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Abstract

During the last years we are assisting to an intense Web transformation process. It is
no longer a mere static information repository but a dynamic system in which users
have become the main content contributors. They actively participate in sharing their
opinions, thoughts and views about products, events and almost anything in social
networks, forums, blogs, etc. With the latest advances in mobile technologies, users can
actually interact anytime from anywhere; real time information has become a reality.
All these mixture of social networks, discussion groups, forums and blogs are collectively
called the user-generated content. It has many practical applications and has a potential
major value from both the user and business points of view. On one hand, knowing other
user opinions is useful when having to take a decision in our daily life. On the other
hand, it is an invaluable information source about user preferences and tastes. Due to
the large and diverse number of opinion sources, it appears the necessity of systems able
to automatically discover, analyze and summarize the expressed sentiment in the so-
called user-generated content. Sentiment analysis grows out of this need. It focuses on
the computational study of people’s opinions, appraisals, and emotions toward entities,
events and their properties.

In the first three chapters of this document we introduce the problem of sentiment
analysis, describing its main characteristics and difficulties, we briefly present the
main theoretical background of the realized work, and we provide the reader with
an exhaustive literature review, analyzing the previous related works in the literature.
Afterwards, we face a sentiment classification problem consisting in learning to classify
a series of movie reviews, as positive or negative, in function of the sentiment expressed
by the author. In chapter 4 we present the dataset and its main properties, together
with all the preprocess steps we have applied to the text movie reviews in order to
obtain valuable representations. We also present the methodology we used to execute
the experiments and to estimate the performance of the proposed approaches. In
chapter 5 we describe our solutions to the problem, we present the details of all the
performed experiments and evaluate and discuss the obtained results. As baseline we
have reproduced an extensive part of the experiments presented in [Pang et al., 2002].
As follows we propose a series of feature reduction approaches, with the objective of
selecting a reduced and representative vocabulary of the movie review domain. Finally,
we propose a novel method based on measuring word cooccurrence information in order
to obtain a “meaning” representation of the text documents.

Keywords: Sentiment analysis, opinion mining, machine learning, polarity
classification, feature selection, SVM, word cooccurrence.
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Chapter 1

Introduction

1.1 Web expansion

During the last years we are assisting to an intense Web transformation process. It
is no longer a mere static information repository but a dynamic system in which
users have become the main content contributors. They actively participate in sharing
their opinions, thoughts and views about products, events and almost anything in
social networks, forums, blogs, etc. The popularity of social networks like Twitter

or Facebook has only just started to increase in the last few years. A key reason for
its success is that a simple interface is presented to the users, so that they are able
to share their sentiments, ideas and experiences in a fast and easy way. Moreover,
with the latest advances in mobile technologies, users can actually interact anytime
from anywhere; real time information has become a reality. This collaborative and
interactive process among users, aimed at sharing information, has received the name
of Web 2.0.

All these mixture of social networks, discussion groups, forums and blogs are collectively
called the user-generated content [Liu, 2010a]. It is a new source of information that
noticeably represents the word-of-mouth behavior that is present on the Internet. It
has many practical applications and has a potential major value from both the user
and business points of view. On one hand, knowing other user opinions is useful when
having to take a decision in our daily life. We can learn from other user experiences
who have already faced the same situation or decision in the past (wisdom of crowds).
On the other hand, it is an invaluable information source about user preferences and
tastes. A key circumstance is that users on the Internet share their opinions by their
own free will, without expecting anything in return and without coercion.

However, despite the elevated number of available sources for a user to express its
opinions, the existing search engines are still focused on factual information rather
than on opinionated (subjective) one. Text information can be broadly categorized
into two main types: facts and opinions. Facts are objective expressions about entities,
events and their properties. On the other hand, opinions are subjective expressions
used to describe sentiments or feelings towards entities, events and their properties

1



Chapter 1. Introduction

[Liu, 2010a]. Facts are whether true or false independently of the individual stating
them. In contrast, opinions can not be categorized according to its truth/falseness, and
they depend on the author’s subjective experience.

Much of the existing research regarding textual information has been traditionally
focused on mining and retrieval of factual information, e.g., information retrieval,
Web search, etc. These are techniques that work with facts assuming that they are
true. Well-known strategies use keywords to represent fact related queries, and then a
similarity measure is applied in order to generate a relevance ranking of the retrieved
documents. For example, when we are using Google to look for factual information,
generally it suffices to just look into the top ranked links, since to a greater or lesser
extent they all provide us with the same information. On the other hand, when
looking for opinions about a particular entity, the top ranked links only represent a
little subset of all the opinionated information that is available on the Internet. They
do not necessarily represent the global expressed sentiment about the entity. Current
search ranking strategy is not appropriate for opinion retrieval/search.

With the latest appearance of opinionated text in the Web, opinion based research
has started to grow. Due to the large and diverse number of opinion sources, and the
high volume of available information on each one (sparseness), it may be difficult for
human users to perform the opinion search task. It is complicated to find relevant
sources, extract the passages in which opinions are stated, and finally summarize all
the expressed sentiment and organize it into usable forms, so that it help us in decision
making. Sometimes useful opinions are “hidden” in large forums surrounded by non
important or not related information. It appears the necessity of systems able to
automatically discover, analyze and summarize the expressed sentiment in the so-called
user-generated content.

Figure 1.1: 2.0 Web representation
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Section 1.2. Sentiment Analysis

1.2 Sentiment Analysis

Sentiment Analysis, also called Opinion Mining [Pang and Lee, 2008], is a novel research
field that grows out of this need. Sentiment analysis is the computational study of
people’s opinions, appraisals, and emotions toward entities, events and their properties
[Liu, 2010b]. The objective is to determine the text author’s attitude, whether (s)he is
giving an opinion about an entity/event, expressing an emotional state (s)he is in, or
on the other hand trying to cause that state on the text reader.

Information Retrieval (IR) consists in finding material (usually documents) of an
unstructured nature (usually text) that satisfies an information need from within large
collections (usually stored on computers) [Manning et al., 2008]. In our particular
case, the material are the texts composed of unstructured opinions which are useful
for answering a opinion based question within the set of opinion documents on the
Internet. In the scope of this project, we will consider an opinion as a positive or
negative sentiment expressed by a user on a entity or event, by means of a written
commentary.

Over the past few years this problem has attracted the attention of both, research in
academia, and applications in business and industry. The principal reasons are that
on one hand it is a very challenging problem from the research point of view (leading
to a potential high number of publications), and on the other it offers a wide range of
practical applications. It has not been until a few years that it became popular because
it was complicated to obtain high volumes of opinionated text. This kind of information
can be easily retrieved nowadays via Internet. The increase of Machine Learning (ML)
methods in Natural Language Processing (NLP) and Information Retrieval tasks has
also been a contributive factor.

Sentiment classification can be divided into several specific subtasks [Esuli and
Sebastiani, 2005]:

• Determining subjectivity, consists in separating texts with factual information
from texts with opinions. It is a binary classification task with classes being
whether Objective or Subjective [Wiebe, 2000; Wiebe et al., 2004; Yu and
Hatzivassiloglou, 2003].

• Determining polarity, from a subjective text, determine whether the expressed
opinion is positive, negative or a mixed one [Pang et al., 2002; Turney, 2002;
Dave et al., 2003]. It is a binary or multiclass classification task depending on
the consideration of the neutral class. Each instance is labeled as Positive or
Negative, and in some problems it is also considered the Neutral class.

• Determining the strength of polarity, consists in quantifying the degree of the
sentiment. It is a multiclass problem with classes usually following a range like:
weakly positive, mildly positive or strongly positive. It is also called affective
classification, when trying to predict users mood, such as happiness, sadness,
kindness, sureness and so on [Subasic and Huettner, 2001; Grefenstette et al.,
2004; Bollen et al., 2011].

3



Chapter 1. Introduction

Conceptually, sentiment analysis is a natural language processing or text mining related
problem, which can be technically complex. It is a cross-domain problem, in which a
series of diverse techniques belonging to different fields, including linguistics, computer
science and statistics, have been traditionally applied. Some of the existing techniques
range from phrase pattern matching and language usage heuristics, to manual/semi-
automatic annotation techniques using information theory measurements to assign
scores to words and sentences. Sentiment lexicon generation, whether manually or semi-
automatically, has been another important research area. On the other hand, machine
learning methods, such as Support Vector Machines (SVM), have been successfully
applied to polarity classification problems.

However, during the last years most of the proposed techniques have started to gradually
become more and more specific and language dependent. They are strongly focused
on natural language processing, aiming at analyzing its single elements, syntactic
structures and so on. This is traduced into a higher performance in some specific
domains, but the resulting techniques are less applicable in general domains as main
drawback.

Precisely, one of the problems affecting this research area is that there is not a well-
known and widely accepted set of test problems to measure the effectiveness of the
proposed techniques in a general domain. Finding a representative set of data that is
correctly labeled is not an easy task. Thus, authors tend to test the performance of
their approaches over specific problems with a limited domain. As a consequence, it
is difficult to perform comparisons among different strategies and to evaluate the real
performance of each solution.

1.3 Principal difficulties

Sentiment Analysis is a challenging problem that presents numerous difficulties inherent
to the complexity of natural language processing. Take Twitter as example, despite
its 140 character length limitation, it is already sometimes difficult for a human to
determine the polarity of a single tweet due to the lack of context. In general, any task
comprising natural language processing presents an elevated number of complications.

The first obstacle we may face is the language diversity that appears on the Internet.
Each user generally comments in its mother tongue, and nowadays it is not strange to
see that on a same platform (Twitter, Youtube, etc.), interrelated or question/answer
comments may be expressed in different languages. In this context, language dependent
techniques may get negatively affected. This situation gets worsened due to the fact that
usually people communicating in the same language use different writing styles (jargon).
Another common practice in web texts is that people use abbreviations (SMS language)
and tend to make a lot of spelling mistakes. As a consequence, identical comments with
respect to their semantic meaning may have different textual representations.

A traditional representation of the documents in IR is made by considering each word in
the vocabulary by separate. However, when the objective is to analyze the sentiment,
that representation suffers from the lack of context problem. An isolated word or

4
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term by itself does not suffice to determine its semantic meaning. The same phrase can
indicate different sentiment in different domains. For example, the word “unpredictable”
is a positive description for a movie plot but a negative description for a car’s steering
abilities [Turney, 2002]. Likewise, even though terms as “devastating’ ’ are generally seen
as negative, in the context of movies or music it might imply an emotional engagement
which is usually seen as positive [Mullen and Collier, 2004]. Differences in vocabulary
across different domains is also an additional issue.

We can not think about document’s polarity as a function of the individual word’s
sentiment comprising it either. As Turney states in [Turney, 2002], “the whole is not
necessarily the sum of the parts”. Sentiment can be expressed in a more subtle manner.
For example, the sentence “How could anyone sit through this movie?” does not contain
any single word that is obviously negative, but the sentiment it expresses is in fact
negative. It is also common a kind of “thwarted expectations” narrative style, in which
the writer expects to create an emotive effect by emphasizing the contrast between
what he expected and the actual experience. Take into account the next commentary:
“This film should be brilliant. It sounds like a great plot, the actors are first grade
and the supporting cast is good as well, and Stallone is attempting to deliver a good
performance. However, it can’t hold up.” [Pang et al., 2002]. Note that it is mostly
composed of naturally positive words, but it expresses a negative opinion about the
film. Moreover, the reviewer emphasizes that he expected the film to be a brilliant
one. While it would be easy for a human to detect the true sentiment of the review,
a classifier using a bag-of-words representation would be biased towards the opposite
class, because most of the words being obviously positive. It is also quite common
that the concluding sentences of a commentary summarize the opinion expressed in the
whole composition.

The potential important contextual effect of negation is another core problem [Jia
et al., 2009; Wiegand et al., 2010]. These kind of clauses directly affect the polarity
of the comments they appear in. Whenever a negation word appears in a sentence,
it usually causes the meaning of the sentence to be the opposite of that without
the negation. Trying to model its influence is a very challenging task itself and has
become a hot research area in the last years. Several language heuristics have been
proposed, such as reverting the polarity of the next 5 words appearing after a negation
clause, or until a punctuation symbol is found [Das and Chen, 2001; Pang et al., 2002].
They are far from being a definitive solution though. Negation can be presented
explicitly (negation clauses) or implicitly with more subtle linguistic patterns that
may be language dependent. Another complication is that negation clauses do not
necessarily invert the polarity of the following words in certain situations. For example,
the clause “not’ ’ does not modify the polarity of “cheap” and “reliable” in “it is not only
cheap but also reliable”. Determining the scope of negation clauses is also an important
problem [Councill et al., 2010]. Its effect may affect only to the following word, or by
contrast to a whole paragraph.

It is usual in many discourse domains for writers to use rhetorical devices or language
resources with the objective of evoking an emotional response in the reader. It is very
difficult to model these kind of special writing resources in sentiment analysis tasks.
Examples of rhetorical devices are irony and metaphor. Irony automatic detection in
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texts is a tough problem that remains unsolved [Carvalho et al., 2009]. It mainly affects
to negative sentiments that are deliberately conveyed by means of positive sentences.

1.4 Practical applications

A system that is able to successfully discover, analyze and summarize all the valuable
information present in the user-generated content has a large number of practical
applications. Among them we highlight the following:

• Businesses and organizations, useful for market intelligence and online
product and service monitoring. It is an invaluable information source of
consumer’s tastes and preferences. Business usually spends a huge amount of
money to find consumer sentiments and opinions.

• Individuals, interested in other user opinions when having to purchase a product
or using a service. They might be also interested in opinions about political topics.
We are no longer restricted to our circle of friends opinions; it exists a global scale
on the Internet.

• Ads placements, placing user personalized ads in the user-generated content.
It would be interesting to announce a product when someone expresses a positive
opinion about it. On the other hand, placing an ad from the competitor when
someone criticizes a product might also be a good idea.

• Opinion retrieval/search, an opinion and sentiment oriented search service.
Contrasting with traditional factual oriented search services, it would allow users
to perform general searches for opinions. Sentiment and opinion summarization
would also be an interesting feature.

1.5 Research goals

The main research goals expected for a master project like this are the following:

• Acquire comprehensive background research of a problem and produce a literature
review.

• Develop and demonstrate skills acquired from the taught courses either in the
analysis of some theoretical aspect or in the solution of a real practical problem.

• Critically evaluate the obtained results.

• Improve written and verbal communication skills.

6



Section 1.5. Research goals

In our case we have focused on introducing and describing the main characteristics
of the sentiment analysis problem. In Chapter 3 we have produced an exhaustive
literature review, analyzing the previous work done on the problem. A taxonomy
that allows us to examine the problem with respect to the tasks, features, techniques
and domain applications is provided. We have solved a particular sentiment analysis
problem consisting in developing a system able to automatically classify a series of
movie reviews in function of the sentiment expressed by the author, whether positive or
negative. We have proposed a number of solutions, and assessed its performance with
respect to a defined performance measure.

Natural language processing is a very challenging research field and an important task
within the sentiment analysis problem. Much of the existing research in this field focuses
on the NLP subtask, examining syntactic and semantic characteristics of the language.
As a result, the proposed techniques tend to be language dependent and less applicable
in a general domain. In order to avoid these circumstances, our principal objective is
to use machine learning methods in order to generate models presenting an adequate
tradeoff between efficiency and complexity, that are applicable in a general domain. We
are interested in getting rid of language dependent artifacts, such as phrase patterns,
(sentiment) lexicons, and syntactic/semantic constructions. Usually, these kind of
techniques are more complex and domain dependent. Furthermore, the application of
most of these language dependent techniques requires the usage of external tools, like
part of speech taggers, etc. Analyzing and using this sort of NLP techniques remained
out of our scope, since machine learning is our core work interest.

