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1 Introduction

The FGK formalism developed in ref. [1] reduces the problem of finding single, static,

charged, spherically-symmetric black-hole solutions of a generic 4-dimensional theory of

gravity coupled to a number of Abelian vectors AΛ
µ and scalars φi (without scalar poten-

tial) to the simpler problem of finding solutions to a dynamical system whose dynamical

variables are just the metric function U(τ) and the scalar fields φi(τ); the evolution param-

eter τ corresponds to a radial coordinate in the black hole spacetime metric. This dramatic

simplification allowed the authors of ref. [1] to derive the very important result, valid for

the extremal black-hole solutions of any of these theories including all the 4-dimensional

ungauged supergravity theories, relating the attractor values of the scalars on the event

horizon with the entropy through the so-called black-hole potential. We will refer to this

famous result as the FGK theorem.

Following these results, most of the work in this field has focused on extremal black

holes (supersymmetric and non-supersymmetric) since they can be characterized, to a large

extent, by the possible attractors and the entropy which, in many supersymmetric theories

with large enough duality groups, can be determined by purely algebraic methods.

The FGK formalism was not used for the explicit construction of the extremal solu-

tions, though. The dynamical system is simpler than the original equations but still very

non-linear and complicated. The supersymmetric extremal solutions were constructed by

methods based on the study of the consistency conditions of the Killing spinor equations.

Even though the form of these solutions is known, showing that they solve the equations

of motion of the FGK formalism is not a simple task.

Non-supersymmetric extremal solutions have received a lot of attention in the last few

years: there are more of these than supersymmetric ones and, furthermore, they have a

richer structure. A first-order formalism has been constructed for them starting from the

FGK dynamical system and a lot has been learned about the possible attractors, entropies
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etc., see e.g. refs. [2–7]. However, not many explicit solutions have been constructed since

the first-order equations are not easy to integrate.

Non-extremal black-hole solutions have been left untouched by these developments

since the FGK theorem does not apply to them: one needs to construct the explicit solution

in order to compute the entropy, the temperature and the dependence of the very important

non-extremality parameter r0 on the physical constants, i.e. mass, electric and magnetic

charges and the values of the scalars at infinity. In ref. [8] a general ansatz for non-

extremal black holes of ungauged N = 2, d = 4 supergravity was proposed and it was

shown that using this ansatz the equations of motion of the FGK formalism can be solved

at least for some simple theories.1 Non-extremal solutions interpolate between different

extremal solutions, supersymmetric and non-supersymmetric alike, that can be recovered

by taking the extremal limit. This provides a new method for constructing the extremal

non-supersymmetric solutions.

The hyperbolic ansatz proposed in ref. [8] was based on the assumption that all the

black-hole solutions of a given theory have exactly the same expression in terms of some

functions HM (τ), called seed functions. Different solutions correspond to different profiles

for the seed functions, since they will satisfy different equations. For supersymmetric

solutions, the functions HM (τ) will just be harmonic functions (linear in the coordinate

τ). For non-extremal solutions, ref. [8] proposed that the seed functions HM (τ) should

be linear combinations of hyperbolic functions. The hyperbolic ansatz was known to be

valid in the few non-extremal solutions known to the literature [10, 11]. Furthermore, the

expression of the physical fields in terms of the HM (τ) was known to remain the same after

the gauging of global symmetries [12–14].

The assumption that the black hole solutions have the same form in terms of the seed

functions was proven in the formulation of the H-FGK formalism for N = 2, d = 4 super-

gravity theories, developed in refs. [15, 16]: this formalism is obtained from the standard

FGK one by a change of variables, the new variables being, precisely, the HM s mentioned

above.2 The very existence of the change of variables in all N = 2, d = 4 theories proves

the assumption. However, the new formulation has additional advantages: since the new

variables are, somehow, the “right” variables, finding new solutions and general results

(attractor theorems, first-order flow equations etc.) becomes much simpler [18].3 In par-

ticular, it is extremely easy to prove that the supersymmetric extremal black-hole solutions

with harmonic HM s are solutions of the equations of motion; the situation w.r.t. extremal

non-supersymmetric black hole solutions is more complicated.

