Journal of

Electronic Imaging

SPIEDigitalLibrary.org/jei

Software architecture for time-
constrained machine vision applications

Rubén Usamentiaga
Julio Molleda
Daniel F. Garcia
Francisco G. Bulnes

B sPiE

imaging.org

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 03/10/2015 Terms of Use: http://spiedl.org/terms

Journal of Electronic Imaging 22(1), 013001 (Jan—Mar 2013)

Software architecture for time-constrained machine
vision applications

Rubén Usamentiaga
Julio Molleda
Daniel F. Garcia

Francisco G. Bulnes

University of Oviedo
Department of Computer Science

Campus de Viesques, Gijon 33204 Asturias, Spain

E-mail: rusamentiaga@uniovi.es

Abstract. Real-time image and video processing applications require
skilled architects, and recent trends in the hardware platform make
the design and implementation of these applications increasingly
complex. Many frameworks and libraries have been proposed or
commercialized to simplify the design and tuning of real-time image
processing applications. However, they tend to lack flexibility,
because they are normally oriented toward particular types of appli-
cations, or they impose specific data processing models such as the
pipeline. Other issues include large memory footprints, difficulty for
reuse, and inefficient execution on multicore processors. We present
a novel software architecture for time-constrained machine vision
applications that addresses these issues. The architecture is divided
into three layers. The platform abstraction layer provides a high-level
application programming interface for the rest of the architecture. The
messaging layer provides a message-passing interface based on a
dynamic publish/subscribe pattern. A topic-based filtering in which
messages are published to topics is used to route the messages
from the publishers to the subscribers interested in a particular type
of message. The application layer provides a repository for reusable
application modules designed for machine vision applications. These
modules, which include acquisition, visualization, communication,
user interface, and data processing, take advantage of the power
of well-known libraries such as OpenCV, Intel IPP, or CUDA.
Finally, the proposed architecture is applied to a real machine vision
application: a jam detector for steel pickling lines. © The Authors.
Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole
or in part requires full attribution of the original publication, including
its DOI. [DOI: 10.1117/1.JEI.22.1.013001]

1 Introduction

The design and implementation of real-time image and video
processing applications has always been a complex task.'
However, due to recent trends in the hardware platform,
such as a steady increase in computing power based on
parallelism and the improved resolution and image acquis-
ition rate of low-cost imaging devices, the development of
applications requires increasingly skilled architects. For
example, current camera interfaces provide high bandwidth
which is used with sensitive sensors to increase the image
resolution and the number of frames per second acquired
by the cameras. This increase of information can only be

Paper 12279P received Jul. 25, 2012; revised manuscript received Nov. 12,
2012; accepted for publication Dec. 6, 2012; published online Jan. 3, 2013.

Journal of Electronic Imaging

013001-1

processed in real time by making an efficient use of parallel
execution resources,” a task that requires the skills of a highly
trained architect.

Designing, developing, and tuning the applications to
meet real-time constraints require expertise in different
areas, such as parallelism, computer architecture, and image
processing. Many frameworks and libraries have been pro-
posed or commercialized to reduce the complexity of these
tasks. For example, the flow scheduling framework®* pro-
poses an architecture in which applications are built using
a data-flow model, where each processing node has a
fixed number of inputs and outputs, each of a given data
type. Similar architectures have been proposed recently.””’
These works confront the problem from different perspec-
tives depending on the type of application on which they
are based.

This paper will address the issues raised in previous
research in this area. In general, these works do not present
flexible architectures, because they are normally oriented
toward a particular type of application, such as video surveil-
lance or robotics. Also, they often impose specific data
processing models that are not optimal for all types of appli-
cations. In most cases, it is assumed that the data processing
model must follow a pipeline or an architecture based on
Pipes and Filters,® without providing an option for other
models. In addition, data processing models are static, pre-
venting run-time reconfiguration if necessary. Another
aspect that is not treated in sufficient depth is memory man-
agement. To avoid synchronization problems, many previous
works are based on expensive data copies of information
stored in memory. In other cases, they introduce memory
managers that are complex to use and specific for certain
types of applications. Modern dynamic memory manage-
ment should address these issues. Scalability in modern hard-
ware is another open issue. Some previous works focused on
distributed systems. Others assumed an execution model
based on a thread of execution per task, which significantly
reduces the scalability of the system.

This paper presents a novel software architecture for time-
constrained machine vision applications that addresses
these issues. The goal of this work is not to recode existing
image processing algorithms, but to make it possible to
integrate the available options, such as OpenVL,™!"

Jan-Mar 2013/Vol. 22(1)

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 03/10/2015 Ter ms of Use: http://spiedl.or g/terms

http://dx.doi.org/10.1117/1.JEI.22.1.013001
http://dx.doi.org/10.1117/1.JEI.22.1.013001
http://dx.doi.org/10.1117/1.JEI.22.1.013001
http://dx.doi.org/10.1117/1.JEI.22.1.013001
http://dx.doi.org/10.1117/1.JEI.22.1.013001
http://dx.doi.org/10.1117/1.JEI.22.1.013001

Usamentiaga et al.: Software architecture for time-constrained machine vision applications

OpenCV,'! Integrating Vision Toolkit,'” or ITK' in a flex-
ible architecture.

The proposed architecture is divided into three layers: the
platform abstraction layer, the messaging layer, and the
application layer. The platform abstraction layer provides a
high-level application programming interface for the rest of
the architecture. This layer simplifies the development of
the architecture and makes it operating system independent.
The messaging layer provides a message-passing interface
based on a dynamic publish/subscribe pattern. A topic-
based filtering process in which messages are published to
topics is used to route the messages from the publishers to
the subscribers interested in a particular type of message.
Messages can be as flexible as possible. Also, different mech-
anisms are used to avoid expensive data copying, and policies
are provided to execute publishers and subscribers efficiently
in parallel. The application layer provides a repository of
reusable application modules designed for machine vision
applications. These modules, which include acquisition, visu-
alization, communication, user interface, and data processing
modules, take advantage of the power of other well-known
libraries, such as OpenCV, Intel IPP, or CUDA.