One of our goals is to explore diverse methods in order to represent the textual
information. We focus in trying to extract the vocabulary that is most likely to help us
in the classification task. We start by reproducing an extensive part of the experiments
that were presented in [Pang et al., 2002], the first work that explicitly measured the
effectiveness of applying machine learning methods to the sentiment analysis problem.
As follows we propose a series of feature reduction approaches, with the objective of
selecting an adequate subset of words in the vocabulary. We also discuss the application
of an ensemble, that is to aggregate a series of different models, and which are the model
characteristics an ensemble would get benefited from. All of these steps are performed
with the goal of obtaining a reduced and representative vocabulary of the movie review
domain in a sentiment analysis task.

An additional important objective consists in designing a novel approach for solving the
problem. Our idea consists in representing each document by using the cooccurrence
information of the words comprising it. From this cooccurrence information, each word
in the vocabulary is represented by a high dimensional vector using Vector Space
Models. Words that are close in that high dimensional space, are expected to have
a similar semantic meaning. Then we have applied a simple clustering algorithm and
obtained a series of meaning clusters, i.e., ideally, words that are semantically similar
fall in the same cluster. From the cluster information we have created a document
“meaning” representation as input for the classification algorithms.

7



Chapter 1. Introduction

Additional and important objectives are learning to use and to apply a scientific
methodology, based on empirical and measurable evidence. It is very important for the
performed experiments to be repeatable, so other researchers are in position to check
the validity of our presented work. The process of creating an structured document
describing in detail the problem we are trying to solve, together with the adopted
solutions, the followed methodology and the obtained results and conclusions, is a
remarkable objective for this master.

8



Chapter 2

Theoretical background

In this chapter we are going to introduce the main theoretical background of the
methods and techniques that have been applied in this project to the sentiment analysis
problem. It is not our intention to be exhaustive but to provide the reader with the
basis and references in case he/she is not familiar with any of the concepts.

2.1 Machine Learning

Artificial Intelligence (AI) is the branch of computer sciences that aims to make
intelligent machines, and in particular intelligent computer programs. It can be defined
as the study and design of intelligent agents [Poole et al., 1998]. An intelligent agent is
a system that receives percepts from the environment and interacts with it by means of
performing actions in accordance to an objective [Russell and Norvig, 2003]. A typical
representation of an AI system is presented in Figure 2.1.

Percept	  

Ac)on	  
Computa)on	  

Model	  

Reasoning	  
Scheduling	  

Sensor	  data	  

Ac)ons	  

Goals	  

Figure 2.1: Typical representation of an AI system
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Chapter 2. Theoretical background

Machine Learning (ML) is a branch of artificial intelligence which goal is to study
and to design algorithms able to generalize behaviors based on empirical data. It is
a knowledge induction process ; from observations of individual instances to broader
generalizations. A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P , if its performance at tasks in T ,
as measured by P , improves with experience E [Mitchell, 1997].

Data is presented as a series of individual examples or instances. A number of variables
is observed and measured in each example. A major goal is to find relations between
the observed variables, that is to capture characteristics of interest of their unknown
underlying probability distribution. Thus, it is possible to recognize patterns in the
input data and to make intelligent decisions based on the data itself.

The core objective of a machine learning algorithm is to generalize from its experience.
Generalization is the ability of an algorithm to perform accurately on new, unseen
examples after having trained on a finite set of examples. It should be able to produce
useful outputs when facing unseen examples. The training instances constitute the
experience of the learner. Thus, it is very important for the training set to adequately
represent the problem we want to solve.

2.1.1 Types of data

The set of input examples that are used during the training stage is the so-called training
data set. Each example is characterized by a series of variables that receive the name of
features or attributes. These features are used to indicate the main properties of each
instance. In supervised learning problems (2.1.2) there exists a special feature called
label that represents the class of the example. There are different learning problems
depending on the class type, e.g., classification, regression, etc. On the other hand, in
unsupervised learning problems (2.1.3) the label is not used. A classical representation
of a learning problem is shown in Table 2.1.

Features

Feat. 1 Feat. 2 ... Feat. n− 1 Feat. n Label (optional)

Example 1 Example’s 1 label
Example 2 Example’s 2 label

... ...
Example m Example’s m label

Table 2.1: Classical representation of a learning problem

There are different types of features according to its nature:

• Nominal scale: the values are names without a natural order. For example a
colour scale: yellow, green, red, blue, etc.

10



Section 2.1. Machine Learning

• Ordinal scale: the values are names but they may be (naturally) ordered. For
example a feature representing the quality of an entity: low, medium, high.

• Cardinal and discrete scale: the values are numbers and the number of
different possible values is finite. For example a feature representing a year in
a given range: 1995, 1996, 1997, etc.

• Cardinal and continuous scale: the values are numbers (integers or reals) and
the number of different possible values is not finite. For example the height (cm)
of a human: 172.5, 187.2, etc.

A series of examples regarding the different types of features and classes (labels) is
presented in Table 2.2.

Features Class

Sepal length Sepal width Petal length Petal width Type

5.1 3.5 1.4 0.2 Iris setosa
4.9 3.0 1.4 0.2 Iris setosa
7.0 3.2 4.7 1.4 Iris versicolor
6.4 3.2 4.5 1.5 Iris versicolor
6.3 3.3 6.0 2.5 Iris virginica
5.8 2.7 5.1 1.9 Iris virginica

Age Spectacle prescription Astigmatism Tear production rate Recommended lenses

Young Myope No Reduced None
Pre-presbyopic Myope No Normal Soft
Pre-presbyopic Myope Yes Normal Hard

Presbyopic Hypermetrope No Reduced None

Cycle time (ns) Main memory (Kb) Cache (Kb) Channels MIN Performance

125 256 256 16 198
29 8000 32 8 256
480 512 32 0 67
480 1000 0 0 45

Table 2.2: Examples of the different types of features and classes

Training data related problems

One of the most important problems is the so-called curse of dimensionality. It affects
to high dimensional problems, i.e., when the number of features is very large. The
problem is that as the number of features increase, the volume of the input search
space also increases very fast. As a consequence, the number of training examples
required to ensure that most of the feature value possible combinations are represented
is very large. That is to say that an enormous number of training instances is needed
for adequately represent the problem. With a fixed number of training samples, the
predictive power reduces as the dimensionality increases. This is known as the Hughes
effect [Hughes, 1968].

Another problem is present when there is a certain amount of bias in the values of the
features. This phenomenon receives the name of noise, and can be caused by faulty or

11



Chapter 2. Theoretical background

imprecise sensors, or by manual errors while capturing or handling the data. A bad
representation of the problem may be obtained when choosing the wrong features in
order to describe the instances. Some of them may not be relevant, because they do not
have influence on the knowledge we want to induct. It could also happen that several
features represent the same knowledge about the problem, in this case they are called
redundant attributes. Choosing the relevant features for representing the examples in
each task is a broadly studied problem in the literature.

2.1.2 Supervised learning

Supervised learning is the task consisting in inferring a function from labeled training
data (examples), and then using it to predict unseen examples. Each example is
comprised by an input object (typically a vector) and by a an output value (label).
During the training stage an hypothesis h or model is learned, such that it assigns the
right label from the attribute values. The model is called a classifier if the output
is discrete, or a regression function if the output is continuous. A typical supervised
learning representation is shown in Figure 2.2.

Figure 2.2: Typical representation of a supervised learning procedure

Supervised learning is based on the inductive learning hypothesis:

“Any hypothesis found to approximate the target function well over a
sufficiently large set of training examples will also approximate the target
function well over other unobserved examples”

From a formal point of view, a supervised learning task can be presented in the following
general framework. Let X be an input space, and let Y be an output space. A learning
task is given by a training set S = {(x1, y1), ..., (xn, yn)} drawn from an unknown
distribution D = Pr(X,Y) from the product X x Y . The aim of such task is to learn
an (unknown) objective function f : X → Y , by means of synthesizing a function

12
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h : X → Y called hypothesis in a space H of functions from X to Y . The goal is to find
an h such that optimizes the expected prediction performance (or risk) on samples S ′
independently and identically distributed (i.i.d.) according to the distribution Pr(X,Y).

In order to assess its performance it is defined a loss function l : Y x Y → R≥0. The
performance of a prediction h(xi) when the true value is yi, is calculated as l(y,ŷ).
The risk (opposite to performance) of the predictions made by a hypothesis h over a
concrete sample S is calculated as:

RS(h) =
1

|S|
∑
xi∈S
yi∈S

l(yi, h(xi)) (2.1.2.1)

When selecting the adequate hypothesis, it is not appropriate to measure its
performance over the training data itself (resubstitution error). It does not represent
the real performance of the model over new and unseen data. It is an optimistic
measure and the model may adjust too much to the training data, thus negatively
affecting its ability to generalize, i.e., what we are looking for. The objective is to find
a tradeoff between the model’s complexity and its prediction accuracy on the training
data. Occam’s Razor principle is typically put into practice; the simplest model able
to explain the training data is the best.

It is said that a hypothesis h1 ∈ H overfits to a sample S if there exists an alternative
hypothesis h2 ∈ H such that:

RS(h1) < RS(h2) y RD(h1) > RD(h2) (2.1.2.2)

It is said that a hypothesis h1 ∈ H underfits to a sample S if there exists an alternative
hypothesis h2 ∈ H such that:

RS(h1) > RS(h2) y RD(h1) > RD(h2) (2.1.2.3)

There are different supervised learning tasks depending on the label’s nature:

• Classification, finite set of nominal or symbolic labels. For example a disease
diagnosis application in which each instance is labeled whether “healthy” or “ill”.

• Ordinal regression, finite set of ordinal labels. The relative ordering among the
different values is significant. For example an application that tries to predict the
quality of cow’s meat. Each instance is labeled with an integer in a fixed range,
so that the higher the label, the higher the quality of the represented individual.
When the ordering among the labels is not significant, it is viewed as a standard
classification problem.

• Regression, labels are whether integer or reals in a continuous scale, i.e., the
label set is not finite. For example an application trying to predict the height of
an individual in the future.
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2.1.3 Unsupervised learning

Unsupervised learning refers to the problem of trying to find hidden structure in
unlabeled data. As the instances are not assigned with a concrete label, is not possible
to (explicitly1) measure the performance of the obtained models. One of the principal
objectives is to look for patterns or regularities in the data, so that it is possible to
extract any knowledge from the data. Humans can benefit from this knowledge as
a way of better understanding the available data. A typical unsupervised learning
representation is shown in Figure 2.3.

Clustering is the most famous unsupervised learning task. It is the task of assigning
a set of objects into groups (clusters) so that the objects in the same cluster are more
similar (in some sense or another) to each other than to those in other clusters.

Figure 2.3: Typical representation of an unsupervised learning procedure

2.1.4 Principal applications

Machine learning techniques are suitable, and usually applied in the following contexts:

• Problems in which a human expert is not available. ML techniques are in position
to provide us with an explicit knowledge about the problem solving procedure.
Decision trees are very useful for this purposes.

• Tasks that humans usually perform, but it is not possible to describe the exact
procedure we follow. For example character recognition applications.

1 There are a series of techniques in order to assess the quality of unsupervised methods, as
clustering, which don’t take the class into account.
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• Problems in which the volume of available data is huge. Humans can not analyze
and draw conclusions when the amount of data is large. Data mining techniques
are able to find relations among variables in huge databases, which are usually
not detectable at a glance.

Machine learning solves problems that can not be modeled, but in whom we have
experience (or it is possible to acquire it) on how can them be solved.

2.2 Fundamentals of SVM

Among all the kernel methods available nowadays, Support Vector Machines (SVM)
stand out as one of the most popular and powerful learning machines. They were
formally introduced by Vapnik from his studies about statistical learning algorithms
[Vapnik, 1995] –where the generalization error was bounded with respect to the
complexity of the hypothesis space– the first proposals date from the early nineties
[Cortes and Vapnik, 1995; Boser et al., 1992]. These methods have increased their
popularity along the years due to their high performance and effectiveness in solving
real-world problems. Actually, an important part of the success of SVM methods in
industrial applications is the continuous support of AT&T Bell Labs.

Although SVM were initially designed for binary classification problems, they have
been generalized to many other machine learning fields, like regression, multi-class
classification, ordinal regression and preference learning, etc. Furthermore, the basis
for solving more complex problems have been proposed recently, in which the output is
even more structured, like graphs and trees, e.g., [Tsochantaridis et al., 2004].

The primary objective of SVM is to obtain efficient models, whose predictions have a
high confidence, even when they produce certain errors. Conversely, traditional machine
learning approaches have been mainly focused on reducing these errors, i.e., the principle
of Empirical Risk Minimization (ERM). The SVM approach is quite different, trying
to construct models that are structurally correct in order to obtain a higher confidence
for future predictions, known as Structural Risk Minimization (SRM).

As an example, imagine a plane in a 3D space where there exist two sets of points that
are linearly separable in that space. Then, an ERM approach will try to find a specific
position of a 2D plane, where the points are separated by it. This position is usually
computed taking into account the errors of the model with respect to the known points.
However, a SRM approach will try to find the position of the plane that minimizes the
risk of wrongs prediction for unknown points, even though it commits some errors over
the known ones. In the specific case of SVM, this is usually achieved by maximizing
the margin of the solution, which reduces the bounds for generalization errors. Hence,
it is not a matter of changing the model itself, but of changing the way it is obtained
and, in turn, its properties.
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2.2.1 Scalar product

This section is intended to present the key concepts of SVM methods, which includes
scalar product, kernel theory and quadratic convex optimization. Hence, we will first
define the interpretation of scalar product adopted for this work

〈x,y〉 =
n∑

i=1

xiyi = xty, (2.2.1.1)

with three key properties

1. 〈x,y〉 = 〈y,x〉,

2. 〈x, (y + z)〉 = 〈x,y〉+ 〈y, z〉,

3. 〈ax,y〉 = 〈x, ay〉 = a〈x,y〉.

The associated norm is:

‖x‖ =
√
〈x,x〉 ⇒ ‖x‖2 = 〈x,x〉, (2.2.1.2)

and the corresponding metric or distance is:

d(x,y)2 = ‖x− y‖2 = 〈x− y,x− y〉 = 〈x,x〉 − 2〈x,y〉+ 〈y,y〉. (2.2.1.3)

Geometric interpretation of scalar product

Given two vectors x and y from a multi-dimensional space Rn, if their norms have value
one then their scalar product ranges from +1 (same) to -1 (opposite), taking value zero
when they are perpendicular:

〈x,y〉 = ‖x‖ · ‖y‖ · cos(x,y) ⇒ 〈x,y〉 = cos(x,y), if ‖x‖ = ‖y‖ = 1 (2.2.1.4)

Hyperplanes and affine hyperplanes

If we do not consider the length of the vectors, then the scalar product measures their
similarity. This fact is very important in order to introduce the notion of hyperplanes,
which are a subspaces of dimension n-1. These subspaces are defined with only one
vector perpendicular to the hyperplane, termed director or weight vector (w). Hence,
the equation

〈w,x〉 = 0, (2.2.1.5)

splits the space in two different regions, namely positive and negative classes:

Positive = {x : 〈w,x〉 ≥ 0},

Negative = {x : 〈w,x〉 < 0}.
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Moreover, an affine hyperplane is an hyperplane translated to a point x0 in the space,
i.e., it does not pass through the origin. Equation (2.2.1.5) is then updated as

〈w,x− x0〉 = 〈w,x〉+ b = 0, (2.2.1.6)

which also splits the space in two different regions, as depicted in Figure 2.4.

Positive = {x : 〈w,x− x0〉 = 〈w,x〉+ b ≥ 0},

Negative = {x : 〈w,x− x0〉 = 〈w,x〉+ b < 0}.

w

|b|
‖w‖

+

––
– –

–
–

+

+
+ +

+

+〈w,x〉 +
b = 0

Figure 2.4: Geometric interpretation of hyperplanes and scalar product

Equation (2.2.1.6) can also be represented as

f(x) = 〈w,x〉+ b =
n∑

i=1

wixi + b (2.2.1.7)

Notice also that any function of the family

λ(〈w,x〉+ b) (2.2.1.8)

represents the same hyperplane.
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Distance to hyperplanes

Let w a director vector of a normalized hyperplane, with norm ‖w‖ = 1, then

〈w,x〉 = ‖x‖ cos(w,x) (2.2.1.9)

Therefore, the scalar product is the length of the projection of x in the direction of w,
i.e., the distance of the point x to the hyperplane determined by w (see Figure 2.5).

