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Abstract—The job-shop scheduling problem with operators is first search algorithm. In both cases, some problem depénden
an extension of the classical job-shop scheduling problem where heuristics and powerful pruning rules were used.

each operation has to be assisted by one operator from a limited : L
set of them. We confront this problem with the objective of All the developed techniques are focused on obtaining

obtaining robust schedules and minimizing the makespan. In OPtimized solutions according to makespan and total flow
this way the problem becomes more difficult but more interesting time. In this paper, we extend the objective for searching
from a practical point of view. We propose to solve the problemin - robust solutions. It is well-known that real life schedglin
three Ztelpz. In t(;me fllrst(cj)ne,_the Jsgsrggxatulon (Wlt'?r?lfhope?r? problems are dynamic and incidences may occur so that an
is modeled and solved using a solver with the objective .. - : - o

of minimizing the makespan. Then, the solution is modified opt!mgl §olutlon remain unfeas_|ble after the_ incidencee Th
to include operators, in this step robustness is introduced by Main incidence that can occur in.&5O(n,p) is that a task
means of a set of buffers in the operators sequences. Finally, must be delayed due to problems with the associated machine
these buffers are uniformly distributed among the operations or assigned operator. In this way, our main goal is to find

that are not involved in a critical path We have conducted an robust and optlmlzed Soluuons to these problems
experimental study showing that the proposed method reaches a

good trade-off between robustness and optimality.
Il. PROBLEM DESCRIPTION

|- INTRODUCTION Formally the job-shop scheduling problem with operators

The job-shop scheduling problem (JSP) with operators hean be defined as follows. We are given a setnofobs

been recently proposed by Agnetis et al. [1] this problef/y,..., J,}, a set ofm resources or machinds;,..., R,,}
is denoted.JSO(n,p) wheren is the number of jobs and and a set ofp operators{O;,...,0,}. Each jobJ; consists
p denotes the number of operators. It is motivated by maof a sequence o, tasks(6;1,...,0;,,). Each taskd; has a

ufacturing processes in which part of the work is done hsingle resource requiremeRY,,, an integer duratiops,, and
human operators sharing the same set of tools. The problanstart timesty,, to be determined. A feasible schedule is a
is formalized as a classical job-shop problem in which theomplete assignment of starting times and operators te task
processing of a task on a given machine requires the assistaihat satisfies the following constraints: (i) the tasks ofhea
of one ofp available operators. job are sequentially scheduled, (ii) each machine can psoce
In [1] the authors made a thorough study of this problemt most one task at any time, (iii) no preemption is allowed
and established the minim& P-hard cases. Also, a numberand (iv) each task is assisted by one operator and one operato
of exact and approximate algorithms to cope with this pnoblecannot assist more than one task at a time. The objective is
were proposed and evaluated on a set of instances generféitating a feasible schedule that minimizes the completioeti
from that minimal relevant cases. The results of the expedif all the tasks, i.e. the makespan. The significant casdsof t
mental study reported in [1] make it clear that instancesef tproblem are those with < min(n, m), otherwise the problem
JSO(n, p) with 3 jobs,3 machines? operators and a numberis a standard job-shop problem denoted/§€,,,,.. according
of 30 tasks per job may be hard to solve to optimality. to classification scheme proposed in [4].
In [13] the authors propose an exact best-first search algoWe use the following disjunctive model for thBSO(n, p).
rithm and experiment with new instances considering more problem instance is represented by a directed graph
than 3 jobs and2 operators. Also, a genetic algorithm is(V; AUEUIUQ). Each node in the séf represents either an
proposed in [8] which reaches near optimal solutions faydar actual task, or any of the fictitious tasks introduced wita th
instances. The/SO(n,p) with total flow time minimization purpose of giving the graph a particular structure: stgréind
is considered in [12] where it is solved by means of an exaitishing tasks for each operatér denotedO:**"* and O™
best first search algorithm and in [7] by means of an deptlespectively, and the the dummy tasitart andend