2 Requirements, Attributes, and Design Principles

Based on our experience designing and implementing
machine vision applications,'*!” the most important non-
functional requirements of a real-time image processing
architecture are the following:

¢ Scalability: The architecture must adapt to the available
resources. Thus, as emerging platforms with more com-
putational resources become available, image process-
ing systems with higher resolution and speed may be
used. This quality attribute has been addressed in
previous works,'®?° although more frequently in
distributed systems than in multicore systems.

¢ Reusability: One of the main objectives of this archi-
tecture is that the work serves as a basis for different
types of applications. The modules, the communica-
tion framework, and the parallel execution models
may be reused in the future to add functionalities
with no modification.*'~*

¢ Flexibility: Not all applications are equal, nor will they
have the same functional and nonfunctional require-
ments. The design of the architecture should be flexible
enough to adapt to the needs of different applications.

* Extensibility: Requirements change; they are modified or
mute. The design of the architecture must be extensible to
take into account any new requirements that may arise.

¢ Reliability: This is a basic property of any system.
However, in the case of real-time systems that can
control and supervise critical processes, this property
is vital. The architecture must be robust and resilient
to failure and errors.

One of the most important recent trends in computer
architecture is the steady increase in the number of cores
of the CPU. Physical constraints preventing frequency
scaling have conditioned the evolution of modern low-
cost computers, creating CPUs with multiples cores that
make them capable of running programs in parallel. Real-
time applications are required to make efficient use of

Journal of Electronic Imaging

013001-2

computer resources. Thus, they must be prepared to execute
tasks in parallel. The proposed architecture must be flexible
enough to deal with different types of parallelism. Three
main types are considered:

¢ Data parallelism: This is the most common type of
parallelism found in image processing applications.
It consists of dividing the image into parts and process-
ing each one independently. This type of division is not
possible for all image processing algorithms, but it is
very easy to apply for most of them.

¢ Control parallelism: In this case, the process that needs to
be applied to data is divided, rather than the data itself. In
this way, different subprocesses can be applied at once.

* Flow parallelism: In this case, the process applied to
the image is decomposed into several stages that are
applied sequentially. Two different stages can run in
parallel. This way of parallelizing the processing is
often called pipeline.

All these properties and requirements are considered
when applying the following basic design principles:

¢ The architecture must be open for extension but closed
for modification (open/closed principle).>* Therefore,
it must be possible to extend the architecture in
response to new or changing requirements without
modifying the existing source code.

¢ There must be strong abstraction between the interface
of the architecture and the implementation. Therefore,
they are not dependent and can vary independently.

¢ The architecture must follow a strict modular design. This
way, reusability, legibility, and maintainability are greatly
improved. Requirements change, merge, emerge, and
mutate. The orthogonality of the modules not only pro-
vides a method to deal with these changes without affect-
ing the whole system, but it also provides the foundations
to treat the capabilities of each module independently.

The architecture must provide an application programming
interface for computer vision applications in real-time. This
programming interface must be easy to learn and use and,
simultaneously, hard to misuse. Additionally, the code that
uses the architecture must be legible and maintainable.

The architecture must be designed for real-time applica-
tions. However, the term “real-time” can be confusing, as it
can have different interpretations. In general, a real-time
system can be defined as one whose logical correctness is
based both on the correctness of the outputs and their timeli-
ness.” Thus, predictability, not speed, characterizes areal-time
system. This definition in the software engineering sense is fur-
ther classified based on the strictness attached to the deadline as
hardreal-time, firmreal-time, or softreal-time. In this work, the
term “real-time” is interpreted in the signal processing sense,
that is, based on the idea of completing the processing in the
time available between successive input samples.'

3 Architecture Design

3.1 Overview

The proposed architecture follows a model based on publish-
ers and subscribers of information. This type of architecture

Jan-Mar 2013/Vol. 22(1)

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 03/10/2015 Ter ms of Use: http://spiedl.or g/terms

Usamentiaga et al.: Software architecture for time-constrained machine vision applications

is often called Publisher/Subscriber’® and is related to the
observer design pattern.”” While other architecture models
are possible, such as the MVC model, they are oriented
toward certain types of applications and when the roles
are well defined. Therefore, in these cases, the flexibility
is much lower.

In order to manage the information interchange in the pro-
posed model, an intermediate element is introduced: the
broker. The publisher posts information to the broker, and
the subscriber registers with that broker to receive informa-
tion, as can be seen in Fig. 1.

A subscriber is not interested in receiving all the informa-
tion published—only a specific part. To filter the informa-
tion, the concept of topic is introduced. A topic represents
a type of information to which a subscriber can be registered
or in which a publisher can publish. The broker maintains a
data structure with all the topics registered in the system, as
well as the list of subscribers registered to each topic, as
shown in Fig. 2. As can be seen, a subscriber may be inter-
ested in different topics. This interest can be established dur-
ing the initial registration or later during the execution of the
application, making the entire subscription process dynamic
and therefore enabling run-time reconfiguration if necessary.

This type of architecture has great advantages. It is a
loosely coupled architecture. Publishers are completely
decoupled from subscribers; they are not even aware of
each other’s existence. Therefore, the robustness and the
modularity of the application are greatly improved; each
module can be implemented and tested independently
from others. This approach also helps extensibility and reus-
ability, and the architecture provides the opportunity for
scalability. The execution of each publisher and subscriber
in the application is independent, which makes the execution
of these modules in parallel possible.

The messaging layer of the proposed architecture benefits
from all the advantages of the Publisher/Subscriber model.
Furthermore, there are several areas where we introduced
improvements to the original scheme:

¢ Smart memory management: Memory management is
automatic and very efficient, always avoiding expen-
sive data copies. The proposed architecture includes

Fig. 1 Main elements of the proposed architecture: publisher,
subscriber, and broker.

Fig. 2 Organization of topics in the broker.

Journal of Electronic Imaging

013001-3

efficient techniques to avoid memory micromanage-
ment, making it easy use and hard to misuse.

* Decoupling of the subscribers from the information: In
order to manage the execution of the subscriber effec-
tively, different type of subscribers are defined.
Depending on the type, the behavior of the subscriber
changes without affecting the real subscriber, imple-
mented in higher levels, greatly increasing flexibility
and extensibility.