�w
,x�

=
0

�x�
co

s(w
,x

)

x

w

Figure 2.5: Distance to normalized hyperplanes

Generalizing this notion for affine hyperplanes 〈w,x〉+b, results in the following metric:

d(w, b;x) =
|〈w,x〉+ b |
‖w‖ . (2.2.1.10)

Therefore, the split in two regions can be easily obtained through the hypothesis:

h(x) = sign(d(w, b;x)) = sign(〈w,x〉+ b). (2.2.1.11)

Classification with scalar product

Let a vector space X endowed with scalar product, and a set of training points S of
size n defined as

S = {(xi, yi) : xi ∈ X , yi ∈ {+1,−1}; ∀i ∈ [1, n]}
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To classify unseen or test points from X we can compute the centroids of positive (c+)
and negative (c−) examples as follows:

c+ =
1

n+

∑
i:yi=+1

xi c− =
1

n−

∑
i:yi=−1

xi (2.2.1.12)

Then, in order to define the affine hyperplane, we compute the director vector w =
c+ − c−. Moreover, we also force the resulting hyperplane to pass through the central
point c = c++c−

2
(see Figure 2.6). The hypothesis function can be expressed as follows:

h(x) = sign〈w,x− c〉 = sign

〈
(c+ − c−),

(
x− c+ + c−

2

)〉
= sign

(
〈c+,x〉 − 〈c−,x〉 −

〈c+, c+〉 − 〈c−, c−〉
2

)
(2.2.1.13)

= sign(〈(c+ − c−),x〉+ b) = sign(〈w,x〉+ b)

where

b =
〈c−, c−〉 − 〈c+, c+〉

2
=
‖c−‖2 − ‖c+‖2

2
(2.2.1.14)

c+ c−c

x

�w, x� + b = 0

!"

!"!"

!"

!"

!"

#"

#"

#"

#"

#"
#"

x − c

sign(cos(w, x − c)) = +1 sign(cos(w, x − c)) = −1

w

Figure 2.6: Classification with scalar product

However, intuitively, not all the training points should have the same weight. The
vectors near the decision boundary should have more relevance in the classification
decisions. These relevant vectors are the so-called support vectors.

19



Chapter 2. Theoretical background

2.2.2 Kernel methods

At this point, in order to obtain non-linear solutions, the following step is to take
advantage of a kernel function. The key idea is to transform the training points xi from
the input space X into points φ(xi) in a high dimensional space F , which is usually
called feature space. Then, the assumption is that the training points are linearly
separable in this new space. Once defined the transformation function φ : X → F , the
classification method based on scalar product can be extended with a kernel function.

Definition 2.1 A kernel function is a function k : X ×X → R, which assigns to each
pair of objects from the input space X a real value obtained through the scalar product
of the images of those objects in the feature space F :

k(x,y) = 〈φ(x), φ(y)〉 (2.2.2.1)

Obviously, the common core of every kernel method is the kernel function, which is used
as the representation mechanism for the input data. This means that even when the
input objects do not belong to a vector space, we will be able to apply the algorithm
though the implicit kernel transformation, because the scalar product is computed
directly in the feature space. This implicit transformation also allows us to apply linear
algorithms to obtain non-linear solutions, which results in an extremely powerful feature
of these methods.

The kernel function

The kernel functions can be understood as some kind of similarity functions, measuring
the similarity between each pair of objects. Where, in this case, the training set S is
represented as a square matrix K of dimension n, which results from the application of
the kernel function k to the objects of the input space X :

Ki,j = k(xi,xj); ∀i, j ∈ [1, n] (2.2.2.2)

The application of kernel functions offers several advantages, like the modularity
obtained through the isolation of the algorithm with respect to the data representation
and even the specific kernel function. The other already mentioned key advantage
of kernel functions is the possibility of obtaining complex relations through relatively
simple algorithms.

Therefore, thanks to the use of kernels, we do not need to know the image φ(x) for each
object, but the result of the scalar product of each pair of objects in the feature space.
Actually, in some cases, like the Gaussian kernel, the dimension of the feature space
is infinite, while the computation of the kernel is relatively simple. In this regard, it
essential to guarantee that the kernel function is a valid scalar product in some feature
space F .

20



Section 2.2. Fundamentals of Support Vector Machines

Definition 2.2 A function k : X × X → R is symmetric if

k(x,y) = k(y,x); ∀x,y ∈ X

Definition 2.3 A function k : X × X → R is positive semi-definite for any set
x1, · · · ,xn from input space X and any set of real values c1, · · · , cn, with n > 0, if

n∑
i=1

n∑
j=1

cicjk(xi,xj) ≥ 0

From all these definitions, Aronszajn [Aronszajn, 1950] states the following theorem:

Theorem 2.1 For any function k : X ×X → R, symmetric and positive semi-definite,
it exists a Hilbert space F and a function φ : X → F such that:

k(x,y) = 〈φ(x), φ(y)〉; ∀x,y ∈ X ,

where 〈·, ·〉 represents the scalar product between two points in the Hilbert space F .

Common kernel functions

In this section we will review some of the most common kernel functions for vectorial
spaces of the form X ⊆ Rn.

Linear kernel

As we have introduced in Section 2.2.1, the scalar product is a reasonable approximation
for comparing pairs of vectors. Therefore, the linear kernel is the most naive kernel
approach, defined in terms of the scalar product:

kL(x,y) = 〈x,y〉 =
d∑

i=1

xiyi, (2.2.2.3)

where d is the dimensionality of the input space X . The transformation is this case
is the identity function φL(x) = x. It is also quite simple to proof that this function
fulfills both conditions for kernel functions:

1. It is symmetric:

kL(x,y) = 〈x,y〉 = 〈y,x〉 = kL(y,x); ∀x,y ∈ X

2. It is positive semi-definite:

n∑
i=1

n∑
j=1

cicjkL(xi,xj) =
n∑

i=1

n∑
j=1

cicj〈x,y〉 =

∥∥∥∥∥
n∑

i=1

cixi

∥∥∥∥∥
2

≥ 0
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Polynomial kernels

A polynomial kernel function of degree p could be represented as:

kP (x,y) = (〈x,y〉)p (2.2.2.4)

However, it is commonly used this alternative representation:

kP ′(x,y) = (〈x,y〉+ r)p (2.2.2.5)

The function φP associated to Equation (2.2.2.4) transform each input vector in a
feature vector with all the monomials of degree p. In the particular case of X = R2 and
p = 2, we have

kP (x,y) = (〈(x1, x2), (y1, y2)〉)2 = (x1y1 + x2y2)(x1y1 + x2y2)

= x1y1x1y1 + x2y2x1y1 + x1y1x2y2 + x2y2x2y2

= 〈(x2
1, x

2
2, x1x2, x2x1), (y2

1, y
2
2, y1y2, y2y1)〉 = 〈φP (x), φP (y)〉;

therefore, we can conclude that φP (x) = (x2
1, x

2
2, x1x2, x2x1), producing a four-

dimensional feature space.

In the example presented in Figure 2.7, we can easily observe the potential of this
kind of transformations. In this example, the classification function is non-linear in
the input space X . Nevertheless, with an appropriate transformation function like
φ(x) = φ((x1, x2)) = (x2

1, x2), we are able to find a linear classification function in the
feature space F . Notice also the change in the scale of the horizontal axis (x1).

φ : X → FX F

Input Space

x = (x1, x2)
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φ(x) = φ((x1, x2)) = (x2
1, x2)

Feature Space

Figure 2.7: Example of non-linear solution in X with a linear function in F
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Gaussian kernel

The Gaussian kernel is also known as Radial Basis Function (RBF) kernel, which is
often computed as

kG(x,y) = e

(‖x− y‖2

−2σ2

)
(2.2.2.6)

Notice that in this case we do not know the explicit expression for φG. This is due to
the fact that the feature space for the RBF kernel has infinite dimensions. Moreover,
it is also important to emphasize that for polynomial kernels the manual expansion
of monomials is computationally very expensive, and even impossible, in most of the
cases. In order to overcome this problem we have to take into account that it is not
required to know the explicit representation of φ, but the procedure to directly compute
the scalar product in the feature space F , which is usually known as the kernel trick
[Aizerman et al., 1964], e.g., as in equations (2.2.2.3), (2.2.2.4), (2.2.2.5) and (2.2.2.6).

2.2.3 Quadratic convex programming

The optimization theory is a branch of mathematics that deals with the characterization
of the solution of problems, where a certain objective or cost function f should be
optimized, i.e., maximized or minimized. Moreover, these solutions are subject to k
constraints gi that define the feasible region R as

R = {w ∈ Ω : gi(w) ≤ 0;∀i ∈ [1, k]}. (2.2.3.1)

This section introduces only the essential concepts of quadratic programming, a subset
of convex programming, where the cost function f allows quadratic terms and all the
constraints gi are linear.

Primal problem

There exists not only a collection of efficient strategies, algorithms and implementations
to solve optimization problems, but also the necessary and sufficient conditions for a
given function to be a solution are formally defined. The general structure of the
quadratic optimization problems tackled in this work is:

min
w

f(w) w ∈ Ω, (2.2.3.2)

s.t. gi(w) ≤ 0 ∀i ∈ [1, k].

This problem is known as the primal problem, in which we try to find the values of the
primal variables, represented by w, that minimize the cost function f(w). The most
important element of the feasible region defined in Equation (2.2.3.1) is the optimum,
which is represented by w∗ and that verifies

f(w∗) ≤ f(w), ∀w ∈ Ω.
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Convexity

The term convex, in this case, stands for the fact that there exists only one global
optimum, and therefore the search cannot be trapped in a local optimum, as in other
machine learning methods like in some Evolutionary Computation approaches and in
Artificial Neural Networks.

Definition 2.4 (Convex set) A domain or set Ω is convex iif the straight line
segment that joins any pair of points x,y of the domain is also contained in that domain:

Ω is convex⇔ ∀x,y ∈ Ω,∀θ ∈ (0, 1)⇒ θx+ (1− θ)y ∈ Ω.

Intuitively, e.g., a solid cube or a solid sphere in R3 is convex, but any shape with a
hollow or dent is not convex. Notice also that in a quadratic programming problem,
if the domain Ω is convex, then the feasible region R is also convex because the linear
constraints gi cannot change the convexity of the domain Ω, depicted in the rightmost
picture of Figure 2.8.
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Figure 2.8: Convex domains and linear restrictions

Definition 2.5 (Convex function) A real-valued function f : Rd → R is convex iif
the straight line segment that joins the images of any pair of points x,y of its domain
Rd is above the image of any point between x and y:

f is convex⇔ ∀x,y ∈ Ω, ∀θ ∈ (0, 1)⇒ f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

In other words, a function is convex if and only if the set of points lying on or above
its graph is a convex set, as defined in Definition 2.4. The geometric interpretation is
presented in Figure 2.9.

Corollary 2.1 A twice differentiable function f is convex provided its Hessian matrix
is positive semi-definite, e.g., a kernel function (see Theorem 2.1).

Definition 2.6 (Convex problem) An optimization problem is convex iif the domain
Ω, the objective function f and all the constraints gi are convex.

Proposition 2.1 If a function f is convex, then any local minimum w∗ is also a global
minimum.
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x y

f(θx + (1 − θ)y)

θx + (1 − θ)y

θf(x) + (1 − θ)f(y)

f(x)

f(y)

Figure 2.9: Visual interpretation of a convex function

Lagrangian theory

This theory enables the characterization of the solution and provides us a systematic
method to obtain it. Initially proposed by Lagrange at the end of the 18th century,
it was further developed by Kuhn and Tucker around the middle of the 20th century,
introducing the case with inequality restrictions. This theory has two main components:
(1) the Lagrange multipliers and (2) the Lagrangian function, which integrates the
restrictions into the objective function.

Definition 2.7 (Lagrangian function) Given an optimization problem as in Equation
(2.2.3.2), with objective function f(w), defined over the domain Ω ⊆ Rd and subject to
k restrictions gi(w) ≤ 0, the corresponding Lagrangian function is defined as

L(w,α) = f(w) +
k∑

i=1

αigi(w), (2.2.3.3)

where the coefficients αi are termed Lagrange multipliers or dual variables, and must
have non-negative values.

Furthermore, the Lagrange multipliers will, intuitively, show us the relevance of the
constraints: the higher the value of the multiplier, the higher the difficulty to fulfill it.
The Lagrangian function has, in turn, a saddle point with respect to primal and dual
variables at the solution.

Duality

Definition 2.8 (Dual problem) The dual problem of the primal problem, defined in
Equation (2.2.3.2), is then reformulated as follows:

max W (α) = inf
w∈Ω

L(w,α) (2.2.3.4)

s.t. αi ≥ 0.
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The key advantage of this dual problem, which usually has simpler constraints than the
primal, is that solving the dual we also obtain the solution of the primal, under certain
circumstances.

In order to solve the primal problem through its dual, there exists a set of conditions
to be fulfilled, known as Karush-Kuhn-Tucker (KKT) conditions.

Theorem 2.2 (Karush-Kuhn-Tucker conditions) Given a primal optimization
problem (2.2.3.2), where both the domain Ω and the objective function f are convex,
and the constraints gi are affine functions. The necessary and sufficient conditions for
a point w∗ to be an optimum are the existence of α∗ such that

∂L(w∗,α∗)

∂w
= 0 (2.2.3.5a)

α∗i gi(w
∗) = 0, ∀i ∈ [1, k], (2.2.3.5b)

gi(w
∗) ≤ 0, ∀i ∈ [1, k], (2.2.3.5c)

α∗i ≥ 0, ∀i ∈ [1, k]. (2.2.3.5d)

The first condition (2.2.3.5a) is directly concluded from the fact that W is defined as
the infimum of the Lagrangian function in Equation (2.2.3.4), point where the partial
derivative with respect to w must be equal to zero.

The second one (2.2.3.5b), termed complementary condition, guarantees that the
optimums of both primal and dual are the same: f(w∗) = W (α∗). Hence, active
constraints, with gi(w

∗) = 0, can have a non-zero Lagrange multiplier α∗i ≥ 0. While,
inactive constraints, with gi(w

∗) < 0, imply α∗i = 0. This means that the actual number
of variables involved may be significantly fewer, i.e., it guarantees the sparsity of the
solution.

Finally, conditions (2.2.3.5c) and (2.2.3.5d) are the constraints of the primal (2.2.3.2)
and dual (2.2.3.4) problems respectively. These conditions guarantee the feasibility of
the solution.

2.2.4 Binary Classification with SVM

After a brief introduction of the foundations of scalar product classification, kernel
methods and convex optimization in the previous sections, we can know define SVMs
as linear learning machines that use a dual representation and operate in a kernel-
induced feature space F ; i.e., the model is a linear function in some feature space,
implicitly defined by the kernel.

The first proposals of SVM were initially designed for classification problems with only
two classes (see [Vapnik, 1995; Cortes and Vapnik, 1995; Boser et al., 1992]). Therefore,
this section will introduce the basics of SVMs as they were originally conceived.
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Figure 2.10: Example of multiple solutions for a single problem

Margin maximization

Let a vector space X ⊆ Rd and a set of training points S of size n defined as

S = {(xi, yi) : xi ∈ X , yi ∈ {+1,−1}; i = 1, · · · , n} (2.2.4.1)

The binary classification can be solved through a linear function f : X → R. This
objective function f should assign positive values for the class +1 and negative for the
class −1, such that:

f(xi) =

{
>= 0 if yi ∈ +1
< 0 if yi ∈ −1

(2.2.4.2)

A possible hypothesis function and prediction are:

h(xi) = 〈w,xi〉+ b (2.2.4.3)

y′i = sign(h(xi)) (2.2.4.4)

The main objective is to reduce the structural risk (SRM) through the maximization of
the margin of the model with respect to the classes. It is straightforward to demonstrate
that for a specific training set S with two linearly separable classes, we can obtain several
hyperplanes that classify correctly all the examples. However, as it was stated before,
the SVM methods try to minimize the structural risk, rather than the empirical risk.

