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ABSTRACT  

Phosphate metabolism regulates most of the life processes of microorganisms. In the present work 

we obtained and studied a Streptomyces lividans ppk/pstS double mutant, which lacks 

polyphosphate kinase (PPK) and the high-affinity phosphate binding protein (PstS), impairing at the 

same time the intracellular storage of polyphosphate and the intake of new inorganic phosphate 

from a phosphate limited media respectively. In some of the aspects analyzed, the ppk/pstS double 

mutant was more similar to the wild-type strain than the single pstS mutant. So, the double mutant 

was able to grow in phosphate-limited media, while the pstS mutant required the addition of 1 mM 

phosphate under the assay conditions used. The double mutant was able to incorporate more than 

one fourth of the inorganic phosphate incorporated by the wild-type strain, while phosphate 

incorporation was almost completely impaired in the pstS mutant. Noteworthy, under phosphate 

limitation conditions, the double ppk/pstS mutant showed a higher production of the endogenous 

antibiotic actinorhodin and the heterologous antitumor 8-demethyl-tetracenomycin (up to 10-fold 

with respect to the wild-type strain), opening new possibilities in the use of this strain for the 

heterologous expression of antibiotic pathways.  

 

INTRODUCTION  

In nature, microorganisms of the genus Streptomyces, a filamentous bacterium, grow in soil by 

hydrolysing different complex carbon sources. The changing conditions of this way of life have 

forced these microorganisms and others in similar habitats, to develop adaptive responses to 

different types of stress and nutritional deficiencies. One of these adaptive responses to the 
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nutritional environment is mediated by the level of polyphosphate (poly(P)) (Rao & Kornberg, 1999, 

Manganelli, 2007). The poly(P) chain is a linear polymer of orthophosphate residues linked by high-

energy bonds that is ubiquitous in all living organisms (Kulaev & Kulakovskaya, 2000). It constitutes a 

phosphate reservoir that is mobilized under Pi starvation conditions (Rao & Kornberg, 1996, Van 

Dien & Keasling, 1999). The enzyme polyphosphate kinase (PPK) synthesizes this polymer mainly 

from ATP and it is a homotetrameric protein that is associated with the outer membrane in 

Escherichia coli (Ahn & Kornberg, 1990). A second PPK (PPK2), described as widely conserved in 

bacteria, can synthesize poly(P) from GTP or ATP (Zhang, et al., 2002). Polyphosphate also functions 

as a source of phosphate group for the phosphorylation of sugars, nucleotide diphosphate, and 

proteins, and its degradation is mainly carried out by phosphatases, although some kinases may use 

it as an ATP substitute, and even PPK and PPK2 can use it to generate ATP or GTP from the 

corresponding nucleotide diphosphate (Tzeng & Kornberg, 2000, Ishige, et al., 2002).  

To date, only one ppk gene has been studied in detail in S. lividans and it exerts a negative role in 

antibiotic production (Chouayekh & Virolle, 2002). Transcriptional studies of ppk have demonstrated 

that this gene is mainly expressed under conditions of Pi limitation, although a weak expression is 

also detectable with phosphate-rich medium. This expression is controlled by the two-component 

PhoR/PhoP system and by an unknown repressor that uses ATP as a corepressor (Ghorbel, et al., 

2006).  

In previous work with S. lividans we described the increased accumulation of the PstS protein in a 

polyphosphate kinase-null mutant (Δppk) (Diaz, et al., 2005). The PstS protein is a high-affinity 

phosphate-binding protein that forms part of the high-affinity phosphate transport system encoded 

by the pst operon. This operon, which is expressed under the control of PhoR/PhoP is induced under 

phosphate limitation and is also induced in the presence of an excess of certain carbon sources as 

fructose (Diaz, et al., 2005, Sola-Landa, et al., 2005) suggesting a dual carbon-phosphate regulation 