¢ Automatic parallel processing environment: The archi-
tecture is designed to enable the parallel execution of
the subscribers efficiently, creating a dynamic mapping
between execution modules and execution units.

* Dynamic reconfiguration: The subscription model and
the creation of topics is completely dynamic. Thus,
during the execution of the system, new subscribers
can be added or removed. Also, subscribers can change
their subscriptions or create and remove topics. The
reconfiguration is finely synchronized to avoid expen-
sive thread locks.

3.2 Publisher

The publisher is only a theoretical concept. Information can
be published from any point of the application without
restrictions. In general, most subscribers will not only
receive information, but also publish information.

3.3 Broker

The broker is in charge of delivering the information pub-
lished to the interested subscribers. In order to receive infor-
mation, subscribers must define a callback function using an
object-oriented style. Compiler time errors will arise if this
callback is not properly defined.

The broker maintains several data structures with infor-
mation about the topics and the subscribers registered to
each topic. It also contains a public interface that can be
used to register or unregister topics and subscribers and
to publish information. These operations are efficiently
synchronized so that they can be used from multiple threads
simultaneously. Also, the broker allows changes in the topics
and the subscribers while the system is running, enabling hot
swapping and plugging.

3.4 Messages

A message is used to encapsulate the information. Messages
are as flexible as possible. Any data type of the language can
be a message, although the system is strongly typed. Thus, if
the data type of the published message is not that expected by
the subscriber, an error occurs. The subscriber can also query
the data type of the message, performing different actions
with different content.

Memory management for messages is automatic and very
efficient, always avoiding expensive data copies. Memory
management is implemented using smart pointers and multi-
thread synchronization.?® This method to manage memory is
not only very efficient, but it also avoids memory microma-
nagement, which often appears in programing languages
without a garbage collector. When a message is published
to a topic, every subscriber registered to that topic receives
a copy of the smart pointer to that message with read-only

Jan-Mar 2013/Vol. 22(1)

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 03/10/2015 Ter ms of Use: http://spiedl.or g/terms

Usamentiaga et al.: Software architecture for time-constrained machine vision applications

access. This copy is O(1) and has negligible impact on
the performance of the system. A reference counter is incre-
mented each time the smart pointer of the message is copied.
Later, when subscribers finish using the message, the refer-
ence counter is decremented. When the last subscriber
finishes using the message, the reference counter reaches
zero, and the message is automatically destroyed. Also,
read-only access for the published messages is a very effec-
tive approach, as it avoids shared memory contention and the
risks of deadlock and race conditions.

3.5 Subscriber

The basic operation of a subscriber is the reception and
processing of information. The subscriber can also publish
the results. However, in order to manage the execution of
the subscriber effectively, it is necessary to define different
types of subscribers:

¢ Sync: This type represents a synchronous subscriber,
where the publisher calls the subscriber directly.
Thus, the publisher waits for the subscriber to finish
processing the information. This type is designed
for subscribers that perform fine-grained work,
where the overhead of awaking a thread to execute
the callback is not worthwhile.

¢ Async: This type represents an asynchronous sub-
scriber, where the publisher continues execution
immediately after publishing the information without
waiting for the subscriber to finish processing it.
This behavior is implemented using a synchronized
queue, where messages are stored for later processing
by the subscriber following a producer-consumer
pattern.”” This is one of the most efficient patterns
for parallel processing. Depending on the particular
implementation of the message queue and the way
the subscribers access the queue, different variations
of the asynchronous subscriber are available:

e AsyncTask: In this type of subscriber, there is a
specific thread for each subscriber that gets
blocked until some data is available in the
queue. When a message is published and stored
in the queue of the subscriber, the subscriber
thread awakes and notifies the subscriber. This
type of subscriber represents a model that is
not scalable, since the creation of a thread for
each subscriber would represent unnecessary
overhead in the system. This type of subscriber
only exists to allow the execution of subscribers
that require thread affinity. For example, a
subscriber that is responsible for displaying infor-
mation in a window always needs to be executed
by the same thread, because this thread is the
owner of the window message queue created
for interaction between the system and the
window.

* AsyncPool: In this type of subscriber, there is no
specific thread for each subscriber. In order to
notify the subscriber, a precreated thread from
the thread pool of the system is used. This sub-
scription model is fully scalable, as the number
of threads in the pool is created based on the

Journal of Electronic Imaging

013001-4

number of cores in the machine independently
of the actual number of subscribers. This way,
the architecture performs an efficient dynamic
mapping between execution modules and execu-
tion units, which is fundamental for system
scalability. Under this execution model, mapping
is performed according to the number of available
execution units.

The type of subscriber is specified as a wrapper of the real
subscriber, with the same interface. It acts as an intermediate
layer between the broker and the real subscriber, as can be
seen in Fig. 3. However, the type of subscriber is completely
independent from the broker and from the real subscriber.
When the broker delivers the message to a subscriber, it
does not know the type; it just notifies the subscriber through
the registered callback. Nor does the real subscriber know its
type; it just defines the callback without worrying about who
is executing it and how. In fact, one subscriber can be regis-
tered with any type. This approach greatly increases flexibil-
ity and extensibility using the principle of open for extension
and closed for modification. The addition of a new type of
subscriber does not in any way alter the rest of the architec-
ture or the application. For example, there are multiple
implementations of the AsyncPool subscriber that can be
used without affecting the application.

The message queue in the asynchronous subscriber is a
very important piece of the architecture. This component
can be parametrized for each subscriber, making the defini-
tion of different policies possible. For example, one of the
parameters of the message queue is the size. This parameter
can be used to compensate for the different rates at which the
flow of data is published and processed. The message queue
decouples the subscriber from the information. This can also
be used to specify maximum notification rates. For example,
a subscriber that displays the acquired images on the screen
does not need to be updated at the same frame rate as the rest
of the subscribers. Thus, a maximum update period can be
established. Also, different handlers can be installed to deal
with the reception of messages when the message queue is
full. Many options are available: skip the message, wait until
there is room in the queue, substitute the older message, or
run an ad hoc handler.

