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RESUMEN (en espafiol)

Actualmente, es posible adquirir y almacenar grandes volimenes de datos sobre
diferentes fenémenos complejos en muchas areas importantes. Con el fin de ser util,
esta informacion debe ser explicada de la manera mas comprensible posible, incluyendo
los conocimientos previos disponibles sobre el fenémeno que se estudia.

Estos objetivos s6lo pueden lograrse mediante el uso de lenguaje natural, especialmente
si la informacion final va a ser utilizada por personas no expertas. Por lo tanto, esta
informacion debe ser explicada de manera comprensible a través de los modelos
lingliisticos. La formulacion de modelos lingiiisticos puede ser vista como una tarea no
trivial, y muchas veces, el modelado lingiiistico contribuye a una mejor comprension de
los fenomenos, proporcionando una novedosa e inédita vision de los mismos. En esta
tesis, nos basamos en el paradigma de la computaciéon con palabras y percepciones
desarrollado por Zadeh con el fin de extender la Teoria Computacional de Percepciones.
La idea consiste en extender la Légica Borrosa para crear modelos de sistemas basados
en la forma en que los seres humanos hacen descripciones utilizando el lenguaje
natural. El objetivo es utilizar las estructuras complejas del lenguaje natural para hacer
modelos imprecisos y robustos de los fenémenos complejos, cuyas principales ventajas
son la incorporacion de las capacidades creativas, abstractas y de adaptacion del ser
humano, y reducir al minimo los aspectos no deseados tales como la imprevisibilidad, la
incoherencia, la subjetividad y la inestabilidad temporal. Nuestro objetivo es hacer uso
de una relacién simbiotica entre el diseiador y el ordenador, de tal manera que la
motivacion y la creatividad de los diseiiadores se vean reforzadas por la gran capacidad
de almacenamiento y rendimiento del ordenador.

Hemos ampliado el concepto de Maquina de Estados Finitos Borrosos para abordar el
problema de modelar cada fenébmeno complejo especifico sobre la base de un disefo |
lingliistico y guiado por el ser humano. Ademas, dado que la definicibn de los
parametros de la Maquina de Estados Finitos Borrosos es, en cada caso particular, una
tarea compleja para los expertos, hemos propuesto una metodologia que consiste en un
método de aprendizaje automatico para definir los parametros del modelo. Esta
metodologia se basa en la hibridacidon de las Maquinas de Estados Finitos Borrosos y los
Algoritmos Genéticos, que conducen a la Maquina Genética de Estados Finitos
Borrosos. La Maquina Genética de Estados Finitos Borrosos es capaz de aprender
automaticamente las reglas borrosas y las funciones de pertenencia, mientras que un
experto define los posibles estados y las transiciones permitidas entre los estados. A
continuacién, hemos desarrollado el Modelo Lingiiistico Granular de un Fenémeno, que
es el modelo necesario para interpretar los datos de entrada de una forma jerarquica. El
Modelo Lingiiistico Granular de un Fenémeno es capaz de combinar diferentes fuentes
de conocimiento, en combinacién con la expresividad del paradigma de modelado de las
Maquinas de Estados Finitos Borrosos. Una vez que la Maquina de Estados Finitos
Borrosos es capaz de modelar cada fenémeno complejo, el Modelo Lingiiistico Granular
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de un Fenémeno es capaz de producir descripciones lingiiisticas sobre él y su evolucion
en el tiempo.

Finalmente, se ha validado la metodologia propuesta con varias aplicaciones en el
mundo real. Primero, hemos sido capaces de modelar la marcha y la actividad humana
con nuestro enfoque de modelado lingiiistico mediante conocimiento experto y
conocimiento inducido. A continuacion, hemos desarrollado un sistema capaz de
modelar la calidad de la marcha y producir descripciones linglisticas sobre ella.
También hemos mostrado como nuestra propuesta funciona correctamente en el campo
de los Sistemas Inteligentes de Transporte, donde hemos sido capaces de modelar y
generar descripciones lingiiisticas de la evolucion del trafico en carreteras.

RESUMEN (en Inglés)

Nowadays, it is possible to acquire and store vast volumes of data about different
complex phenomena in many crucial areas. In order to be useful, this information must
be explained in an understandable way, including facts that may be derived from the data
and the background knowledge available about the phenomena under study. This can
only be achieved by using natural language, especially if the final information is going to
be used by non-experts. Therefore, this information must be explained in an
understandable way by means of linguistic models. The formulation of linguistic models
can be seen as a non-trivial task, and many times, linguistic modeling contributes to a
better understanding of phenomena, providing a novel and previously unseen view of
them. In this thesis, we follow Zadeh’s computing with words and perceptions paradigm
in order to extend the Computational Theory of Perceptions. The idea consists of
extending Fuzzy Logic to create system models based on the way that humans make
descriptions using natural language. The aim is to use complex structures of natural
language to make robust imprecise models of complex phenomena, whose main
advantages are the incorporation of creative, abstract and adaptive human capabilities,
while minimizing undesirable aspects such as unpredictability, inconsistency,
subjectivity and temporal instability. Our aim is to make use of a symbiotic relationship
between the designer and the computer, in such a way that designer’s motivation and
creativity are strengthened by the computer’s greater memory storage and higher
computational performance.

We have extended the concept of Fuzzy Finite State Machine to deal with the problem of
modeling each specific complex phenomenon on the basis of a linguistic, human-guided
design. Moreover, since the definition of details of the Fuzzy Finite State Machine in each
particular case is a complex task for experts, we have proposed a methodology which
consists of a machine learning method to define the model parameters. This
methodology is based on the hybridization of Fuzzy Finite State Machines and Genetic
Algorithms leading to Genetic Fuzzy Finite State Machines. The Genetic Fuzzy Finite
State Machine automatically learns the fuzzy rules and membership functions of the
model, while an expert defines the possible states and allowed transitions between
states.