There are, however, some loose ends in these developments: in ref. [22, 23] an ex-

tremal non-supersymmetric solution for cubic models was constructed in which one of the

HM (τ)s, rather than being harmonic, has been shown in ref. [7] to be the inverse of a

harmonic function. Ratios of harmonic functions have been later on discussed and con-

1A generalization of the FGK formalism for higher-dimensional theories as made in ref. [9], where a

similar ansatz was shown to work in a simple N = 2, d = 5 supergravity theory.
2This formulation is clearly related to the real formulation of local special geometry of ref. [17].
3There is also an H-FGK formulation for black holes and black strings of N = 2, d = 5 supergravity [16,

19, 20]. The derivation of the attractor theorem, first-order flow equations etc. has been done in ref. [21].
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firmed in ref. [24, 25]. On the other hand, the general study performed in [18] suggests

that in extremal black holes, supersymmetric or not, all the HM s should be harmonic.4

Furthermore, the hyperbolic ansatz is used together with a simplifying constraint on the

variables HM which arises quite naturally in the supersymmetric case [26], but which has

no justification in the non-supersymmetric cases, both extremal an non-extremal. The

non-harmonic solutions of refs. [7, 22–25] do not satisfy said constraint.

In this paper we take a first step towards the clarification of the situation by showing

how the description of a solution in terms of the variables HM is not unique. We are

going to show the existence of a gauge symmetry in the 4-dimensional H-FGK formalism

that acts on the variables HM in a highly non-trivial and non-linear way but preserves the

physical fields of the black-hole solution: the metric function U(τ) and the complex scalar

fields Zi(τ). This symmetry does not preserve the above-mentioned constraint and, as we

are going to see, it can relate a configuration of the HM s that does not satisfy it to another

configuration that does: both configurations, however, describe the same physical black-

hole solution. Whether the transformed HM that do satisfy the constraint are harmonic is

more difficult to prove in general and we will study this problem in another publication [27].

An interesting aspect of the gauge symmetry that we have discovered is that it is based

on a generalization of the Freudenthal duality transformation discovered in ref. [28] and

generalized in the context of N = 8, d = 4 supergravity and generalized to N ≥ 2, d = 4

supergravities in ref. [29]. The original Freudenthal transformation is a discrete transforma-

tion that acts on the symplectic vector of magnetic and electric charges of a given theory5

but one can define the same action on any other symplectic vector of the same theory and,

in particular on the variables HM . As we will show, the discrete transformations are a

particular case of a continuous local symmetry of the H-FGK.

We start by reviewing in depth the H-FGK formalism for N = 2, d = 4 theories

in section (2). In section (3) we discuss the discrete Freudenthal transformations and

in section (4) we show that the HFGK action has a Freudenthal gauge symmetry. In

section (5) we discuss the interplay of the Freudenthal gauge symmetry with the constraint,

identifying the latter as a gauge fixing condition. Finally, in section (6) we present our

conclusions and discuss, briefly, the implications of the local Freudenthal symmetry for the

extremal solutions.

2 The H-FGK formalism for N = 2, d = 4 supergravity revisited

The action of all ungauged N = 2, d = 4 supergravity theories coupled to n vector multi-

plets takes the form6

I[gµν , A
Λ
µ, Z

i] =

∫

d4x
√

|g|
{

R+ 2Gij∗∂µZ
i∂µZ∗ j∗ + 2ℑmNΛΣF

Λ
µνF

Σµν

−2ℜeNΛΣF
Λ
µν ⋆ F

Σµν
}

,
(2.1)