This means that ERM techniques, like perceptrons, will stop as soon as they find any
hyperplane that classifies correctly all the examples. Figure 2.10 shows many possible
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solutions of this kind; however, only the wider one has the maximal margin with respect
to both classes. Actually, the margin is the same for both. In that picture, the training
examples are surrounded by a circle that depicts the possible noise variations, showing
that the non-optimal solutions are more likely to misclassify them.

Therefore, the primary aim is to search for the hyperplane with the maximal margin
among all the possible solutions. The key advantage of SVM is that this search can be
performed optimally due to the fact that it is quadratic convex problem, i.e., without
local optima but with a global one, as already introduced in Section 2.2.3.

Two kinds of margin

There are two possible formulations of the margin, the geometric margin (γg) and the
functional margin (γf ). In fact, these two margins are closely related, requiring to fix
either of both in order to optimize the other. This is because there exists a family of
functions which defines the same hyperplane (recall Equation (2.2.1.8) and Figure 2.4).

The functional margin is the minimum difference between applying the function f to
the examples of the positive and negative classes:

γf = min
+

(f(x+))−max
−

(f(x−)) (2.2.4.5)

On the other hand, the geometric margin is the distance between the hyperplane and
the closer example/s of each class, as depicted in Figure 2.11:

γg = min
+

(d(w, b;x+)) + min
−

(d(w, b;x−)) (2.2.4.6)

The key idea is to minimize the risk of overfitting by choosing the maximal margin
hyperplane in the feature space. In this way, SVMs control the capacity by increasing
the margin, rather than reducing the degrees of freedom. Notice also that we need
to fix either of both kinds of margin. Then, for example, if we want to maximize the
functional margin we need to restrict the search to normalized hyperplanes, i.e., with
‖w‖ = 1, because otherwise it would be very easy to increase the functional margin by
simply increasing λ in Equation (2.2.1.8).

Nevertheless, SVMs implementations usually work with canonical hyperplanes in order
to maximize the geometric margin. These canonical hyperplanes fix the functional
margin, defined in (2.2.4.5), by restricting w and b as follows:

min
+

(〈w,x+〉+ b) = +1 max
−

(〈w,x−〉+ b) = −1 (2.2.4.7)

From (2.2.1.10) and (2.2.4.6), we have that the geometric margin for any canonical
hyperplane is redefined as:

γg = min
+

( |〈w,x+〉+ b|
‖w‖

)
+ min

−

( |〈w,x−〉+ b|
‖w‖

)
=
|+1|
‖w‖ +

|−1|
‖w‖ =

2

‖w‖ (2.2.4.8)
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Figure 2.11: Geometric margin maximization

Optimization problem

Therefore, in order to maximize the geometric margin we need to minimize the norm
of the weight vector w, subject to searching only for canonical hyperplanes. The result
is a primal quadratic optimization problem, which is a primal problem as presented in
2.2.3.2:

min
w

‖w‖
s.t. (〈w,xi〉+ b) ≥ +1 ∀xi ∈ +1, (2.2.4.9)

(〈w,xi〉+ b) ≤ −1 ∀xi ∈ −1.

Maximal margin classifier

Given that ‖w‖2 = 〈w,w〉 we can change this version for another equivalent:

min
w,b

1

2
〈w,w〉 (2.2.4.10)

s.t. yi(〈w,xi〉+ b) ≥ 1, i = 1, . . . , n
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Where the class yi ∈ {+1,−1} is used to rewrite the restrictions in a more compact
way, and the factor of 1/2 is used for mathematical convenience. The dual is:

max
α

−1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi,xj〉+
n∑

i=1

αi (2.2.4.11)

s.t.
n∑

i=1

αiyi = 0, αi ≥ 0, i = 1, . . . , n.

The weight vector can be directly computed as a combination of some training points,
called support vectors, which are associate with values αi > 0. The term b, which does
not appear in the dual, is obtained from Equation (2.2.4.7).

w =
n∑

i=1

αiyixi b = −max−(〈w,x−〉+ b) + min+(〈w,x+〉+ b)

2
(2.2.4.12)

Notice also that through the kernel trick we can substitute the dot product in Equation
(2.2.4.11) by any kernel function.

Soft margin classifier

In order to provide some flexibility for points that can not be correctly separated, it was
introduced a new regularization term within the primal problem [Cortes and Vapnik,
1995; Vapnik, 1995] as follows:

min
w,b,ξ

1

2
〈w,w〉+ C

n∑
i=1

ξi, (2.2.4.13)

s.t. yi(〈w,xi〉+ b) ≥ 1− ξi,
ξi ≥ 0, i = 1, . . . , n.

Where ξ represents the vector of errors committed over each of the examples. The
corrsponding dual is:

max
α

−1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi,xj〉+
n∑

i=1

αi (2.2.4.14)

s.t.
n∑

i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, . . . , n.

Notice that the dual problem is almost the same that for the maximal margin classifier,
but changing the constraints over the dual variables αi. Both w and b are calculated
as in Equation (2.2.4.12).
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2.3 Feature reduction

In machine learning a classification problem consists on a series of labeled examples that
are used to induce a model able to classify new instances into a predefined set of classes.
Each example is represented with a feature vector that describes its properties and by
the corresponding class. Some of these attributes may be redundant or irrelevant and
may have a negative impact on the accuracy of the classifier. Choosing the relevant
features for representing the objects in each task is a broadly studied problem in the
literature [Kohavi and John, 1997; Yang and Pedersen, 1997; Guyon and Elisseeff, 2003].

The three main objectives of feature reduction are:

• Improving the prediction and generalization capability of the classifiers.

• Providing faster and more cost effective predictors.

• Improving the interpretability of the acquired models.

Two key concepts regarding variable reduction are relevance and redundancy. Learning
is harder when we have less/more input variables than needed. Identifying the relevant
features for representing the problem helps to avoid overfitting, and usually improves
the generalization power of the obtained models. By reducing the input dimensionality
the learning process is normally speeded up. It also soothes the effect of the curse
of dimensionality, typical of high-dimensional problems. Reducing the number of
characteristics to be measured for each instance also reduces data acquisition costs.
As regards model’s interpretability, a better understanding of the underlying data and
the relations between features can be achieved.

Recall that the typical Bag Of Words (BOW) representation that is used when dealing
with textual data, usually yields to high dimensional representations. As a preliminary
stage, the set of documents is analyzed to extract the corpus. That is a series of terms
that constitute the global vocabulary of the data set. Then, a series of characteristics
are measured for each term in the vocabulary. In sentiment analysis related problems
the number of resulting terms is expected to be very large, and as a consequence, the
number of features. That is the reason of the key role that feature reduction has in text
related problems, and in particular in sentiment analysis tasks.

There exist two well established strategies to feature reduction:

• Feature reduction by extraction, in which the resulting features are not a subset
of the original set, but a combination or transformation of the initial ones.

• Feature reduction by selection, in which the resulting features are a subset of the
initial set.

In this work we have focused on feature selection, and the next section is intended to
emphasize some of its characteristics.
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2.3.1 Feature selection

In the feature subset selection problem, a learning algorithm is faced with the problem
of selecting a relevant subset of features upon which to focus its attention, while ignoring
the rest [Kohavi and John, 1997]. It can be seen as an optimization problem in which
the search space is comprised of all the possible subsets of features, and the objective
function consists in maximizing the accuracy of the classifier. The number of feasible
solutions is equal to the cardinality of the power set of the original features set minus
the empty set, that is 2n − 1 solutions with n being the dimensionality of the problem.
As the dimension of the search space grows exponentially according to the number of
features, an exhaustive search looking for the global optimum solution is not practical
from a computational point of view.

If we consider what is evaluated to perform the subset selection, there are two common
approaches:

• Univariate or individual evaluation, assess individual features and assign them
weights according to their degrees of relevance. Usually a rank is produced and
the top ranked features are selected. It is efficient for high-dimensional data but
does not handle redundant features properly. It’s principal drawback is that it
does not take into account the relations among features, as they are isolated and
then evaluated.

• Multivariate or subset evaluation, assess the quality of candidate feature subsets
that are produced based on a certain search strategy. Each candidate subset is
evaluated with a given measure and compared to the previous best one, replacing
it when the evaluation yields to better results. As already hinted, it is not possible
to evaluate all the potential feature subsets, so heuristic search strategies in the
form of forward or backward selection, or evolutionary strategies such as genetic
algorithms, are generally applied.

On the other hand, regarding the procedure that is used to evaluate the candidate
solutions, there also exist two well-known approaches:

• Filters, perform the selection as a preprocessing step based on properties of
the data itself and independent of the induction algorithm to be used afterwards.
Filter methods are fast but generally produce worse accuracy results because they
are not tailored to a specific inducer. Information Gain (IG), or Fast Correlation
Based Filter (FCBF) are examples of filters.

• Wrappers, a search for an optimal set of features is made using the induction
algorithm as a black box. The estimated future performance of the algorithm
is the heuristic guiding the search. While wrapper techniques perform better on
terms of accuracy, they are computationally expensive. Genetic algorithms have
been succesfully applied in this context [Cantu-Paz, 2004; Abbasi et al., 2008].

As it follows we are going to describe in detail one of the filters we have used during
this work.

32



Section 2.3. Feature reduction

2.3.2 Information gain

Intuitively, information gain is a measure that indicates how informative a feature is
when trying to predict the value of the class. Formally, the information gain of a feature
F with respect to a class C, can be defined as the difference in the class C’s entropy
after knowing the values of the feature F .

Entropy is a measure of impurity, uncertainty or disorder associated with a random
variable. For example, imagine a series of coin tosses. As prior to the toss we do not
know if it will come up a head or a tail, the associated uncertainty (entropy) to the
throw is maximum. If the coin is composed of two heads or two tails, the associated
entropy is 0, as we are in position to predict the outcome of the toss. Most random
variables appearing in the real world present an entropy somewhere in the middle.

It can be defined the entropy H of a discrete attribute F with values {f1, ..., fn} as

H(f) = −
n∑

i=1

p(fi) logb p(fi), (2.3.2.1)

where p is the probability distribution of the variable F and b the logarithm’s base. In
the case of any pi = 0 the value of the addend 0× logb 0 is considered to be 0.

A high entropy value means that the probability distribution of F is uniform (boring),
and a low value indicates that F follows a variable distribution (peaks and valleys)
otherwise.

Specific conditional entropy H(C|F = fi) is the entropy of C among those instances in
which F has value fi.

Definition 2.9 Conditional entropy of an attribute C with respect to other attribute F
is calculated as

H(C|F ) =
m∑
j=1

p(F = fj)H(C|F = fj), (2.3.2.2)

with m being the number of possible values of F and p the probability of F taking the
value fj.

Intuitively, conditional entropy can be understood as the expected number of bits to
transmit C if both sides will know the value of F .

Definition 2.10 Information gain of an attribute F with respect to a class C is
calculated as

IG(C|F ) = H(C)−H(C|F ). (2.3.2.3)

Information gain is the number of bits that could be saved, in average, when
transmitting C if both ends of the line knew F . It measures the closeness to class
C knowing the value of the attribute F . Its domain is on the interval [0, 1], with 1
meaning that F is perfect for predicting C and 0 useless.
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Previous work

Nowadays a huge volume of information is available on the Internet. With the objective
of better organizing all this information for the users, a key research area has focused
on automatic text categorization during the last years. The principal task consists in
classifying each document with respect to their subject matter, e.g., sports, politics and
so on. It is called topic categorization, and a series of key words or topics are assigned
to each document as a mechanism to summarize its content. These kind of techniques
work with facts (objective information) assuming they are true, independently of the
author or the context they appear in.

Nevertheless, with the appearance of online services that allow users to share their
sentiments and emotions, the amount of opinionated (subjective) information has
started to grow quickly. Most of the information available today is subjective
rather than objective. Thus, traditional text categorization techniques are no longer
appropriate, because opinion is often expressed in a more subtle manner. Nigam
and Hurst [2004] reported that only 3% of USENET1 sentences contained topical
information. Moreover, Subasic and Huettner [2001] already showed that web content
is well provided with sentiment related information. Sentiment analysis field emerges
to deal with this kind of subjective information.

Sentiment analysis attempts to identify and analyze opinions and emotions. Hearst
[1992] and Wiebe [1994] were the first authors proposing to analyze texts rich in
opinions. Following the idea present in [Abbasi et al., 2008], it can be established
a taxonomy trying to describe and summarize the wide range of works in the sentiment
analysis field.

This taxonomy is presented in Table 3.1. According to it we can analyze the sentiment
analysis problem with respect to the various tasks that are performed, kind of features
that are used to represent the information, concrete techniques used to solve the problem
and application domains.

1USENET is the acronym of Users Network, a global discussion distributed system on the Internet.

35



Chapter 3. Previous work

Tasks

Category Description Label

Classes Positive/negative sentiments or objective/subjective texts C1
Level Document or sentence level classification C2

Features

Category Examples Label

Syntactic Words, POS tag, n-grams, phrase patterns, characters F1
Semantic Polarity tags, semantic orientation F2
Link Based Web links, send/reply patterns, document citations F3
Stylistic Lexical and structural measures of text style F4

Techniques

Category Examples Labels

Machine Learning SVM, naive Bayes, etc. T1
Link Analysis Citation analysis and message send/reply patterns T2
Similarity Score Phrase pattern matching, frequency counts, etc. T3

Domains

Category Description Label

Reviews Product, movie, and music reviews D1
Web Discourse Web forums and blogs D2
News Articles Online news articles and web pages D3

Table 3.1: A taxonomy of the sentiment analysis problem

3.1 Sentiment analysis tasks

Traditionally there have been diverse tasks related with sentiment or opinion analysis.
One of the first related research areas consisted in classifying documents according to
their source or source style. Statistic techniques were used in order to detect stylistic
variations in the documents [Biber, 1988]. Examples include trying to distinguish
among authors, publishers (e.g., The New York Times vs. The Daily News) [Argamon-
Engelson et al., 1998], or even among language styles used by the authors (e.g., high-
brow or low-brow). Determining the genre of the texts is also another related task;
subjective genres as “editorial” is one of the possible categories [Karlgren and Cutting,
1994].

As previously stated in section 1.2, one of the principal tasks regarding sentiment
analysis is the objective/subjective text classification. Different approaches have
been proposed both at the document and at the sentence level. The first study
proposed by Wiebe [1994] was aimed at tracking the psychological point of view in
narrative. In narrative texts, like novels, it was intended to determine whether the
text makes reference to beliefs of the characters or to facts from the story, such as
landscape or scenery descriptions. An algorithm based on detecting regularities in
point of view manipulation is proposed. Afterwards, Wiebe et al. [1999] described
a subjective/objective sentence level classifier using the naive Bayes algorithm. The
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presence or absence of a series of syntactic clauses (pronouns, adjectives, verbs, adverbs),
punctuation symbols and sentence position tags were used as features. An important
result reported by Hatzivassiloglou and Wiebe [2000] is that adjectives are the most
important part of speech regarding a document’s sentiment. In [Wiebe, 2000] lexical
features were added to the already mentioned presence/absence of syntactic categories.
More recently, it was described a document level subjectivity classifier using the k-
nearest neighbours algorithm, based on counting the appearances of subjetive words
and sentences in each document [Wiebe et al., 2004].

Certain psychological studies discovered measurable associations between a series of
words and diverse emotional states [Bradley and Lang, 1999]. Hatzivassiloglou and
McKeown [1997] described an unsupervised learning method able to learn positive and
negative oriented adjectives with an approximate accuracy of 90%. Later on, Turney
[2002] used a little subset (“excellent” and “poor”) of those semantically oriented
adjectives, to automatically calculate the semantic orientation of sentences by using
pointwise mutual information with the AltaVista search engine. Document level
polarity classification was then performed by sentence polarity aggregation. A more
direct approach was presented in [Pang et al., 2002]. A series of machine learning
techniques were directly applied to classify movie reviews into positive and negative.