Then, we have developed the Granular Linguistic Model of a Phenomenon paradigm,
which is the model needed to interpret the input data in a hierarchical fashion. The
Granular Linguistic Model of a Phenomenon is able to merge different sources of
knowledge in combination with the expressiveness of the Fuzzy Finite State Machine
modeling paradigm. Once the Fuzzy Finite State Machine is able to model each complex
phenomenon, the Granular Linguistic Model of a Phenomenon is able to produce
linguistic descriptions about it and its evolution in time.

Finally, we have validated the proposed methodology with several real world
applications. We have been able to model the human gait and the human activity using |
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We must not forget that when radium was
discovered no one knew that it would prove
useful in hospitals. The work was one of pure
science. And this is a proof that scientific
work must not be considered from the point
of view of the direct usefulness of it. It must
be done for itself, for the beauty of science,
and then there is always the chance that a
scientific discovery may become like the ra-
dium a benefit for humanaity.

Marie Curie (1867 - 1934)
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Abstract

Nowadays, it is possible to acquire and store vast volumes of data about different complex
phenomena in many crucial areas. In order to be useful, this information must be ex-
plained in an understandable way, including facts that may be derived from the data and
the background knowledge available about the phenomena under study. This can only
be achieved by using natural language, especially if the final information is going to be
used by non-experts. Therefore, this information must be explained in an understandable
way by means of linguistic models. The formulation of linguistic models can be seen as a
non-trivial task, and many times, linguistic modeling contributes to a better understand-
ing of phenomena, providing a novel and previously unseen view of them. In this thesis,
we follow Zadeh’s computing with words and perceptions paradigm in order to extend
the Computational Theory of Perceptions. The idea consists of extending Fuzzy Logic
to create system models based on the way that humans make descriptions using natural
language. The aim is to use complex structures of natural language to make robust im-
precise models of complex phenomena, whose main advantages are the incorporation of
creative, abstract and adaptive human capabilities, while minimizing undesirable aspects
such as unpredictability, inconsistency, subjectivity and temporal instability. Our aim is
to make use of a symbiotic relationship between the designer and the computer, in such a
way that designer’s motivation and creativity are strengthened by the computer’s greater
memory storage and higher computational performance.

We have extended the concept of Fuzzy Finite State Machine to deal with the problem
of modeling each specific complex phenomenon on the basis of a linguistic, human-guided
design. Moreover, since the definition of details of the Fuzzy Finite State Machine in each
particular case is a complex task for experts, we have proposed a methodology which
consists of a machine learning method to define the model parameters. This methodology
is based on the hybridization of Fuzzy Finite State Machines and Genetic Algorithms
leading to Genetic Fuzzy Finite State Machines. The Genetic Fuzzy Finite State Machine
automatically learns the fuzzy rules and membership functions of the model, while an
expert defines the possible states and allowed transitions between states.

Then, we have developed the Granular Linguistic Model of a Phenomenon paradigm,
which is the model needed to interpret the input data in a hierarchical fashion. The
Granular Linguistic Model of a Phenomenon is able to merge different sources of knowl-

edge in combination with the expressiveness of the Fuzzy Finite State Machine modeling
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paradigm. Once the Fuzzy Finite State Machine is able to model each complex phe-
nomenon, the Granular Linguistic Model of a Phenomenon is able to produce linguistic
descriptions about it and its evolution in time.

Finally, we have validated the proposed methodology with several real world appli-
cations. We have been able to model the human gait and the human activity using our
linguistic modeling approach using expert and induced knowledge. Then, we have devel-
oped a system capable of modeling the gait quality and producing linguistic descriptions
about it. We have also showed the generality of our proposal, showing how it works in a
completely different field, namely, intelligent transportation systems, where we have been

able to model and generate linguistic descriptions of the traffic evolution in roads.



Resumen

Actualmente, es posible adquirir y almacenar grandes volimenes de datos sobre diferentes
fenémenos complejos en muchas areas importantes. Con el fin de ser 1til, esta informacion
debe ser explicada de la manera mas comprensible posible, incluyendo los conocimientos

previos disponibles sobre el fenédmeno que se estudia.

Estos objetivos sélo pueden lograrse mediante el uso de lenguaje natural, especial-
mente si la informacion final va a ser utilizada por personas no expertas. Por lo tanto,
esta informacién debe ser explicada de manera comprensible a través de los modelos
lingtiisticos. La formulaciéon de modelos lingiiisticos puede ser vista como una tarea no
trivial, y muchas veces, el modelado lingiiistico contribuye a una mejor comprension de
los fenémenos, proporcionando una novedosa e inédita vision de los mismos. En esta tesis,
nos basamos en el paradigma de la computacion con palabras y percepciones desarrollado
por Zadeh con el fin de extender la Teoria Computacional de Percepciones. La idea con-
siste en extender la Loégica Borrosa para crear modelos de sistemas basados en la forma
en que los seres humanos hacen descripciones utilizando el lenguaje natural. El objetivo
es utilizar las estructuras complejas del lenguaje natural para hacer modelos imprecisos y
robustos de los fenémenos complejos, cuyas principales ventajas son la incorporacion de
las capacidades creativas, abstractas y de adaptacion del ser humano, y reducir al minimo
los aspectos no deseados tales como la imprevisibilidad, la incoherencia, la subjetividad
y la inestabilidad temporal. Nuestro objetivo es hacer uso de una relacién simbidtica
entre el disenador y el ordenador, de tal manera que la motivacion y la creatividad de los
disenadores se vean reforzadas por la gran capacidad de almacenamiento y rendimiento

del ordenador.