4Observe that the hyperbolic ansatz always gives harmonic functions in the extremal limit.
5The transformation depends on the particular theory under consideration.
6We will follow the notation and conventions of ref. [16].
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where i, j = 1, . . . , n and Λ,Σ = 0, 1, . . . , n. The scalar-dependent Kähler metric Gij∗ and

period matrix NΛΣ are related by supersymmetry and can be derived, in general, from

a holomorphic prepotential function F(X ) homogeneous of degree 2 in the coordinates

XΛ or, equivalently, from a canonically normalized, covariantly holomorphic symplectic

section (VM ) =
( LΛ

MΛ

)

. Here M,N, . . . are (2n+ 2)-dimensional symplectic indices and we

use the symplectic metric (ΩMN ) ≡
(

0 1
−1 0

)

and ΩMPΩNP = δMN to lower and raise the

symplectic indices according to the convention

VM = ΩMNVN , VM = VNΩNM . (2.2)

The metrics of any single, static, 4-dimensional black-hole solutions to these theories

can be put in the form

ds2 = e2Udt2 − e−2Uγmndx
mdxn ,

γmndx
mdxn =

r40
sinh4 r0τ

dτ2 +
r20

sinh2 r0τ
dΩ2

(2) ,
(2.3)

where r0 is the so-called non-extremality parameter and U(τ) the metric function that

characterizes a particular solution.7 Assuming that all the fields are static and spherically

symmetric, so that they only depend on the radial coordinate τ , the action (2.1) reduces

to the FGK effective action [1]

IFGK[U,Z
i] =

∫

dτ
{

(U̇)2 + Gij∗Ż
iŻ∗ j∗ − e2UVbh(Z,Z

∗,Q)
}

, (2.4)

which has to be supplemented by the Hamiltonian constraint

(U̇)2 + Gij∗Ż
iŻ∗ j∗ + e2UVbh(Z,Z

∗,Q) = r20 . (2.5)

In the above formulae Vbh(Z,Z
∗,Q) is the so-called black-hole potential and is given by

− Vbh(Z,Z
∗,Q) = −1

2MMN (N )QMQN ; (2.6)

QM is the (2n + 2)-dimensional symplectic vector of electric q and magnetic p charges

(QM ) =
(

pΛ

qΛ

)

and MMN (N ) is the symmetric, symplectic matrix defined by

(MMN (N )) ≡
(

I +RI−1R −RI−1

−I−1R I−1

)

, R ≡ ℜeN , I ≡ ℑmN . (2.7)

Observe that since there is no explicit τ dependence in the effective action (2.4), the

corresponding Hamiltonian must take a constant value: the Hamiltonian constraint (2.5)

fixes this a priori unconstrained value to be r20.

The change of variables that brings us to the H-FGK formalism is inspired in the gen-

eral form of the timelike supersymmetric solutions of these theories obtained by analyzing

the consistency of the Killing spinor equations (see e.g. ref. [30]): given an N = 2, d = 4

7More information about this metric can be found in ref. [8].
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theory with canonical symplectic section VM , introducing a complex variable X with the

same Kähler weight as VM , we can define the real Kähler-neutral symplectic vectors

RM ≡ ℜe
(

VM/X
)

, IM ≡ ℑm
(

VM/X
)

. (2.8)

The components RM can be expressed in terms of the IM by solving a set of algebraic

equations commonly called the stabilization equations [31–33] (although this name is used

with a different meaning in part of the literature), but to which we shall refer henceforth, for

reasons that will become clear in the following and to avoid confusion, as the Freudenthal

duality equations. The functions RM (I) are characteristic of each theory, but they are

always homogeneous of first degree in the IM .