The arcs inA are calledconjunctive arcsand represent No general formal definition of robustness has been proposed
precedence constraints among tasks of the same job. Exeept few exceptions or particular cases. Particularitgri6
arcs in E are calleddisjunctive arcsand represent capacity[5] mathematically defines the robustneds) (of a system
constraints. £ is partitioned into subsetd’; with £ = (SYS) with regard to its expected functionality] against
Ugi=1,..,my 2. By includes an ar¢v, w) for each pair of tasks a set of perturbationsZ), as (in a simplified way):
requiring the resourc®&,. The setD of operator arcsincludes
three types of arcs: one afe, v) for each pair of tasks of the RSYS — / p(2) * F(2)dz (1)
problem, and arcgO;**"*, ) and (u, O¢™?) for each operator z
node and task. The sétincludes arcs connecting nodéart The application of robustness definitions is highly problem
to each nodeDse* and arcs connecting each no@"¢ to dependent. Let's apply (1) tdSO(n, p):
nodeend The arcs are weighted with the processing time of 4 SY S is a solutionS of the JSO(n,p), which we want
the task at the source node. to assess its robustness. Robustness is a concept related

From this representation, building a solution can be viewed to JSO(n, p) solutions, not ta/SO(n, p) itself.
as a process of fixing disjunctive and operator arcs. A dis-, 7 is the discrete set of unexpected incidences that are

junctive arc between tasks and v gets fixed when one of directly related to the start time or the duration of tasks.
(u,v) or (v,u) is selected and consequently the other one is, [ is the expected functionality of the system. In
discarded. An operator arc betweenand v is fixed when JSO(n,p), the expected functionality of a solution is
(u,v), (v,u) or none of them is selected, and fixing the arc  its feasibility after the disruption. Here a solution is
(O3**"*,u) means discardingO;**"*, v) for any taskv other composed by the start times and duration of all tasks,
thanw. Analogously for(u, O¢"?). plus the buffer times allocated between tasks.
Therefore, a feasible scheduies represented by an acyclic « p(z) = %yz € Z. This is the probability for incidence

subgraph ofG, of the formGs = (V,AUH UIUQ), where z € Z. All tasks have the same probability due to no

H expresses the processing order of tasks on the machines information is given about incidences.
and ) expresses the sequences of tasks that are assisted Byherefore, the expression (1) becomes:
each operator. The makespan is the cost ofitical path in
Gs. A critical path is a longest cost path from nostart to R% , = Zp(z) « F(2) 2)
nodeend ’ Z
Figure 1 shows a solution graph for an instance with 3 jobs,
3 machines and 2 operators. Discontinuous arrows represen
oOpe;?]tccj)rOarcs. So, the sequences of tasks assisted byapera . F(z) = 1 iff only the affected task is modified by Thus
1 5 are (021,011,032, 612,013) and (631, 622, 023, 033) . . o
respectively. In order to simplify the picture, only the ogter the buffer ?‘Ss'gned to this task can absorb the incidence.
arc is drawn when there are two arcs between the same pair of F(z) =0, iff more tgsks are m.Od'f'ed by. This means
nodes. Continuous arrows represent conjunctive arcs aed do _tha_t the buffer_ "’!53'9”60' o this task cannot absorb the
arrows represent disjunctive arcs: in these cases onlyrafcs incidence and it is propagated to the rest of the schedule.

overlapping with operator arcs are drawn. In this example, t A robust solution is a solution that maintains its feastili
critical path is given by the sequent@y, 611,052,612, 033), OVer the whole set of expected incidences. Thus, robustness

here functionF" is defined, in the case of 4SO(n, p)

so the makespan is 14. in JSO(n, p) implies that:
« If the duration of a task is greater than expected, then
lll. ROBUSTNESS only its final time will be affected and no other tasks
Robustness is a common feature in real life problems. will be delayed.
Biological life, functional systems, physical objects;.dtL4], o If the start time of a task is delayed, then its final time

persist, i.e. they remain running and maintain their main is also delayed but no other tasks will be affected.
features despite continuous perturbations, changesiences  Here, we focus our attention on searching for a robust
or aggressions. Thus, robustness is a concept related to gbkition with a minimal makespan. To do this, we will assign
persistenceof the system, of its structure, of its functionalitybuffer times to tasks. This is a usual way for introducing
etc., against external interferences:system is robust, if it robustness in scheduling problems. A buffer is an extra time
persists that is given to a task to absorb small incidences. Due to
A system designed to perform in an expected environmethe fact that the duration of a task is directly dependent of
is "robust if it is able to maintain its functionality under a machine and operator involved in this task, the buffer asig
set of incidences. In our context a solution of&0(n,p) is  to this task can be used to absorb small incidences in these
robust if no rescheduling is needed after small changesen tfwo components. However, there exists a trade-off between
problem. optimality and robustness so buffer times cannot be assigne
Intuitively, the notion of robustness is easy to define, bub all tasks.
its formalization depends on the system, on its expected-fun Lemma 1. Let a robust schedule with a given makespan. A
tionality and on the particular set of incidences to face Qip [ buffer can be assigned to a task iff this task is not involved i