The design of the architecture and the parallel execution
model introduces parallelism at the highest level possible.
This approach avoids the inefficiencies that appear when
parallelism is expressed at very low levels, making it difficult
to amortize the runtime overhead.*

The proposed architecture also has maximum flexibility.
A designer can very easily create a classic execution model
such as the pipeline, where the stages are executed by a
thread in the thread pool with improved scalability.
However, the design of other types of execution models

Fig. 3 Types of subscriber.

Jan-Mar 2013/Vol. 22(1)

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 03/10/2015 Ter ms of Use: http://spiedl.or g/terms

Usamentiaga et al.: Software architecture for time-constrained machine vision applications

with data or control parallelism is also straightforward,
depending only on the way the subscribers are connected.

3.6 Software Platform

The software architecture is fully developed in modern C++,
which is by far the most widely used language for imple-
menting machine vision applications. The choice was
clear: C++ is a language for programming based on light-
weight abstraction with direct and efficient mapping to hard-
ware, making it perfectly fit for real-time applications.
Principles of object-oriented design patterns have been
applied to aid in the development of the architecture.

3.7 Layers

As can be seen in Fig. 4, the proposed architecture is divided
into three layers: the platform abstraction layer, the messag-
ing layer, and the application layer. The layers are outlined in
the following sections.

3.7.1 Platform abstraction layer

The platform abstraction layer provides a high-level applica-
tion programming interface for the rest of the architecture.
This layer abstracts operating system services and also
includes modules required for higher layers. Some of the
modules available in this layer include the shared queue,
smart pointer, thread, thread pool, synchronization modules,
and different types of sockets. It also provides a unified way
to handle errors using exceptions. Using this layer, the devel-
opment of the architecture is greatly simplified. High-level
layers are also independent of the operating system.

3.7.2 Messaging layer

The messaging layer provides the message passing interface
based on a dynamic publish/subscribe pattern. The broker
and all the data structures necessary to store information
about the subscribers and topics are included in this layer.
It also includes the implementation of the available types
of subscribers and all the base classes required to create
new subscribers.

Up to this layer, nothing is specific for image-processing
applications; the messaging layer can be used to create any
type of application. Applications can be placed above this
layer using the proposed framework for information distri-
bution and routing using the automatic parallel processing
environment.

Fig. 4 Layers of the architecture.

Journal of Electronic Imaging

013001-5

3.7.3 Application layer

The application layer is composed of a repository of reusable
modules that implement the most common tasks found in an
image processing application.

The first module implemented is the Image class. This
class encapsulates the OpenCV image structure (Ip/lmage),
adding automatic memory management. Automatic casting
is implemented, so an Image object can be used in any
OpenCV function. The Image class is also prepared to work
smoothly with the new image structure used in OpenCV 2
(cv::Mat), allowing the applications to work with any version
of OpenCV. Using OpenCYV for the architecture was the most
adequate choice, as it is the most widely used library for
real-time computer vision applications, it is well maintained,
and it can be integrated with other low-level libraries, such as
CUDA or Intel IPP, greatly improving the performance of the
applications.

One of the most important modules is the image acquis-
ition module. It acquires images from a generic source of
images and publishes them to a specific topic. The source
of images allows the image acquisition module to work
with different types of sensors and image sources. The fol-
lowing sources are included: GigECam, DirectShowCam,
VideoFile and NetworkCam. The first two sources are
used to acquire images from cameras with a GigE Vision
interface and from cameras with a generic DirectShow inter-
face such as WebCams. The VideoFile source is used to
acquire images from a video file, which is a standard
approach used during testing. Support for many types of con-
tainers and codecs, such as avi, mkv, mpg, xvid, or h264, is
included. The NetworkCam can be used to acquire images
coming from the network. This source of images can be
used to create distributed applications. Any other type of
source could be implemented without altering the image
acquisition module or the application using the published
images.

In addition to NetworkCam, two other network modules
have been included in the architecture: NetPublisher and
NetReceiver. These modules can be used to send and receive
any message published through the network. Therefore,
these modules pave the way to transforming a parallel appli-
cation using shared memory into a parallel application using
distributed memory. Nor does this transformation affect the
subscribers or the rest of the architecture, which is an indi-
cation of the flexibility of the proposed architecture.

Many other miscellaneous modules have been included in
the application layer. The VideoStream module can be used
to convert a flow of images into a RTP flow codified in h264.
The VideoWriter can be used to write images to disk using
virtually any container and format. The VideoDisplay shows
images in a window based on DirectX. The SubProfiler can
be used to profile subscribers. The Serializer is used to serial-
ize information. The CgiPubSub can be used to connect the
application to a Web application for display or control pur-
poses. Many more modules are available for other purposes.
Each module is independent and can be used to add function-
ality to the application.

3.8 Overhead

In order to measure the overhead introduced by the architec-
ture, an experiment has been carried out comparing a direct
function call with a subscriber that calls the same test

Jan-Mar 2013/Vol. 22(1)

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 03/10/2015 Ter ms of Use: http://spiedl.or g/terms

Usamentiaga et al.: Software architecture for time-constrained machine vision applications

function when a topic is published. The test function is very
simple, and it performs some random calculations (with
optimizations disabled).

First, a test program calls the function 100 times.
The elapsed time for each call is calculated using the high-
resolution performance counter (using the functions Query
Performance Frequency and QueryPerformanceCounter).
Next, another test program publishes a topic the same num-
ber of times. The same test function is called in a subscriber
each time the topic with empty data is published. After the
call to the test function, the subscriber publishes another
topic. The program also measures the elapsed time from
the moment the first topic is published until the moment
the second topic is published. This measurement includes
the time taken by the test function and the overhead intro-
duced by the architecture.

In order to measure the time taken by the subscriber, the
SubProfiler was used. This module of the application layer
of the architecture measures the time elapsed from when a
first topic is published until a second topic is published.
Thus, it is a very useful method to measure the time used
by any subscriber that receives information in a topic and
publishes the results in others. The SubProfiler records
the elapsed time and calculates statistics that can be pub-
lished, generally to high-level modules in an application.

The results indicate that the proposed architecture has a
very low overhead. The differences between the direct func-
tion call and the call through a subscriber were around 100 us
on a hexa-core Intel Xeon 5620 running at 2.4 GHz. Figure 5
shows a box-and-whisker plot with the time taken by the
direct function call and by the subscriber.