Given the fact that, in supersymmetric solutions, the IM are harmonic functions, it is

customary to relabel these variables as

HM ≡ IM , H̃M ≡ RM . (2.9)

Given those functions we can define the Hesse potential W(H) [15, 16, 34]

W(H) ≡ 〈 H̃ | H 〉 ≡ H̃MHM , (2.10)

which is homogeneous of second degree in HM . The relation between H̃M and HM can be

inverted and the Hesse potential can also be written as W(H̃); from the homogeneity of W

one can deduce that

H̃M = 1
2

∂W

∂HM
≡ 1

2∂MW , HM = 1
2

∂W

∂H̃M

. (2.11)

Of special importance to the H-FGK formalism is the symmetric symplectic matrix

MMN (F) which is obtained by replacing in the expression (2.7) the period matrix NΛΣ by

FΛΣ ≡ ∂2F(X )

∂XΛ∂XΣ
, (2.12)

where F(X ) is the prepotential of the theory; the relation between them can be seen to be

MMN (F) = −MMN (N ) − 2W−1 (HMHN + H̃MH̃N ) . (2.13)

From the fundamental properties of the matrix M(F), namely

H̃M = −MMN (F)HN , dH̃M = −MMN (F)dHN ,

HM = MMN (F)H̃N , dHM = MMN (F)dH̃N ,
(2.14)

one can infer that

MMN (F) = −1
2

∂2W

∂HM∂HN
= 1

2

∂2W

∂H̃M∂H̃N
, (2.15)

this equation can be rewritten using eqs. (2.11) as

∂H̃N

∂HM
= ΩMPΩNQ

∂HQ

∂H̃P

, (2.16)
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which is equivalent to saying that M is a symplectic matrix.

Eq. (2.15) tells us that the Hesse potential W is closely related to the prepotential and

is to be considered a real prepotential.

Observe that the above discovered Hessianity implies that ∂P MMN (F) =

∂(PMMN)(F), whereas the homogeneity implies

0 = HP∂PMMN (F) = H̃P∂PMMN (F) . (2.17)

Now, using general properties of Special Geometry and the above properties one can

rewrite the effective action (2.4) and Hamiltonian constraint (2.5) entirely in terms of the

new variables HM [16]:

− IH-FGK[H] =

∫

dτ
{

1
2gMNḢMḢN − V

}

, (2.18)

−r20 = 1
2gMNḢMḢN + V , (2.19)

where we have defined the H-dependent metric

gMN ≡ ∂M∂N logW − 2
HMHN

W2
=

∂M∂NW

W
− 2

HMHN

W2
− 4

H̃MH̃N

W2
, (2.20)

and the potential

V (H) =

{

−1
4∂M∂N logW +

HMHN

W2

}

QMQN =

{

−1
4gMN + 1

2

HMHN

W2

}

QMQN .

(2.21)

The relation of this potential to the black-hole potential (2.6) is given by

Vbh = −W V . (2.22)

3 Discrete Freudenthal transformations

The relation between the tilded and untilded variables can be understood as a duality

transformation HM → H̃M which can be iterated if we define ˜̃HM ≡ H̃M (H̃). Using the

properties in eqs. (2.11)–(2.17), we find that this duality is an anti-involution, e.g.

˜̃HM = −HM . (3.1)

It is not difficult to see that the duality transformation is just the generalization to

N = 2, d = 4 supergravity theories made in ref. [29] of the Freudenthal duality introduced

in ref. [28] in the context of N = 8, d = 4 supergravity. The same operation can be

performed on any symplectic vector of a given theory and, in particular, on the charge

vector Q.

In ref. [29] it was shown that the entropy and the critical points of the black-hole

potential are invariant under Freudenthal duality. We will recover this result later as a

particular case of the invariance of the H-FGK system under local Freudenthal rotations.

– 6 –
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The variables we have just defined are related to the physical variables of the FGK

formalism U , Zi by [16]8

e−2U ≡ W(H) = H̃MHM , Zi ≡ H̃ i + iH i

H̃0 + iH0
. (3.2)

We can immediately see that the physical variables are invariant under the above Freuden-

thal duality transformations, i.e.

e−2U (H̃) = e−2U (H) , Zi(H̃) = Zi(H) , (3.3)

It is interesting to study how the central charge changes under Freudenthal duality:

first, we rewrite the central charge, whose definition is Z(φ,Q) ≡ 〈V | Q 〉 in the form