With respect to the nature of the classes we want to predict (C1), the most common
problem is a two class problem involving the positive and negative classes [Pang et al.,
2002; Turney, 2002; Dave et al., 2003]. A variation that has been already discussed
consists in a binary classification problem with the classes being objective and subjective
[Wiebe et al., 2004]. A closely related problem is affect classification which attempts to
classify emotions instead of sentiments. Emotions are expressed with a series of mood
states such as happiness, sadness, anger, etc. It is a multiclass classification problem
[Subasic and Huettner, 2001; Mishne, 2005].

However, not all the tasks involve carrying out a classification. There exist works in
which the goal is not to predict the expressed sentiment as positive or negative, but
to predict the numerical rating provided by the reviewer. It is an ordinal regression
problem that, in general, is more complicated than the binary classification one. Pang
and Lee [2005] addressed the problem of “rating-inference” as trying to determine
an author’s evaluation with respect to a multi-point scale (e.g., one to five “stars”).
The existence of several different degrees of similarity between class labels significantly
complicates the problem. For example, “three stars” is intuitively closer to “four stars”
than to “one star”. A radically different approach consists in representing the local
sentiment flow of the document. Mao and Lebanon [2007] used Conditional Random
Fields (CRF) in order to obtain a graphical representation (see Figure 3.1) of the
sentiment flow along the document. One of its advantages is that the graphical output is
very enjoyable and intuitive for the final user. They also proposed a method to calculate
the global sentiment of the document from the local sentiment representations.

A method aimed at mining and summarizing all the customer reviews of a product
was proposed by Hu and Liu [2004b]. This summarization task is different from
traditional text summarization because they only mine the features of the product
on which the customers have expressed their opinions and whether the opinions are
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238 Mach Learn (2009) 77: 225–248

Fig. 2 Ordering of stemmed words with respect to the positive sentiment. The words with higher order are
drawn at the top

Fig. 3 (Color online) Sentiment flow and its smoothed curve representation. The blue circles indicate the
labeled sentiment of each sentence. The blue solid curve and red dashed curve are smoothed representations
of the labeled and predicted sentiment flows. Only non-objective labels are kept in generating the two curves.
The numberings correspond to sentences displayed in Sect. 6.4

6.2 Global sentiment prediction

We also evaluated the contribution of the local sentiment analysis in helping to predict the
global sentiment of documents. The sentence-based definition of sentiment flow is prob-
lematic when we want to fit a model that uses sentiment flows from multiple documents.
Different documents have different number of sentences and it is not clear how to com-
pare them or how to build a model from a collection of discrete flows of different lengths.
We therefore convert the sentence-based flow to a smooth length-normalized flow that can
meaningfully relate to each other.

In order to account for different lengths, we consider the sentiment flow as a function
h : [0,1] → Y ⊂ R that is piecewise constant on the intervals [0, l), [l,2l), . . . , [(k − 1)l,1]
where k is the number of sentences in the document and l = 1/k. Each of the intervals
represents a sentence and the function value on it is its sentiment.

To create a more robust representation we smooth out the discontinuous function by
convolving it with a smoothing kernel. The resulting sentiment flow is a smooth curve
f : [0,1] → R that can be easily related or compared to similar sentiment flows of other
documents (see Fig. 3 for an example). We can then define natural distances between two
flows, for example the Lp distance

dp(f1, f2) =
(∫ 1

0
|f1(r) − f2(r)|p dr

)1/p

(27)

for use in a distance based classifier that predicts the global sentiment.
We compared a nearest neighbor classifier for the global sentiment, where the representa-

tion varied from bag of words to smoothed length-normalized local sentiment representation

Figure 3.1: Sentiment flow and its smoothed curve representation. The blue circles
indicate the labeled sentiment of each sentence. The blue solid curve and red dashed
curve are smoothed representations of the labeled and predicted sentiment flows.

positive or negative. The task is basically performed in three steps: 1) mining product
features that have been commented by customers; 2) identifying opinion sentences and
determining whether they are positive or negative; 3) summarizing the results. An
example of a summary concerning a digital camera is presented in Figure 3.2.

Figure 3.2: An example summary

With respect to the classification level (C2), it can be performed at the document
[Pang et al., 2002; Turney, 2002; Mullen and Collier, 2004] or at the sentence level
[Pang and Lee, 2004; Mullen and Collier, 2004]. There has also been work on phrase
level categorization in order to capture multiple sentiments that may be present within
a single sentence [Wilson et al., 2005].
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3.2 Sentiment analysis features

According to the Table 3.1, there are four kind of features that have been traditionally
used in sentiment analysis works. These include syntactic, semantic, link based, and
stylistic features. Syntactic and semantic are the most common used ones.

3.2.1 Syntactic features

Among syntactic features it usual to perform a bag of words representation including
features like word presence/frequence, n-grams [Pang et al., 2002; Dave et al., 2003;
Abbasi et al., 2008], character information [Abbasi et al., 2010], part of speech (POS)
tags [Pang et al., 2002; Yi et al., 2003] and punctuation symbols. Additional syntactic
features include phrase patterns, which make use of POS tag n-gram patterns [Yi et al.,
2003; Fei et al., 2004]. Fei et al. [2004] reported that usually phrase patterns like
“n+aj” (noun + positive adjective) represented positive sentiment orientation while
“n+dj” (noun + negative adjective) often expressed negative sentiment.

Normalization is also a common practice. It is referred to the observation that many
different strings of characters often convey essentially identical meanings. Stemming is
possibly the most known case of normalization [Dave et al., 2003]. It reduces inflected
words to their stem or root form. Using collocations (tags) to substitute hapax legomena
words (words that appear a single time in a given corpus) is another normalization
technique [Wiebe et al., 2004]. Collocations are also used to replace certain parts
of fixed n-grams with general word tags, thereby also creating n-gram phrase patterns
[Wiebe et al., 2004]. For example, all the bigrams containing a unique adjective followed
by the preposition “as” are substituted by a special tag.

3.2.2 Semantic features

Semantic features incorporate manual/semi-automatic or fully automatic annotation
techniques to add polarity or affect intensity related scores to words and phrases.
Hatzivassiloglou and McKeown [1997] proposed a method to calculate the semantic
orientation (SO) of each word and phrase based on mutual information. It was
later extended by Turney [2002], who calculated the score by computing the mutual
information between each sentence and the word “excellent”, and subtracting the
mutual information between the same phrase and the word “poor”. By aggregating
the individual scores, a final score for the whole document can be obtained.

A different approach consists in using manual or semi-automatic generated sentiment
lexicons [Tong, 2001; Fei et al., 2004; Wilson et al., 2005]. Typically a set of seed
words is automatically generated and then manually filtered. Polarity and intensity
information is then incorporated to each term. However, Pang et al. [2002] reported
that human intuition may not be adequate when selecting good indicator features for the
sentiment classification task. On one hand, they asked two computer science students
to (independently) choose good indicator words for positive and negative sentiments in
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movie reviews. On the other hand, they selected a word list based on frequency counts
in the entire corpus. After using the resulting lists to classify each review as positive
or negative, they found that human based lists performed significantly worse than the
frequency count list.

Appraisal groups is another effective technique for annotating words and sentences with
semantic scores. WordNet2 is used for generating the initial set of words. After a manual
filtering, each expression is manually classified into various appraisal classes. These
classes include attitude, orientation, graduation, and polarity of phrases. Afterwards,
these taxonomies are combined with standard bag of words features for the final
evaluation [Whitelaw et al., 2005]. The authors report a high accuracy over a movie
review corpus, outperforming [Pang et al., 2002; Turney, 2002; Mullen and Collier,
2004].

3.2.3 Link based features

Link based features are used to analyze the effect of links and citations in sentiment
tasks. A hypothesis is that documents that link to each other or share citations usually
express a similar sentiment. Efron [2004] found evidences of opinion web pages heavily
linking to each other often shared similar sentiments. In contrast, Agrawal et al. [2003]
observed the exact opposite behaviour. They analyzed a USENET newsgroup discussing
issues such as abortion and gun control, and noticed that forum replies tended to be
antagonistic. Due to the limited usage of link-based features, it is unclear how effective
they may be for sentiment classification [Abbasi et al., 2008].

3.2.4 Stylistic features

So far, usage of stylistic features in sentiment analysis tasks has been very limited.
These includes lexical and structural attributes such as word length, vocabulary richness
measures or special character count appearances. Wiebe et al. [2004] considered hapax
legomena for effectively discriminate between objective and subjective classes. They
observed a noticeably higher presence of unique words in subjective texts as compared
to objective documents. As Wiebe reported, “Apparently, people are creative when
they are being opinionated”.

Examples of other works having used stylistic features include [Gamon, 2004], in which
sentence length was used for predicting sentiments in user feedback data, and [Mishne,
2005], where the number of words per message and per sentence was employed for
analyzing blog data. It is still not clear to what extent stylistic features are useful
in opinion mining tasks. Moreover, authors like Pang et al. [2002] and Gamon [2004]
reveal that relevant features may not be trivial at a glance, and that even though
adjectives have been remarked as important throughout the literature, stylistic features
may present some hidden structure valuable for the classification task.

2WordNet is a large lexical database of English. Nouns, verbs, adjectives and adverbs are grouped
into sets of cognitive synonyms (synsets), each expressing a distinct concept. Synsets are interlinked
by means of conceptual-semantic and lexical relations.
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3.3 Sentiment analysis techniques

Previously used techniques can be classified into three categories: machine learning
algorithms, link analysis methods, and score based approaches.

Existing supervised learning methods can be readily applied to sentiment classification,
e.g., support vector machines (SVM) [Pang et al., 2002; Dave et al., 2003; Mullen and
Collier, 2004], naive Bayes [Pang et al., 2002; Dave et al., 2003; Efron, 2004], etc. These
kind of techniques are typically used in conjunction with a bag of words representation
and syntactic or stylistic features. Support vector machines is, arguably, the most
suitable supervised learning algorithm for dealing with textual data. The reason is that
SVM with linear kernel gets benefited from the usually high number of features and
the sparse representation; classifying in high dimension tends to be linearly separable.
In fact, SVM has been reported to outperform other classifiers as naive Bayes in movie
review domains [Pang et al., 2002].

Studies using link based features have often utilized link analysis. Efron [2004] used
cocitation analysis for sentiment classification of web site opinions while Agrawal et al.
[2003] used message reply link structures to classify sentiments in USENET newsgroups.
An obvious limitation of link analysis methods is that they are not effective where link
structure is not clear or links are sparse.

Score based approaches are generally complementary to semantic features. These
techniques usually determine the global sentiment of a message by summing up a
series of individual scores previously assigned to words/sentences or phrases. In phrase
pattern matching strategies [Yi et al., 2003; Fei et al., 2004], a series of patterns are
manually created and labeled as positive or negative. Each time a sentence matches
a positive pattern, the global document score is incremented in one unit. The same
operation is performed with negative patterns. The global sentiment of each document
is whether positive or negative depending on the final obtained sum. Hatzivassiloglou
and McKeown [1997], and Turney [2002] use the same procedure but making use of
semantic orientation scores for each sentence. Score based methods have also been used
for affect analysis where the affect features present within a document are scored based
on their degree of intensity for a particular emotion class [Subasic and Huettner, 2001].

3.4 Sentiment analysis domains

Sentiment analysis has been applied in diverse domains including movie and product
reviews, web discourse (blogs, forums), news articles, social networks like Twitter,
stock market applications and so on.

Reviews are usually related to products, movies or music [Morinaga et al., 2002; Pang
et al., 2002; Turney, 2002; Hu and Liu, 2004a]. Movie reviews has been reported as a
specially difficult domain, since reviewers often not only express their opinions about
the movie, but also describe the plot (a great movie with a “dark” plot for example),
and express their previous expectations about both the movie and actors (typical case
of a good actor trapped in a bad movie). It is is difficult to identify the concrete parts
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of the review in which the author is actually giving it’s opinion about the movie itself.
Product reviews are also quite tricky, since a single review can feature positive and
negative sentiments about distinct characteristics of the product.

Web discourse analysis comprises the evaluation of blogs, forums and newsgroups
[Agrawal et al., 2003; Efron, 2004]. Sentiment is usually assessed with respect to
a specific topic, e.g., abortion, politics, gun control and so on. News articles have
also been used to evaluate the performance of sentiment analysis approaches [Yu and
Hatzivassiloglou, 2003; Yi et al., 2003].

Twitter has been used a significant source for obtaining sentiment datasets. Pak and
Paroubek [2010] looked for tweets containing “happy” and “sad” emoticons, and were
respectively labeled as positive or negative. Recall that the appearance of a “happy”
emoticon does not necessarily mean the tweet is actually positive. Other authors have
tried to predict the stock market movement by analyzing mood in Twitter. Bollen et al.
[2011] reported that Twitter mood, specially the calmness index in GPOMS3, helps to
predict daily up and down changes in the closing values of the Dow Jones Industrial
Average. Twitter has also been used for predicting movies box office revenues after
the film has been released [Asur and Huberman, 2010].

3.5 Feature selection in sentiment analysis

When using machine learning algorithms in sentiment analysis problems, the document
representation is usually performed with a large number of features. Even tough
a very diverse kind of features have been proposed throughout the literature, little
emphasis have been placed in using techniques to select the most relevant and valuable
features in each representation. Having in mind the usually high dimensionality of
these problems, we think that feature selection is an important task independently of
the chosen representation.

Among the few authors that have applied feature reduction techniques we can highlight
Gamon [2004] and Yi et al. [2003]. They both employed log likelihood ratio as measure
in order to estimate the predictiveness capability of each feature. The top n ranked
features were selected, with n ranging from 1000 to 40,000. Abbasi et al. [2008] proposed
a feature selection wrapper based on a genetic algorithm called EWGA (Entropy
Weighted Genetic Algorithm). Information gain is used both at the crossover and
mutation operators to ensure that enough diversity is present within the population.
The performance of each individual, or fitness function, is assessed by estimating the
predictive capability of a support vector machine algorithm over unseen data. Each
individual encodes the features to be used in the classification task.

3GPOMS is the acronym of Google-Profile of Mood States, that measures mood in terms of 6
dimensions (Calm, Alert, Sure, Vital, Kind, and Happy).
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3.6 Conclusions

A summarization of the contents that have been presented along this chapter is
displayed in Table 3.2. For each work it is shown the application domain, the features
and techniques that have been employed, and the usage, or not, of feature selection. At
a glance it can be observed that the majority of works utilize syntactic and semantic
features, and that feature selection has not been very popular.

Works
Features Feat. reduction Techniques Domains

F1 F2 F3 F4 Yes/No T1 T2 T3 D1 D2 D3
Subasic and Huettner [2001] X X No X X
Tong [2001] X X No X X
Morinaga et al. [2002] X Yes X X
Pang et al. [2002] X No X X
Turney [2002] X X No X X
Agrawal et al. [2003] X X No X X X
Dave et al. [2003] X No X X X
Riloff and Wiebe [2003] X X No X X
Yi et al. [2003] X X Yes X X X
Yu and Hatzivassiloglou [2003] X X No X X X
Efron [2004] X X No X X X
Fei et al. [2004] X No X X
Gamon [2004] X X Yes X X
Grefenstette et al. [2004] X X No X X
Hu and Liu [2004b] X X No X X
Pang and Lee [2004] X X No X X X
Mullen and Collier [2004] X X No X X
Nigam and Hurst [2004] X X No X X
Wiebe et al. [2004] X X Yes X X X X
Liu et al. [2005] X X No X X
Mishne [2005] X X X No X X
Whitelaw et al. [2005] X X No X X
Wilson et al. [2005] X X No X X
Pang and Lee [2005] X No X X X

Table 3.2: A previous work summarization

Most sentiment analysis related research is based on the assumption that web comments
are written in English. Depending on the considered features, some of the proposed
approaches are language dependent. The underlying ideas are of course valid for any
language, but it’s translation is far from trivial. Take into account approaches based
on phrase pattern matching, linguistic constructions, part of speech tags, lexicons,
etc.. Some of them require language specific tools in order to work (imagine sentiment
lexicons in french or spanish), and other require to be adjusted to the target language
by an expert (is is trivial to find equivalences for phrase patterns and constructions
between different languages?). On the other hand, there exist other approaches that
only need a corpus of text, whatever the language is, to build a model and to predict
new comments in that language.