Hemos ampliado el concepto de Maquina de Estados Finitos Borrosos para abordar
el problema de modelar cada fenémeno complejo especifico sobre la base de un diseno
lingiiistico y guiado por el ser humano. Ademas, dado que la definicién de los parametros
de la Maquina de Estados Finitos Borrosos es, en cada caso particular, una tarea com-
pleja para los expertos, hemos propuesto una metodologia que consiste en un método de
aprendizaje automatico para definir los parametros del modelo. Esta metodologia se basa
en la hibridacion de las Maquinas de Estados Finitos Borrosos y los Algoritmos Genéticos,
que conducen a la Maquina Genética de Estados Finitos Borrosos. La Maquina Genética
de Estados Finitos Borrosos es capaz de aprender automaticamente las reglas borrosas

y las funciones de pertenencia, mientras que un experto define los posibles estados y las
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transiciones permitidas entre los estados.

A continuacién, hemos desarrollado el Modelo Lingiiistico Granular de un Fenémeno,
que es el modelo necesario para interpretar los datos de entrada de una forma jerarquica.
El Modelo Lingiiistico Granular de un Fenémeno es capaz de combinar diferentes fuentes
de conocimiento, en combinacién con la expresividad del paradigma de modelado de
las Maquinas de Estados Finitos Borrosos.Una vez que la Maquina de Estados Finitos
Borrosos es capaz de modelar cada fenémeno complejo, el Modelo Lingiiistico Granular
de un Fenémeno es capaz de producir descripciones lingiiisticas sobre €l y su evolucién en
el tiempo.

Finalmente, se ha validado la metodologia propuesta con varias aplicaciones en el
mundo real. Primero, hemos sido capaces de modelar la marcha y la actividad humana con
nuestro enfoque de modelado lingiiistico mediante conocimiento experto y conocimiento
inducido. A continuacién, hemos desarrollado un sistema capaz de modelar la calidad
de la marcha y producir descripciones lingiiisticas sobre ella. También hemos mostrado
cémo nuestra propuesta funciona correctamente en el campo de los Sistemas Inteligentes
de Transporte, donde hemos sido capaces de modelar y generar descripciones lingiiisticas

de la evolucién del trafico en carreteras.



(General scheme

This memory entitled “Linguistic Modeling of Complex Phenomena”, presented to obtain
the degree of Doctor by the “Universidad de Oviedo”, is organized into two different parts

apart from the previous “Abstract” and “Resumen”:

e The “Report” is presented in the first part, which is organized as follows. Chapter 1
contains the introduction to the topics developed in this thesis. Chapter 2 describes
the main objectives of the thesis. The discussion of results is presented in Chapter 3.
Chapters 4 and 5 draw some conclusions, both in English and Spanish, respectively.

Finally, at the end of this part, the relevant bibliography is included.

e The second part, “Publications”, is organized as follows. Chapter 6 includes a com-
plete copy of the presented publications, including their bibliographic references.
Chapter 7 consists of a report on the impact factor of each of the presented pub-
lications. Then, Chapter 8 includes the whole list of the candidate’s publications.
Finally, in Chapter 9, some other publications are included due to their high rela-

tionship with the work and topics developed during this Ph.D. Thesis.
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Chapter 1

Introduction

There is nothing more difficult to take in
hand, more perilous to conduct or more un-
certain in its success than to take the lead in

the introduction of a new order of things.
Niccolo Machiavelli (1469 - 1527)

Currently, new technologies allow to acquire and store vast volumes of data about
different time-evolving complex phenomena in many crucial areas, like Economy, Science,
and industrial processes. Examples in Economy include the evolution of every kind of
economical indicators at local or global levels, like stock funds; electricity, gas or water
consumption; price of basic products; etc. In Science, the amount of information collected
by researchers is overwhelming and ever growing, including astronomical observations by
radio telescopes, space probes, and data collected from experiments in diverse scientific
fields among others. Finally, in the context of industrial applications, there are different
amounts of data such as the ones related to the supply chain or those ones produced

during the whole industrial process.

In order to be useful, these data must be explained in an understandable way, including
facts that may be derived from data and the background knowledge available about each
phenomenon under study. This objective can only be achieved by using natural language
(NL), especially if the final information is going to be used by non-experts. This thesis
seeks to contribute with some fundamental basis and practical tools to overcome this
problem. The formulation of linguistic models can be seen as a non-trivial task, and
many times, linguistic modeling contributes to a better understanding of the phenomenon,

providing a novel and previously unseen view of it.

In the literature, the task of modeling complex phenomena is usually called System
Identification (SI) [Sod 94, Lju 98]. It is worth noting that the concept of SI and its
formal definition were introduced by Zadeh [Zad 56]. According to Zadeh’s definition
[Zad 62], given a class of models, SI involves finding a model which may be regarded

as equivalent to the objective system with respect to input-output data. The field of



SI uses statistical methods in order to build mathematical models of dynamical systems
from measured data. SI also includes the optimal design of experiments for efficiently
generating informative data for fitting such models. A dynamical mathematical model in
this context, is a mathematical description of the dynamic behavior of a system or process
in either the time or frequency domain.

Traditionally in SI, engineers use differential equations to build white-box models
based on first principles to model the behavior of real-world systems [Oga 67, Lju 98,
Nel 00, Ise 09]. In this approach, engineers can choose among several paradigms to rep-
resent system models. One of the most expressive model structure is the state space
representation [Oga 67, Lju 98]. In this approach, the designer must find out the nec-
essary and sufficient subset of state variables (x1,x9,...x,) to represent the entire state
X [t] of the system at the time instant ¢. The designer uses her/his creativity and personal
experience to choose the adequate set of state variables regarding the system goals. This
set of variables emphasizes the relevant aspects of the system and hides the irrelevant
ones. When the system evolves in time, the current state X|[t] follows a trajectory in the
state space. The general form of the model of a time-invariant discrete system in the state

space is formulated by the following set of equations:

{ X[t+1] = f(X[t], U[t]) (1.1)
g

Vi) = g(X[t], Ut])

where:

e U is the input vector of the system: (uq,us, ..., uy,,), with n, being the number of

input variables.

