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Abstract—The job-shop scheduling problem with operators is
an extension of the classical job-shop scheduling problem where
each operation has to be assisted by one operator from a limited
set of them. We confront this problem with the objective of
obtaining robust schedules and minimizing the makespan. In
this way the problem becomes more difficult but more interesting
from a practical point of view. We propose to solve the problem in
three steps. In the first one, the JSP relaxation (without operators)
is modeled and solved using a CSOP solver with the objective
of minimizing the makespan. Then, the solution is modified
to include operators, in this step robustness is introduced by
means of a set of buffers in the operators sequences. Finally,
these buffers are uniformly distributed among the operations
that are not involved in a critical path. We have conducted an
experimental study showing that the proposed method reaches a
good trade-off between robustness and optimality.

I. I NTRODUCTION

The job-shop scheduling problem (JSP) with operators has
been recently proposed by Agnetis et al. [1] this problem
is denotedJSO(n, p) where n is the number of jobs and
p denotes the number of operators. It is motivated by man-
ufacturing processes in which part of the work is done by
human operators sharing the same set of tools. The problem
is formalized as a classical job-shop problem in which the
processing of a task on a given machine requires the assistance
of one ofp available operators.

In [1] the authors made a thorough study of this problem
and established the minimalNP -hard cases. Also, a number
of exact and approximate algorithms to cope with this problem
were proposed and evaluated on a set of instances generated
from that minimal relevant cases. The results of the experi-
mental study reported in [1] make it clear that instances of the
JSO(n, p) with 3 jobs,3 machines,2 operators and a number
of 30 tasks per job may be hard to solve to optimality.

In [13] the authors propose an exact best-first search algo-
rithm and experiment with new instances considering more
than 3 jobs and2 operators. Also, a genetic algorithm is
proposed in [8] which reaches near optimal solutions for large
instances. TheJSO(n, p) with total flow time minimization
is considered in [12] where it is solved by means of an exact
best first search algorithm and in [7] by means of an depth-

first search algorithm. In both cases, some problem dependent
heuristics and powerful pruning rules were used.

All the developed techniques are focused on obtaining
optimized solutions according to makespan and total flow
time. In this paper, we extend the objective for searching
robust solutions. It is well-known that real life scheduling
problems are dynamic and incidences may occur so that an
optimal solution remain unfeasible after the incidence. The
main incidence that can occur in aJSO(n, p) is that a task
must be delayed due to problems with the associated machine
or assigned operator. In this way, our main goal is to find
robust and optimized solutions to these problems.

II. PROBLEM DESCRIPTION

Formally the job-shop scheduling problem with operators
can be defined as follows. We are given a set ofn jobs
{J1, . . . , Jn}, a set ofm resources or machines{R1, . . . , Rm}
and a set ofp operators{O1, . . . , Op}. Each jobJi consists
of a sequence ofvi tasks(θi1, . . . , θivi

). Each taskθil has a
single resource requirementRθil , an integer durationpθil and
a start timestθil to be determined. A feasible schedule is a
complete assignment of starting times and operators to tasks
that satisfies the following constraints: (i) the tasks of each
job are sequentially scheduled, (ii) each machine can process
at most one task at any time, (iii) no preemption is allowed
and (iv) each task is assisted by one operator and one operator
cannot assist more than one task at a time. The objective is
finding a feasible schedule that minimizes the completion time
of all the tasks, i.e. the makespan. The significant cases of this
problem are those withp < min(n,m), otherwise the problem
is a standard job-shop problem denoted asJ ||Cmax according
to classification scheme proposed in [4].

We use the following disjunctive model for theJSO(n, p).
A problem instance is represented by a directed graphG =
(V,A∪E∪I∪O). Each node in the setV represents either an
actual task, or any of the fictitious tasks introduced with the
purpose of giving the graph a particular structure: starting and
finishing tasks for each operatori, denotedOstart

i andOend
i

respectively, and the the dummy tasksstart andend.