(Esteban, et al., 2008).  Recently, and in relation to this complex regulation, it has been reported that 
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the sugar phosphates affect Streptomyces development through genes that are under the positive 

control of the two-component system PhoR/PhoP (Tenconi, et al., 2012) 

In the present work we studied an S. lividans double mutant -Δppk/ΔpstS- in order to check the 

viability of this mutant under phosphate-limited conditions. Differences were detected in 

comparison with the wild type or the single ΔpstS or Δppk mutants upon incubation on Asparagine-

minimal solid medium (AMM) or in liquid R2YE under phosphate-limited conditions that suggested a 

cumulative effect of double mutation that partially suppresses the effects of separate single 

mutations. The most interesting feature of the double mutant was the overproduction of the 

pigmented antibiotic actinorhodin, when cultured in liquid R2YE under limited phosphate conditions. 

Additionally, when the double mutant was used as host to express the heterologous biosynthetic 

pathway for the antitumor compound 8-demethyl-tetramycin, a strong increase in production was 

obtained.  

 

MATERIALS AND METHODS 

Bacterial strains, plasmids and media. All strains and plasmids used are listed in Table 1. 

Streptomyces strains were grown at 30 °C on Solid Mannitol Soy Flour Agar medium (MSA), or R2YE 

(Kieser, et al., 2000) for normal cultures and sporulation. Asparagine-minimal medium (AMM) 

(Martin & McDaniel, 1975, Sola-Landa, et al., 2003) solidified with 3 % agarose and supplemented 

with different amounts of phosphate (from 0 to 5 mM sodium phosphate, pH 7) was used to study 

the growth of the different mutants. Cultures in liquid AMM media with different amounts of 

phosphate were done but very limited growth was obtained even for the wild type strain in all the 

concentrations assayed (data not shown). So, submerged cultures were normally carried out in YE 

medium (0.5 % yeast extract) supplemented with different amounts of the carbon source studied, 

normally fructose or glucose plus 2 mM MgCl2. Other liquid media used were R2YE (the same as solid 
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media without agar) supplemented with different amounts of sodium phosphate, pH 7. The 

Streptomyces culture conditions have been described previously (Fernández-Abalos, et al., 2003).  

E. coli was grown in Luria Broth (LB) at 37 °C, supplemented with kanamycin (25-50 µg ml-1) when 

needed. 

DNA manipulations and transformations of S. lividans and E. coli. Total DNA isolation (genomic + 

plasmid), transformation, and protoplast manipulation were done as indicated previously (Diaz, et 

al., 2005). Intergeneric conjugation was used to transfer cosmids from E. coli to S. lividans as 

described in Gust et al. (Gust, et al., 2003). 

Phosphate uptake. Phosphate incorporation in S. lividans cultures was studied in cells grown in 

liquid YE + 5 % fructose for 60 h (30 ºC, 200 rpm). Cells were washed with 0.9 % NaCl and 32P-labeled 

Na2HPO4 was added (2 x 105 cpm/ml). Phosphate uptake was measured after 2 minutes at 30 ºC with 

a liquid scintillation counter (Wallac 1409-001). The phosphate uptake results were normalized to 

dry weight of the corresponding cells used in the assay. 

Construction of S. lividans ∆ppk/∆pstS mutant. Deletion of the pstS gene was accomplished using 

the REDIRECT technology (Gust, et al., 2003). The ppk::Ωhygro mutant strain (TK24 derivative) 

(Chouayekh & Virolle, 2002) was used as a host to obtain the double mutant. A pstS-deletion 

cassette generated previously to delete the pstS gene, in S. lividans 1326 and in S coelicolor M145, 

was used (Diaz, et al., 2005). The recombinant cosmid (SCD84 pstS::acc(3)IV-oriT) was introduced 

into S. lividans TK24 and the S. lividans ppk::Ωhygro mutant to obtain the pstS and the pstS/ppk null 

mutants, respectively, by intergeneric conjugation (E. coli/Streptomyces). Correct replacement was 

checked in Southern blot experiments. 