X is the state vector: (xy,x9,...,%,,), With n, being the number of states and
Xo = X[t = 0] the initial state of the system.

Y is the output vector: (y1,¥s, ..., ¥n, ), With n, being the number of output variables.

f is the function which calculates the state vector at time instant ¢ + 1.

g is the function which calculates the output vector at time instant ¢.

Unfortunately, for many systems in our environment, it is not feasible, or it is very
costly, to obtain and to solve these equations. This situation is described by the Zadeh’s
Principle of Incompatibility: “as the complexity of a system increases, our ability to make
precise and yet significant statements about its behavior diminishes until a threshold is
reached beyond which precision and significance (or relevance) become almost mutually
exclusive characteristics” [Zad 73]. This is to say that, when the system to be modeled
grows in complexity, the number of variables and equations becomes intractable and we

have no other option but to work with alternative models.



A different approach is therefore to start from measurements of the behavior of the
system and the external influences (inputs to the system) and try to determine a mathe-
matical relation between them without going into the details of what is actually happening
inside the system. These models are known as black-box models. In these models, no
prior knowledge is available. Examples of these models are neural networks [Hay 94| or

autoregressive linear models [Sea 97, Sta 09].

An intermediate approach is the grey-box modeling, where, although the peculiarities
of what is going on inside the system are not entirely known, a certain model based on
both insight into the system and experimental data is constructed. Grey-box modeling
is also known as semi-physical modeling. In the last forty years, there have been several
attempts to deal with this type of problems by means of models based on Fuzzy Logic
(FL) [Zad 73, Sug 88, Ped 93, Bar 95, Dri 96, Dri 97, Ped 99], which have become a good
alternative to deal with those systems where obtaining and solving the appropriate state
equations is a difficult or impossible task. Based on the Principle of Incompatibility,
Zadeh suggested linguistic analysis in place of quantitative analysis. He suggested the
use of the so-called linguistic variables [Zad 75a, Zad 75b, Zad 75¢c]| instead of or in ad-
dition to numerical values, the characterization of simple relations between variables by
conditional fuzzy statements, and the characterization of complex relations by fuzzy al-
gorithms. Zadeh’s original purpose in introducing the fuzzy sets [Zad 65] was to provide
a tool to help in the modeling of complex phenomena, especially, but not restricted to,
those involving human agents. By permitting a certain amount of imprecision in our
models, we provide a robustness that allows us to model complex situations [Yag 94].
According to De Kleer [Kle 84], “the behavior of a physical system can be discussed by
the exact values of its variables (forces, velocities, positions, pressures, etc.) at each time
instant. Such description, although complete, fails to provide much insight into how the
system functions. Our longterm goal is to develop an alternative physics in which these
same concepts are derived from far simpler, but nevertheless formal qualitative basis. Our
proposal is to reduce the quantitative precision of the behavioral descriptions but retain
the crucial distinctions”. In essence, the fundamental reason for a high level approach is
to provide transparent models that can be understood and used by practitioners in the
relevant fields [Law 04].

Fuzzy modeling is one of the most important issues in FL and it is interpreted as a
qualitative modeling scheme by which we describe the system behavior using NL [Sug 93].
On the one hand, semantic expressiveness, using linguistic variables [Zad 75a, Zad 75b,
Zad 75¢c] and rules [Mam 74, Mam 75, Mam 77|, is quite close to NL which reduces the
effort of expert knowledge extraction. On the other hand, being universal approximators
[Buc 93, Cas 95| fuzzy inference systems are able to perform nonlinear mappings between

inputs and outputs.

During the last years, models based on FL have grown in complexity as a consequence

of the modeling requirements in terms of accuracy and interpretability. The number of



variables and the number of needed rules to create a fuzzy model have grown up until
making models difficult to understand, and consequently, difficult to apply. Currently,
researchers in the field work to establish the formalism that will make the designed fuzzy
models more human friendly [Cas 03a, Cas 03b, Alo 07, Alo 08, Alo 11a, Alo 11b].

Figure 1.1 shows the relation between the topics on which the thesis is based (in
yellow) and the topics produced during the development of the thesis (in green). We follow
Zadeh’s computing with words and perceptions paradigm [Zad 99] in order to extend the
Computational Theory of Perceptions [Zad 01]. The idea consists of extending FL to
create system models based on the way that humans make descriptions using NL. The
aim is to make use of complex structures of NL to make robust imprecise models of
complex systems. We have considered Fuzzy Finite State Machines (FFSMs) to deal with
the problem of modeling the evolution in time of each specific complex phenomenon and
we have developed the so-called Granular Linguistic Model of a Phenomenon (GLMP),
which is the model needed to create a granular description of it. The GLMP must manage
granular and imprecise information in a hierarchical fashion. Therefore, once the FFSM
is able to model the evolution of each phenomenon, the GLMP will be able to produce a
linguistic description about it and its evolution in time.

The theoretical foundations that established the first FFSMs were introduced by
Santos [San 68] and developed by Moderson [Mor 02] among others. Our model of
FFSM is inspired by the concepts of fuzzy state and fuzzy system developed by Zadeh
[Zad 96a, Zad 96b]. More specifically, it can be considered an implementation of the gen-
eral idea of input-output fuzzy models of dynamic systems proposed by Yager [Yag 94],
where the set of state equations is implemented using a set of fuzzy rules. However,
the detailed definition of each of the elements that form part of the FFSM model is a
complex task for experts. Therefore, we have proposed a methodology which consists of
a machine learning method to define the model parameters, this methodology is based
on the hybridization of FFSMs and Genetic Algorithms (GAs) leading to Genetic Fuzzy
Finite State Machines (GFFSMs). This Genetic Fuzzy System (GFS) [Cor 01, Her 08]
automatically learns the fuzzy rules and membership functions of the FFSM, while an
expert defines the possible states and allowed transitions between states. Our aim is that
the expert can combine her/his knowledge about the phenomenon in the form of states
similar to the state space approach in order to produce an accurate linguistic description
of the phenomenon under study. One of the main advantages of linguistic modeling is
to develop systems that incorporate the creative, abstract and adaptive attributes of a
human, while minimizing the undesirable aspects such as unpredictability, inconsistency,
subjectivity and temporal instability [Bro 94]. Inspired by Licklider [Lic 68|, our aim is
to make use of a symbiotic relationship between the user and the computer, in such a way
that human motivation and creativity is strengthened by the computer’s greater memory

storage and higher computational performance.
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Figure 1.1: Graphical representation that shows the relation between the topics on which
the thesis is based (in yellow) and the topics arising from the development of the thesis
(in green).