The arcs inA are calledconjunctive arcsand represent
precedence constraints among tasks of the same job. The
arcs inE are calleddisjunctive arcsand represent capacity
constraints.E is partitioned into subsetsEi with E =
∪{i=1,...,M}Ei. Ei includes an arc(v, w) for each pair of tasks
requiring the resourceRi. The setO of operator arcsincludes
three types of arcs: one arc(u, v) for each pair of tasks of the
problem, and arcs(Ostart

i , u) and(u,Oend
i ) for each operator

node and task. The setI includes arcs connecting nodestart
to each nodeOstart

i and arcs connecting each nodeOend
i to

nodeend. The arcs are weighted with the processing time of
the task at the source node.

From this representation, building a solution can be viewed
as a process of fixing disjunctive and operator arcs. A dis-
junctive arc between tasksu and v gets fixed when one of
(u, v) or (v, u) is selected and consequently the other one is
discarded. An operator arc betweenu and v is fixed when
(u, v), (v, u) or none of them is selected, and fixing the arc
(Ostart

i , u) means discarding(Ostart
i , v) for any taskv other

thanu. Analogously for(u,Oend
i ).

Therefore, a feasible scheduleS is represented by an acyclic
subgraph ofG, of the formGS = (V,A∪H ∪ I ∪Q), where
H expresses the processing order of tasks on the machines
and Q expresses the sequences of tasks that are assisted by
each operator. The makespan is the cost of acritical path in
GS . A critical path is a longest cost path from nodestart to
nodeend.

Figure 1 shows a solution graph for an instance with 3 jobs,
3 machines and 2 operators. Discontinuous arrows represent
operator arcs. So, the sequences of tasks assisted by operators
O1 andO2 are (θ21, θ11, θ32, θ12, θ13) and (θ31, θ22, θ23, θ33)
respectively. In order to simplify the picture, only the operator
arc is drawn when there are two arcs between the same pair of
nodes. Continuous arrows represent conjunctive arcs and doted
arrows represent disjunctive arcs; in these cases only arcsnot
overlapping with operator arcs are drawn. In this example, the
critical path is given by the sequence(θ21, θ11, θ32, θ12, θ33),
so the makespan is 14.

III. ROBUSTNESS

Robustness is a common feature in real life problems.
Biological life, functional systems, physical objects, etc. [14],
persist, i.e. they remain running and maintain their main
features despite continuous perturbations, changes, incidences
or aggressions. Thus, robustness is a concept related to the
persistenceof the system, of its structure, of its functionality,
etc., against external interferences:A system is robust, if it
persists.

A system designed to perform in an expected environment
is ”robust” if it is able to maintain its functionality under a
set of incidences. In our context a solution of aJSO(n, p) is
robust if no rescheduling is needed after small changes in the
problem.

Intuitively, the notion of robustness is easy to define, but
its formalization depends on the system, on its expected func-
tionality and on the particular set of incidences to face up [9].

No general formal definition of robustness has been proposed,
except few exceptions or particular cases. Particularly, Kitano
[5] mathematically defines the robustness (R) of a system
(SY S) with regard to its expected functionality (F ) against
a set of perturbations (Z), as (in a simplified way):

RSY S
F,Z =

∫
Z

p(z) ∗ F (z)dz (1)

The application of robustness definitions is highly problem-
dependent. Let’s apply (1) toJSO(n, p):

• SY S is a solutionS of the JSO(n, p), which we want
to assess its robustness. Robustness is a concept related
to JSO(n, p) solutions, not toJSO(n, p) itself.

• Z is the discrete set of unexpected incidences that are
directly related to the start time or the duration of tasks.

• F is the expected functionality of the system. In
JSO(n, p), the expected functionality of a solution is
its feasibility after the disruption. Here a solution is
composed by the start times and duration of all tasks,
plus the buffer times allocated between tasks.

• p(z) = 1

|z| , ∀z ∈ Z. This is the probability for incidence
z ∈ Z. All tasks have the same probability due to no
information is given about incidences.

Therefore, the expression (1) becomes:

RS
F,Z =

∑
Z

p(z) ∗ F (z) (2)

Where functionF is defined, in the case of aJSO(n, p)
as:

• F (z) = 1 iff only the affected task is modified byz. Thus
the buffer assigned to this task can absorb the incidence.

