ for all f �-preserving

functions. In this paper we analyze if the property of being order-isomorphic is
transferred from partially ordered sets to the corresponding generated stochastic
orders and conversely. We obtain that if two posets are order-isomorphic, the posets
which are generated by means of the class of measurable preserving functions are
also order-isomorphic. We prove that the converse is not true in general, and we
obtain particular conditions under which the converse holds. The mathematical
results in the paper are applied to the comparison of maritime areas with respect
to chemical components of seaweeds. Moreover we show how the solution of the
above comparison for specific components can lead to the solution of the compar-
ison when we consider other components of seaweeds by applying the results on
order-isomorphisms.
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1 Introduction

Ordered sets have a great importance in many mathematical areas as lattice theory, graph

theory, combinatorics, etc, as well as being by itself a remarkable field of research.

The study of ordered sets of probabilities plays a very important role in the mathe-

matical context, involving the analysis of both, theoretical and applied problems. Partial

orders on sets of probabilities are also known as stochastic orders, specially in the prob-

abilistic/statistic framework, in which they have a great interest. Stochastic orders have

been applied successfully in fields like medicine, genetics, ophthalmology, ecology, veteri-

nary science, physics, economics, quality control theory, etc (see for instance [10], [1], [4],

[5] and [9]).

In [7], a method to extend a partial order on a finite set to a stochastic order on the

class of probabilities associated with such a set, is proposed. That method is based on

the so-called preserving functions and it can be extended to any set. Thus, if (X ,A) is a
measurable space and � is a partial order on X , one can take the class of all measurable
�-preserving real functions, that is, the set of measurable functions f : X → R such that

if x, y ∈ X satisfy x � y, then f(x) ≤ f(y). The partial order � generates a binary

relation �g on the set of probabilities on (X ,A) defined by

P �g Q when

∫
X
f dP ≤

∫
X
f dQ

for all f measurable �-preserving functions.
In this paper we will focus our attention in analyzing if the property of being order-

isomorphic is transferred from partially ordered sets to the stochastic orders generated by

such partially ordered sets and conversely. Moreover we apply the mathematical results

developed in the paper to the search of maritime areas with elevated values of specific

chemical components of seaweeds, namely some amino acids, and we show how the solution

of such a problem can derive easily the solution when we consider other components.

The structure of the paper is the following: in Section 2 we include the preliminaries

of the manuscript. Section 3 contains the mathematical results of the paper. Finally, we

apply the results to the analysis of chemical components of seaweeds in Section 4.
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2 Preliminaries

In this section we include the concepts and results which are necessary for our study.

Let X be a set, a binary relation �X on X which satisfies the reflexivity, transitivity

and antisymmetric properties is called a partial order. The pair (X ,�X ) is said to be a

poset (partially ordered set).

A subset U ⊂ X is said to be an upper set if given x1, x2 ∈ X with x1 ∈ U and

x1 �X x2, then x2 ∈ U .
An upper quadrant set is a subset of X of the form Q�X

x = {z ∈ X | x �X z}, with
x ∈ X . We will denote by Q�X the class of upper quadrant sets determined by the partial

order �X on X . Note that any upper quadrant set is an upper set.
Let x1, x2 ∈ X . We will say that x2 covers x1 if x1 �X x2, x1 
= x2 and there is not

x3 ∈ X , x1 
= x3 
= x2, with x1 �X x3 �X x2.

Let X be a finite set, the Hasse diagram of the poset (X ,�X ) is a directed graph with

vertices set X and an edge from x to y if y covers x.

In order to construct a Hasse diagram we will draw the points of X in the plane such

that if x1 �X x2, the point for x2 has a larger y-(vertical) coordinate than the point for

x1.

Let (X ,�X ) and (Y ,�Y) be posets. A mapping φ : X → Y is said to be order-

preserving if for any x1, x2 ∈ X with x1 �X x2, we have that φ(x1) �Y φ(x2).

Let (X ,�X ) be a poset. A mapping f : X → R is said to be �X -preserving if for any

x1, x2 ∈ X with x1 �X x2, we have that f(x1) ≤ f(x2).

Note that the class ofmappings which are�X -preserving is the class of order-preserving

mappings when we consider the posets (X ,�X ) and (R,≤), ≤ being the usual order on

the real line.

Given U ⊆ X , IU will stand for the indicator function of U , that is,

IU(x) =

{
1 if x ∈ U,
0 otherwise.

Note that if U is an upper set then IU is �X -preserving.

Let (X ,�X ) and (Y ,�Y) be posets. A mapping φ : X → Y is said to be an order-

isomorphism if:
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i) φ is order-preserving,

ii) there exists φ−1 : Y → X inverse of φ,

iii) φ−1 is order-preserving.

Clearly a mapping φ : X → Y is an order-isomorphism if and only if

i) φ is bijective,

ii) for all x1, x2 ∈ X it holds that x1 �X x2 if and only if φ(x1) �Y φ(x2).

Two posets (X ,�X ) and (Y ,�Y) are said to be order-isomorphic if there exists an

order-isomorphism φ : X → Y .
Note that if two ordered sets are order-isomorphic, they are indistinguishable for the

purposes of order theory because they have the same order structure.

The reader is referred, for instance, to [11] and [12] for an introduction to the theory

of ordered sets.

Given (X ,�X ) a poset, we will denote by BX the σ-algebra generated by the class of

upper quadrant sets, that is, BX = σ(Q�X ).