Chapter 2

Objectives

Failure comes only when we forget our ideals

and objectives and principles.
Jawaharlal Nehru (1889 - 1964)

Despite the existence of several computational models for modeling complex phenom-
ena, a linguistic approach for developing models of complex phenomena in a hierarchical
fashion is missing. Such kind of models are usually developed, and used, in a somehow
ad-hoc way without the possibility of allowing the expert to add her/his knowledge or to
interpret or to understand the proposed model.

To the best of our knowledge, the extensive literature on computational approaches
for modeling complex phenomena concentrates in accuracy disregarding interpretability
issues, and do not facilitate the expert to incorporate her/his knowledge. Therefore, we
have designed the following set of objectives in order to create linguistic models of complex

phenomena:

O1. Contribute to the System Identification field by developing Fuzzy State Space Mod-
els leading to the FFSM modeling paradigm.

02. Develop a general methodology for the construction of the FFSM model based on
merging expert and induced knowledge by the use of GAs, leading to the GFFSM

model.

03. Contribute to the Computational Theory of Perceptions by developing the concept
of GLMP.

O4. Propose a granular and hierarchical architecture within the GLMP that allows to
merge different sources of information or knowledge in combination with the expres-

siveness of the FFSM modeling paradigm.

05. Generate linguistic reports of the complex phenomena under study based on the

proposed linguistic models.
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06. Validate the proposed methodology with several real world applications.

In order to achieve our objectives, we have proposed a model of complex phenomena
evolving in time based on the basis of a linguistic, human-guided design, plus the later in-
corporation of machine learning mechanisms within the FFSM modeling paradigm. Then
we have introduced the FFSM paradigm in combination with the GLMP. Our hypothesis
here was that FL and approximate reasoning tools are suitable for modeling complex

phenomena and for incorporating expert knowledge in a grey-box modeling approach.



Chapter 3

Discussion of the results

If you want different results, do things differ-
ently.
Albert Einstein (1879 - 1955)

In this chapter, we show the results achieved during these last four years of research
that demonstrate the fulfillment of all the objectives established in Chapter 2.

Figure 3.1 summarizes the results achieved. It extends the information showed in
Figure 1.1, related to the topics on which the thesis was based with their main references
(in yellow) and the topics developed during the thesis (in green), by including the produced
publications. The publications highlighted in red are those ones presented in Chapter 6
which are the core of the thesis. Moreover, the ones remarked in blue are those additional
publications included in Chapter 9. We have also indicated the objectives of the thesis,
presented in Chapter 2, fulfilled by each publication.

In the following lines, we include six different sections whose headings are each one
of the objectives presented in Chapter 2. Each section explains the work carried out and
describes the publications produced during the development of the thesis related to each

objective.

O1. Contribute to the System Identification field by developing Fuzzy State
Space Models leading to the FFSM modeling paradigm

First, in order to contribute to the System Identification field by the development of the
FFSM modeling paradigm, and according to this objective, we established a theoretical
framework for the FFSM. In [Alv 09], we created the first formal definition of our FFSM
model and applied it to the human gait modeling problem, which consists of studying
the biomechanics of this human movement, and it is very difficult to obtain an accurate
model due to the number of variables that take part in the process. We analyzed the
accelerations produced during this phenomenon, which are quasi-periodic signals, from a

linguistic and comprehensible approach.
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State Space Models ( System Identification
[Oga 67, Lju 86] L [Zad 56, Zad 62]

v Y

Fuzzy State Space Models
[Zad 96a, Zad 96b]

Linguistic Variables
[Zad Tha, Zad 75b, Zad 75c¢|

[Alv 09]: O1, 06
[Alv 10a]: O1, O6
[Alv 10b]: O1, O6
[Tri 10]: O1, O6

Genetic Fuzzy Systems
[Cor 01, Her 08|

[Alv 11a]: O2, O6
[Alv 12a]: O2, O6

@lv 11b]: O3, 05, 06

[Alv 12b]: O4, O5, O6
[Alv 12¢]: O4, O5, O6
[San 12]: 04, 05, O6

Figure 3.1: Graphical representation of the topics and publications produced during the
development of the thesis.

Once we were able to model this phenomena, in [Tri 10], we explored the possibilities of
distinguishing between the different phases of the gait in order to extract relevant features
that serve as a biometric measure for human gait pattern recognition. The model was
easily understood and provided good results, where a practical demonstration with an
equal error rate of 3% was included. A complete copy of this article can be found in

Chapter 9 as an additional selected publication.

Then, we proposed the application of our modeling paradigm to recognize between
different activities in a working environment based on the body posture and the posi-
tion of the user in the environment [Alv 10a]. This proposal materialized in a successful
application that was presented in [Alv 10b], which can be found in Chapter 9 as an ad-
ditional selected publication. In this article, we applied our framework for the linguistic
modeling of the human activity and demonstrated its capabilities for fusing information

from different sources of knowledge. Firstly, a WiFi localization system implemented as
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a Fuzzy Rule-based Classifier was used to obtain an approximate position at the level
of discrete zones. Secondly, a FFSM was used for human body posture recognition. Fi-
nally, another FFSM combined both WiFi localization and posture recognition to obtain
a robust, reliable, and easily understandable activity recognition system. We included a
practical application in an office environment with real data that showed the goodness of

our proposal.