• F (z) = 0, iff more tasks are modified byz. This means
that the buffer assigned to this task cannot absorb the
incidence and it is propagated to the rest of the schedule.

A robust solution is a solution that maintains its feasibility
over the whole set of expected incidences. Thus, robustness
in JSO(n, p) implies that:

• If the duration of a task is greater than expected, then
only its final time will be affected and no other tasks
will be delayed.

• If the start time of a task is delayed, then its final time
is also delayed but no other tasks will be affected.

Here, we focus our attention on searching for a robust
solution with a minimal makespan. To do this, we will assign
buffer times to tasks. This is a usual way for introducing
robustness in scheduling problems. A buffer is an extra time
that is given to a task to absorb small incidences. Due to
the fact that the duration of a task is directly dependent of
machine and operator involved in this task, the buffer assigned
to this task can be used to absorb small incidences in these
two components. However, there exists a trade-off between
optimality and robustness so buffer times cannot be assigned
to all tasks.

Lemma 1. Let a robust schedule with a given makespan. A
buffer can be assigned to a task iff this task is not involved in
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Fig. 1. A feasible schedule to a problem with 3 jobs, 3 machinesand 2 operators.

any critical path.
Proof by contradiction
→ If a buffer is assigned to a task and it is involved in

a critical path, then this buffer could be removed to reduce
makespan. Contradiction: the initial schedule has minimum
makespan.
← It is straightforward. If a task is not involved in a critical

path and a buffer cannot be assigned, then this task takes part
of another critical path. Contradiction: this task is not involved
in any critical path.

Thus, we consider that tasks involved in a critical path will
not be assigned buffers to avoid increasing the makespan.
Thus our main goal is to assign buffers to all tasks that are
not involved in critical paths, so that we could achieve the
maximum robustness with a given optimality (makespan).

IV. M ODELING AND SOLVING A JSO(n, p) IN THREE

STEPS: CSOP+PP

The more natural way to solve the Jop-Shop Scheduling
Problem with Operators involves all variables and constraints
related to jobs, tasks and operators [1][13]. However, the
solution obtained is an optimal solution that minimizes the
makespan but it does not guarantee a certain level of ro-
bustness. Generally, this solution is not able to absorb any
incidence and a delay in a task is propagated along the rest of
the schedule.

Several reactive/proactive techniques have been developed
in the literature to manage incidences in scheduling problems
[3]. Thus, computing a new solution from scratch after each
problem change is possible (reactive technique), but it has
two important drawbacks: inefficiency and instability of the
successive solutions [15]. Whilst reactive methods merely deal
with the consequences of an unexpected change, taking a more
proactive approach may guarantee a certain level of robustness.
We are interested in this proactive approach so that our goal
is searching for a equitable trade-off between robustness and
optimality of a solution.

Robustness (as in section III) in job-shop scheduling can
be obtained through allocating buffer times between tasks
in order to absorb small disruptions (task delays, etc.) that
can occur stochastically along the schedule. In an optimized
solution of aJSO(n, p), some natural buffers appear to satisfy
the involved constraints (non-overlapping constraints).These
buffers give the schedule some robustness degree. However,

if more buffers must be included to make more robust the
final solution, the involved tasks must be moved and the effect
must be propagated to the rest of the schedule. To this end,
instead of carrying out this last procedure as a post-process
(PP) step, we propose to integrate this procedure with the
operator allocation. Thus, we firstly solve the classical JSP and
then we apply the buffer and operator allocation procedures
as a post-process step.

To add robustness toJSO(n, p) solutions, we divide the
problem into two different phases: The first one is related to
solve the classical Jop-Shop Scheduling Problem with some
of the well-known techniques existing in the literature; and
the second phase which is focused on the obtained solution in
order to satisfy the operator constraints and to generate buffer
times. Thus the final solution is an optimized solution to the
JSO(n, p) and it guarantees a certain level of robustness.