Z(φ,Q) =
eiα

√

2W(H)
(H̃M + iHM )QM , (3.4)

where eiα is the phase of X and satisfies the equation [30]

α̇ = W−1 ḢMHM − Q⋆ , (3.5)

where Q⋆ is the pullback of the Kähler connection 1-form

Q⋆ =
1
2i Ż

i∂iK + c.c. (3.6)

Under discrete Freudenthal duality transformations, W(H), the scalars and the Kähler

potential are invariant. α is also invariant and

(H̃M + iHM )′ = −i(H̃M + iHM ) , (3.7)

which implies that

Z ′(φ,Q) = −iZ(φ,Q) , (3.8)

but its absolute value will remain invariant.

Observe that when these Freudenthal transformations are non-linear (which is the

general case), if we transform a supersymmetric solution, which must have harmonic HM s

of the form

HM = AM − 1√
2
QMτ , (3.9)

we will obtain non-harmonic HM and the transformed solution couldn’t possibly be super-

symmetric. We must remember, however, that all the physical fields are invariant, whence

their supersymmetry properties must also remain invariant. This implies that the variables

HM cannot immediately be identified with those appearing in the analysis of the Killing

spinor equations: this is possible only up to discrete Freudenthal transformations.

The near-horizon limit of the transformed HM s is dominated by the Freudenthal dual

of the charges QM , defined in refs. [28, 29], namely

Q̃M ≡ −1
2 ΩMN ∂W(Q)

∂QN
. (3.10)

8The expression for the scalars is not unique (only up to reparametrizations). The expression we give

is, however, convenient and simple.
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4 Local Freudenthal rotations

In the change of variables taking us to the H-FGK formalism, we have gone from a for-

mulation based on 2n + 1 real variables, namely U and the Zi, to one which is based on

2n + 2 variables, whence we obtained an over-complete formulation. This suggests that

there should be a local symmetry in the H-FGK formalism allowing the elimination of one

of its degrees of freedom. The variables HM , on the other hand, transform linearly under

the duality group (embedded in Sp(n+ 1;R)), as follows from its definition.

The looked-for gauge symmetry can be found by observing that the metric gMN is

singular: using the properties (2.14)–(2.17) it is easy to show that it always admits an

eigenvector with zero eigenvalue, namely:9

H̃MgMN = 0 . (4.2)

The equations of motion in the H-FGK formalism are

δIH-FGK

δHM
= gMN ḦN + [PQ,M ] ḢP ḢQ + ∂MV = 0 , (4.3)

where, as gMN is not invertible, we have used the Christoffel symbol of the first kind, i.e.

[PQ,M ] ≡ ∂(P gQ)M − 1
2∂MgPQ . (4.4)

Using the properties (2.14)–(2.17) it is not difficult to show that

[PQ,M ] H̃M = 0

H̃M∂MV = 0

}

so that−−−−−−−−−−−−→ H̃M δIH-FGK

δHM
= 0 . (4.5)

This is a constraint that relates the equations of motion of the H-FGK formalism. This

kind of constraints arises in systems with gauge symmetries, as a consequence of Noether’s

second theorem and is a gauge identity. Indeed, multiplying the constraint by an arbitrary

infinitesimal function f(τ) and integrating over τ we find that eq. (4.5) implies

δfIH-FGK =

∫

dτδfH
M δIH-FGK

δHM
= 0 , (4.6)

where we have defined the local infinitesimal transformations

δfH
M ≡ f(τ)H̃M . (4.7)

As one can expect from a gauge invariance, this transformation leaves invariant the

physical variables of the FGK formalism U , Zi. To check it, it is enough to use

δf H̃
M ≡ −f(τ)HM , (4.8)

9For the sake of completeness we also quote the relation

gMNHN = −2H̃M/W ⇒ gMNHMHN = −2 . (4.1)

– 8 –
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which follows from eq. (3.1) and eqs. (3.2).