3.9 Parallel Performance

The parallel performance of the architecture has been tested
with a basic application that detects edges in color images.
The image is split into three planes: red, green, and blue.
Then, the canny edge detector is applied to each plane.
Finally, the resulting edge maps are combined into a single
edge map.

The aplication was first designed sequentially using
OpenCV functions (cvSplit, cvCanny, and cvMerge). The
results indicate that, for the Lena image with a resolution
of 256 X 256, the sequential version was able to achieve

2.62f

26} |

256 —

2561

2.541

Time (ms)

2521

|
25 |
' |

2.481

2461

Direct call Subscriber

Fig. 5 Overhead introduced by the architecture.

Journal of Electronic Imaging

013001-6

Statistics
- —

Fig. 6 Organization of the parallel performance test.

215.88 fps on a hexa-core Intel Xeon 5620 running
at 2.4 GHz.

The same application was designed using the proposed
architecture, as can be seen in Fig. 6. The same functions
were used, but in this case, the detection of edges for
each color plane is carried out in parallel branches. The
SubProfiler module is used to obtain statistics about the exe-
cution. The application using the proposed architecture with
the same image and running on the same machine was able to
achieve 520.29 fps. This is an increase of X2.41. A linear
speedup is not achieved due to the sequential parts of the
application. However, this result indicates that the architec-
ture is using the resources of the machine efficiently.

3.10 User Interface in Applications

A very important aspect of any application is the user inter-
face. A set of modules that serve to facilitate the development
of such interfaces has been included in the repository of reus-
able modules. The user interface must allow users to interact
with two elements: video and application configuration.
Since we are working with image processing, the user should
be able to see the images in real time. This is where
VideoWriter is used. The user must also be able to send com-
mands to the system and receive various types of informa-
tion. The module CgiPubSub is used for these purposes.

The platform selected for developing the user interface is
the Web, following the current technological trends. This
platform has a major advantage: It can be used by any
user without requiring the installation of additional software.
It also allows multiple users to interact with the system con-
currently. Within Web technology, we have opted to use
modern open technologies, specifically Javascript, Ajax,
and HTML 5.

Figure 7 shows a possible configuration for an edge detec-
tion application created using the proposed architecture. The
main application acquires images from a file and applies the
edge detector in the image processing module. It also pub-
lishes the images through the network. In another machine,
another application acquires the images coming from the net-
work and creates an RTP image flow in h264, which is sent
to a media server running in a third machine. Additionally,
the configuration of the application is serialized and sent to a
Web server, where the CgiPubSub module interacts with the
Web application. The resulting application can be seen in

Jan-Mar 2013/Vol. 22(1)

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 03/10/2015 Ter ms of Use: http://spiedl.or g/terms

Usamentiaga et al.: Software architecture for time-constrained machine vision applications

Image
/

ImageBin \

h264
/ \
/
N
ConfXml
Image rtmp!
Image \
—
ConfXml $

HTML

IR

Asynchronous Javascript And XML

Fig. 7 Updated organization of the edge detection application.

Fig. 8. In this case, three video sources are shown on the
screen in real time, including the input image, the resulting
edge map, and a camera of the laboratory.

It is worth noting that the user interface modules used in
this application are by no means particular to the application.
The application only needs to fill a configuration object with
information that can be read or written as a list of properties
and publish it to a specific topic. This list of properties will
be serialized and shown in a Web property grid. Within these
properties, there is information about the available video
sources, which is used by the interface to connect to the
media server and show the video on the browser. When
the user changes a property in the Web interface, the infor-
mation is serialized back to the application and published
again with the updated values.

4 Case Study: Jam Detector for Steel Pickling Lines

The proposed architecture has been used to create a machine
vision application for the detection of jams in steel pickling
lines.”!

Pickling is a crucial step in steel manufacturing that cleans
the steel, removing the oxide scale that forms on the steel
strips after hot rolling and leaving a clean surface. Also,
in a pickling line, there is a side trimmer in which the
edges of the steel strip are trimmed by rotary shear knives
to provide more uniform width and edge condition. In
this process, the steel is side-trimmed to the customer’s spec-
ifications for width. The resulting wasted material for each
edge is chopped into small pieces, which pass through a noz-
zle to a conveyor belt. The side trimmer is a frequent location
of jams in the pickling line. The material cut from each edge
can block the nozzle and stop the processing of the steel strip.
Industrial processing lines are highly optimized, and jams are
not frequent. However, when jams occur, they can have cata-
strophic consequences on the productivity of the plant if they
are not fixed immediately. The objective of the machine
vision application is to monitor the side trimmers of a pick-
ling line and to detect jams in real time in order to perform
corrective actions quickly.

The proposed approach is based on a machine vision sys-
tem that counts the number of chopped pieces ejected from
the nozzles of the side trimmers. There are two nozzles: north
and south, one for each edge of the strip. Detecting the
absence of pieces that come out from one of the nozzles
is equivalent to detecting a jam in the pickling line. Thus,
the machine vision application will acquire images from
the nozzles and will count the number of pieces ejected
from both of them. Decisions concerning the jam in the pick-
ling line will be based on these numbers.

The proposed approach for jam detection is broken down
into several steps. Figure 9 shows the organization of the
modules in the application using the proposed architecture.

The application acquires images from a GigE camera. The
interface of the camera is a great advantage for industrial
applications, as it allows the camera to be installed up to
100 meters from the computer. In particular, the camera
used in the system is the Mikrotron EoSens MC1365,
which is installed inside a robust aluminum housing to pro-
tect the camera from the harsh industrial environment. The
EoSens MC1365 is a CMOS high-speed camera with a sen-
sibility of 2.000 ASA and 10 bits per pixel. At full resolution
(1280 x 1024 pixels), 80 fps can be output via the GigE

) Config Test - Mozilla Firefox -ex

Ele Edit View History Bookmarks ools Help

hitpi/156.35.151.69/

3~ Google @ ®-

<« Fuentes de imagen

Camara Laboratorio
Name Vale
Base URL HmpnS5.35.151 69ntpivel

FPS 23976

Fig. 8 User interface of an edge detection application.