0O2. Develop a general methodology for the construction of the FFSM model
based on merging expert and induced knowledge by the use of GAs, leading
to the GFFSM model

The common characteristic in all of the previous works was that all the FFSM models
were based on expert knowledge, i.e., the states, allowed transitions, membership functions
and fuzzy rules that represented the modeled phenomena were defined by the expert; thus
making the design of new models a difficult and tedious task. Therefore, and according
to this second objective, we decided to incorporate machine learning mechanisms in the
FFSM modeling paradigm in order to merge expert and induced knowledge. This goal
was achieved by means of GAs, leading to the concept of GFFSM.

In [Alv 12a], which is the first publication presented in Chapter 6, was the first work
where we introduced machine learning capabilities to our FFSM modeling tool in order to
improve its accuracy keeping its interpretability due to the fact that the number of states
and allowed transitions were defined by the expert. In this case, we designed a GFFSM
for the human gait modeling problem.

The first part of the article motivated the use of linguistic modeling for complex phe-
nomena. Then, it presented all the theoretical details of our FFSM modeling paradigm,
highlighting their usefulness to model dynamical processes which change in time, becom-
ing an extension of classical finite state machines (FSMs), but with the main advantage
that their fuzziness allows them to handle imprecise and uncertain data, which are in-
herent to real-world phenomena. Then, it explained how the definition of details of the
FFSM model in each particular case is a complex task for experts and motivated the
development of a general methodology for the construction of the FFSM model based on
both expert and induced knowledge leading to the concept of GFFSM. This new GFS
automatically learned the fuzzy rules and membership functions of the FFSM, while an
expert defined the possible states and allowed transitions between states.

Our final goal was to obtain a specific model for each person’s gait in such a way that
it can generalize well with different gaits of the same person. The obtained model has
become an accurate and human friendly linguistic description of this phenomenon, with
the capability of identifying the relevant phases of the process, which were the states of

the FFSM.

This article included a complete experimentation to test the performance of our pro-
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posal when dealing with datasets of 20 different people. It comprised a detailed analysis of
results, which discussed our proposal in terms of accuracy, interpretability, computational
cost, and importance of the use of expert knowledge. Our proposal was also compared
against other state of the art technologies for modeling these types of complex phenomena,
namely neural networks and autoregressive linear models. Therefore, we have concluded
that the GFFSM model presented in this article constituted an innovative application of
fuzzy set theory since it was the first time that GAs were used to design a FFSM; and it
outperformed other standard computational intelligence techniques for modeling complex
phenomena, by allowing us to produce a linguistic description of the human gait while
identifying the relevant phases of the process with an accurate and human friendly model
which allowed the designer to introduce her/his own knowledge about the phenomenon.
Once we showed the accuracy improvement of our GFFSM model while keeping its in-
terpretability, in [Alv 11a], we explored the possibility of applying this model for modeling
the body posture in such a way that the final model was an accurate and human friendly
linguistic description of this phenomenon, with the capability of identifying the posture of
the user accurately. A complete experimentation was developed to test the performance
of this proposal in terms of accuracy and interpretability. This article was awarded with
the IEEE Computational Intelligence Society 2011 Outstanding Paper Award in the 5th
IEEE International Workshop on Genetic and Evolutionary Fuzzy Systems held in Paris
(France). A complete copy of this article can be found in Chapter 9 as an additional

selected publication.

0O3. Contribute to the Computational Theory of Perceptions by developing
the concept of GLMP

Once we were able to model complex phenomena based on expert and induced knowl-
edge, we introduced the concept of GLMP. This model contributed to the Computational
Theory of Perceptions and allowed us to interpret the input data and manage granular
and imprecise information in a hierarchical fashion.

In a first approach developed in [Alv 11b], we designed a simple GLMP and explained
the elements that form part of it, namely the concept of computational perception (CP)
and the concept of perception mapping (PM). A CP is the computational model of a
unit of information acquired by the designer about the phenomenon to be modeled, it
corresponds to particular details of the phenomenon at different degrees of granularity
(from basic CPs that are the numerical input data to complex CPs that describes the
phenomenon evolution). The PM is the tool used to create and aggregate CPs.

In this article, we applied our GLMP for the linguistic description about an static
phenomenon, which consisted of the linguistic modeling and description about relevant
features of the Mars’ Surface. This article was motivated by the existence of tens of

Satellites in the orbit of Mars planet that provide us with thousands of images of its
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surface. Typically, these images are analyzed by experts that select the relevant features
and generate textual reports containing the result of their observations. However, the
number of images is increasing and this procedure is not effective enough. Therefore,
we created a computational application able to generate simple linguistic descriptions of
circular structures on the Mars’ Surface, including several examples and analysis of the
obtained results. This article was awarded with the Best Special Session Student Paper
Award in the 11th International Conference on Intelligent Systems Design and Applica-
tions held in Cérdoba (Spain). A complete copy of this article can be found in Chapter

9 as an additional selected publication.

O4. Propose a granular and hierarchical architecture within the GLMP that
allows to merge different sources of information or knowledge in combination

with the expressiveness of the FFSM modeling paradigm

Once we introduced the concept of GLMP and tested it in a real application, we
combined this granular and hierarchical architecture with the expressiveness of the FFSM
modeling paradigm.

First, in the second publication presented in Chapter 6 [Alv 12¢], we designed a GLMP
to create a basic linguistic model of the human gait quality, we did this by using our FFSM
model as a PM within the GLMP. The FFSM model was in charge of identifying the phases
of each gait, while the GLMP created a hierarchical structure where NL concepts such
as symmetry and homogeneity of the gait were created based on basic CPs associated
to the gait phases. In summary, this paper presented important results in the field of
developing computational systems able to model and generate linguistic descriptions of
complex phenomena. It also showed how the new version of GLMP including a FFSM
is an expressive tool to represent the behavior of this type of phenomenon in a human
friendly way.