Protein analysis. Total cell protein was obtained breaking the cells in a fast prep (MP-Biomedicals) 

and boiling the extract in SDS-polyacrylamide loading buffer for ten minutes. Protein electrophoresis 

was accomplished in denaturing polyacrylamide gels (SDS-PAGE), as described elsewhere (Ruiz-
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Arribas, et al., 1995). Coomassie blue staining was done to visualize proteins. Western blot analyses 

of the proteins separated in SDS-PAGE were done as in Esteban et al. (Esteban, et al., 2008). Anti-

PstS antibodies were used as primary antibodies and horseradish peroxidase-conjugated secondary 

donkey-anti-rabbit antibody was used. The blot was developed with ECL reagents obtained from 

General Electric, used according to the manufacturers’ instructions.  

Alkaline phosphatase assay. Alkaline phosphatase activity was measured following the method 

described by Moura et al.  (Moura, et al., 2001). In summary, 50 µL of sample was added to 50 µL of 

25 mM Tris-HCl buffer pH 8 containing 10 mM p-nitrophenyl phosphate (PNPP) and 0.4 mM CaCl2 

and incubated at 37 ºC for ten minutes. The reaction was stopped by adding 1 mL of 0.5 M Na2CO3 

and absorbance was measured at 410 nm. The growth rates of all the strains tested were similar 

(data not shown).   

Generation of an integrative version of 8-demethyl-tetracenomycin C cosmid clone cos16F4. 

Cosmid clone cos16F4 is a pKC505 derivative (Kieser, et al., 2000) that contains most of the genes 

from the elloramycin gene cluster from Streptomyces olivaceus Tü2353 and is responsible for the 

biosynthesis of 8-demethyl-tetracenomycin C aglycon (Ramos, et al., 2008). 

In order to convert this replicative (low copy number) and apramycin-resistant cosmid into an 

integrative one, a 6.9-kb SpeI DNA fragment from pFL1139 was cloned into the unique XbaI 

restriction site of cos16F4, which is located at its multiple cloning site. This 6.9-kb DNA fragment 

contained the conjugative oriT (for conjugation from E. coli), the tetracycline resistance cassette, the 

site-specific recombination attP site, the int integrase gene from ΦC31, and the ermE erythromycin 

resistance cassette (for selection in Streptomyces). pFL1139 is a pBluescriptSK derivative that 

contains the ermE cassette cloned as an EcoRV-StuI 1.7 kb DNA fragment into the unique EcoRI site 

(blunt-ended) of pFL1138. pFL1138 is a pBluescriptSK derivative that contains a 5.2 kb DraI-BsaI DNA 

fragment from pIJ787 (kindly provided by Dr. Bertold Gust, Universität Tübingen, Germany) cloned 

at the pBluescriptSK SmaI site. 
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HPLC analysis and quantification of 8-demethyl-tetracenomycin C. Liquid cultures (10 ml in R2YE 

with different phosphate concentrations see below) were incubated at 28º C for 5 days and then 

extracted with 1 volume of ethyl acetate and the organic layer was dried in vacuo. The dry extracts 

were finally resuspended in methanol. These extracts were analyzed by reversed phase 

chromatography in an Acquity UPLC device with a BEH C18 column (1.7 mm, 2.1 x 100 mm, Waters) 

and equipped with a DAD (Waters 2996). The two mobile phase solvents were acetonitrile and 0.1% 

trifluoroacetic acid (in water). Samples were chromatographed using this elution programme: 10% 

acetonitrile for 1 min, followed by a linear gradient from 10% to 80% acetonitrile over 7 min at a 

flow rate of 0.5 ml/min and a column temperature of 30º C. Detection and spectral characterization 

of the peaks were performed by photodiode array detection and Empower software (Waters), 

extracting two-dimensional chromatograms at 280 nm. The peaks corresponding to 8-demethyl-

tetracenomycin C eluted at 4.04 min and were quantified by area integration as comparison with 

pure 8-demethyl-tetracenomycin C. 