Journal of Electronic Imaging

013001-7

Jan-Mar 2013/Vol. 22(1)

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 03/10/2015 Ter ms of Use: http://spiedl.or g/terms

Usamentiaga et al.: Software architecture for time-constrained machine vision applications

Image, ROI
- —>

and regions
—_—

rtp (h264)

rtmp g

ConfXml @
<> ConfXml

Image, ROI
and ?egions

Fig. 9 Organization of the jam detector application.

Vision Interface. The application is using the image acquis-
ition module to acquire images from this camera. Thus, the
application is independent from the camera and from the
camera interface.

Several modules are registered to receive the published
images. The VideoWriter creates a video with the acquired
images and is used to create a database for offline tests. The
VideoDisplay shows the images in full screen in the control
room of the pickling line, where the computer is installed.
This module provides visualization for the technicians monitor-
ing the processing line. These two modules are optional and can
be disabled without affecting the rest of the application.

Images are also received by two other modules: the ROI
detection module and the background removal module. The
ROI detection module identifies the regions of interest for
each nozzle. These regions must be identified so that the
chopped pieces ejected from one nozzle are not confused
with the pieces ejected from the other. This module starts
by applying the Canny edge detector. Next, the Hough trans-
form is applied to the edge map. Three lines are detected: the
right limit of the north nozzle, the left limit of the south noz-
zle, and the top limit of the conveyor belt. Using the lines
detected by the Hough transform, a new line is calculated:
the line that divides the space in the image between the
two nozzles. The region of interest for the north nozzle is
bounded by the line between the nozzles and the top limit
of the conveyor belt. The region of interest for the south
nozzle is bounded only by the line between the nozzles.

It is not necessary to calculate the ROI for each acquired
image, because the limits of the regions do not change often.
Therefore, this module is registered only to receive images
once every 10 s. A periodical update of the ROI also makes
the system robust against possible movements of the camera
caused by accidental bumps.

The background removal module is the first step in the
image processing pipeline. This module creates a reference
frame, which is a representation of the scene with no moving
objects, and subtracts it from each acquired frame. The refer-
ence image is estimated using a running average, as it offers
acceptable accuracy while achieving a high frame rate with
limited memory requirements.*’

Journal of Electronic Imaging

013001-8

The foreground image obtained from the background
removal step is a gray scale image. In order to convert
this image to a binary image in which white pixels represent
chopped pieces and black pixels represent the background,
an image segmentation process is necessary. The proposed
method used to distinguish between these two types of pixels
is based on the absolute luminance level of the foreground
image. Pixels corresponding to chopped pieces (moving
objects) have a higher luminance level in the foreground
image obtained after subtracting the background (scene
with no moving objects) from the acquired image (scene
with moving and nonmoving objects). Figure 10(b) shows
the resulting segmentation of the image in Fig. 10(a).

The next step is the feature extraction and region filtering.
For each segmented region in the previous step, two features
are extracted: the area and the perimeter. Only those regions
in which these two features are within certain limits are con-
sidered valid. This process filters regions that are not related
to chopped pieces of material and that could be detected
under an anomalous operation of the system. The results
can be seen in Fig. 10(c) with the boundary lines of the
regions of interest.

Finally, jam detection is based on the number of regions
for each nozzle. However, analyzing a single image and
counting the number of regions ejected from each nozzle
is not enough to detect jams in the pickling line robustly.
The solution proposed is to create a historical log of the num-
ber of chopped pieces ejected from each nozzle. Thus, when
a new image is acquired and the numbers of chopped pieces
for each nozzle are counted in this image, a weighted moving
average will be calculated with the historical data. The deci-
sion about the existence of a jam is based on the current value
of the weighted moving average. If this value is lower than a
determined decision threshold, a jam is detected for that
nozzle. Due to the different number of chopped pieces
detected for each nozzle, two different decision thresholds
are used—one for each nozzle.

The application also provides a remote interface using the
modules of the architecture. Images are resized and streamed
using an RTP image flow in h264, which is sent to the
Wowza media server. Also, the configuration of the

Jan-Mar 2013/Vol. 22(1)

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 03/10/2015 Ter ms of Use: http://spiedl.or g/terms

Usamentiaga et al.: Software architecture for time-constrained machine vision applications

application is serialized and sent to the LightHttpd Web
server using the CgiPubSub module. The resulting applica-
tion can be seen in Fig. 11. In this case, two graphs are also
provided with the evolution of the number of chopped pieces
in the north and south nozzle.

The proposed procedure to detect jams in a pickling line
was first applied to an extensive dataset of videos acquired
during pickling, containing thousands of frames. These
experiments were used to adjust the parameters of the system
and to validate the procedure. The proposed machine vision
application provided fast and robust detection, detecting all
the jams in the dataset with negligible delay caused by the
size of the weighted moving average. After testing, the jam
detector was installed in the Number 1 pickling line of
ArcelorMittal in Avilés, Spain. The system has been running
there successfully for 14 months.

The number of frames per second processed by the pro-
posed system is limited by the illumination of the nozzles.
Using two halogen lamps of 500 watts each, the configured
exposure time is 16 ms. The system runs at full camera res-
olution: 1280 x 1024. Without illumination constraints, the

(b)

Fig. 10 Detection of chopped pieces. (a) Image acquired during pickling. (b) Edge map. (c) Detected pieces for each nozzle.

system is able to work in real time at full frame rate on a
hexa-core Intel Xeon 5620 running at 2.4 GHz. The system
is able to process each frame consistently before the new one
arrives. Thus, the system can be considered to have a predict-
able behavior.