Once we checked that the combination of the GLMP and the FFSM worked in the
field of human gait modeling and gait quality assessment, we explored the possibility of
applying this same combination in a completely different field: the field of intelligent
transportation systems. In this field, one important challenge consists of maintaining
updated the electronic panels installed in roads with relevant information expressed in
NL. Moreover, it also includes the problem of generating linguistic reports to assist traf-
fic managers that must take their decisions based on large amounts of quickly evolving
information.

In the third publication presented in Chapter 6 [Alv 12b], we were not only able to
model a phenomenon as complex as the traffic in a road, but we were also capable of facing
the challenge of modeling its evolution in time following the steps previously presented
in [San 12]. In this third publication, we introduced our developments to create a basic
GLMP of the traffic evolution in roads based on the traffic density and the speed of the
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vehicles. These data were obtained from video signals produced by cameras installed in
the scenario under study. We used this model to generate a human friendly linguistic
description of this phenomenon focused on describing the traffic evolution, where the
FFSM model was a PM within the GLMP that modeled the level of service in a road.
Moreover, in order to model the evolution of the level of service, we focused on the
perception of change and explored possibilities to perform linguistic descriptions of how
the traffic evolves in time. We researched on how to model the meaning of sentences
such as “the phenomenon is changing from state A to state B”. In order to model the
evolution of phenomena in time, we used our previous works on FFSMs and we extended
the use of the FFSM’s output function to be used with this aim. Our perception of
temporal evolution of phenomena was modeled by means of three different types of CPs,
namely, the perception of the current state (assertive CP), the perception of the trend
to evolve (derivative CP) and the summary of accumulated perceptions (integrative CP).
The assertive CP was associated with a linguistic expression of the current state of the
phenomenon, e.g., “the traffic density is high”. The derivative CP corresponded to trend
analysis information and gives insight into how the phenomenon is evolving in time, e.g.,
“the traffic density is decreasing”. Finally, the integrative CP represented the accumulated
perception of the phenomenon over a period of time, e.g., “the traffic density during the
last two hours has been low”.

Therefore, this paper contributed to the field of developing computational systems
able to model and generate linguistic descriptions of complex phenomena by introducing
the perception of change. We showed how the FFSM used as a PM inside the GLMP was
not only an expressive tool to represent the level of service in a road in a human friendly
way but it was also capable of modeling its evolution in time. Moreover, the introduction
of the three different types of CPs allowed us to differentiate between the current state of

the phenomenon, its trend, and its evolution over a certain period of time.

O5. Generate linguistic reports of the complex phenomena under study based

on the proposed linguistic models

Thanks to the expressiveness of our GLMP model, we could produce linguistic re-
ports in NL about complex phenomena under study thus fulfilling this objective. As
explained above, first, we were able to create linguistic descriptions of circular structures
on the Mars’ Surface [Alv 11b]. Then, we created a basic linguistic model of the hu-
man gait, and we used this model to generate a human friendly linguistic description
of this phenomenon focused on the assessment of the gait quality [Alv 12¢]. Finally, we

were able to model and create linguistic summaries about the traffic evolution in roads
[Alv 12b, San 12].
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06. Validate the proposed methodology with several real world applications

This objective was fulfilled in the majority of the works and publications developed
during this Ph.D. Thesis due to the practical nature of the problems addressed. Moreover,
the generality of our proposal was demonstrated by showing how it works in several
completely different fields such as intelligent transportation systems, human gait modeling
or activity recognition, among others.

Specifically, the three publications presented in Chapter 6 have a strong practical
component since all the data that took part in the experimentation were collected using
accelerometer sensors (in the case of the human gait) or video cameras (in the case of the
traffic) in a real world scenario.

The work related to the first article presented in Chapter 6 [Alv 12a] included a big
experimental phase where we collected accelerometer data from twenty different people,
where ten different datasets of ten complete gait cycles were collected for each person
resulting in a total of 200 different datasets.

The second article presented in Chapter 6 [Alv 12¢], includes a real world practical
application where we analyzed the gait quality of healthy individuals and people with
lesions in their limbs (knee and ankle) before and after their lesions.

Finally, in the experimental part of the third article presented in Chapter 6 [Alv 12b]
we used digital image processing techniques to obtain real data from the video cameras
installed in the road. Moreover, in order to analyze all the possible situations in a road, we
developed a simulator based on the Monte Carlo method, where simulated data followed a
normal distribution that was defined by the mean and the standard deviation parameters.
These parameters were modified depending on the period of the day in such a way that
we were able to generate data that recreates the traffic behavior in all of the possible
different situation types. The results showed how our proposal was able to model and

describe linguistically the traffic evolution in a real road and with the simulated data.
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Chapter 4

Conclusions and future works

You can know the name of a bird in all the
languages of the world, but when you’re fin-
ished, you’ll know absolutely nothing what-
ever about the bird. So, let’s look carefully at
the bird and let’s learn something about it.
Richard Feynman (1918 - 1988)

During the development of this Ph.D. Thesis we have faced the challenge of proposing
a framework for linguistic modeling of complex phenomena. We have explored to what
extent the existing models are just black-box models and how this choice affects the in-
terpretability and usability of the model. Therefore, we have reviewed the current models
and existing technologies for modeling complex phenomena. Then, we have motivated
the use of linguistic modeling by showing its advantages based on FL and approximate
reasoning tools, which are suitable approaches for modeling complex phenomena and for

incorporating expert knowledge in a grey-box modeling approach.