Fig. 1. A feasible schedule to a problem with 3 jobs, 3 machares 2 operators.

any critical path. if more buffers must be included to make more robust the
Proof by contradiction final solution, the involved tasks must be moved and the effec
— If a buffer is assigned to a task and it is involved iimust be propagated to the rest of the schedule. To this end,
a critical path, then this buffer could be removed to redudsstead of carrying out this last procedure as a post-psoces
makespan. Contradiction: the initial schedule has minimu(RP) step, we propose to integrate this procedure with the
makespan. operator allocation. Thus, we firstly solve the classic& a8d
+ It is straightforward. If a task is not involved in a criticalthen we apply the buffer and operator allocation procedures
path and a buffer cannot be assigned, then this task takes para post-process step.
of another critical path. Contradiction: this task is notadived To add robustness tdSO(n,p) solutions, we divide the
in any critical path. problem into two different phases: The first one is related to
Thus, we consider that tasks involved in a critical path wiiolve the classical Jop-Shop Scheduling Problem with some
not be assigned buffers to avoid increasing the makespah.the well-known techniques existing in the literaturedan
Thus our main goal is to assign buffers to all tasks that atlee second phase which is focused on the obtained solution in
not involved in critical paths, so that we could achieve therder to satisfy the operator constraints and to generdterbu
maximum robustness with a given optimality (makespan). times. Thus the final solution is an optimized solution to the

JSO(n,p) and it guarantees a certain level of robustness.
V. M ODELING AND SOLVING A JSO(n,p) IN THREE _ . . . . .
STEPS CSOP+PP A. First Step: Modeling and Solving a Constraint Satisfacti

rz];md Optimization Problem

The more natural way to solve the Jop-Shop Scheduling ) . )
Problem with Operators involves all variables and constsai N this approach, we proposed to model the JSP in the first

related to jobs, tasks and operators [1][13]. However, tfhase as a Constraint Satisfaction and Optimization Prmnple

solution obtained is an optimal solution that minimizes th€eSOP) [2]. Due to the post-process performed, the optimal

makespan but it does not guarantee a certain level of RRIUtoN is not necessary since this solution will be change

bustness. Generally, this solution is not able to absorb at: it is still necessary an optimized solution to try to

incidence and a delay in a task is propagated along the resf8fimize the makespan. Therefore, a near-optimal soltion

the schedule. looked for by the CSOP model. CSOP is an any-time solver
Several reactive/proactive techniques have been dewblofadt Provides a set of solutions. Each new solution always

in the literature to manage incidences in scheduling proble MProves the previous one, until itis the optimal or a timé ou

[3]. Thus, computing a new solution from scratch after eadh "éached. _ _

problem change is possible (reactive technique), but it hag! € CSOP model for the JSP is characterized by the

two important drawbacks: inefficiency and instability oeth following elements:

successive solutions [15]. Whilst reactive methods meretd « A set of variables:,, ..., z,, associated with the start time

with the consequences of an unexpected change, taking a more of tasks. These variables take values in finite domains

proactive approach may guarantee a certain level of robsstn D1, -, Dn that may be constrained by unary constraints

We are interested in this proactive approach so that our goal Over each variable. In these problems, time is usually

is searching for a equitable trade-off between robustneds a ~ assumed discrete, with a problem-dependent granularity.

optimality of a solution. o A set of constraints:, ..., ¢,, among variables defined
Robustness (as in section Il) in job-shop scheduling can ©n the Cartesian produdd; x ... x D; and restrict the

be obtained through allocating buffer times between tasks variable domains.

in order to absorb small disruptions (task delays, etc.) tha * The objective function is to minimize the makespan.