A. First Step: Modeling and Solving a Constraint Satisfaction
and Optimization Problem

In this approach, we proposed to model the JSP in the first
phase as a Constraint Satisfaction and Optimization Problem
(CSOP) [2]. Due to the post-process performed, the optimal
solution is not necessary since this solution will be changed.
But, it is still necessary an optimized solution to try to
minimize the makespan. Therefore, a near-optimal solutionis
looked for by the CSOP model. CSOP is an any-time solver
that provides a set of solutions. Each new solution always
improves the previous one, until it is the optimal or a time out
is reached.

The CSOP model for the JSP is characterized by the
following elements:

• A set of variablesx1, ..., xn associated with the start time
of tasks. These variables take values in finite domains
D1, ..., Dn that may be constrained by unary constraints
over each variable. In these problems, time is usually
assumed discrete, with a problem-dependent granularity.

• A set of constraintsc1, ..., cm among variables defined
on the Cartesian productDi × ... × Dj and restrict the
variable domains.

• The objective function is to minimize the makespan.
Two main constraints appear in this kind of job-shop

problems:
1) Precedence constraints: the tasksθij of each jobJi must

be scheduled according to precedence constraints, i.e.,



there exists a partial ordering among the tasks of each
job and may be represented by a precedence graph or
tree-like structure [11].

2) Capacity constraints: resources cannot be used simul-
taneously by more than one task. Thus, two different
tasksθij andθik cannot overlap unless they use different
resources.

Capacity constraints involve only on type of resources:
machines. In real life scheduling problems, the environment
is dynamic and disruptions may occur during task execution.
In these problems two types of disruptions can be generated:
machine disruptions (breakdown, delays due to previously
delayed task, etc.), and operator disruptions (late arrival,
delays also due to previously delayed task, etc.). However,
the modeled CSOP will only manage machines and the next
step will also manage operators.

Algorithm 1 : Calculate initial values to reduce domain
Data: J : set of jobs;
Result: Relative starts to each task and lineal maxtime
maxTime := 0;
cumulativeij := 0, ∀θij ∈ θ;
foreach i ∈ J do

cumulativeJob← {0};
foreach θij ∈ θ do

maxTime := maxTime+ pt;
cumulativeij ← cumulativeJob;
cumulativeJob← cumulativeJob ∪ {pθij };

return cumulative,maxT ime;

Algorithm 2 : Calculate possible values
Data: All tasks
Result: New domain of allθ
pV aluesjt ← ∅, ∀θij ∈ θ;
foreach i ∈ J do

foreach θij ∈ θ do
tasksBefore← tasksCanBeBefore(θij)
pV aluesij ← combineDurTasks(tasksBefore)

return pV alues

To modeling the job-shop scheduling problem as a CSOP
we have used the syntax XCSP [10]. The Extensible Markup
Language presents a simple and flexible text format and it
gives the facility to use some functions and structures defined
in Abscon [6]. In the modeling phase, we have applied two
different techniques to reduce the variable domains.

The first technique developed (Algorithm 1) calculates
initials values of each tasks and reduces the domain size
of the involved variables. Thus, a solution can be found
more efficiently. This algorithm calculates the maximum time
interval in which each task can be scheduled. On the one hand,
given a θij task, the lowest value of itsstθij is the sum of
the processing times of the tasks that have to be scheduled
before θij from the same jobi (cumulativeij), subject to
the precedence constraints. On the other hand, the highest
value of all the domains forstθij is the sum of all processing
times (maxTime), since this value represents the end of the

schedule where the tasks are scheduled linearly. Due to the fact
that at least the following tasks from the same job must be
scheduled beforemaxTime, the highest value for the domain
of each taskθij can be reduced by subtracting the duration of
all the tasks from the same jobi that have to be scheduled after
θij (including θij) to maxTime. The valuescumulativeij
andmaxTime obtained in Algorithm 1 are used to filter the
domains by removing values that cannot take part of feasible
solutions.