Actinorhodin was quantified using the standard spectrophotometric method (Kieser, et al., 2000). 

Enzymes and reagents. The products used were purchased from Bio-Rad, Boehringer Mannheim, 

Invitrogen, Merck, Panreac, Promega, Quiagen or Sigma, and were used following the 

manufacturers' guidelines. 

 

RESULTS AND DISCUSSION 

The double mutant ppk/pstS restores deficiencies of the pstS mutant growth under phosphate-

limited conditions. 

We have previously reported the over-accumulation of the PstS protein in the S. lividans Δppk 

mutant (Diaz, et al., 2005). In order to check the effect that the join deletion ppk-pstS has in the 

growth of S. lividans under limited phosphate conditions a double mutant, ppk/pstS, was generated 
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in S. lividans TK24. The S. lividans ppk mutant (Chouayekh & Virolle, 2002) was used as a host to 

delete the pstS gene with the Redirect technology (Gust, et al., 2003). The apramycin cassette was 

used to replace the pstS gene, as described in Diaz et al. (Diaz, et al., 2005). In order to obtain 

isogenic strains a single pstS mutant was also generated in the S. lividans TK24 strain that was the 

parental strain of the ppk mutant. DNA-DNA hybridization and PCR analyses were used to 

corroborate pstS gene replacement in both mutants (data not shown). The absence of PstS protein 

in the cells (Fig. 1A) and in the culture supernatant (not shown) of these ΔpstS and ∆ppk/pstS 

mutants was also corroborated by SDS-PAGE and Western blot with anti-PstS antibodies.  

The effect of the several concentrations of phosphate (from 0 μM to 5 mM) on the different mutants 

was studied on AMM solid medium. 100 viable spores from each strain were deposited in a drop of 5 

μl of water onto the surface of the medium and incubated at 30 ºC for several days and the growth 

of all the strains was monitored. The growth of the single pstS mutant was the most affected. After 

three days of incubation, this mutant was unable to grow on any of the phosphate concentrations 

used while all the other strains grew well (data not shown). Longer incubations (4-6 days) permitted 

the growth of the single pstS mutant in media containing 1 mM phosphate and higher while all the 

other strains (including the double ppk/pstS mutant) were able to grow even in the absence of 

added phosphate  (Fig. 1B). All the strains tested grew perfectly well in other complex media, such as 

R2YE and MSA (Fig. 1B).  

These results suggested that another way to obtain and capture phosphate might be activated in the 

double mutant. At least two possibilities may explain these results: first, an increase the extracellular 

phosphatase level and/or second, an increase in phosphate incorporation. To study this we used the 

media YE containing 5 % fructose and 2 mM MgCl2 that was used in our previous work on pstS gene 

(Diaz, et al., 2005). Phosphatase activity was similar in the wild type strain and in the pstS mutant in 

all the times assayed. However, phosphatase activity increased up to 2.5 times in the ppk and in the 

ppk/pstS double mutant at 60 hours cultures (Fig. 2A). Inorganic phosphate incorporation was 
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studied in the different strains with 32P-labeled phosphate uptake As described previously for S. 

lividans 1326 ΔpstS (Diaz, et al., 2005) a striking reduction in phosphate uptake was observed for S. 

lividans TK24 ΔpstS , which was only able to incorporate 5.2 % of the amount taken up by the wt 

strain. The ppk mutant was able to incorporate 82 % of the amount incorporated by the wt strain 

while the pstS/ppk double mutant was able to uptake 28 % of the phosphate incorporated by the wt 

strain (5.3-fold the amount from the pstS mutant) (Fig 2B). Both, higher phosphatase activity and an 

increase in phosphate uptake, may explain the previous observation that this Δppk/pstS double 

mutant grew better than the single ΔpstS mutant under limited phosphate conditions.  