The usual Borel σ-algebra on R will be denoted by B.
The symbol FX will represent the set of mappings f : X → R which are measurable

with respect to BX and B, and �X -preserving.

On the other hand, PX will stand for the set of probability measures on the measurable

space (X ,BX ). Moreover, P0
X will denote the subset of PX composed by degenerated

probabilities, that is,

P0
X = {Px ∈ PX | x ∈ X , Px(B) = 1 if x ∈ B,Px(B) = 0 otherwise, B ∈ BX}.

A binary relation �̃ on P is said to be a stochastic order if (P , �̃) is a poset.
The reader is referred to [10] and [13] for a rigorous introduction to stochastic orders.

A method to generate a stochastic order on the class of probabilities associated with a

finite set endowed with a partial order is proposed in [7]. Such a method is based on the

class of preserving mappings and it can be extended to general sets in the following way.

Given a poset (X ,�X ), the class FX of all measurable �X -preserving mappings gen-

erates a binary relation on PX , denoted by �Xg, as follows: if P1, P2 ∈ PX , then

P1 �Xg P2 when

∫
X
f dP1 ≤

∫
X
f dP2
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for all f ∈ FX for which both integrals exist.

Note that the above relation is a partial order for any poset (X ,�X ), that is, (PX ,�Xg)

is a poset. Reflexivity and transitivity are obvious. On the other hand, if P1 �Xg P2 and

P2 �Xg P1, since IU ∈ FX then P1(U) = P2(U) for all U ∈ A�, where A� is the class of all

finite intersections of upper quadrant sets. Since σ(A�) = σ(Q�) and A� is a π-system

(that is, U1 ∩ U2 ∈ A� for any U1, U2 ∈ A�), then P1 = P2 (see for instance [2], p.42),

that is, �Xg also satisfies the antisymmetric property.

The following result can be found in [7]. We should note that the finiteness of X is

essential.

Proposition 2.1. Let (X ,�X ) be a poset with X finite. Let P1, P2 ∈ PX , then P1 �Xg P2

if and only if P1(U) ≤ P2(U) for any U upper set.

If X is not finite, an upper set does not necessarily belong to BX and so the above

result does not hold.

It is interesting to remark that considering σ-algebras generated by the class of upper

sets instead of σ-algebras generated by the class of upper quadrant sets, leads in general to

σ-algebras too large. For instance, if we consider in R
d (d > 1) the usual componentwise

order, the σ-algebra generated by the class of upper quadrant sets is the usual Borel σ-

algebra. In this case, the σ-algebra generated by the upper sets is larger than the usual

Borel σ-algebra, which makes many probability distributions induced by random vectors

not to be defined on the σ-algebra generated by the upper sets.

Obviously if X is finite both σ-algebras are equal.

Throughout the paper we will consider sets endowed with partial orders which are not

necessarily finite.

3 On generated stochastic orders and order-isomor-

phisms

In this section we will see that if two posets are order-isomorphic, the posets which

are generated by means of the class of measurable preserving functions are also order-

isomorphic. Moreover, we will see that the converse is not true in general, and we will

obtain particular conditions under which the converse holds.

-467-



Some technical results necessary for our purposes are firstly developed.

Proposition 3.1. Let (X ,�X ) and (Y ,�Y) be posets and let φ : X → Y be an order-

isomorphism. Then φ is measurable with respect to the σ-algebras BX and BY .

Proof. Let y ∈ Y . There is a unique x ∈ X , with y = φ(x). Since φ is an order-

isomorphism, if z ∈ Q�X
x we have that y �Y φ(z) and so z ∈ φ−1(Q�Y

y ), thus Q�X
x ⊆

φ−1(Q�Y
y ).

Now let w ∈ φ−1(Q�Y
y ). Since φ is an order-isomorphism we have that x �X w, and

so φ−1(Q�Y
y ) ⊆ Q�X

x .

Thus we have that φ−1(Q�Y
y ) ∈ Q�X for all y ∈ Y , but BY is the σ-algebra generated

by Q�Y , which implies that φ−1(U) ∈ BX for all U ∈ BY (see for instance Theorem 13.1

in [2]).

Proposition 3.2. Let (X ,�X ) and (Y ,�Y) be posets and let φ : X → Y be a bijective

mapping. Then φ is an order-isomorphism if and only if the following conditions hold

i) FX = {f ◦ φ | f ∈ FY},

ii) FY = {f ◦ φ−1 | f ∈ FX}.

Proof. Suppose that φ is an order-isomorphism. Let us prove part i).

Let F = {f ◦φ | f ∈ FY}. By means of Proposition 3.1 the maps of F are measurable.

Now consider f ◦ φ with f ∈ FY . Since f and φ are order-preserving mappings, f ◦ φ
satisfies the same property. Thus F ⊂ FX .

Now let f ∈ FX , we should see that f = g ◦ φ for certain g ∈ FY .

Let g = f ◦ φ−1 : Y → R. Since φ−1 and f are order-preserving mappings, g is

�Y-preserving. Thus i) is proved.

Part ii) is proved by means of the case i).

Now suppose that conditions i) and ii) are satisfied. Let us see that the bijective

mapping φ is an order-isomorphism.

Let x1, x2 ∈ X , x1 
= x2 with x1 �X x2, thus for any f ∈ FY we have that f ◦ φ(x1) ≤
f ◦ φ(x2). Since IQ�Y

φ(x1)

∈ FY , 1 ≤ I
Q
�Y
φ(x1)

(φ(x2)), which implies that φ(x1) �Y φ(x2).