In general, our perception is that much of the existing research is aimed at proposing
approaches to solve specific problems in concrete domains. Under this circumstance
is complicated to carry out a fair comparison between proposals and to evaluate it’s
real performance. It is also worth mentioning that there does not exist a well-known
and widely accepted set of test problems to measure the effectiveness of the proposed
techniques in a general domain.
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Chapter 4

Dataset and methodology

This chapter is intended to provide the reader with the general setup configuration we
have adopted during the experimentation in this work. We start describing the dataset
and its main properties, together with all the preprocess procedures we have applied to
the text movie reviews. As follows, we detail the software and hardware environment
that has been employed. Finally, we present the methodology we used to execute the
experiments and to estimate the performance of the proposed approaches, including
evaluation strategies, metrics or loss functions and parameter tuning.

Note that we only describe in this chapter the general configuration that has been
employed in all the experiments. Particular characteristics of each technique are
commented in chapter 5, which focuses on describing each technique and the obtained
results.

4.1 Dataset

In this work it has been used a dataset1 that represents a real world problem. It
is composed of a series of movie reviews extracted from the Internet Movie Database
(IMDb) archive of the rec.arts.movies.reviews newsgroup. It was firstly introduced
in [Pang et al., 2002] and has been broadly used and mentioned in sentiment analysis
or opinion mining related literature [Dave et al., 2003; Mullen and Collier, 2004].
Pang et al. [2002] justify the movie review domain selection principally because of the
reviewers summarizing its sentiment by means of a numerical rating. Previous results
also showed movie reviews to be the most difficult of several domains for sentiment
classification [Turney, 2002].

The authors only selected reviews where the rating was expressed either with stars or
some numerical value. Ratings were then automatically extracted and converted into
one of these categories: positive, negative or neutral. Note that reviews have not been
manually labeled (after having been read by a human), thus it is possible for some
of them to be assigned an erroneous class. A maximum of twenty reviews per author

1It can be downloaded from http://www.cs.cornell.edu/people/pabo/movie-review-data/
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was established. The final dataset was obtained by randomly selecting 700 positive-
sentiment and 700 negative-sentiment documents. The neutral class was not considered
in this work. It is a binary classification problem, and with respect to the class the
dataset presents a perfect balance. The example distribution is presented in Table 4.1.

Class Number of documents %

Positive 700 50
Negative 700 50

1400 100

Table 4.1: Example distribution in movie review dataset

4.2 Document preprocessing and representation

Our “raw” data is a corpus of natural language text. In order to obtain a suitable
representation of the raw text in a computer, we need to apply some linguistic processing
to the data [Turney and Pantel, 2010]. First we need to tokenize the raw text; that
is to extract the vocabulary and to decide which words or terms are comprising it.
Tokenization of English seems very simple at first sight because words are separated
by spaces. However we also have to be aware of punctuation symbols like full stops,
question or exclamation marks, hyphens and so on (e.g., don’t, and/or, state-of-the-
art). Note that while separating by spaces is valid for English, is not appropriate for
other languages as Chinese. In our case we have extracted the vocabulary from the
movie review data by separating words by spaces.

However, by manually examining the obtained vocabulary after the space separation
stage, we have found a number of special cases in which the performed separation is
not successful. When a punctuation symbol appears right after a word, they are both
extracted together, e.g., “water.” vs “water”. Two different terms that represent the
same word are created. The same situation appears when text authors emphasize an
emotion by repeating several times a single character within a word, e.g., “gooood”.
Case sensitivity is also a typical problem in this context. We have implemented a
parser in order to overcome these difficulties that is detailed in section 4.2.1.

A second step consists in normalizing the extracted words to convert superficially
different strings of characters to the same form. The motivation is that we are really
interested in the meaning of the words. The most common cases of normalization are
converting all words to lower case and stemming. A final stage consists in annotating
the raw text to mark identical words as being different (e.g., fly as a noun or fly as
a verb). The most used annotation method is part-of-speech tagging. As reported
by [Kraaij and Pohlmann, 1996], given its nature it is expected for normalization to
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increase recall2 and to decrease precision3. By removing superficial variations, that
we consider irrelevant to meaning, we make it easier to recognize similarities, so recall
increases. On the other hand, it is expected for annotation to increase precision and to
decrease recall, because we have a higher confidence on the detected similarities.

4.2.1 Document parser

We have used MATLAB in order to implement a parser that uses regular expressions
to perform a series of adjustments to the original text movie reviews. A set of input
comments is passed through a number of filters, with each filter carrying out a concrete
matching. These matchings are sequentially performed in a pre established order. Each
time a matching is successful, the correspondent transformation is performed. Among
these filters we highlight the following:

• Filter some punctuation symbols that were extracted together with several words,
as there was not a blank space between them (e.g., “today...”, “(left’ ’, “good!”).

• Convert all words to lower case.

• Substitute different entities by a constant string or collocation (tag). For example,
we have replaced all url links by the string URL, and all the numbers by the string
NUMBER.

• Having in mind that often people uses smileys on the Internet to express a
sentiment, we have replaced a series of smileys by their corresponding tag:
positive smiley (:),:D), negative smiley (:(, :/ ) or neutral smiley (:o).

Note that we have decided not to carry out any annotation task.

4.2.2 Document representation

Once the input documents have been parsed we need to obtain a valid representation
as an input for the classification algorithms. We have decided to use a bag of words
representation, in which each review is represented by a vector with equal size to the
number of words in the vocabulary. It does not consider any order among words and
assumes independence among them. Thus, the final data is represented by a matrix
with as many rows as documents and as many columns as terms in the vocabulary.

Under the hypothesis that people tend to use certain words when expressing their
opinions and sentiments, we are going to use word presence/absence in each document
in order to assign the matrix weights. It is a highly sparse representation because most
of the terms only appear in a few documents. It is a boolean assignment such that the
element ajk in the matrix is assigned a one value if the term k appears in the document
j and 0 otherwise.

2Recall is the fraction of relevant instances that are retrieved
3Precision is the fraction of retrieved instances that are relevant.
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On the other hand, a frequency representation can be obtained by measuring each
term’s number of appearances per document. As follows we formally denote both
representations. Let {t1, ..., tk} be a predefined set of k terms comprising the vocabulary.
Let ak(d) be the number of appearances of term tk in document d. A document’s
frequency representation is obtained as:

dfreq = (a1(d), a2(d), ..., ak(d)) (4.2.2.1)

Let a
′

k be 1 when the term tk is present on document d and 0 otherwise. A document’s
presence/abscence representation is obtained as:

dpres = (a
′

1(d), a
′

2(d), ..., a
′

k(d)) (4.2.2.2)

Recall that in [Pang et al., 2002] it has been already reported that a presence/absence
representation yields to better accuracy results than a term frequency representation
in sentiment analysis related tasks.

At this point we have utilized a series of traditional IR text analysis techniques in order
to determine the vocabulary. As a result we have obtained four different representations
for the movie review dataset:

• Unigrams: words are separated by spaces after the parser stage.

• Unigrams + NOT: a heuristic that aims to model the effect of negation is
introduced. Whenever a negation clause is detected, all the following words
are negated until a punctuation symbol is found. The negation is performed
by appending a NOT tag to the word. The size of the vocabulary is expected
to increase. A list of the considered negation clauses and punctuation symbols is
shown in Table 4.2.

• Unigrams - empty words: in IR is widely accepted that too much frequent
words do not provide information, and that words without semantic meaning
(articles, conjuctions, etc.) are not useful. Salton and McGill [1983] report that
words appearing in at least 80% of documents do not provide useful information.
A list4 of words without semantic meaning (stop words) is filtered out. The size
of the vocabulary is expected to decrease.

• Unigrams + stemming: words with different morphology share the same root
and are semantically equivalent. A unique word is selected to represent the rest
with the same concept. The size of the vocabulary is expected to decrease. We
have performed the stemming step by means of the tm package in R. It uses an
implementation of the Porter algorithm.

4The list has been obtained from http://members.unine.ch/jacques.savoy/clef/englishST.txt
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Negation clauses Punctuation symbols

not no never nothing cannot except *n’t , . ; ( ) :

Table 4.2: Set of negation clauses and punctuation symbols used to determine the scope
of them. The asterisk represents any string sequence such that ends with n’t.

4.3 Implementation

All the experiments developed in this project has been performed with the support of
four core components. From top to bottom, the higher software layer is The Spider

[Weston et al., 2005], an open-source machine learning toolbox for MATLAB. Below,
obviously, lays the MATLAB software environment itself. The last software layer is offered
by libsvm library for SVM [Chang and Lin, 2011].

Regarding the hardware configuration, we have executed all the experiments over
Pomar, an Apple Xgrid cluster from the Artificial Intelligence Center (AIC) of the
University of Oviedo.

The Spider machine learning toolbox for MATLAB

This toolbox aims to offer a complete object-oriented environment for machine
learning in MATLAB. It provides out-of-the-box base learning algorithm and offers plugin
capabilities to integrate more algorithms with very little effort.

Apart from these benefits it also includes other machine learning functionalities, like
deterministic cross-validation partitioning of data, model selection through grid-search,
a complete collection of loss functions for different aims, statistical tests, visual plots
and much more.

MATLAB

MATLAB (MATrix LABoratory) is a mathematical software that provide users with an
Integrated Development Environment (IDE) and its own related programming language
(m files). Among its main functionalities we can highlight matrix manipulation, plotting
of functions and data, implementation of algorithms, creation of user interfaces (GUI),
and interfacing with programs written in other languages. It is a frequently used
software in both universities and research centers. In this work we have used MATLAB

in its R2012a version.

Libsvm: a library for support vector machines

It offers support vector classification (C-SVC, ν-SVC), regression (ε-SVR, ν-SVR)
and distribution estimation (one-class SVM) implementations. Some remarkable
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features are the support of efficient multi-class classification capabilities, easy-to-use
MATLAB interface (among other interfaces for alternative machine learning environments
and languages), cost-sensitive binary classification for unbalanced data, probability
estimates, etc. The version used in this project is libsvm-mat-2.91-1.

We have also utilized a special version of libsvm called liblinear, that is specially
well-suited for text classification problems.

Pomar cluster from the Artificial Intelligence Center (AIC)

The hardware layer is an Apple Xgrid cluster, which is composed of 15 nodes or agents.
The main node is usually excluded from the experimentations, acting as the main
controller of the cluster. The rest 14 agents provide a total CPU power of 396 GHz,
divided in 160 parallel processors. In our experiments, each independent task is executed
in parallel over one of these processors, as an independent process.

4.4 Performance estimation and metrics

We are interested in the generalization ability of the classification algorithms. That is
its capacity to successfully predict the class of instances that have not been seen during
the training stage. Thereby, it is not appropriate to use the proper training instances
to measure the performance of the models. The easier solution consists in splitting the
available data into training and test instances, and then use the former for generating
the model, and the latter for measuring its performance. However, this strategy is likely
to present a high variability, with a strong dependence on the concrete instances that
“fall” into the test set.

A well-known solution is the so-called cross-validation estimation procedure. It involves
partitioning a sample of data into k disjoint subsets (k-fold cross-validation), and
measuring the performance of the models in each subset, after having generated each
model from the other k− 1 subsets. The final estimation is performed by averaging the
individual model performances, and thus reducing the expected variability.

One of the approaches we are presenting in the following chapter requires to carry out a
large number of computations for obtaining the associated representation (cooccurrence
word information). Furthermore, this representation directly depends on the concrete
instances belonging to the training set. One step consists in calculating the distances
among a series of vectors that represent each one of the terms comprising the training
vocabulary. Due to the high temporal complexity of this procedure, we realized that
it was not possible to apply it as many times as folds in the k-fold cross-validation
setup. As a consequence, we decided to perform a simple train/test data split instead
of using cross-validation. As we want to conduct a comparison among all the proposed
approaches, we have used the same train/test split in all the experiments. 80% of data
has been used for training and 20% left for testing. It is also important to remark that
the train/test split has been balanced in order to keep the proportion of positive versus
negative examples.
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4.4.1 Parameter tuning

Most of the learning algorithms depend on a series of parameters that are used to adjust
certain of its characteristics according to the problem to solve. There are methods that
aim to find the most promising values for this parameters. An estimation of the best
values, striving for performance over unseen examples, is produced. In this work we
are using SVMs with linear kernel, thus the only parameter that require to be tuned
is c. We have utilized the so-called gridsearch strategy, which uses the training data
to compare the performance of the classifier over unseen examples with a number of
different values for the parameter c.

Using test data is not appropriate when performing the parameter tuning task. For
each target value a cross validation over training data is executed, and as a result,
an estimation of the performance over unseen data is obtained. As recommended by
Dietterich [1998] we have used 2-fold cross-validation with 5 repetitions. Due to the
fact that the only changing condition in the executions is the value of the parameter,
differences in the results are explained by the target parameters.

Previously, we have justified ourselves for not using a cross-validation strategy; using
it inside the parameter tuning procedure may seem rather incoherent. However, it is
important to note that we have applied the high computational cost representation
acquisition process to the entire training data. From the obtained representation we
have performed the parameter tuning task. The consequence is that training data
inside gridsearch runs have been created from both training and test data. Thus,
our 2x5 cross-validation estimations are expected to be optimist. Since we only want
to compare among different values of a parameter, it is not a problem to get biased
estimations.

4.4.2 Performance metrics

There exist a series of functions that are used to assess the performance of the obtained
predictions (loss functions). Formally, a loss function l is defined as l : Y x Y → R≥0.
The performance of a prediction h(xi) when the true value is yi, is calculated as l(y,ŷ).
Note that, in general, any loss function can be applied to any problem, but depending
on the concrete characteristics of the problem some of them are considered to be more
suitable.

In this work we are dealing with a binary classification problem in which class
distribution is perfectly balanced. The dataset is comprised by 700 positive instances
and 700 negative ones. In this case, a simple and well-suited loss function to measure
the performance of the models is the traditional accuracy. As follows we are going to
introduce it formally.

Contingency table

Although the contingency table is not a measure itself, it provides the essential values
to compute many loss functions in binary classification tests. These values are the true
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positives (TP), true negatives (TN), false positives (FP) and false negatives (FN).

Table 4.3: Contingency table for binary classification problems

yi = +1 yi = −1

h(xi) = +1 TP FP

h(xi) = −1 FN TN

Typically, by columns we have the expected values of the class (yi), i.e., positive and
negative. Hence, the predicted values, (i.e., h(xi)) are often placed by rows.

Accuracy (ACC)

The classical loss function for binary classification is the Zero-One Loss (ZOL), also
known as Class Loss. This error measure is computed as follows:

∆0/1(h(xi), yi) = [h(xi) 6= yi] (4.4.2.1)

Applied over the whole set, the zero-one loss measures the proportion of examples that
are misclassified. In terms of the contingency table defined in Table 4.3, we compute:

ZOL =
n∑

i=1

∆0/1(h(xi), yi) =
FP + FN

TP + TN + FP + FN
(4.4.2.2)

This function is the inverse of the classification Accuracy (ACC):

ACC =
TP + TN

TP + TN + FP + FN
= 1− ZOL (4.4.2.3)
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Chapter 5

Experimentation and results

This chapter is intended to explain our approaches to solve the problem introduced in
section 4.1, to describe in detail the characteristics of all the experimental setups, and
to present the obtained results with respect to the performance measures that were
introduced in section 4.4.2. An important objective is to provide the reader with all
the required details to repeat the experiments in case it is required. For each one of
the presented experiments we are going to describe its:

• Representation and features, that is the approach we have used in order to
represent the text commentaries and to extract the features to be used by the
learning algorithm.