Algorithm 3 : Select-value-forward-checking with deletion
block

while D′

i 6= ∅ do
select first elementa ∈ D′

i, and removea from Di

forall k, i < k ≤ |D′| do
if constraint(i,k) = MachineOrJobConstraintthen

if constraint(i,k)= JobConstraintthen
remove values if(valk < a+ duri) from D′

k
else

remove values
if(valk + durk ≥ a ∧ valk < a+ duri) from D′

k

else
forall b ∈ D′

k
do

if not CONSISTENT (ai−1,xi := a, xk := b) then
removeb from D′

k

if D′

k
= ∅ then

reset eachD′

k
, i < k ≤ n to value beforea was

selected
else

return a

return null

In the second technique to reduce the variable domains (Al-
gorithm 2), the values that cannot be possible are calculated.
stθij only should get values that represent the sum of the
tasks that can be executed beforeθij . For example, ifθij is
the first task of its job, the possible values are 0 and a set of
the combination of the processing times of all the tasksT that
can be scheduled beforeθij . In this case, these tasksT are all
the tasks of the other jobs. For the following task (θij+1), its
possible valuesstθij+1

are the same asθij plus the processing
time of θij . In the Algorithm 2, tasksCanBeBeforefunction
returns the tasks that can be executed before a given task
θij ; and,combineDurTaskfunction calculates all the possible
values forstθij following the precedence constraints.

Once the CSOP has been modeled with the corresponding
reduced domains, it is solved by using a modified algorithm
of Forward Checking (FC) (Algorithm 3). Instead of apply-
ing Maintaining Arc-Consistency, this algorithm performsa
filtering procedure that removes the domains in blocks, i.e., it
removes several values at a time. This is due to the fact that if
a taskθij must be scheduled after taskθkl, thestθij can take
neither the value of thestθkl

nor all successive values until
the ending time ofθkl. Thus, all these values can be removed
as a block of values. The values to delete depend on the type
of constraint. If this is a precedence constraint, all the values
beforeθkl plus its processing time will be deleted. Otherwise,
if it is a capacity constraint the values betweenstθkl

(included)



Algorithm 4 : Post-process
Data: S: Solution without operators;m: machines;p: operators;
Result: A solution considering operators

Order the machines by their number of tasks;
machinesFewerTasks← set ofm− p machines with fewer tasks;
tasksToPut← tasks of the machinesmachinesFewerTasks;
remainingMachines← m−machinesFewerTasks;
Order tasksToPut by Starting Times;

actualState← S;
foreach θi ∈ tasksToPut do

savedState← actualState;
states← {};
for r ∈ remainingMachines do

foundGap := IsThereAGap(r);
if not foundGap then

insertθi before the next task according to its Job;
else

insertθi in this gap;

Delay the needed tasks according to the restrictions among
them;

states← states ∪ {actualState};
actualState← savedState;

actualState← chooseBestState(states);

return actualState;

and its processing time will be deleted.

B. Second Step: A Post-process Procedure

Once the CSOP has obtained an optimized solution to
the job-shop scheduling problem, this solution is used to
allocate the required number of operators in order to solve
the JSO(n, p). The problem consists in finding a feasible
schedule by minimizing makespan and maximizing number of
buffers (Nbuf ) to guarantee a certain level of robustness. Note
that a feasible schedule forJSO(n, p) is also feasible for the
standard job-shop problem and satisfies the restriction that at
most p machines work simultaneously. Therefore, significant
cases are those in whichp < min(n,m), otherwise our
problem becomes a standard job-shop problem [1].

The aim of the Algorithm 4 is to convert a solution
without operators in one where the operator constraints
are considered. The idea is to set a number of machines
(remainingMachines) equal to the number of operators
p and try to reschedule the tasks of the other machines
(machinesFewerTasks) within the remainingMachines.
The tasks inmachinesFewerTasks must be sorted by their
st (tasksToPut). Each θij in tasksToPut is allocated in
the first available gap between two tasks of each machine in
remainingMachines. For each machine, the search starts
from the previous state (savedState). There are cases where
θij must be allocated without a gap between two tasks due to
the precedence constraints. For instance, if we found aθik of
the same job asθij and θik must be scheduled afterθij ac-
cording to the precedence constraints (k > j), θij is allocated
just beforeθik, being delayedθik. When a task is delayed,
other tasks may be also delayed. The computational cost of
the algorithm isO(tasksToPut ∗ |remainingMachines|).