Now let x1, x2 ∈ X , x1 
= x2, with φ(x1) �Y φ(x2), it can be seen that x1 �X x2

following the same method as before using condition ii).

-468-



Now we obtain that if two posets are order-isomorphic, the stochastic orders generated

by means of the classes of measurable preserving mappings are also order-isomorphic.

Proposition 3.3. Let (X ,�X ) and (Y ,�Y) be order-isomorphic posets. Then the posets

(PX ,�Xg) and (PY ,�Yg) are order-isomorphic.

Proof. Let φ : X → Y be an order-isomorphism. We define ∇ : PX → PY in the following

way: given P ∈ PX we construct the mapping ∇(P ) : BY → R with

∇(P )(B) = P (φ−1(B)) for all B ∈ BY .

Note that Proposition 3.1 yields that φ is measurable, therefore φ−1(B) ∈ BX for all

B ∈ BY . Since P is a probability, ∇(P ) is a probability and so ∇ is well-defined.

Let P1, P2 ∈ PX with P1 
= P2, therefore theremust exist A ∈ BX with P1(A) 
= P2(A),

equivalently, ∇(P1)(φ(A)) 
= ∇(P2)(φ(A)), which implies that ∇(P1) 
= ∇(P2). Thus the

mapping ∇ is injective.

Now let Q ∈ PY . We define P : BX → R with P (A) = Q(φ(A)). Since φ−1 is

measurable (see Proposition 3.1) and bijective, and Q is a probability, we have that P is

a probability.

Note that for all B ∈ BY , ∇(P )(B) = P (φ−1(B)) = Q(B), which proves that the

mapping ∇ is surjective.

As a consequence we obtain that ∇ : PX → PY is bijective.

Now suppose that P1 �Xg P2, therefore∫
X
f dP1 ≤

∫
X
f dP2

for all f ∈ FX such that both integrals exist.

Let Qi = ∇(Pi) ∈ PY , 1 ≤ i ≤ 2. By means of the Change of Variable Theorem (see

for instance [8], Theorem C, p.163) we obtain that∫
X
f dPi =

∫
Y
f ◦ φ−1 dQi, 1 ≤ i ≤ 2,

for all f ∈ FX .

Now note that ii) in Proposition 3.2 provides that∫
Y
g dQ1 ≤

∫
Y
g dQ2
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for all g ∈ FY such that both integrals exist, that is,

∇(P1) �Yg ∇(P2).

In the same manner, using in this case part i) of Proposition 3.2, we can see that

∇(P1) �Yg ∇(P2) implies P1 �Xg P2.

Therefore we have obtained that the mapping ∇ : PX → PY is an order-isomorphism,

and so the result is proved.

We should remark that the order-isomorphism ∇ is defined by means of the order-

isomorphism φ. If we know φ then ∇ is known. This fact will be used in the applications

developed in Section 4.

Example 3.4. Consider the posets (X ,�X ) and (Y ,�Y) whose Hasse diagrams (taken

from [12]) are given in Figure 1.

�

��������

����

���

���

����

��� �	� �
�

���

�

���� �������

���

��� �
��	� ���

��������

Figure 1: Hasse diagrams in Example 3.4

Let φ : X → Y be the mapping such that φ(x1) = y1, φ(x2) = y2, φ(x3) = y4,

φ(x4) = y3, φ(x5) = y5, φ(x6) = y7, φ(x7) = y8, φ(x8) = y6, φ(x9) = y10, φ(x10) = y9 and

φ(x11) = y11. Then φ is an order-isomorphism and the posets (X ,�X ) and (Y ,�Y) are

order-isomorphic.

By means of Proposition 3.3 we conclude that the posets (PX ,�Xg) and (PY ,�Yg) are

order-isomorphic and φ determines an order-isomorphism between such posets.

We should indicate that the converse of Proposition 3.3 is not true in general as the

following example shows.

Example 3.5. Consider the sets X = {x1, x2, x3} and Y = {y1, y2}, and the posets

(X ,�X ) and (Y ,�Y) determined by the Hasse diagrams given in Figure 2.

It is obvious that both posets are not order-isomorphic since |X | 
= |Y|.

-470-



�� ���� 
� 
�

Figure 2: Hasse diagrams in Example 3.5

On the other hand, given P1, P2 ∈ PX with P1 
= P2, by means of Proposition 2.1

(note that X is finite) we have that neither P1 �Xg P2 nor P2 �Xg P1, and the same

happens with the probabilities of PY . Therefore, if we construct a bijection between PX

and PY , such a bijection will be an order-isomorphism.

The set PX can be characterized by the subset of R3

{(p1, p2, p3) |
3∑

i=1

pi = 1, pi ≥ 0},

where each tuple (p1, p2, p3) represents an element of PX , pi being the probability given

for such an element to the point xi.

In a similar way PY is characterized by the subset of R2

{(q1, q2) |
2∑

i=1

qi = 1, qi ≥ 0},

with the same meaning as in the above case.

Since the sets {(p1, p2, p3) |
∑3

i=1 pi = 1, pi ≥ 0} and {(q1, q2) |
∑2

i=1 qi = 1, qi ≥ 0}
have the same cardinality (see for instance [6]), there exists a bijection between both sets,

and so (PX ,�Xg) and (PY ,�Yg) are order-isomorphic.

We obtain conditions under which an order-isomorphism between (PX ,�Xg) and

(PY ,�Yg) implies the existence of an order-isomorphism between (X ,�X ) and (Y ,�Y).