• Specific experiment conditions, such as the concrete values for the algorithm
parameters.

• Obtained results in terms of accuracy, as defined in 4.4.2, and number of utilized
features.

Recall that our principal objective is to use machine learning methods in order to
generate models presenting an adequate tradeoff between efficiency and complexity
(principally with respect to the inherent complexity of natural language processing),
that are applicable in a general domain. We are interested in getting rid of
language dependent artifacts, such as phrase patterns, (sentiment) lexicons, and
syntactic/semantic constructions. Usually, these kind of techniques are more complex
and domain dependent. Furthermore, the application of most of these language
dependent techniques requires the usage of external tools, like part of speech taggers,
etc. Analyzing and using this sort of NLP techniques remained out of our scope, since
machine learning is our core work interest.

In this work we prefer to explore diverse methods in order to represent the textual
information. We also focus in trying to extract the vocabulary that is most likely
to help us in the classification task. We start by reproducing an extensive part
of the experiments that were presented in [Pang et al., 2002], the first work that
explicitly measured the effectiveness of applying machine learning methods to the

53



Chapter 5. Experimentation and results

sentiment analysis problem (see section 5.1). As follows we propose a series of feature
reduction approaches, with the objective of selecting an adequate subset of words in
the vocabulary. We also discuss the application of an ensemble, that is to aggregate a
series of different models, and which are the model characteristics an ensemble would
get benefited from. All of these steps are performed with the goal of obtaining a
reduced and representative vocabulary of the movie review domain in a sentiment
analysis task. Finally, we have explored the possibility of representing each word in
the target vocabulary with a high dimensional vector. Words that are close in that
high dimensional space, are expected to have a similar semantic meaning. Then we
have applied a simple clustering algorithm and obtained a series of meaning clusters,
i.e., ideally, words that are semantically similar fall in the same cluster. From the
cluster information we have created a document “meaning” representation as input for
the classification algorithms.

5.1 Baseline

As already commented, Pang et al. [2002] were the first authors to explicitly measure the
effectiveness of applying traditional machine learning methods to the sentiment analysis
problem. Machine learning methods have been already reported to successfully perform
on traditional information retrieval problems, such as text categorization. Pang et al.
[2002] showed that, although sentiment can be expressed in a more subtle manner
than traditional keywords, machine learning techniques are also useful when modeling
sentiments and opinions.

As baseline they asked two computer science undergraduates to independently choose a
list of good indicator words for positive and negative sentiments in movie reviews. Even
though both lists seemed intuitively reasonable, only an accuracy of 58% and 64% was
respectively obtained over 4.1 dataset1. Based on a very preliminary examination of
frequency counts in the entire corpus, the authors then selected a list of seven positive
and seven negative words. By using this list the accuracy increased to 69%. They
concluded that it is worthwhile to explore corpus-based techniques, rather than relying
too much on prior intuitions, in order to select good features and to perform sentiment
classification in general.

In our baseline we are going to reproduce a series of experiments that were presented
in [Pang et al., 2002]. A comparison between two representations (see section 4.2.2),
word frequency appearance and word presence/absence, both at the document level
was carried out. They reported that a presence/absence representation yields to better
accuracy results than a term frequency representation in sentiment analysis related
tasks (82.9% vs 72.8% accuracy using SVM as classifier).

In order to confirm that result we have used a unigram representation (see Section
4.2.2) with both frequency and presence/absence information. At this point we have not
performed any filtering, and all the terms in the obtained vocabulary have been taken
into account (see Section 4.2 to find out how the vocabulary is extracted). Moreover,

1A minimum accuracy of 50% is expected due to the classes being perfectly balanced.
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to check the effect of applying traditional IR text analysis techniques in a sentiment
analysis classification problem, we have also evaluated the other three representations
described in Section 4.2.2. These include Unigrams plus NOT tag, Unigrams plus stop
word removal and Unigrams plus stemming. Note these are strategies to extract the
vocabulary. As regards the matrix information, for these three representations we have
only used presence/absence information, since as it can be seen in Table 5.3, frequency
version effectively yields to worse results (we are not considering it anymore in the
upcoming experiments).

Another preliminary evaluation we have carried out consists in filtering all terms that
do not appear in a minimum number of documents, in this case 5. We have created
an object using spider that calculates the number of documents each term appears in
within the training data. All the words not fulfilling the condition are filtered out both
at training and test data.

A Table presenting the characteristics of all the resulting representations is presented in
5.1. As expected, adding the NOT tag increases the number of terms in the vocabulary,
while stemming leads to an important decrease in the number of considered words. The
empty words method just filters out the words appearing in the stop words list.

Representation # Features # Features (after filtering) # Classes

Unigrams 37156 9460 2
Unigrams + NOT 53628 12036 2
Unigrams - Empty 36617 8954 2
Unigrams + Stemming 24337 7183 2

Table 5.1: Characterization of the four representations before and after the filtering of
the words that do not appear in at least 5 documents

We have already discussed why SVM is a well-suited technique for dealing with
text data classification problems in Section 3.3. In these preliminary evaluations we
have measured the performance of two different SVM implementations: libsvm and
liblinear. The latter is optimized for dealing with high dimensional and linearly
separable problems (like the one we are facing), thus we expect it to clearly outperform
the former. We have performed parameter tuning on both algorithms by means of
mygridsearch object in spider. The parameter search configuration is shown in Table
5.2.

Folds Repeats Learning algorithm Parameter Values

2 5
Linear libsvm

C {0.001, 0.01, 0.1, 1, 10, 100}
liblinear

Table 5.2: Parameter search configuration

The results we have obtained for each representation with both SVM implementations
are presented in Table 5.3. The best results are highlighted in bold. As Pang et al.
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All features 5 documents filtering

Representation libsvm liblinear libsvm liblinear

Unigrams - presence 83.571 87.5 83.214 87.857
Unigrams - frequency 80.357 81.786 78.929 79.286

Unigrams + NOT 80 82.143 78.571 80
Unigrams - empty 82.5 83.214 82.5 83.571

Unigrams + stemming 82.5 84.643 82.143 83.929

Table 5.3: Accuracy (%) results obtained in baseline experiments

[2002] already reported, word presence/absence information yields to better results
than frequency counts, independently of the used SVM implementation and number of
features. Frequency model may tend to give a higher weight to those terms being very
frequent, but not necessarily useful for the sentiment classification task.

It seems that NOT tag representation does not help at all, and even makes accuracy
decrease despite the higher number of features. We think that such a complex effect
as negation can not be modeled with such a simple heuristic. Stop word removal does
not seem to yield to better results in this particular sentiment analysis problem. Our
intuition is that we can not consider the concept of “empty” word to be the same in
text categorization and sentiment analysis tasks. While traditional stop word removal
lists (like the one we have used) are adequate in IR tasks, they look too much extensive
for sentiment related problems. In fact, we can observe that accuracy decreases when
filtering these words. In the following experiments we have tried to find a proper subset
of real “empty” words for this concrete problem. Stemming also makes the models
to perform worse than simply using unigrams themselves. IR traditional text analysis
techniques do not give the impression of being as useful as in IR problems when applied
to sentiment analysis tasks. The importance of context in sentiment analysis could
maybe be an explanatory reason.

Regarding SVM implementations, liblinear outperforms libsvm in all the performed
experiments. After having analyzed these results, we have decided in the following
experiments to only use unigrams as the strategy to obtain the vocabulary, word
presence/absence as feature information and liblinear as classification algorithm.

5.2 Looking for an adequate vocabulary: feature

selection

In the previous section we have already reduced the cardinality of our target vocabulary
by filtering terms that do not appear in at least 5 documents. In Table 5.3 it can be
seen that model’s performance does not get specially harmed when performing that
filtering, even it slightly gets increased in the case of unigrams and stop word removal.
However, the subset of words appearing in at least 5 documents is not necessarily an
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adequate feature subset in order to learn to predict the sentiment that is expressed
in the documents. On one hand, some frequent words may not be relevant within
the sentiment class, because of them not having any semantic meaning or not being
domain-relevant. On the other hand, not all the low frequent words are necessarily
useless, some of them may be helpful in the classification task.

Our objective in this experiment section consists in trying to find the most adequate
subset of words to comprise the vocabulary. Note that is a domain dependent task; in
the case of this homework we aim to find a representative vocabulary of a movie review
domain. However, this approach can be applied in a generic domain by simply wrapping
our vocabulary dependent approach into a generic model that is able to discern among
different domains. That is a high level classifier able to identify the concrete domain,
in order to later select the concrete domain dependent model. In this work we are only
focusing on the latter, within a movie review domain.

5.2.1 Information theory measures

At this point we have used a series of feature selection filters (see 2.3.1) coming from the
Information theory. It is a better procedure to reduce the dimensionality since we are
taking into account the class information. Concretely, we have employed four different
information measures in order to build a word ranking. Ideally, the top ranked words
are more important when predicting the class. We are interested in obtaining as many
models, as diverse as possible. The principal advantage is that we can later perform set
operations, like set intersection or set union, from the obtained vocabularies. We are
going to briefly describe each measure as follows.

Information gain

Intuitively, information gain is a measure that indicates how important a feature is with
respect to a class. It measures the closeness to class c knowing the presence or absence
of the term t. In an information retrieval context, information gain of a term t with
respect to a class c is calculated as:

IG(t, c) = P (t) · P (c/t) · log
P (c/t)

P (c)
+ P (t̄) · P (c/t̄) · log

P (c/t̄)

P (c)

Its domain is on the interval [0, 1], with 1 meaning that t is perfect for predicting c and
0 useless.

FCBF

The FCBF (Fast Correlation-Based Filter) algorithm consists of two stages: the first
one is a relevance analysis, aimed at ordering the features depending on a relevance
score, which is computed as the symmetric uncertainty with respect to the class. This
stage is also used to discard irrelevant variables, which are those whose ranking score
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is below a predefined threshold. The second stage is a redundancy analysis, aimed at
selecting predominant features from the relevant set obtained in the first stage. This
selection is an iterative process that removes those variables which form an approximate
Markov blanket.

Linear or rank correlation

Correlation coefficients measure the strength of association between two variables. In
this work it has been used the Pearson’s linear correlation coefficient, which measures
the strength of the linear association between two variables. The sign and the absolute
value of a correlation coefficient describe the direction and the magnitude of the
relationship between the two variables. Its ranges between -1 and 1. We have used its
absolute value, since we are only interested in its magnitude and not in the direction.

Cosine similarity

Cosine similarity is a measure of similarity between two vectors by measuring the cosine
of the angle between them. We have calculated the cosine similarity between each
term presence/absence vector and the class labels vector. It is often used to compare
documents in text mining.

Results

Starting from the original 37156 word vocabulary (see Table 5.1), we have executed each
filter so that in each iteration 1000 additional terms are filtered. For example, in the first
iteration we rank the 37156 terms in function of the corresponding measure, and then
we filter the last 1000 words in the ranking. As a result, we have obtained 37 different
set vocabularies for each one of the four filters. Note that we only use the training data
when determining the vocabulary. Once we know the words comprising the vocabulary,
we just select their corresponding features and carry out the classification task with the
original Unigrams presence/absence information. See Table 5.2 as regards liblinear

parameter tuning configuration.

bad awful worst wasted mess
also performance stupid wonderfully dull

laughable lame waste both unfunny
solid uninteresting effective world ridiculous

outstanding boring true most subtle

Table 5.4: List of the 25 top ranked words by the Information Gain filter

A list with the 25 top ranked terms selected by the information gain filter is presented
in Table 5.4. Most of the words appearing in the table are adjectives. It is in accordance
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with some previous intuitions about people tending to use adjectives when expressing
their emotions and sentiments [Pang et al., 2002].

# Features Information gain FCBF Linear correlation Cosine similarity

36156 87.5 87.5 87.5 87.5
35156 86.79 86.79 87.14 87.86
34156 87.14 87.14 87.14 87.86
33156 87.14 87.5 87.14 87.86
32156 87.14 86.43 86.43 87.86
31156 86.43 85.71 86.43 87.86
30156 86.43 86.43 86.07 87.14
29156 86.43 86.43 86.43 87.5
28156 86.07 86.79 86.07 87.5
27156 85.71 84.64 85.71 87.14
26156 85.36 86.43 85.71 87.5
25156 85.36 85.71 85.71 87.14
24156 85.71 85.71 85.71 87.5
23156 86.07 85.71 85.36 87.5
22156 86.07 85.71 85.36 87.14
21156 86.07 85.71 85.36 86.79
20156 86.07 85.36 85.36 86.79
19156 86.07 85.36 85 86.79
18156 86.07 85.36 84.64 86.79
17156 86.07 85.36 84.64 86.79
16156 86.43 85.36 84.64 86.79
15156 86.43 85.36 85 85.36
14156 86.43 85.36 85 86.43
13156 86.79 85 85 86.79
12156 86.43 85 85 86.43
11156 86.79 85 84.64 85.71
10156 86.79 85.36 84.64 86.43
9156 86.79 85.36 84.64 86.07
8156 86.79 85.36 85 86.07
7156 85.71 85 85.71 85.36
6156 83.93 83.21 85.36 85
5156 83.57 83.57 85 84.64
4156 83.57 82.86 85 85.36
3156 83.93 82.5 84.64 83.93
2156 82.14 78.93 85 82.14
1156 79.64 78.57 82.86 80.71
156 76.07 73.57 78.21 63.93

Table 5.5: Accuracy (%) results obtained for each filter and number of words comprising
the vocabulary
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The results we have obtained with each filter in each iteration are presented in Table
5.5. A graphical representation is depicted in Figure 5.1 in order to allow an easier
visualization of the results. The principal observation is that the accuracy of the models
tends to slightly decrease as the number of utilized features also decreases. However,
in general, models using a significant less number of attributes manage to obtain a
nearly equal performance as the original model. For example, cosine similarity model
is able to successfully predict an 87.5% of test examples with just 23156 features; the
original model using 37156 attributes performed the same. We can conclude that feature
selection is useful, at a more or less extend depending on the filter, since it provide us
with a subset of relevant features for the sentiment classification task, without harming
the performance of the predictions. We have gained an insight into a useful word subset
for performing sentiment analysis in a movie review domain.

Figure 5.1: Graphical representation of the obtained results for each filter and number
of words comprising the vocabulary

5.2.2 Frequency based filtering

In contrast with the previous experiments, in this case we are going to select the most
adequate vocabulary by counting word occurrences. We have considered document
frequency, that is the number of documents in the corpus where the word occurs,
independently of the number of times (inside the document). We have taken into
consideration Zipf ’s law, which states that words appearing in almost all documents
are not informative, and that rare words do not provide much information. Its
conclusion is that intermediate frequency words are the most informative words. We
have accomplished this word reduction task in two separated phases.
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Phase 1: Filtering high frequency words

In this experiment we have started by filtering the most frequent words in order to
detect the point in which the filtered words start to be useful for the classification
task, i.e., the point in which accuracy starts to decrease. Note that this is the same
as looking for the concrete set of “empty” words in this particular domain. In fact,
we expect to obtain a smaller set than the original “empty” word set that we used in
baseline experiments.

Our first try consisted in filtering up to the 5000 most frequent words in groups of 100.
A graphical representation of the obtained results is presented in Figure 5.2. It can be
observed that the accuracy immediately starts to fall after removing a little number of
frequent words. This confirms our initial intuition about the number of real “empty”
words in a sentiment analysis related problem being small. Our next movement was
intended to zoom into the frequency curve.