This opens the possibility that another high affinity phosphate transport system could be activated in 

the double mutant. Although a putative orthologous pst operon is present in S. lividans 1326 and in 

S. coelicolor (ORFs: SCO6814, SCO 6815 and SCO 6816) that operon is missing in S. lividans TK24 

genome (Lewis, et al., 2010). So, up to now we do not have a clear candidate that may be the 

responsible for the increase of phosphate transport in the double mutant under low phosphate 

concentrations.  

Because the ppk mutant of S. lividans displays a higher expression of the PhoP regulator (Ghorbel, et 

al., 2006) and a higher expression of the complete pst operon (data not shown) higher phosphate 

transport would be expected in this mutant. However, under our experimental conditions, the 

incorporation of radioactive phosphate was slightly lower in this strain than in the wild type strain, 

indicating the existence of another level of regulation, perhaps triggered by a saturation of the 

concentrations of intracellular phosphate that was not processed into polyphosphate in this mutant. 

S. lividans has another putative functional polyphosphate kinase encoded by the SSPG_07441.1 ORF, 

which is identical to SCO0166  from S. coelicolor. That protein, classified as a putative regulator, in 

both databanks, shares 64 % identity and 77 % similarity with the PPK2A (NCgl0880) and 53 % 

identity and 71 % similarity with the PPK2B (NCgl2620) from Corynebacterium glutamicum. (Lindner, 

et al., 2007). The protein encoded by SCO0166 also shares high similarity (60 % identity and 72 % 
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similarity) with Pseudomonas aeruginosa PPK2, whose activity has been demonstrated 

experimentally (Zhang, et al., 2002, Rao, et al., 2009). Future studies addressing the activity of the 

putative Streptomyces PPK2 may clarify the role of this enzyme in phosphate storage and uptake.  

 

The pstS/ppk double mutant expresses higher amounts of endogenous actinorhodin and of 

heterologous 8-demethyl-tetracenomycin C than the other strains under low phosphate 

concentrations.   

During the study of the growth of the different strains on solid AMM with different phosphate 

concentrations (see above), the production of the blue-coloured antibiotic actinorhodin was 

detected on plates containing 250 and 500 µM phosphate for the ppk/pstS double mutant and on 

plates with phosphate concentrations of 500 µM and 1 mM for the ppk mutant, while higher 

concentrations impaired antibiotic production in both strains (Fig. 1B). 

The effect of the different phosphate concentrations on actinorhodin production by all four strains 

was also studied and quantified in liquid R2YE medium with three different amounts of added 

phosphate: medium without phosphate (R2-P); medium supplemented with the normal amount of 

phosphate (0.37 mM), and medium with a higher amount of phosphate (1.85 mM). Actinorhodin 

production by the ppk and ppk/pstS mutants was clearly observed when grown in R2-P and in 

normal R2 after 4 days of culture. Higher production was obtained in the ppk/pstS mutant in both 

conditions (Fig. 3A).  However, the addition of a high phosphate concentration (R2+1.85 mM P) 

blocked antibiotic production in these strains. 

Overproduction of actinorhodin by the ppk mutant under phosphate-limiting conditions was 

described previously (Chouayekh & Virolle, 2002). These authors reported that the expression of 

actII-ORF4 increased drastically in the ppk mutant and originates an increase in actinorhodin 

production. Although this strain has a functional pst operon that permits a phosphate incorporation 
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almost similar to the wild-type strain the incapacity to accumulate polyphosphate may originates a 

phosphate starvation under low phosphate culture concentrations. This starvation is increased in the 

ppk/pstS double mutant on which a limitation on phosphate transport is observed when compared 

with the phosphate incorporation on the ppk mutant. This phosphate famine might explain the 

higher actinorhodin production of the double mutant ∆ppk∆pstS compared to the single one ∆ppk. 