The following result shows one of such conditions, in this case involving degenerated

probabilities. If the image of P0
X by an order-isomorphism is equal to P0

Y , then (X ,�X )

and (Y ,�Y) are order-isomorphic.

Proposition 3.6. Let (X ,�X ) and (Y ,�Y) be posets, consider the posets (PX ,�Xg) and

(PY ,�Yg). Let ∇ : PX → PY be an order-isomorphism such that ∇(P0
X ) = P0

Y , then

(X ,�X ) and (Y ,�Y) are order-isomorphic.

Proof. We define the mapping φ : X → Y with φ(x) = y such that ∇(Px) = Py. Note

that the condition ∇(P0
X ) = P0

Y implies that φ is well-defined.
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Let x1, x2 ∈ X with x1 
= x2. If Px1 = Px2 then 1 = Px2(Q
�X
x1
) which implies that

x1 �X x2, and 1 = Px1(Q
�X
x2
) which leads to x2 �X x1 and so x1 = x2. Therefore

Px1 
= Px2 and thus ∇(Px1) 
= ∇(Px2), which implies that φ(x1) 
= φ(x2), therefore φ is

injective.

Given y ∈ Y , let x ∈ X with ∇(Px) = Py. Since ∇(P0
X ) = P0

Y and ∇ is bijective we

have that φ(x) = y and so the mapping φ is surjective.

Let x1, x2 ∈ X with x1 �X x2. For any f ∈ FX we have that f(x1) ≤ f(x2) and so

f(x1) =

∫
X
f dPx1 ≤

∫
X
f dPx2 = f(x2),

which proves that Px1 �Xg Px2 .

Since ∇ is an order-isomorphism, we obtain that ∇(Px1) �Yg ∇(Px2).

Now let yi ∈ Y , 1 ≤ i ≤ 2, such that Pyi = ∇(Pxi
), therefore Py1 �Yg Py2 . Thus 1 ≤

Py2(Q
�Y
y1
), which implies that y2 ∈ Q�Y

y1
, that is, y1 �Y y2, equivalently, φ(x1) �Y φ(x2).

In a similar way it can be proved that if x1, x2 ∈ X with φ(x1) �Y φ(x2) then x1 �X x2.

Thus the mapping φ is an order isomorphism, which proves the result.

The following result provides other conditions, which in conjunction with an order-

isomorphism between (PX ,�Xg) and (PY ,�Yg), lead to an order-isomorphism between

(X ,�X ) and (Y ,�Y).

For such an analysis we introduce the following concept.

Definition 3.7. Let (X ,�X ) be a poset and I ⊂ X . A mapping Υ : I → X is said

to conserve �X in each point separately when given x1, x2 ∈ I, if one of the following

relations holds: x1 �X x2, Υ(x1) �X x2, x1 �X Υ(x2), then the three relations are

satisfied simultaneously.

Example 3.8. Let us consider the poset (X ,�X ) whose Hasse diagram (taken from [12])

is in Figure 3. Let Υ : X → X with Υ(x1) = x4,Υ(x2) = x3,Υ(x3) = x2,Υ(x4) =

x1,Υ(x5) = x6,Υ(x6) = x5,Υ(x7) = x8,Υ(x8) = x7,Υ(x9) = x11,Υ(x10) = x10 and

Υ(x11) = x9.

It is seen that such a map conserves �X in each point separately.

Given (X ,�X ) a poset and S a subset of X , we will denote by S the complement of

S in X , that is, S = X \ S.
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Figure 3: Hasse diagram in Example 3.8

In order to clarify the following result, we introduce Figure 4 which describes some of

the subsets involved in Proposition 3.9.

�

�

�

���

�

��������

��� �

���

Figure 4: Different sets in Proposition 3.9

Proposition 3.9. Let (X ,�X ) and (Y ,�Y) be posets, let us consider the posets (PX ,�Xg)

and (PY ,�Yg). Let ∇ : PX → PY be an order-isomorphism. Let us define the sets

L = ∇−1(P0
Y) ∩ P0

X and M = ∇(P0
X ) ∩ P0

Y . If L and M are nonempty sets and if

there exists an order-isomorphism Ω : L → M such that Ω−1 ◦ ∇ : ∇−1(M) → PX and

∇−1 ◦ Ω : L → PX conserve �Xg in each point separately, then the posets (X ,�X ) and

(Y ,�Y) are order-isomorphic.

Proof. We define the mapping ∇̂ : PX → PY with

∇̂(P ) =

⎧⎪⎪⎨⎪⎪⎩
∇(P ) if P ∈ P0

X and ∇(P ) ∈ P0
Y (condition C1),

∇(P ) if P 
∈ P0
X and ∇(P ) 
∈ P0

Y (condition C2),
∇ ◦ Ω−1 ◦ ∇(P ) if P ∈ P0

X and ∇(P ) 
∈ P0
Y (condition C3),

Ω(P ) if P 
∈ P0
X and ∇(P ) ∈ P0

Y (condition C4).

Note that ∇̂ is well-defined.
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To prove the proposition we will see that ∇̂ is an order-isomorphism, and that ∇̂(P0
X ) =

P0
Y , which leads to the final result by means of Proposition 3.6.

Let us see that ∇̂ is a bijection. In the first place we will check that ∇̂ is injective.

Let P1, P2 ∈ PX with P1 
= P2.

• If P1 and P2 satisfy the same condition Ci, i ∈ {1, 2, 3, 4}, ∇̂(P1) 
= ∇̂(P2) since ∇
and Ω are bijective mappings.