can occur stochastically along the schedule. In an optitnize Two main constraints appear in this kind of job-shop

solution of aJSO(n, p), some natural buffers appear to satisfproblems:

the involved constraints (non-overlapping constraini$jese 1) Precedence constraints: the tag@ksof each job.J; must

buffers give the schedule some robustness degree. However, be scheduled according to precedence constraints, i.e.,



there exists a partial ordering among the tasks of easbhedule where the tasks are scheduled linearly. Due tathe f
job and may be represented by a precedence graphtlwat at least the following tasks from the same job must be
tree-like structure [11]. scheduled beforewaxTime, the highest value for the domain
2) Capacity constraints: resources cannot be used simofi-each tasld;; can be reduced by subtracting the duration of
taneously by more than one task. Thus, two differemtl the tasks from the same jalithat have to be scheduled after
tasksf;; andd;;, cannot overlap unless they use different;; (including 6;;) to maxzTime. The valuescumulative;;
resources. and maxTime obtained in Algorithm 1 are used to filter the
Capacity constraints involve only on type of resourcegomains by removing values that cannot take part of feasible
machines. In real life scheduling problems, the envirorimesolutions.
is dynamic and disruptions may occur during task execution.
In these problems two types of disruptions can be generate@igorithm 3: Select-value-forward-checking with deletion
machine disruptions (breakdown, delays due to previouslglock
delayed task, etc.), and operator disruptions (late djriva while D} + () do

delays also due to previously delayed task, etc.). However,
the modeled CSOP will only manage machines and the next
step will also manage operators.

Algorithm 1: Calculate initial values to reduce domain
Data: J: set of jobs;

select first element € Dg, and remove: from D;
forall k, i < k< |D’| do
if constraint(i,k) = MachineOrJobConstrairihen
if constraint(i,k)= JobConstrainthen
| remove values iffaly, < a + dur;) from D},
else
remove values
L if(valy, + dury, > a Awvaly, < a+ dur;) from Dj,

Result Relative starts to each task and lineal maxtime else
maxTime := 0; forall b€ D; do
cumulative;j := 0, V0;; € 0; if not CONSI STENT (a;_1,z; := a,z; = b) then
foreach i € J do L | removeb from Dy,

cumulativeJob < {0};

foreach 6;; € 6 do

H A
maxTime := maxTime + py; if Dk =0 theRD, D k< lue bef
cumulative;j < cumulativeJob; FE?et egc ke ¢ <k < ntovalue beforex was
cumulativeJob «— cumulativeJob U {py,; }; ese ecte
. . L return a
return cumulative, maxTime; I
return null

Algorithm 2: Calculate possible values In the second technique to reduce the variable domains (Al-
Data: All tasks gorithm 2), the values that cannot be possible are calallate
Result New domain of all§ stg.. only should get values that represent the sum of the
pValuesji < 0, V0;; € 0; i . .
foreach i ¢ J do tasks that can be executed befdre. For example, iff;; is

foreach 6;; € 6 do the first task of its job, the possible values are 0 and a set of
L L Za‘j’;flizi"f ;;gfﬁgg:‘?gfﬁ; &il(i%)efom) the combination of the processing times of all the taBkat
can be scheduled befofg;. In this case, these tasi{sare all
the tasks of the other jobs. For the following tagk; (), its
possible valuesty, ., are the same a4; plus the processing
To modeling the job-shop scheduling problem as a CSQime of 6;;. In the Algorithm 2,tasksCanBeBeforéunction
we have used the syntax XCSP [10]. The Extensible Markuigturns the tasks that can be executed before a given task

Language presents a simple and flexible text format anddit; and,combineDurTasKunction calculates all the possible

gives the facility to use some functions and structures ddfinvalues forst,,; following the precedence constraints.

in Abscon [6]. In the modeling phase, we have applied two Once the CSOP has been modeled with the corresponding

different techniques to reduce the variable domains. reduced domains, it is solved by using a modified algorithm
The first technique developed (Algorithm 1) calculatesf Forward Checking (FC) (Algorithm 3). Instead of apply-
initials values of each tasks and reduces the domain simg Maintaining Arc-Consistency, this algorithm perforras

of the involved variables. Thus, a solution can be founfitering procedure that removes the domains in blocks, ite.