The finite gauge transformations can be obtained by exponentiating the infinitesimal

ones:

δfH
M ≡ f(τ)£KHM −→ H ′M = ef(τ)£KHM where KM (H) = H̃M . (4.9)

It is not difficult to see that the finite transformations are
{

H ′M = cos f HM − sin f ΩMNH̃N ,

H̃ ′
M = − sin f ΩMNHN + cos f H̃M .

(4.10)

By defining the complex variables HM ≡ H̃M + iHM we can write the transformation as

H′M = eif(τ)HM . (4.11)

Using this form of the transformation and expressing the scalars and the metric function

in the forms

e−2U = W(H) = i
2HMH∗M , Zi ≡ Hi/H0 , (4.12)

the invariance of the physical fields under this gauge symmetry is paramount.

A direct proof of the invariance of the H-FGK effective action is also desirable: the

invariance of the kinetic term, i.e. 1
2gMNḢMḢN , follows from the identities

(H̃MḢM )′ = H̃MḢM , ˙̃HMMMN (F) = ḢN , ḢMMMN (F) = − ˙̃HN , (4.13)

which can be derived from eqs. (2.14). The invariance of the potential V (H) follows from

eq. (2.17).

The existence of this symmetry does not help in solving the equations of motion as

the Noether charge associated to the invariance under the global Freudenthal rotations

vanishes identically:

Q = δfH
M ∂L

∂HM
∼ fH̃MgMNḢN = 0 . (4.14)

We have already said that the origin of this gauge symmetry is the introduction of one

additional degree of freedom in the passage from the FGK to the H-FGK formalism. Had

the original FGK formulation contained the full complex variable X = eU+iα instead of

just U , the change of variables would, actually, have been much simpler; alas, the phase

α is completely absent from the FGK effective action. The local Freudenthal symmetry

is associated to this absence, which allows to change α arbitrarily leaving everything else

invariant. Indeed, from eq. (3.5) that defines α, we can easily see that

δf α̇ = −ḟ . (4.15)

On the other hand, the Freudenthal gauge symmetry can be made manifest as follows:

first, observe that the metric

GMN (H) ≡ ∂M∂N logW − 2(1 + ε)
HMHN

W
, ε = ±1 (4.16)

– 9 –
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always admits KM (H) = H̃M as a Killing vector. Then, consider the action

− Iungauged[H] =

∫

dτ
{

1
2GMNḢMḢN − V

}

, (4.17)

which has a global Freudenthal symmetry generated by δHM = fH̃M with ḟ = 0. To

gauge the Freudenthal symmetry, we just have to replace in this action the derivatives

with respect to τ by the covariant derivatives

ḢM → DHM ≡ ḢM +AH̃M ,
˙̃HM → DH̃M ≡ ˙̃HM −AHM ,

(4.18)

which transform covariantly under the infinitesimal transformations eq. (4.8)

δfDHM = fDH̃M ,

δfDH̃M = −fDHM ,
(4.19)

if the 1-form A transforms as

δfA = −ḟ(τ) . (4.20)

The action

− Igauged[H,A] =

∫

dτ
{

1
2GMNDHM

DHN − V
}

, (4.21)

is manifestly invariant under local Freudenthal rotations and equivalent to the effective H-

FGK action eq. (2.18) as one can see by integrating out the auxiliary field A: its equation

of motion is solved by

A =
HNḢN

W
, (4.22)

and, upon this substitution

GMNDHM
DHN =

(

GMN + 2ε
HMHN

W

)

ḢMḢN = gMNḢMḢN . (4.23)

The choice ε = +1, which leads to GMN = 2W−1MMN (N ) is, perhaps, the most

natural since the same metric would then occur in the kinetic term and in the potential. It

follows that we can rewrite the effective action eq. (2.18) and the Hamiltonian constraint

eq. (2.19) in the suggestive form

IH-FGK[H] =

∫

dτ
{

V (H,
√
2DH) + V (H,Q)