The best state to allocateθij is the state that maximizes the

function Nbuf

Cmax
. This function could be adjusted depending on

the requirements of the user, e.g. either only minimizing the
makespan or maximizing the number of buffers generated.

C. Third Step: Distributing Buffer Algorithm

The previous step gives us a solution that satisfies all
constraints of theJSO(n, p). This solution is an optimized
solutions in terms of minimizing makespan and maximizing
the number of buffers. However, the main goal for a robust
solution, in a scheduling problem where no information about
incidences is given, is to distribute the amount of available
buffer among as many tasks as possible. It is well-known that
all tasks involved in a critical path have not any associate
buffer, because it will affect to makespan. The rest of tasks
can be reassigned to generate a buffer after their ending time.
The main goal of this algorithm is to distribute the amount of
buffer without affecting the makespan. Thus, we can maximize
the number of buffers to the resultant schedule of second step.
In this way, the obtained solution is considered more robust
due to more tasks have buffer times to absorb small incidences.
Figure 2 shows the solution obtained in the second step and
all critical paths. It can be observed that 10 buffers were
generated, meanwhile the distributing buffer algorithm was
able to find 14 buffers. We remark that our goal is to obtain
the maximum number of buffers since no information is given
about incidences so that all tasks have the same probability
for delaying.

This third step is presented in Algorithm 5. This algorithm
looks for the tasksθij allocated just before each buffer
generated in Algorithm 4, and tries to set them back. A task
θij is only set back if it generates a new buffer. In case a
new buffernb is generated, this process is repeated with the
task just beforenb. The computational cost of the algorithm is
O(tasks in non-critical path), because tasks in the non-critical
path are the only ones that can be moved to distribute the
buffers.

Algorithm 5 : Distributing buffers
Data: Sch: Schedule;buffers;
Result: New Schedule

foreach b ∈ buffers do
sizeB :=size of the bufferb;
repeat

continue := false;
θij := task allocated beforeb;
Set backθij ;
if this movement generates another buffernb then

continue := true;
Update scheduleSch;

until continue ;

return Sch;

D. An example

Figure 2 shows the different schedules obtained by the CP
Optimizer solver and our technique for a given instances of
theJSO(n, p). This instance represents a scheduling problem
with 3 jobs, each with 10 tasks, and 2 operators. Each



a)

b)

c) (CSOP+PP steps 1 and 2)

(CSOP+PP steps 1, 2 and 3)

(CP Optimizer)

Fig. 2. A scheduling problem: an optimal and a robust solution.

rectangle represents a task whose length corresponds to its
processing time. Inside the rectangle, the job, task, machine
and operator are showed. The dotted lines showed in these
schedules represent the critical path. The first schedule (Figure
2(a)) represents the distribution of tasks of the optimal solution
obtained by CP Optimizer (only minimizing the makespan)
according to the operators. It can be observed that the obtained
makespan was 57 but only 1 buffer was generated due to the
fact that only taskθ1,10 was not involved in any critical path
(green and red lines in Figure 2(a)). Taking into consideration
the robustness within the objective function, the Figure 2(b)
represents the solution obtained by applying step1 + step2 of
our algorithm, where all tasks are distributed by operators.
Finally, Figure 2(c) represents the schedule obtained by the
third step of our algorithm. Although the makespan was
increased up to 67, it can be seen that the buffers (black boxes)
are distributed between all tasks that do not take part of any
critical path being increased the robustness of this schedule.
These buffers can be used to absorb incidences or delays from
the previous task. For instance, if the resource assigned tothe
tasks θ23 suffers a small failure, the solution could not be
affected.

V. EVALUATION

The purpose of the experimental study is to assess our
proposal CSOP+PP and to compare it with the IBM ILOG
CPLEX CP Optimizer tool (CP). In CP, thep operators were
modeled as a nonrenewable cumulative resource of capacity
p. Also, the CP was set to exploit constraint propagation on
no overlap (NoOverlap) and cumulative function (CumulFunc-
tion) constraints to extended level. The search strategy used
was Depth First Search with restarts (default configuration).