more efficiently. This algorithm calculates the maximumdimremoves several values at a time. This is due to the factfthat i

interval in which each task can be scheduled. On the one haadask®;; must be scheduled after ta8k;, the sty,, can take

given ad;; task, the lowest value of itsty,, is the sum of neither the value of thets,, nor all successive values until
the processing times of the tasks that have to be schedulleel ending time of);;. Thus, all these values can be removed
before §;; from the same jobi (cumulative;;), subject to as a block of values. The values to delete depend on the type
the precedence constraints. On the other hand, the highafstonstraint. If this is a precedence constraint, all thieles
value of all the domains fosty,; is the sum of all processing beforedy; plus its processing time will be deleted. Otherwise,
times (naxzT'ime), since this value represents the end of thi¢éit is a capacity constraint the values betweep,, (included)

return pValues




Algorithm 4: Post-process

Data: S: Solution without operatorsy: machinesp: operators;
Result A solution considering operators

Order the machines by their number of tasks;
machinesFewerTasks < set ofm — p machines with fewer tasks;
tasksToPut < tasks of the machinesvachinesFewerTasks;
remainingMachines <— m — machinesFewerTasks;
OrdertasksToPut by Starting Times;

actual State < S,
foreach 6; € tasksToPut do

function %L This function could be adjusted depending on
the requirements of the user, e.g. either only minimizing th
makespan or maximizing the number of buffers generated.

C. Third Step: Distributing Buffer Algorithm

The previous step gives us a solution that satisfies all
constraints of the/SO(n,p). This solution is an optimized
solutions in terms of minimizing makespan and maximizing
the number of buffers. However, the main goal for a robust

savedState < actualState;
states <+ {};
for r € remainingMachines do
foundGap := | sTher eAGp(r);
if not foundGap then
| insert®; before the next task according to its Job;
else
| insertd; in this gap;
Delay the needed tasks according to the restrictions among
them;

solution, in a scheduling problem where no information dbou
incidences is given, is to distribute the amount of avadabl
buffer among as many tasks as possible. It is well-known that
all tasks involved in a critical path have not any associate
buffer, because it will affect to makespan. The rest of tasks
can be reassigned to generate a buffer after their endirgy tim
The main goal of this algorithm is to distribute the amount of
buffer without affecting the makespan. Thus, we can maxémiz
the number of buffers to the resultant schedule of secomd ste
In this way, the obtained solution is considered more robust
due to more tasks have buffer times to absorb small incidence
Figure 2 shows the solution obtained in the second step and
all critical paths. It can be observed that 10 buffers were
generated, meanwhile the distributing buffer algorithmswa
able to find 14 buffers. We remark that our goal is to obtain
the maximum number of buffers since no information is given
about incidences so that all tasks have the same probability

Once the CSOP has obtained an optimized solution fi@r delaying.
the job-shop scheduling problem, this solution is used to This third step is presented in Algorithm 5. This algorithm
allocate the required number of operators in order to soll@oks for the tasksf;; allocated just before each buffer
the JSO(n,p). The problem consists in finding a feasiblegenerated in Algorithm 4, and tries to set them back. A task
schedule by minimizing makespan and maximizing number @f; is only set back if it generates a new buffer. In case a
buffers (V,..r) to guarantee a certain level of robustness. Notew buffernb is generated, this process is repeated with the
that a feasible schedule fotSO(n, p) is also feasible for the task just beforeb. The computational cost of the algorithm is
standard job-shop problem and satisfies the restrictionatha O(tasks in non-critical path because tasks in the non-critical
mostp machines work simultaneously. Therefore, significaftath are the only ones that can be moved to distribute the
cases are those in which < min(n,m), otherwise our buffers.
problem becomes a standard job-shop problem [1].