• If P1 satisfies condition Ci and P2 satisfies condition Cj where i 
= j and i, j ∈ {1, 2},
then ∇̂(P1) 
= ∇̂(P2) since ∇ is injective.

• Consider the case where P1 satisfies condition C1.

– If P2 satisfies C3, we have that P1 ∈ P0
X and Ω−1 ◦ ∇(P2) 
∈ P0

X , thus ∇̂(P1) 
=
∇̂(P2), since ∇ is injective.

– If P2 satisfies C4, we have that ∇(P1) ∈ P0
Y and Ω(P2) 
∈ P0

Y , thus ∇̂(P1) 
=
∇̂(P2).

• Consider the case where P1 satisfies condition C2.

– If P2 satisfies C3, we have that ∇(P1) 
∈ P0
Y and ∇ ◦ Ω−1 ◦ ∇(P2) ∈ P0

Y , thus

∇̂(P1) 
= ∇̂(P2).

– If P2 satisfies C4, we have that P1 
∈ P0
X and ∇−1 ◦Ω(P2) ∈ P0

X , thus ∇̂(P1) 
=
∇̂(P2).

• Consider P1 satisfying condition C3.

– If P2 satisfies C4, we have that Ω
−1 ◦∇(P1) 
∈ P0

X and ∇−1 ◦Ω(P2) ∈ P0
X , thus

∇̂(P1) 
= ∇̂(P2).

We have proved the injectivity of ∇̂.
Now let us see that the mapping ∇̂ is onto. Let Q ∈ PY and P = ∇−1(Q).

• Consider in first place the case Q ∈ P0
Y .

– If P ∈ P0
X , then ∇̂(P ) = ∇(P ) = Q.
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– If P 
∈ P0
X , then P ∈ L and so Ω(P ) ∈M which implies that there exists P ′ ∈

P0
X with ∇(P ′) = Ω(P ) 
∈ P0

Y . Thus ∇̂(P ′) = ∇ ◦ Ω−1 ◦ ∇(P ′) = ∇(P ) = Q.

• Now consider the case Q 
∈ P0
Y .

– If P ∈ P0
X , then Q ∈ ∇(P0

X ) ∩ P0
Y = M . Since Ω : L → M is bijective, there

exists P ′ ∈ L with Ω(P ′) = Q, and so ∇̂(P ′) = Ω(P ′) = Q.

– If P 
∈ P0
X , then ∇̂(P ) = ∇(P ) = Q.

As a consequence we have obtained that the mapping ∇̂ is bijective.

Let us see that ∇̂ is an order-isomorphism. For such a purpose we will see that given

P1, P2 ∈ PX , we have that

P1 �Xg P2 ⇐⇒ ∇̂(P1) �Yg ∇̂(P2).

We analyze the different possibilities for the expressions of ∇̂(Pi), 1 ≤ i ≤ 2.

• If P1 and P2 satisfy the same condition Ci, i ∈ {1, 2, 3, 4}, we obtain the result since
∇ and Ω are order-isomorphisms.

• If P1 satisfies condition Ci and P2 satisfies condition Cj where i 
= j and i, j ∈ {1, 2},
then we obtain the result since ∇ is an order-isomorphism.

• Consider the cases where P1 satisfies condition C1 or C2.

– If P2 satisfies C3, we have that ∇̂(P1) �Yg ∇̂(P2) if and only if ∇(P1) �Yg

∇ ◦ Ω−1 ◦ ∇(P2), which is equivalent to P1 �Xg Ω−1 ◦ ∇(P2), and this to

P1 �Xg P2, because of the conservation in each point separately of the mapping

Ω−1 ◦ ∇.
– If P2 satisfies C4, we have that ∇̂(P1) �Yg ∇̂(P2) if and only if ∇(P1) �Yg

Ω(P2), which is equivalent to P1 �Xg ∇−1 ◦ Ω(P2), and this to P1 �Xg P2

because of the conservation in each point separately of ∇−1 ◦ Ω.

• Consider P1 satisfying condition C3.

– If P2 satisfies C1 or C2, we have that ∇̂(P1) �Yg ∇̂(P2) if and only if ∇ ◦
Ω−1 ◦ ∇(P1) �Yg ∇(P2), this being equivalent to Ω

−1 ◦ ∇(P1) �Xg P2, which

is equivalent to P1 �Xg P2.
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– If P2 satisfies C4, we have that ∇̂(P1) �Yg ∇̂(P2), equivalently ∇ ◦ Ω−1 ◦
∇(P1) �Yg Ω(P2), which is the same as Ω

−1 ◦∇(P1) �Xg ∇−1 ◦Ω(P2), and this

is the same as P1 �Xg P2.

• Consider P1 satisfying condition C4.

– If P2 satisfies C1 or C2, then ∇̂(P1) �Yg ∇̂(P2) is the same as ∇−1 ◦Ω(P1) �Xg

P2, which is equivalent to P1 �Xg P2.

– If P2 satisfies C3, we have that ∇̂(P1) �Yg ∇̂(P2) is the same as Ω(P1) �Yg

∇◦Ω−1 ◦∇(P2), that is ∇−1 ◦Ω(P1) �Xg Ω
−1 ◦∇(P2), equivalently P1 �Xg P2.

Therefore we have proved that ∇̂ is an order-isomorphism.

Let us see that ∇̂(P0
X ) = P0

Y .

Let P ∈ P0
X .