We have experimented across the benchmarks proposed in
[1], where all instances haven = 3 and p = 2 and are
characterized by the number of machines (m), the maximum
number of tasks per job (vmax) and the range of processing
times (pi). A set of instances was generated combining three
values of each parameter:m = 3, 5, 7; vmax = 5, 7, 10 and
pi = [1, 10], [1, 50], [1, 100].

In Figure 3, the solutions showed are the schedules for
an instance< 3 5 50 > obtained by the CSOP+PP after
both the step 2 (CSOP Step2) and step 3 (CSOP Step3).
The smoothed curve of CSOP Step2 and CSOP Step3 are
represented by dotted lines; by the CP Optimizer without
taking into account the operators and applying steps 2 (CP
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Step2) and 3 (CP Step3); and, by the CP Optimizer taking into
consideration operators (CP operators). Since two objective
functions are considered in this problem, the solutions that are
not dominated by any other solution are marked with a black
point (Non-Dom Sols). It can be observed that keeping the
same makespan (Cmax), solutions given by the step 3 always
outperform the ones obtained by the step 2 according toNbuf .
It is important to note that in order to achieve the minimal
Cmax, there have to be fewNbuf ; and vice versa, to obtain
more Nbuf , it is needed to increase theCmax. Among the
non-dominate solutions obtained, there is no optimal schedule
with the lowestCmax and the maximumNbuf , therefore, the
users should choose among them according to their necessities.
For instance, let the solutions space be subdivided in four
squares according to whether they minimize or maximize
each objective. If the user just needs maximizing theNbuf

(achieving better robustness), the solutions needed are from
the right-down square.

In the next experiment the first solution given by the CSOP
has been chosen to apply the post-procedure mentioned above
because it is the solution that gives the opportunity to get
moreNbuf . This first solution is compared against the optimal
solution. In all cases, 10 instances were considered from
each combination and the average results are shown in the
next tables. The sets of instances are identified by the tuple:
< m vmax pi >. The incidences (Z) to assess the robustness
were modeled as a delay in a random taskθij from the
schedule. For each instance, a set of 100 incidences were
generated with a delay (d) that follows a uniform distribution
between 1 and a 10% ofpi.

Tables I(a), I(b) and I(c) show the performance of both
techniques to absorb incidences. For each technique, we report
the Cmax, the number of buffers generated (Nbuf ) in step 3,

and the robustness (R) for instances for eachm, vmax andpi.

Following Lemma 1, the number of buffers showed in these
tables are a lower bound of the number of tasks that are
not involved in any critical path. For example, in instances
< 3 10 10 > the optimal solution had an average of 1.2
buffers in the 10 instances evaluated, meanwhile our technique
obtained an average of 10.90 buffers in the same instances
evaluated. This indicates that in average 10.90 out of 30 tasks
were not involved in any critical path and a disruption in one
or some of them could be absorbed and the rest of the tasks
would not be involved in the disruption.

In all instances the average number of buffers obtained by
CSOP+PP was bigger than the ones obtained by CP Optimizer.
According to the robustness measure and the number of buffers
generated, CSOP+PP procedure always outperformed the solu-
tions given by the CP Optimizer, although the makespan turned
out to be increased. For instance, in Table I(a) the instances
< 3 10 10 > increased up to32.6% the number of incidences
absorbed.

It can be seen that for CSOP+PP the greaterpi, the greater
robustness values since the buffers generated could have bigger
sizes, e.g., the instances withm = 5 andvmax = 10 increased
their robustness degree obtaining an average of25.5% for pi =
10; 31.7% for pi = 50; and35% for pi = 100.

Table II presents how large delays in the incidences affect
the schedules. Asd increases, the average of incidences
absorbed are reduced, reaching the case that the CP Optimizer
obtained an average robustness about0% for most instances
with pi = 100. Even, CP Optimizer was unable to absorb
any incidence in instances of< 7 10 100 >, whereas the
CSOP+PP obtained an average of6.9% the number of inci-
dences absorbed for large delays.