The aim of the Algorithm 4 is to convert a solution Algorithm 5: Distributing buffers
without operators in one where the operator constraintSData: Sch: Schedulepuf fers;
are considered. The idea is to set a number of machinedResult New Schedule
(remainingMachines) equal to the number of operators foreachb € buffers do

. size B :=size of the buffem;
p and try to reschedule the tasks of the other machines | |opeq
(machinesFewerTasks) within the remainingM achines. continue := false;
The tasks innachinesFewerTasks must be sorted by their 8i; := task allocated beforé;
. . . Set backd;;;

st (tasksToPut). Each®;; in tasksToPut is allocated in if this movement generates another bufiérthen
the first available gap between two tasks of each machine in continue = true;
remainingMachines. For each machine, the search starts L Update scheduléch;
from the previous states¢uedState). There are cases where L Untl continue ;
6;; must be allocated without a gap between two tasks due-td®m Sch
the precedence constraints. For instance, if we foufigl af
the same job a#;; and 6;, must be scheduled afté;; ac-
cording to the precedence constraints( j), 0;; is allocated D- An example
just befored;,, being delayed;,. When a task is delayed, Figure 2 shows the different schedules obtained by the CP
other tasks may be also delayed. The computational cost@ftimizer solver and our technique for a given instances of
the algorithm isO(tasksToPut % |remainingMachines|).  the JSO(n, p). This instance represents a scheduling problem

The best state to allocatg; is the state that maximizes thewith 3 jobs, each with 10 tasks, and 2 operators. Each

states < states U {actualState};
L actualState < savedState;

actual State < chooseBest St at e(states);

return actualState;

and its processing time will be deleted.

B. Second Step: A Post-process Procedure
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Fig. 2. A scheduling problem: an optimal and a robust solution.
rectangle represents a task whose length corresponds to its V. EVALUATION

processing time. Inside the rectangle, the job, task, machi ) .

and operator are showed. The dotted lines showed in thesd & Purpose of the experimental study is to assess our
schedules represent the critical path. The first schediger@ Prorosal CSOP+PP and to compare it with the IBM ILOG
2(a)) represents the distribution of tasks of the optimaltam CPLEX CP Optimizer tool (CP). In CP, theoperators were
obtained by CP Optimizer (only minimizing the makesparﬁmde'ed as a nonrenewable cumulatlve resource of qapamty
according to the operators. It can be observed that thermatai ?- AlS0; the CP was set to exploit constraint propagation on

makespan was 57 but only 1 buffer was generated due to ffe0veriap NoOverlap and cumulative functionGumulFunc-
fact that only taskd; 1, was not involved in any critical path tion) constraints to extended level. The search strategy used

(green and red lines in Figure 2(a)). Taking into considenat VS Depth First Search with restarts (default configuration .
the robustness within the objective function, the Figure)2( We have experimented across the benchmarks proposed in
represents the solution obtained by applying stepl + stép2lyl: where all instances have = 3 andp = 2 and are

our algorithm, where all tasks are distributed by operatofgharacterized by the number of machines),(the maximum
Finally, Figure 2(c) represents the schedule obtained by tUmber of tasks per jobuf...) and the range of processing
third step of our algorithm. Although the makespan wadmes ;). A set of instances was generated combining three
increased up to 67, it can be seen that the buffers (blackspoxé@lues of each parameten = 3,5,7; vpa. = 5,7,10 and

are distributed between all tasks that do not take part of akly= [1,10}, [1,50], [1,100].

critical path being increased the robustness of this sdeedu !N Figure 3, the solutions showed are the schedules for
These buffers can be used to absorb incidences or delays f@instance< 3_5_50 > obtained by the CSOP+PP after
the previous task. For instance, if the resource assignéeto Poth the step 2 (CSOP Step2) and step 3 (CSOP Step3).

tasks 0,5 suffers a small failure, the solution could not be he smoothed curve of CSOP Step2 and CSOP Step3 are
affected. represented by dotted lines; by the CP Optimizer without

taking into account the operators and applying steps 2 (CP
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Fig. 3. Set of solutions for an instance given

Step2) and 3 (CP Step3); and, by the CP Optimizer taking inrdnd the robustnes$?j for instances for eacth, v,q. andp;.