If P satisfies C1, then ∇̂(P ) = ∇(P ) ∈ P0
Y .

If P satisfies C3, then ∇̂(P ) = ∇◦Ω−1 ◦∇(P ), but Ω−1(∇(P )) ∈ L ⊂ ∇−1(P0
Y), which

implies that ∇̂(P ) ∈ P0
Y .

Thus we have obtained that ∇̂(P0
X ) ⊂ P0

Y .

Now let Q ∈ P0
Y .

If ∇−1(Q) ∈ P0
X , then ∇̂(∇−1(Q)) = ∇(∇−1(Q)) = Q.

If ∇−1(Q) 
∈ P0
X , we consider the element of PX given by ∇−1 ◦ Ω ◦ ∇−1(Q). By

construction we have that∇−1◦Ω◦∇−1(Q) ∈ P0
X and∇(∇−1◦Ω◦∇−1(Q)) = Ω◦∇−1(Q) ∈

P0
Y , thus ∇̂(∇−1 ◦Ω ◦∇−1(Q)) = ∇◦Ω−1 ◦∇(∇−1 ◦Ω ◦∇−1(Q)) = Q, which proves that

P0
Y ⊂ ∇̂(P0

X ), and so ∇̂(P0
X ) = P0

Y .

Therefore ∇̂ : PX → PY is an order-isomorphism such that ∇̂(P0
X ) = P0

Y . Proposition

3.6 implies that the posets (X ,�X ) and (Y ,�Y) are order-isomorphic.

4 Some applications in relation to the analysis of

chemical components of seaweeds

In this section we develop applications of the above theoretical results in relation to the

analysis of chemical components of seaweeds. Namely, on the one hand we will apply

stochastic orders generated by partially ordered sets to the problem of the search of

-476-



maritime areas with elevated values of some components of seaweeds. On the other hand

we will see how the solution of the above problem for specific components can lead to

the solution of the problem when we consider other components of seaweeds by applying

the results on order-isomorphisms in Section 3. This is interesting in maritime industry

since seaweeds are used, among others, for food, medicines and industrial products such

as paper coatings, adhesives, dyes, explosives, etc. Moreover seaweeds are currently under

consideration as potential source of bioethanol.

We should indicate that the procedure we develop below can be applied in multiple

fields.

Data will be stored in a matrix such that each column will contain values of a quan-

titative characteristic and each row will contain the values of the studied characteristics

in an experimental unit.

We will consider that all columns have the same orientation, that is, all the charac-

teristics contribute to the aim for ranking in the same way, namely, they have a common

monotonicity with the aim.

If we have information on n experimental units, let us denote them by s1, s2, . . . and sn,

and we have analyzed m characteristics, c1, c2, . . . and cm, we will store our information

in a matrix with the following structure

c1 c2 . . . cm
s1 a11 a12 . . . a1m
...

...
...

...
...

si ai1 ai2 . . . aim
...

...
...

...
...

sn an1 an2 . . . anm

where aij is the value of the characteristic cj for the experimental unit si.

The above data matrices lead under very mild conditions to a partial order on the set

of experimental units. The partial order given by the characteristics c1, c2, . . . and cm,

let us denote it by �{1,2,...,m}, is defined by

si �{1,2,...,m} sj when (ai1, ai2, . . . , aim) ≤ (aj1, aj2, . . . , ajm),

where ≤ stands for the usual componentwise order, that is, aik ≤ ajk for all k ∈
{1, 2, . . . ,m}.
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Clearly the above binary relation is a partial order when there are not two equal

rows. Observe that two equal rows means that the corresponding experimental units are

equal with respect to the analyzed characteristics, and so we can reduce the number of

experimental units since both have the same behavior.

Note that if we consider a subset of the set of characteristics, such a subset defines a

new partial order in the same way. For instance, if we consider characteristics c1 and c2

we have that

si �{1,2} sj when (ai1, ai2) ≤ (aj1, aj2).

The reader is referred to the smart book [3] for a detailed description of these concepts,

and a clear introduction to ranking and prioritization methods.

Now we describe the key ideas of our application. Let us suppose that we analyze

m chemical components, c1, c2, · · · , cm in n types of seaweeds, s1, s2, · · · , sn. We

want to rank seaweeds in accordance with the values of the components c1 and c2, being

interested in elevated values of such components. Therefore we should consider the order

�{1,2}. Such an order gives a “ranking” on the set of seaweeds with respect to c1 and c2.

It is known that seaweeds appear in different maritime areas in accordance with differ-

ent proportions or probabilities. How can we rank such areas when we look for elevated

values of c1 and c2?

In this point stochastic orders generated by partially ordered sets play a key role.

Order preserving functions give greater values to “higher” points of the order, that is, if

x � y, then f(x) ≤ f(y) for any f �-preserving mapping. Two probabilities are ordered

by the generated stochastic order �g when∫
f dP ≤

∫
f dQ

for any f �-preserving mapping. Roughly speaking P �g Q means that Q deposits at

least as much probability as P in the “higher” parts of the order �.
On the one hand, by means of generated stochastic orders we can compare maritime

areas of seaweeds with respect to the values of components c1 and c2.

On the other hand, we will see that solving the above problem for components c1

and c2 means to obtain the solution of the problem for any pair of components ci and cj

such that the partial orders �{1,2} and �{i,j} are isomorphic. For such a purpose we will
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use the results developed in Section 3. Note that if two partial orders are isomorphic,

the stochastic orders generated by such partial orders satisfy the same condition (see

Proposition 3.3). An order-isomorphism between two posets means that the solution of

an optimization problem in a poset, leads to the solution of the problem in the other

poset. This is very interesting since solving this kind of problems is in general a costly

and time-consuming process from a computational point of view, and so the results in

this paper lead to time and effort-saving methods.