TABLE I
AVG. MAKESPAN AND ROBUSTNESS

(a) Maximum delay 1 time units

Instance
CP Optimizer CSOP+PP

Cmax Nbuf R (%) Cmax Nbuf R (%)
3 5 10 42.70 2.00 12.50 55.50 4.40 29.20

3 7 10 57.90 1.10 6.80 71.20 7.80 38.60

3 10 10 65.20 1.20 4.60 87.00 10.90 32.60

5 5 10 39.40 0.20 1.20 51.20 4.90 32.90

5 7 10 53.90 0.70 3.10 71.50 7.50 35.90

5 10 10 60.60 0.60 1.70 78.60 8.10 25.50

7 5 10 31.00 0.90 5.40 42.60 5.20 31.10

7 7 10 44.70 0.50 2.30 61.44 5.60 29.40

7 10 10 70.40 0.50 1.50 99.00 8.20 26.90

(b) Maximum delay 5 time units

Instance
CP Optimizer CSOP+PP

Cmax Nbuf R (%) Cmax Nbuf R (%)
3 5 50 201.10 2.20 12.90 232.50 6.60 39.80

3 7 50 267.20 2.20 7.20 317.30 8.80 34.00

3 10 50 353.30 3.50 8.60 450.00 12.60 35.30

5 5 50 184.30 1.20 2.70 252.20 5.70 27.70

5 7 50 253.50 1.10 1.60 340.20 8.30 31.80

5 10 50 363.00 0.90 0.30 467.10 11.60 31.70

7 5 50 177.10 1.10 2.50 237.80 5.80 27.90

7 7 50 252.00 0.40 0.40 380.20 6.20 29.10

7 10 50 363.90 1.00 1.00 512.60 10.40 28.50

(c) Maximum delay 10 time units

Instance
CP Optimizer CSOP+PP

Cmax Nbuf R (%) Cmax Nbuf R (%)
3 5 100 389.00 2.20 12.70 459.00 7.40 41.00

3 7 100 561.40 4.40 16.70 680.90 9.70 38.50

3 10 100 768.70 2.90 4.40 948.90 12.70 34.60

5 5 100 349.00 1.10 2.70 438.90 6.40 34.20

5 7 100 495.00 0.80 0.40 643.90 8.30 33.90

5 10 100 698.20 0.70 1.00 932.10 12.40 35.00

7 5 100 391.40 1.00 2.30 500.80 6.30 37.10

7 7 100 516.00 0.40 2.00 695.80 6.70 27.80

7 10 100 744.80 0.70 0.50 1043.20 10.20 30.00

TABLE II
AVG. ROBUSTNESS WITH LARGE INCIDENCES(pi = [1, 100])

Instance
CP Optimizer CSOP+PP

d d d d d d

[1,20] [1,50] [1,100] [1,20] [1,50] [1,100]
3 5 100 9.90 6.10 3.10 35.20 20.80 11.90

3 7 100 8.90 6.40 3.30 34.90 22.40 12.00

3 10 100 3.80 1.90 1.30 29.10 17.10 9.50

5 5 100 1.90 1.40 0.50 26.90 12.00 8.30

5 7 100 0.20 0.00 0.00 28.60 14.80 8.50

5 10 100 1.00 0.50 0.30 26.70 16.80 10.80

7 5 100 1.90 0.50 0.40 25.00 11.30 6.70

7 7 100 0.80 0.10 0.10 20.10 10.60 5.60

7 10 100 0.00 0.00 0.00 23.50 13.80 6.90

VI. CONCLUSIONS

In this paper, unlike other optimization methods that solve
the JSO(n, p) by pursuing the objective function or both
the objective function and the robustness measure, we have
presented a three step technique to solve this problem with
the aim of obtaining optimized and robust solutions. Robust
solutions imply that some tasks can be delayed due to an

incident in a machine or operator and the solutions remain
feasible. In the first step of our approach, an optimized
solution has been obtained by optimizing makespan for the
JSP. In the second step, this solution is modified to take into
account operators constraints by minimizing makespan and
maximizing the number of buffers. And finally, in the third
step, setting the previous makespan, the robustness is maxi-
mized by redistributing buffers. In this way, given solutions
for the JSP, this procedure provides schedules taking into
account operators in a short time. These solutions are obtained
according to client needs maintaining their desired trade-off
between optimality and robustness.
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