}

, (4.24)

r20 = V (H,
√
2DH)− V (H,Q) , (4.25)

with

DHM = ḢM +
HNḢN

W
H̃M . (4.26)

Finally, it is worth noting that this Freudenthal gauge theory is unrelated to the one

constructed in ref. [35].
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5 Unconventional solutions and Freudenthal gauge freedom

If we contract the equations of motion (4.3) with HP and use the homogeneity properties

of the different terms and the Hamiltonian constraint eq. (2.19), we find a useful equation

H̃M

(

ḦM − r20H
M
)

+
(ḢMHM )2

W
= 0 , (5.1)

which corresponds to that of the variable U in the FGK formulation.

In the supersymmetric (hence, extremal) case, the constraint

ḢMHM = 0 , (5.2)

enforcing the absence of NUT charge must be satisfied, in agreement with the assumption

of staticity of the metric [26]. Using this constraint the above equation takes the form

H̃M

(

ḦM − r20H
M
)

= 0 , (5.3)

and can be solved in the extremal case by assuming that the HM are linear in τ , whence

they are harmonic, and in the non-extremal case by assuming that the HM are linear

combinations of hyperbolic functions of r0τ (the hyperbolic ansatz). The solutions that

one can get with these assumptions have been intensively studied in ref. [18].

The constraint eq. (5.2) is not preserved by the local Freudenthal symmetry: a small

calculation gives

δf (Ḣ
MHM ) = −ḟW , (5.4)

which can be integrated straightforwardly to a finite rotation, namely

(ḢMHM )′ = −ḟW + ḢMHM . (5.5)

This equation implies that given a configuration HM with ḢMHM 6= 0, we can find

another configuration H ′M with Ḣ ′MH ′
M = 0 describing exactly the same configuration of

physical fields by performing a finite local Freudenthal transformation with a parameter

f(τ) satisfying

ḟ =
ḢMHM

W
. (5.6)

This shows that it is always possible to impose the constraint eq. (5.2) without loss of

generality because it can be understood as just a good gauge-fixing condition.

6 Conclusions

The extremal static black-hole solutions of N = 2, d = 4 supergravity constructed so far

in the literature and written in terms of the variables HM can be classified using two

criteria: the harmonicity of the HM s and whether they satisfy the constraint HMḢM = 0

or not. Out of the four possible cases, represented in table (1), the equation of motion

eq. (5.1) excludes the one corresponding to the upper right corner. The upper left corner
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HMḢM = 0 HMḢM 6= 0

ḦM = 0 BPS and some non-BPS no solutions

ḦM 6= 0 some non-BPS

Table 1. Classification of the extremal static black-hole solutions of N = 2, d = 4 supergravity

according to their representation in terms of the variables HM . It must be taken into account that

they satisfy eq. (5.1) with r0 = 0.

corresponds to the supersymmetric black-hole solutions and, as shown in ref. [8], also to

some non-BPS solutions as well. The lower-right corner corresponds to the extremal non-

BPS solutions discovered in refs. [7, 22–25] and the lower-left corner does not correspond

to any known solution.

In this paper we have shown that the representation of the solutions in terms of the

H-variables is non-unique due to the presence of the local Freudenthal invariance. Fur-

thermore, we have shown that this symmetry can be used to transform all the solutions in

the lower-right corner to solutions in the left column. It is not yet clear whether they will

be transformed into solutions in the upper or lower row although preliminary results in

simple examples suggest that, typically, they will transformed into solutions in the lower-

left corner. The form of the HM s in this class is probably quite complicated as they must

satisfy the equation

H̃MḦM = 0 , (6.1)

and, at the same time, ḦM 6= 0. Furthermore, solutions of this kind must be possible

only in very special cases and only in some theories, as it happens for the solutions in the

lower-right corner. Clearly, more work is needed to arrive at a complete understanding of

the situation and to chart the space of extremal black-hole solutions of these theories. The

non-extremal case is even more challenging. Work in these directions is in progress [27].
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