The effect of phosphate on antibiotic production was also studied in the ability of these strains to 

produce heterologous compounds. The integrative cosmid cos16F4iE, which directs the biosynthesis 

of the polyketide antitumor 8-demethyl-tetracenomycin C, was introduced into all the strains and 

the production of this antitumor agent was carried out in R2-P or in R2+1.85 mM P. Production of 

the antitumor agent was quantified by HPLC, with the observation that it was higher under 

phosphate limitation: three-fold higher than in media with the phosphate supplement. The best 

producer under both conditions was the pstS/ppk double mutant, which attained a production of 

about 9.7 μg/ml under phosphate limitation and 3 μg/ml under an excess of phosphate. These yields 

represent over 10-fold more antibiotic than that obtained with the wild-type strain and about 3-fold 

more than that obtained with the ppk single mutant. These results open the future possibility of 

using the ∆ppk/∆pstS strain as a host for the industrial production of metabolites of interest. 
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Figure legends 

Figure 1: PstS expression and strains growth in AMM with different amount of phosphate. A) 

Western blot to detect cell-bound PstS in the indicated strains (3 µg of total protein were loaded per 

lane) using anti-PstS. B) Growth of the different strains in minimal medium (AMM) supplemented 

with the indicated amount of sodium phosphate buffer, pH 7. The growth of these strains in R2YE 

and MSA are also included as controls.  

 

Figure 2: Extracellular phosphatase and phosphate transport A) Extracellular phosphatase activity 

(µmol PNP/mL) of the different strains: wt ( ), ΔpstS ( ), Δppk ( ) Δppk/pstS (X). B) Uptake of 32P-

labeled phosphate after 2 minutes at 30 ºC of the indicated strains. The results were normalized to 

dry weight of the corresponding cells used in the assay. The results presented are the means of 

three independent experiments. 

 

Figure 3: Antibiotic production by the different strains A) Histogram showing the production of 

actinorhodin in R2YE with different amounts of phosphate (P): without phosphate ( ); 

supplemented with the normal amount of phosphate (0.37 mM) ( ), and with a higher amount of 

phosphate (1.85 mM) ( ). B) Histogram showing the production of 8-demethyl-tetracenomycin C 

from an integrated plasmid in all the different strains. The cultures were carried out in R2YE without 

phosphate ( ) and in the same medium supplemented with 1.83 mM phosphate ( ). The results 

presented are the means of two independent experiments. 
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Table 1: Bacterial strains 

Strain Genotype Comments Reference 

Streptomyces lividans 
TK24 

str-6 SLP2- SLP3- 
parental strain (Kieser, et al., 2000) 

Streptomyces 

lividans Δppk 
str-6 SLP2- SLP3- Δppk 

Polyphosphate kinase-
defective mutant 

(Chouayekh & Virolle, 
2002) 

Streptomyces 

lividans ΔpstS 
str-6 SLP2- SLP3- ΔpstS 

Mutant defective in the 
high-affinity phosphate 
protein PstS. 

This Work 

Streptomyces 
lividans 

 ΔpstS/Δppk 

str-6 SLP2- SLP3- 

ΔpstS/Δppk 

Mutant defective in the 
high-affinity phosphate 
protein PstS and in the 
Polyphosphate kinase, 
Ppk. 

This Work 

Escherichia coli 

DH5α 

F-, φ80dlacZΔM15, 

Δ(lacZYA-argF)U169, 
recA1, endA1, hsdR17(rk-, 

mk+), supE44, λ-, thi-1, 
gyrA, relA1 

Cloning, plasmid 
isolation 

(Hanahan & Meselson, 
1983) 

E. coli 
BW25113/pIJ790 

E. coli K12 derivative 

ΔaraBAD, ΔrhaBAD  
Gene replacement 

(Datsenko & Wanner, 
2000) 

E. coli 
ET12567/pUZ8002  

dam, dcm, hsdS, cat, tet
E. coli/S. lividans 
conjugation 

(MacNeil, et al., 1992)  
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