Using the proposed architecture for the jam detector
greatly simplified the development of the application. Many
tasks, such as acquisition, visualization, or remote manage-
ment, were completely trivial. This way, the developer could
be focused on the main image processing modules, rather
than wasting time creating interfaces and low-level acquis-
ition modules for the particular camera. Moreover, the par-
allelization of the application was automatic. The developer
designed the modules required to extract the necessary
information from the images. The architecture executed
these modules efficiently using the available resources of
the machine. The architecture also required the developer
to design the application as a set of independent modules,
which produced a better orthogonal code, where a piece
could be substituted by another without affecting the rest.
For example, there were several versions of the background

Firefox v
| £ Config Test (versién polling) +

|

€ 192168.89.1/c
Current user: admin

Configuration < Image sources

Global Camera
Name & Value
NumOfCams 1
Cameral
Name ~ Value
BlackleveRaw 192
Blue 5.1
Green 18
Interface 1
Red 1
TExposure
Detector
Name ~
Alpha 0.05
Max area 3100
Max perimeter 4000
Min area »
Min perimeter 2
North dedision thr... | 1
North threshold | 38
Size weightedmo... | 7
South decision thr... | 2
South threshold | 72

. 00:00

Camera
Name « Value
Location Pickling line
Quality Medium
Video Source rtmp://156.35. 151. 3/rtplive;vid.
Show sources

Camera

=5 EoR)|
2~ Google Pl (B[~
Exit ~
Graphs »
||| Number of values:
Height:
100
80
- T
s P N
= 60 9 St
= - -o
= - - o
t
)
=z
20 o
0 T T T T T T T T T 1
19:11:39 19:11:58 19:12:17 19:12:35 19:12:54 19:13:13
Time
100
80
=)
= 60 4
= L S
s DA S,
.o
g 40 .oty
(7]
00:00 til] | 33 20
0 T T T T T T T T T 1
19:11:39 19:11:58 19:12:17 19:12:35 19:1254 19:13:13
Time

Fig. 11 User interface of the jam detector application.

Journal of Electronic Imaging

013001-9

Jan-Mar 2013/Vol. 22(1)

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 03/10/2015 Ter ms of Use: http://spiedl.or g/terms

Usamentiaga et al.: Software architecture for time-constrained machine vision applications

removal modules using other algorithms, such as Gaussians
mixtures.

5 Conclusions

Recent trends in hardware platforms, such as the steady
increase in computing power based on parallelism, make
in-depth understanding of many technologies necessary in
order to build efficient real-time image processing applica-
tions. One solution to reduce this complexity is to use
frameworks that can be used to simplify the design and
tuning of the application.

This paper presents a novel software architecture for time-
constrained machine vision applications. The design is based
on some of the most important nonfunctional requirements
of a real-time image processing architecture, including scal-
ability, reusability, flexibility, extensibility, and reliability. It
is designed to deal with different types of parallelism,
allowing efficient use of the parallel execution resources
required to process heavy images and videos in real time.

The core of the architecture is based on a notable exten-
sion of the efficient publish/subscribe pattern. A topic-based
filtering in which messages are published to topics is used to
route the messages from the publishers to the subscribers
interested in that particular type of message. The architecture
is loosely coupled; publishers are completely decoupled
from subscribers. The proposed approach greatly improves
the robustness, modularity, extensibility, and flexibility of
the architecture. In addition, this architecture provides the
opportunity for scalability, as subscribers can be executed
in parallel automatically. The overhead introduced by the
proposed design of the architecture is very low (less than
100 us on modern hardware), enabling it for real-time work.

The architecture has been applied to a real machine vision
application, where the possibilities of the proposed architec-
ture are demonstrated. The use is very easy and intuitive yet
rich enough to create a wide variety of real-time applications.
Also, the repository of reusable modules that implement the
most common tasks in an image processing application
greatly simplifies the development of applications. Many
modules have been included in the architecture, from
image acquisition modules to user interface modules used
to create rich Web interfaces.

The proposed architecture provides the foundations
of a modern, efficient, and well-designed machine vision
application. The design and implementation has carefully
followed the most important quality metrics in software
applied to the special case of machine vision applications
where reliability and maintainability are major requirements.
The work presented in this paper is very likely to find poten-
tial applications not only in the design of image processing
frameworks, but also in the organization and design of any
machine vision application.

Acknowledgments

This work was partially supported by the Asturian Regional
Ministry of Education and Science under Project No. PC10-03.

References

1. N. Kehtarnavaz and M. Gamadia, Real-time Image and Video
Processing: From Research to Reality, Morgan & Claypool
Publishers, San Rafael, California (2006).

2. C. C. Weems, “Architectural requirements of image understanding
with respect to parallel processing,” Proc. IEEE 79(4), 537-547 (1991).

Journal of Electronic Imaging

013001-10

3. A. R. Francois, “Software architecture for computer vision: beyond
pipes and filters,” in Inst. for Robotics and Intelligent Systems,
University of Southern California, Los Angeles (2003).

4. A. Francois and G. Medioni, “A modular software architecture for real-
time video processing,” in Proc. Computer Vision Systems: Second
International Conference, Vol. 2, pp. 35-49 (2001).

5. M. Camplani and L. Salgado, “Scalable software architecture for
on-line multi-camera video processing,” in Electronic Imaging 2011:
Real-time Image and Video Processing, Vol. 7871, pp. 1-15, SPIE,
San Francisco, California (2011).

6. T. Morwald et al., “Blort-the blocks world robotic vision toolbox,” in
Proc. ICRA Workshop Best Practice in 3D Perception and Modeling
for Mobile Manipulation, IEEE, Anchorage, Alaska (2010).

7. T. Muller, B. A. Tran, and A. Knoll, “Automatic distribution of
vision-tasks on computing clusters,” in Electronic Imaging 2011:
Parallel Processing for Imaging Applications, Vol. 7872, pp. 1-102,
SPIE, San Francisco, California (2011).

8. G. R. Andrews, Foundations of Multithreaded, Parallel, and
Distributed Programming, Vol. 11, Addison-Wesley, Reading,
Massachusetts (2000).

9. C. Shen, S. S. Fels, and J. J. Little, “Openvl: towards a novel software
architecture for computer vision,” in 2007 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1-8, IEEE, Minnesota
(2007).

10. C. Shen, J. J. Little, and S. Fels, “Towards openvl: improving real-time
performance of computer vision applications,” in Embedded Com-
puter Vision, B. Kisacanin, S. S. Bhattacharyya, and S. Chai, Eds.,
pp 195-216, Springer, London, United Kingdom (2009).

11. G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision
With The OpenCV Library, O’Reilly Media, Sebastopol, California
(2008).