First let us describe amethod for rankingmaritime areas with respect to some chemical

components of seaweeds using stochastic orders generated by partially ordered sets.

Let us consider chemical components c1 and c2. We have the set S = {s1, s2, · · · , sn} of
seaweeds endowed with the partial order �{1,2}. Suppose that the seaweeds s1, s2, . . . , sn

appear with proportions p1, p2, . . . , pn and q1, q2, . . . , qn in two maritime areas respectively.

Let P and Q be the probabilities given by the above proportions. We want to find out

in which area there are “higher” values of c1 and c2. That is, we want to study if some

of the relations P �{1,2}g Q or Q �{1,2}g P are satisfied. According to Proposition 2.1,

the above relations are equivalent to P (U) ≤ Q(U) or Q(U) ≤ P (U) for any upper set U

respectively, thus it is necessary to determine the class of upper sets of the partial order

�{1,2}.

Consider a matrix U�{1,2} such that there is a univocal correspondence between the

rows of U�{1,2} and the class of upper sets, that is, if a row corresponds to an upper set U

with U = {si1 , si2 , . . . sil} ⊂ S, then there is 1 in the positions i1, i2, . . . , il of such a row,

and 0 in any other case. We will say that the matrix U�{1,2} is a representing matrix of

the poset (S,�{1,2}).

Observe that we have different representing matrices of (S,�{1,2}) but any of them

can be obtained by means of a permutation of rows of another representing matrix.

The size of a representing matrix is r × n where n is the cardinal of the set, and r

depends on the poset. Note that any point determines a quadrant set and any upper set

is a union of quadrant sets, therefore it holds that n ≤ r ≤ 2n. These bounds can be

reached.

Given the probabilities P and Q on S, we denote by pi = P ({si}) and qi = Q({si}),
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and p and q will stand for the vectors

p =

⎛⎜⎜⎜⎝
p1
p2
...
pn

⎞⎟⎟⎟⎠ and q =

⎛⎜⎜⎜⎝
q1
q2
...
qn

⎞⎟⎟⎟⎠ .

In accordance with Proposition 2.1 we have that P �{1,2}g Q is equivalent to

U�{1,2}p ≤ U�{1,2}q.

Observe that the ith row of U�{1,2}p is the probability P of the upper set associated with

the ith row of U�{1,2} .

In this way we have approached the problem of ranking maritime areas with respect

to components c1 and c2 using stochastic orders generated by partially ordered sets.

Now let us use results in Section 3 for ranking maritime areas with respect to chemical

components which determine a poset order-isomorphic to that given by �{1,2}. Of course

we can follow the steps stated for approaching the case when we consider c1 and c2, but in

the case where we have order-isomorphisms we can apply results in Section 3 and obtain

a time and effort-saving method.

Let us consider components c3 and c4. If the proportions of seaweeds in two areas are

modelled by probabilities P and Q, we need to study if some of the conditions P �{3,4}g Q

or Q �{3,4}g P are satisfied.

Suppose that �{1,2} and �{3,4} are isomorphic, and φ is an order-isomorphism.

By means of Proposition 3.3, P �{3,4}g Q is equivalent to ∇−1(P ) �{1,2}g ∇−1(Q),

and so the problem is reduced to the analysis of components c1 and c2 with probabilities

∇−1(P ) and ∇−1(Q), previously developed. Note that ∇−1(P ) is immediately known

since ∇−1(P )({si}) = P (φ(si)) where φ is the isomorphism between �{1,2} and �{3,4}.

Let us see applications of the above techniques. Consider Table 1 where we have data

obtained in the analysis of four different chemical components (Valine=Va, Leucine=Le,

Glutamate=Gl, Threonine=Th) in eight types of red seaweeds (Acanthophora delillii=Ad,

Acanthophora specifera=As, Botryocladia leptopoda=Bl, Gracillaria corticada=Gc, Hyp-

nea muciformis=Hm, Sebdania polydactyla=Sp, Scinia indica=Si, Laurencia nidifica =

Ln).
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Va Le Gl Th
Ad 50.00 63.90 95.90 82.80
As 48.90 65.40 96.10 59.30
Bl 40.90 49.30 57.00 59.90
Gc 25.80 28.70 42.90 34.10
Hm 34.00 50.80 56.90 63.40
Sp 43.70 47.80 57.90 56.20
Si 49.70 48.40 90.80 72.00
Ln 49.10 68.90 104.60 71.50

Table 1: Amino acid composition of red seaweeds. Amino acids are presented in mg g−1.

Let us consider the partial order given by components Va and Le, that is, �{Va,Le}.

The Hasse diagram of such an order is given in Figure 5.

��	


�

��


�

��	

��	


�

��	

Figure 5: Hasse diagram of the partial order �{Va,Le}.