consideration operators (CP operators). Since two obgecti Following Lemma 1, the number of buffers showed in these
functions are considered in this problem, the solutionsdh@ 5ples are a lower bound of the number of tasks that are
not dominated by any other solution are marked with a blagfot involved in any critical path. For example, in instances
point (Non-Dom Sols). It can be observed that keeping the 3 109 10 > the optimal solution had an average of 1.2
same makespart{,,.), solutions given by the step 3 alwaysyyffers in the 10 instances evaluated, meanwhile our teicleni
outperform the ones obtained by the step 2 accordin§ilg.  optained an average of 10.90 buffers in the same instances
It is important to note that in order to achieve the minimalyajyated. This indicates that in average 10.90 out of 3Gstas
Cmaz, there have to be fewN,,;; and vice versa, to obtain were not involved in any critical path and a disruption in one

more Ny, it is needed to increase th€,,... Among the o some of them could be absorbed and the rest of the tasks
non-dominate solutions obtained, there is no optimal sakeedyoyid not be involved in the disruption.

with the lowestC),,, and the maximumVy, s, therefore, the

users should choose among them according to their neesssit& Irg)laalj_llanstancebs_ the ?r\]/eratgr;]e numbetr)tof bL:jﬁsrsC?Dbtéurl_ed_ by
For instance, let the solutions space be subdivided in fo § was bigger than the ones obtained by pumizer.

squares according to whether they minimize or maximiz%ccordmg to the robustness measure and the number of buffer
each objective. If the user just needs maximizing f¥ig, generated, CSOP+PP procedure always outperformed the solu

(achieving better robustness), the solutions needed are frtlons given by the CP Opt|m|zer, althpugh the makespgn thrne
; out to be increased. For instance, in Table I(a) the insgance
the right-down square. . -
: , . . 5 3_10_10 > increased up t82.6% the number of incidences
In the next experiment the first solution given by the CSO
. absorbed.
has been chosen to apply the post-procedure mentioned above
because it is the solution that gives the opportunity to get!t can be seen that for CSOP+PP the grepigthe greater
more N, ;. This first solution is compared against the optimdPbustness values since the buffers generated could hggerbi
solution. In all cases, 10 instances were considered fri#€s, €.g., the instances with= 5 andv,,,, = 10 increased
each combination and the average results are shown in tRgir robustness degree obtaining an averagi 6% for p; =
next tables. The sets of instances are identified by the :tuplé; 31.7% for p; = 50; and35% for p; = 100.
< Mm_vmas_pi >. The incidencesX) to assess the robustness Table Il presents how large delays in the incidences affect
were modeled as a delay in a random takk from the the schedules. Asl increases, the average of incidences
schedule. For each instance, a set of 100 incidences wabsorbed are reduced, reaching the case that the CP Optimize
generated with a delayl) that follows a uniform distribution obtained an average robustness aljgtfor most instances
between 1 and a 10% of. with p; = 100. Even, CP Optimizer was unable to absorb
Tables I(a), I(b) and I(c) show the performance of bothny incidence in instances ef 7_10_100 >, whereas the
techniques to absorb incidences. For each technique, wetre€SOP+PP obtained an average6di% the number of inci-
the C;,,q., the number of buffers generatedy, ) in step 3, dences absorbed for large delays.



TABLE |
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(a) Maximum delay 1 time units

incident in a machine or operator and the solutions remain
feasible. In the first step of our approach, an optimized
solution has been obtained by optimizing makespan for the

Instance CP Optimizer CSOP+PP JSP. In the second step, this solution is modified to take into
0, 0, . . P
B R Rl(;’s)o Cmex | Nont_ R(;;)zc account operators constraints by minimizing makespan and
3710 T 5790 | 110 680 | 7120 780 3seq Maximizing the number of buffers. And finally, in the third
31010 | 6520 1.20 4.60 87.00 10.90 3260 Step, setting the previous makespan, the robustness is maxi
5510 | 39.40 0.20 1.20 51.20 4.90 3290 mized by redistributing buffers. In this way, given soluiso
5710 | 5390 0.70 3.10 71.50 750) 3590 for the JSP, this procedure provides schedules taking into
57-150-1100 gg'gg 8‘22 ;‘Zg Zg‘zg 2';8 iiz account operators in a short time. These solutions arersatai
=10 T 2470 T os0 230 | 6122l seol  294q according to client needs maintaining their desired traifie-
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In this paper, unlike other optimization methods that solve
the JSO(n,p) by pursuing the objective function or both
the objective function and the robustness measure, we have
presented a three step technique to solve this problem with
the aim of obtaining optimized and robust solutions. Robust
solutions imply that some tasks can be delayed due to an