Figure 5.2: Filtering the most frequent terms in the original vocabulary

In order to do so we have carried out a precise filtering of the most frequent words.
We started by filtering one by one the most frequent words until we reached 150 terms.
The obtained results are depicted in Figure 5.3. In this case the obtained result graphic
is not as smooth as in the previous case due to the zoom and the situation of filtering
words one by one. From the graphic we have selected three feature points that we
considered good, taking into account its neighbour points. These three are highlighted
with a red circle in 5.3. Thus, as an output of this first phase we have obtained three
different models with an associated vocabulary and accuracy. Table 5.6 shows the
selected models together with their assessed performance.
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Model # Features Accuracy

Point - 37095 37095 88.929
Point - 37058 37058 88.214
Point - 37016 37016 87.143

Table 5.6: Points selected in the precise high frequency experiment

Figure 5.3: A precise filtering of the 150 most frequent terms in the original vocabulary

Phase 2: Filtering low frequency words

From the three selected models, which are already filtered, we are going to repeat the
procedure we applied in the information theory measures related experiments. We start
filtering the words having a lower frequency count in groups of 1000 until the cardinality
of the remaining word set is less than 1000. As a result, for each one of the three selected
points we obtain a graphic (Figure 5.4) that is very similar to the graphic (Figure 5.1)
we presented in the information theory measures.

If we compare both graphics, we observe that specially Point - 37095 and Point - 37058
perform better than any of the information theory measures. With a reduced number of
features (> 1000) an approximately accuracy of 88% is obtained with a simple frequency
filtering. If we take into account that correlation and cosine similarity tended to perform
better than information gain and FCBF, it is surprising how it looks like the simplest
the criterion used to filter, the better the obtained results. It is worth mentioning the
good results obtained with Point - 37095 model, which is able to successfully predict
86.7% of test examples with just 2095 features.
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Figure 5.4: Filtering low frequency words after having selected three points in phase 1

5.3 Ensemble: aggregating models

Our next logical move consists in aggregating our 5 generated models by using a
voting ensemble. It is expected to perform better than any individual model by itself
because the various errors of the models “average out”. Ensembles combine multiple
hypotheses to form a (hopefully) better hypothesis. For this situation to take place is
very important to have enough diversity among the models that are solving the same
problem. It is very important for them to make different generalization errors over the
test data.

In our case we have 4 models resulting from the experiments in Section 5.2.1, and three
ones as a result of frequency based filtering. Moreover, for each kind of model, we have a
series of points, each one associated to a concrete number of features. We have decided
to build two different ensembles, aggregating models that share a similar number of
features. As we are looking for diversity in the models comprising the ensemble, we
decided to choose models with a small number of features, since we expect the most
aggressive the filtering, the most diverse the resulting vocabulary. We also want to
evaluate the predictive performance of an ensemble that is built by aggregating a series
of small (with small referring to the number of features) models. As for the frequency
filtered models, we have decided to only use the best of them to build the ensemble,
since all of them share the same vocabulary at a less or more extent (low diversity).

The models that have been used to build both ensembles, together with its associated
number of features and assessed performance, are presented in Table 5.7.

On one hand we have used a voting rule to decide the winning class for each instance.
Each model “votes” its prediction and the class having the most votes is the ensemble
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Ensemble number

1 2

Model # Features Accuracy # Features Accuracy

Information gain 8156 86.786 3156 83.929
FCBF 7156 85 3156 82.5

Correlation 7156 85.714 2156 85
Cosine similarity 8156 86.071 4156 85.357

Freq - Point 37095 6095 87.857 2095 86.786

Table 5.7: Information about the models comprising both ensembles

prediction. As the number of models is odd, there is no need for a tie breaker criterion.
On the other hand, we have aggregated all the vocabulary within the five models. In
mathematical terms, we have performed a union set operation over the five word sets.
Afterwards, we have used Unigrams presence/absence information to carry out the
classification task. The results we have obtained in both strategies are shown in Table
5.8.

The principal conclusion we can extract from the results is that none of the evaluated
ensemble strategies manages to outperform the best of the single models, Frequency -
Point 37095. In fact, the ensemble 2 performs worse when voting, and the ensemble 1
when aggregating the vocabulary. We think that a possible explanation for this situation
is that worst models tend to make the same prediction mistakes, so a potential good
classification made by the best model is lost due to the other models being a majority.
As all the models, independently of their individual quality, have the same importance
in the voting process, when there exists a low diversity among the worst models, they
tend to win the voting when they agree (not on purpose of course) at misclassifying an
example. The key reason making our ensemble approach not performing good is that
the existing diversity among models is low.

Ensemble number

1 2

Strategy # Features Accuracy # Features Accuracy

Voting - 87.857 - 85
Aggregation 13709 87.5 6116 86.786

Table 5.8: Obtained results in the ensemble experimentation

We have manually examined both ensemble predictions for test examples, and have
realized that in most cases a misclassification is obtained, is because all the five models
are wrong when predicting the example class. That is to say it is more a problem of
our bag of words and presence/absence information representation than of the selected
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vocabulary itself. It is possible that our representation does not suffice to successfully
model a kind of special reviews that express sentiment in a more subtle manner. Other
reasonable, and not mutually exclusive reason, is that some of the reviews may have an
incorrectly assigned label. We have manually investigated a number of documents that
all the models comprising the ensemble failed to predict. The following is an extract of
one of those comments:

“after the press screening of moulin rouge i stood in the lobby of the
theater listening to the reactions of my friends and colleagues everyone
seemed a bit numb understandable after sitting through a barrage of often-
incongruous sounds and images a pal of mine simply said that he loved
the film and could hardly wait to take his wife to see it another enthusiast
immediately began to analyze the production while a woman who flat-out
hated the movie gave him the skunk eye when one fellow quietly stated i’ve
never really been a fan of musicals the statement surprised me because even
though the story is told almost completely through song i didn’t think of
it as a musical there is so much going on in moulin rouge that musical
seems too small a term to cover it moulin rouge is the kind of creation that
sends critics scurrying off to the big tub o’ adjectives in search of proper
words to describe the experience australian director baz luhrmann the man
behind strictly ballroom and romeo juliet fills the heads of viewers with unique
camerawork opulent imagery and songs ranging from the sound of music to
smells like teen spirit sumptuous and beautiful vulgar and overdone moulin
rogue travels through the looking glass while an ethereal stereo loaded with
NUMBER years worth of catchy tunes operates on the random setting.”

In this simple example the reviewer is not even giving its opinion, but describing the
various sentiments his/her friends and colleagues had after seeing the movie. Note that
we can find opposing sentiments within a single review that are not even held by the
same person. This review has been labeled as positive, but we do not think it can be
considered as so, since it mixes both positive and negative sentiments.

5.4 Word cooccurrence: meaning classification

One of our objectives for this work consisted in designing a novel approach in order to
solve the sentiment analysis problem. Our idea consists in representing each document
by using the cooccurrence information of the words comprising it. We have been inspired
by Vector Space Models (VSMs), a typically used method in information retrieval tasks
(specially in search engines). Its idea is to represent each document in a collection as a
point in a space (a vector in a vector space). Points that are together in this space are
semantically similar and points that are far apart are semantically distant [Turney and
Pantel, 2010].

In our case we are measuring word cooccurrence in order to build a lexical semantic
space. Lexical cooccurrence has been established as a useful basis for the construction
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of semantic spaces [Lund and Burgess, 1996]. A semantic space is a space, often with a
large number of dimensions, in which words or concepts are represented by points; with
the position of each point being related to the meaning of the word. Semantic spaces
are then useful for examining the relationships among words within them, because these
relationships can be quantified by applying distance metrics to the points within the
space.

The so-called distributional hypothesis is an important basis for our work: words that
coccur in similar contexts tend to have similar meanings. If words have similar row
vectors in a word-context matrix then they tend to have similar meanings [Deerwester
et al., 1990]. As follows we are going to describe the steps we have performed in order
to obtain our “meaning” representation from word cooccurrence information.

5.4.1 Cooccurrence word matrix generation

We have selected the aggregated vocabulary resulting from ensemble number two as
base for this experimentation. We considered this vocabulary to be an adequate one
for this process.

A “window’ ’ representing a span of words is passed over the corpus being analyzed. Note
that we only contemplated terms in the corpus belonging to the selected vocabulary.
The width of this window can be adjusted. In this work we have evaluated the following
window width values: 1, 5 and 10. The higher the window value, the wider the
neighborhood that is evaluated. Words within this window are recorded as co-occurring
with a strength inversely proportional to the number of other words separating them
within the window. Let be “The horse raced past the barn fell” an example sentence.
The words “raced” and “past” would receive a maximum cooccurrence value, while
“horse” and “barn” would be considered to co-occur weakly (if the window is wide
enough to include them both).

By moving this window over the source corpus in one word increments, and recording at
every window movement the cooccurrence values of the words within it, a cooccurrence
matrix can be generated. This matrix has n x n dimensions, with n being the cardinality
of the vocabulary. Each cell of the matrix represents the summed cooccurrence counts
for a single word pair. It is worth mentioning that counts for the “ab” pair and
counts for the “ba” pair are in different cells, i.e., it is direction sensitive. This process
produces a matrix in which, for every word in the vocabulary, there is both a row and
a column containing relevant information. Rows contain cooccurrence information for
words appearing before the word under consideration. Columns contain cooccurrence
information for words appearing after the word under consideration.

Table 5.9 shows an example matrix computed for the sentence “The horse raced past
the barn fell” using a widow width of five words.
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barn fell horse past raced the

barn 0 0 2 4 3 6
fell 5 0 1 3 2 4
horse 0 0 0 0 0 5
past 0 0 4 0 5 3
raced 0 0 5 0 0 4
the 0 0 3 5 4 2

Table 5.9: Example matrix for “The horse raced past the barn fell” and a 5 width
window

5.4.2 Cooccurrence vector generation

From the word cooccurrence matrix we are in position to represent each vocabulary
word with a high dimensional cooccurrence vector. We construct each word vector by
concatenating its row/column pair, so that given an n x n cooccurrence matrix, a 2n
cooccurrence vector is available. This 2n vector can be conceptualized as representing
a word in a 2n high dimensional space.

We can use these vectors to explore the existing relationships among words by applying
distance metrics within the 2n dimensional space. Words that are together in this space
are semantically similar and words that are far apart are semantically distant. We have
decided to use cosine similarity as distance metric, since it is not sensitive to vector
magnitude. It is a nice property, since movie review comment length is not normalized.
It just measures the cosine of the angle between the two vectors, i.e., direction rather
than magnitude.

This is the step presenting an enormous computational cost, from both time and space
points of view. Recall that we have to calculate the distance between all the possible
combinations of words in the vocabulary. Due to its high temporal cost it was not
feasible to perform the calculation in a sequential way. We decided to split it in “little”
subtasks (it is possible since each task is independent), and to execute each one of the
small subtasks in parallel, by using pomar (see 4.3). As a result we have obtained a
matrix D of distances with n x n dimensions.

5.4.3 Building our meaning cluster

At this point we have a matrix that contains information about the distances among
all the words comprising the vocabulary. As we have used cooccurrence information
in order to calculate these distances, we are in position to applicate the distributional
hypothesis. Words at a low distance are expected to have similar semantic meaning.
From the distance matrix, we have applied a simple clustering algorithm in order to
assign words having a similar semantic meaning to the same group, called cluster. We
have called meaning cluster to each one of the obtained groups.
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Chapter 5. Experimentation and results

We have used a simple linkage clustering algorithm. The algorithm is composed of the
following steps:

1. Iterate over all the words in the vocabulary. In the beginning the number of
clusters is equal to 0.

2. For each word w, look for the word t having the higher similarity with respect to
w (lowest distance).

3. Let s be the measured similarity between w and t. If s is higher or equal than a
given threshold, then apply one of the following cases:

• If both words are not assigned to a cluster, create a new cluster for them.
Increase the cluster counter in one unit.

• If both words have a cluster assigned, then mix both clusters (set union).
Decrease the cluster counter in one unit.

• Else, assign the word without cluster to the other word’s cluster.

If s is lower than the given threshold, then assign w to the cluster number 0. It
is a special cluster in which all the isolated words are assigned.

Ideally, each one of the clusters represents a meaning. We have now to convert our
cluster structure to a valid Unigrams representation for the classification algorithm. We
want each feature to represent meaning information instead of word/term information.
Thus, for each cluster we have aggregated the feature information corresponding to the
words comprising the cluster. For the presence/absence representation two different
aggregation functions have been evaluated. On one hand, as in this case the information
is binary, we have utilized a maximum function over all the words in the cluster. That
is to say the feature representing the cluster takes a value of 1 when some word in the
cluster appears in the document, and 0 otherwise. On the other hand we propose using
a sum function, that outputs the number of cluster words appearing in the document.
As the cluster length is not constant, we have normalized the sum function by dividing
its result by the cluster size (number of words comprising it).

As regards the experiments in this section, we have created three cooccurrence matrices
with respective windows of one, five and ten. For each resulting distance matrix, we
have executed the linkage clustering with a series of thresholds: 0, 0.5 and 0.8. We have
used both Unigrams presence/absence and frequency information. Note that it makes
no sense to use max aggregation function with a frequency based representation. The
obtained results in terms of accuracy and number of utilized features are presented in
Table 5.10. The number of features is equivalent to the number of resulting clusters.

Regardless of the configuration, all the experiments using meaning rather than word
information have yielded to a significantly lower accuracy. The best result is obtained
using a window of 5, frequency information with a normalized sum aggregation and
a clustering threshold of 0.5. This model is able to correctly predict 73.21% of
test examples. Even though it is far from the performance it has been obtained
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Section 5.4. Word cooccurrence: meaning classification

Clustering threshold

0 0.5 0.8

Representation Acc # Features Acc # Features Acc # Features

Presence-1-Max 65,357 400 66,071 376 65,714 179
Presence-5-Max 66,429 289 67,857 263 66,429 152
Presence-10-Max 66,786 205 66,429 199 62,857 120

Presence-1-NormSum 67,857 400 67,857 376 64,643 179
Presence-5-NormSum 68,929 289 66,786 263 70 152
Presence-10-NormSum 65 205 66,071 199 65 120

Frequency-1-NormSum 67,857 400 68,929 376 71,071 179
Frequency-5-NormSum 68,929 289 73,214 263 72,5 152
Frequency-10-NormSum 69,643 205 68,929 199 70 120

Table 5.10: Obtained results in the meaning cluster experiments in function of the
measured accuracy and number of used features. The representation legend is readed
as follows: Unigrams representation-Window-Aggregation function.

in the previous experiments, the model clearly goes beyond the minimum expected
performance of 50%. Thas is to say our meaning representation is a valid input for a
learner to induce a model that solves the sentiment analysis problem.

As regards the parameters, the best results are in most cases obtained with a
window of 5. In general it also seems that better results are obtained when using
0.5 and 0.8 clustering thresholds instead of not using it (0). Contrasting with
baseline conclusions, it seems that frequency information is more adequate than
presence/absence information when using meaning features rather than word/term
features. Intuitively, it seems that a repeating a meaning is more relevant that simply
repeating a word.

In order to show the effectiveness of our approach, regarding word meaning similarity
within clusters, we are presenting a series of representative cluster examples in Table
5.11. Example number 1 presents words that are nouns and that represent places or
locations. Example number 2 is basically comprised of month related words. A series
of adjectives that are typically used to express strong emotions are present in example
number 3. The remaining examples are pretty self explanatory.

Lets take a look at example number 3. Even though all words belonging to the cluster
are adjectives typically used to express strong sentiments, some of them are typically
positive and others are negative. Our approach does not take into account the class
when performing the clustering task. Thus, within a meaning, it is possible to have
words representing opposite sentiments. This could be an explanatory reason for our
proposed and novel approach not performing as good as other representations.
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Chapter 5. Experimentation and results

Example number Cluster words

1
accident apartment bank bar bathroom car cell competition

crash mental moment place point restaurant room scene
sequence sign store town vehicle weekend

2
april copyright december january july march october ratio

september tristar

3
beautiful bland chilling comical gorgeous magical nazi pathetic

rich sinister superb talented terrific tragic

4 boy girl

5 boyfriend husband

6 difficult easy hard impossible

7 directed photographed produced written

8 could may might must should shouldn’t would wouldn’t

Table 5.11: Representative cluster examples with a window of 10 and a threshold of 0.8
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