The upper sets determined by the partial order �{Va,Le} are:

{Ad }
{As, Ln }
{Ad,As,Bl, Ln }
{Ad,As,Bl,Gc,Hm, Sp, Si, Ln }
{Ad,As,Hm,Ln }
{Ad,As, Sp, Si, Ln }
{Ad, Si }
{Ln }
{Ad,As, Ln }
{Ad, Ln }
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{Ad,As, Si, Ln }
{Ad,As,Bl,Hm,Ln }
{Ad,As,Bl, Sp, Si, Ln }
{Ad,As,Bl, Si, Ln }
{Ad,As,Hm, Sp, Si, Ln }
{Ad,As,Hm, Si, Ln }
{Ad, Si, Ln }
{Ad,As,Bl,Hm, Sp, Si, Ln }
{Ad,As,Bl,Hm, Si, Ln }
A representing matrix U�{Va,Le} of the partial order is

U�{Va,Le} =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1
1 1 1 0 0 0 0 1
1 1 1 1 1 1 1 1
1 1 0 0 1 0 0 1
1 1 0 0 0 1 1 1
1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1
1 1 0 0 0 0 1 1
1 1 1 0 1 0 0 1
1 1 1 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 0 0 1 1 1 1
1 1 0 0 1 0 1 1
1 0 0 0 0 0 1 1
1 1 1 0 1 1 1 1
1 1 1 0 1 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Given two probabilities P and Q on the set of seaweeds, we have that

P �{Va,Le}g Q when U�{Va,Le}p ≤ U�{Va,Le}q.

In a geographical zone, two maritime areas contain the red seaweeds Ad, As, Bl, Gc,

Hm, Sp, Si and Ln with proportions 0.139, 0.130, 0.061, 0.028, 0.188, 0.223, 0.114, 0.117

and 0.110, 0.154, 0.076, 0.069, 0.173, 0.245, 0.085, 0.088 respectively. Which area is more

convenient for the search of high values of Valine and Leucine?
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Let pt = (0.139, 0.130, 0.061, 0.028, 0.188, 0.223, 0.114, 0.117) and qt = (0.110, 0.154,

0.076, 0.069, 0.173, 0.245, 0.085, 0.088). Then the minimum value of U�{Va,Le}(p − q) is

equal to 0, and the maximum value is 0.087. As a consequence we obtain that Q �{Va,Le}g

P , which means that searching for elevated values of Valine and Leucine in the first area

is more convenient.

Now let us consider the componentes Glutamate and Threonine. The order �{Gl,Th}

has the Hasse diagram in Figure 6.

��	


�

��


�

��	

��	


�

��	

Figure 6: Hasse diagram of the partial order �{Gl,Th}.

The posets given by the orders �{Va,Le} and �{Gl,Th} are order-isomorphic. We have

that φ : S → S such that φ(Ad) = Ln, φ(As) = Si, φ(Bl) = Bl, φ(Gc) = Gc, φ(Hm) =

Hm, φ(Sp) = Sp, φ(Si) = As and φ(Ln) = Ad is an order-isomorphism. The matrix A

which determines the order-isomorphism φ is

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Note that ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ(Ad)
φ(As)
φ(Bl)
φ(Gc)
φ(Hm)
φ(Sp)
φ(Si)
φ(Ln)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= A

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ad
As
Bl
Gc
Hm
Sp
Si
Ln

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Now results obtained in Section 3 provide that if P and Q are the probabilities of the

considered red seaweeds in two maritime areas, we have that

P �{Gl,Th}g Q ⇐⇒ ∇−1(P ) �{Va,Le}g ∇−1(Q) ⇐⇒ P ◦ φ �{Va,Le}g Q ◦ φ

⇐⇒ U�{Va,Le}Ap ≤ U�{Va,Le}Aq.

Therefore we have obtained a method for ranking maritime areas looking for elevated

values of Glutamate and Threonine by using the calculations for the case where we con-

sider components Va and Le.

A second geographical zone has two maritime areas whose proportions of the red

seaweeds Ad, As, Bl, Gc, Hm, Sp, Si and Ln are 0.122, 0.149, 0.086, 0.039, 0.178,

0.238, 0.112, 0.076, and 0.160, 0.151, 0.084, 0.026, 0.189, 0.201, 0.093, 0.096 respectively.

Note that such proportions are quite similar to the proportions of the first zone. In this

case, which area is more convenient for the search of elevated values of Glutamate and

Threonine?

Instead of approaching the problem in the same way of the first geographical zone,

we take advantage of the isomorphism between �{Va,Le} and �{Gl,Th}. Thus, if pt =

(0.122, 0.149, 0.086, 0.039, 0.178, 0.238, 0.112, 0.076) and qt = (0.160, 0.151, 0.084, 0.026,

0.189, 0.201, 0.093, 0.096), we have that

P �{Gl,Th}g Q is equivalent to U�{Va,Le}Ap ≤ U�{Va,Le}Aq.

In this case we obtain that the minimum value of U�{Va,Le}A(p − q) is −0.060, and
the maximum value is equal to 0. Therefore we obtain the relation P �{Gl,Th}g Q, that is,

in this case is more appropriate to search for elevated values of Glutamate and Threonine

in the second maritime area.
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5 Conclusions

In this paper we have proved that the property of being order-isomorphic is transferred

from partially ordered sets to generated stochastic orders, but the converse is not true

in general. Moreover we have obtained particular conditions under which the converse

holds. Such results have been applied to the search of maritime areas with elevated

values of specific chemical components of seaweeds, introducing a time and effort-saving

method which can lead to the solution of the problem with other components of seaweeds

in the case where we have order-isomorphisms. We should indicate that the procedures

developed in this paper to the search of maritime areas with elevated values of chemical

components, can be applied in multiple fields.
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[12] B. S. W. Schröder, Ordered Sets, An Introduction, Birkhäuser, Boston, 2003.
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