12. P. Azad, T. Gockel, and R. Dillmann, Computer Vision: Principles and
Practice, Elektor Electronics Publishing, Netherlands (2008).

13. T. S. Yoo, Insight Into Images: Principles and Practice for Segmen-
tation, Registration, and Image Analysis, CRC Press, Wellesley,
Massachusetts (2004).

14. D. F. Garcia et al., “Shape inspection system for variable-luminance
steel plates with real-time adaptation capabilities to luminance varia-
tions,” Real-Time Imag. 8(4), 303-315 (2002).

15. J. Molleda et al., “Real-time flatness inspection of rolled products based
on optical laser triangulation and three-dimensional surface recon-
struction,” J. Electron. Imag. 19(3), 031206 (2010).

16. R. Usamentiaga et al., “Algorithms for real-time acquisition and
segmentation of a stream of thermographic line scans in industrial envi-
ronments,” J. Imag. Sci. Technol. 49(2), 138-153 (2005).

17. R. Usamentiaga et al., “Real-time line scan extraction from infrared
images using the wedge method in industrial environments,”
J. Electron. Imag. 19(4), 043017 (2010).

18. N. A. Barendt et al., “A distributed, object-oriented architecture for
platform-independent machine vision,” in Proc. Int. Conf. on
Robotics and Manufacturing, pp. 50-55, IEEE, Lueven, Belgium
(1998).

19. J. Martinez et al., “A modular and scalable architecture for PC-based
real-time vision systems,” Real-Time Imag. 9(2), 99-112 (2003).

20. P. Schalk et al., “Framework for automatic quality control in industrial
environments using distributed image processing,” J. Electron. Imag.
13(3), 504-514 (2004).

21. C. J. Neill, “Leveraging object-orientation for real-time imaging
systems,” Real-Time Imag. 9(6), 423-432 (2003).

22. C.J.Neill and P. A. Laplante, “Imaging frameworks: design for reuse in
real-time imaging,” Proc. SPIE 5297, 1 (2004).

23. R. S. Sangwan et al., “Building reusable components for real-time
imaging systems,” J. Imag. Sci. Technol. 49(2), 154-162 (2005).

24. B. Meyer, Object-Oriented Software Construction, Vol. 2, Prentice
Hall, New York (1988).

25. E. R. Dougherty and P. A. Laplante, Introduction to Real-Time Image
Processing, SPIE Press/IEEE Press, Bellingham, Washington (1995).

26. P. T. Eugster et al., “The many faces of publish/subscribe,” ACM
Comput. Surv. (CSUR) 35(2), 114-131 (2003).

27. E. Gamma et al, Design Patterns: Elements of Reusable
Object-Oriented Software, Vol. 206, Addison-Wesley, Reading,
Massachusetts (1995).

28. A. Alexandrescu, Modern C++ Design: Generic Programming and
Design Patterns Applied, Addison-Wesley Professional, Upper
Saddle River, New Jersey (2001).

29. T. Mattson, B. Sanders, and B. Massingill, Patterns for Parallel
Programming, Addison-Wesley Professional, Boston (2004).

30. D. Leijen, W. Schulte, and S. Burckhardt, “The design of a task parallel
library,” ACM SIGPLAN Notices 44(10), 227-242 (2009).

31. R. Usamentiaga et al., “Jam Detector for Steel Pickling Lines
Using Machine Vision,” in 2012 IEEE Industry Applications
Society Conference, Vol. 1, pp. 1-8, IEEE, Las Vegas, Nevada
(2012).

32. M. Piccardi, “Background subtraction techniques: a review,” in 2004
IEEE International Conference on Systems, Man and Cybernetics,
Vol. 4, pp. 3099-3104, IEEE, The Hague, Netherlands (2004).

Jan-Mar 2013/Vol. 22(1)

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 03/10/2015 Ter ms of Use: http://spiedl.or g/terms

http://dx.doi.org/10.1109/5.92046
http://dx.doi.org/10.1006/rtim.2001.0277
http://dx.doi.org/10.1117/1.3455987
http://dx.doi.org/10.1117/1.3514741
http://dx.doi.org/10.1016/S1077-2014(03)00002-0
http://dx.doi.org/10.1117/1.1762519
http://dx.doi.org/10.1016/j.rti.2003.09.003
http://dx.doi.org/10.1117/12.521307
http://dx.doi.org/10.1145/857076
http://dx.doi.org/10.1145/857076
http://dx.doi.org/10.1145/1639949

Journal of Electronic Imaging

Usamentiaga et al.: Software architecture for time-constrained machine vision applications

Rubén Usamentiaga is a tenured associate
professor in the Department of Computer
Science and Engineering at the University
of Oviedo, where he received his MS and
PhD in computer science in 1999 and
2005, respectively. In recent years, he has
been working on several projects related to
computer vision and industrial systems. His
research interests include real-time imaging
systems and thermographic applications for
industrial processes.

Julio Molleda is an associate professor in
the Department of Computer Science and
Engineering at the University of Oviedo,
where he received his MS and PhD in com-
puter science in 2005 and 2008, respectively.
In recent years, he has been working on real-
time imaging research projects in computer
engineering. His research interests include
real-time imaging systems and range meas-
urement techniques.

Daniel F. Garcia is a full professor in the
Department of Computer Science and
Engineering at the University of Oviedo,
where he received his PhD in electrical engi-
neering in 1988. Since 1994, he has been
responsible for the computer engineering
area at the University of Oviedo. His current
research interest is in the development of
high-performance real-time and embedded
systems applied to quality assurance and
production inspection in industry, where he

has more than 100 published papers. For the last 10 years, he
has been conducting research projects in the area of information tech-
nologies applied to industry at the national and European levels. He is
a member of ACM and the IEEE Computer Society.

Francisco G. Bulnes is an associate profes-
sor in the Department of Computer Science
and Engineering at the University of
Oviedo, where he received his MS in com-
puter science in 2007 and is currently work-
ing toward his PhD. His current research
interest is in the area of real-time imaging
systems.

013001-11 Jan-Mar 2013/Vol. 22(1)

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 03/10/2015 Ter ms of Use: http://spiedl.or g/terms