We have fulfilled all the objectives established in Chapter 2. First, we have contributed
to the System Identification field by developing Fuzzy State Space Models leading to the
FFSM modeling paradigm, highlighting their applicability to model dynamical processes
which change in time. We have also developed a general methodology for the design of
the FFSM model based on merging expert and induced knowledge by the use of GAs,
leading to the GFFSM model. We have also contributed to the Computational Theory
of Perceptions by developing the concept of GLMP in order to merge different sources
of information or knowledge in combination with the expressiveness of the FFSM mod-
eling paradigm. Then, we have used the expressiveness of the GLMP model to generate
linguistic reports of the complex phenomenon under study. Finally, we have validated
the proposed methodology with several real world applications. We have been able to
model the human gait using our linguistic modeling approach by merging expert and
induced knowledge. Then, we have developed a system capable of modeling the human

gait quality and producing linguistic descriptions about it. We have also showed how
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our proposal works in the field of intelligent transportation systems, where we presented
successful results in the field of developing computational systems able to model and gen-
erate linguistic descriptions of complex phenomena evolving in time by introducing the
perception of change.

In the current stage of development, we have been able to model and generate lin-
guistic descriptions that correspond to the context of a laboratory experimental setup.
In future projects, we will deep into the specific application field in order to improve
the meaning and, therefore, the usability of these texts. We will apply these results to
generate expressions close to NL in the context of each specific application, e.g., to assess
the risk of falling in elderly people, to monitor the recovery process in physiotherapy,
and to set up a complete system for monitoring and control the traffic in a real world
scenario. From the theoretical point of view, we will continue exploring how to model
the meaning of different linguistic expressions that will allow us to model and describe
complex phenomena from different perspectives that do not only include the validity of
the NL expression, e.g., the truthfulness, relevance or importance of the current state of
the phenomenon under study.

The promising results obtained during the development of this thesis have pushed
us to the development of an exciting entrepreneurial project: the creation of a spin-
off promoted also from the European Centre for Soft Computing. The business idea of
this spin-off consists of offering the possibility of creating linguistic descriptions of data
and complex phenomena using the techniques and models developed during this thesis
in order to facilitate their interpretation by individuals as well as the development of
commercial applications that can interact and communicate with users in NL. Currently,
we are working on the first prototype which consists of an Android application installed in
a smartphone and a server that implement a personal trainer that summarizes the user’s
daily activity. This application will measure the accelerometer data of the user provided
by the sensors embedded in the smartphone, then, it will communicate with the server and
produce a summary in NL on the progression and performance of daily physical activity
of this user.



Chapter 5

Conclusiones y trabajo futuro

T puedes saber el nombre de un pdajaro en
todos los idiomas del mundo, pero cuando
hayas terminado, no sabras absolutamente
nada sobre el pdjaro. Por tanto, miremos
atentamente a ese pajaro y aprendamos algo
de él.

Richard Feynman (1918 - 1988)

Durante el desarrollo de esta Tesis Doctoral nos hemos enfrentado al desafio de pro-
poner un marco para el modelado lingiiistico de fenémenos complejos, hemos explorado
hasta qué punto los modelos existentes son sélo modelos de caja negra y cémo esta eleccion
afecta a la interpretabilidad y usabilidad del modelo. Por lo tanto, hemos revisado los
modelos actuales y las tecnologias existentes para el modelado de fenémenos complejos.
A continuacién, hemos motivado el uso de los modelos lingiiisticos, mostrando sus ven-
tajas basadas en la Légica Borrosa y el razonamiento aproximado, que son herramientas
adecuadas para la modelizacién de fenémenos complejos mediante la incorporacién de

conocimiento experto en un enfoque de de caja gris.

Hemos cumplido todos los objetivos establecidos en el Capitulo 2. En primer lugar,
hemos contribuido en el campo de la Identificacién de Sistemas mediante el desarrollo de
Modelos Borrosos en el Espacio de Estados que nos llevan al paradigma de modelado de las
Maquinas de Estados Finitos Borrosos, destacando su utilidad para modelar los procesos
dindmicos que evolucionan en el tiempo. También hemos desarrollado una metodologia
general para la construccién de las Maquinas de Estados Finitos Borrosos basado en la
fusién de concimiento experto e inducido mediante el uso de los Algoritmos Genéticos, que
conduce al modelo de Maquina Genética de Estados Finitos Borrosos. También hemos
contribuido a la Teoria Computacional de Percepciones mediante el desarrollo del concepto
de Modelo Lingiiistico Granular de un Fenémeno con el fin de combinar diferentes fuentes
de informacién o conocimiento, en combinaciéon con la expresividad del paradigma de

modelado de las Maquinas de Estados Finitos Borrosos. A continuacion, hemos utilizado
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la expresividad del Modelo Lingiiistico Granular de un Fenémeno para generar informes
lingiifsticos acerca del fenémeno complejo que se estudia. Finalmente, se ha validado
la metodologia propuesta con varias aplicaciones del mundo real. Hemos sido capaces
de modelar la marcha humana con nuestro enfoque de modelado lingiiistico mediante
conocimiento experto y conocimiento inducido. A continuacién, hemos desarrollado un
sistema capaz de modelar la calidad de la marcha y producir descripciones lingiiisticas
sobre la misma. También hemos mostrado cémo nuestra propuesta se puede aplicar
en el campo de los Sistemas Inteligentes de Transporte, donde se presentan resultados
importantes en el campo de desarrollo de sistemas computacionales capaces de modelar
y generar descripciones lingiiisticas de los fendmenos complejos que evolucionan en el
tiempo mediante la introduccién de la percepcién asociada al cambio de un fenémeno.

En la etapa actual de desarrollo, hemos sido capaces de modelar y generar descrip-
ciones lingiifsticas que corresponden a un contexto de laboratorio. En futuros proyectos,
profundizaremos en cada campo especifico de aplicacién con el fin de mejorar el signifi-
cado y, por lo tanto, la utilidad de estos textos. Vamos a aplicar estos resultados para
generar expresiones en lenguaje natural en el contexto especifico de cada aplicacién, por
ejemplo, para evaluar el riesgo de caidas en personas de edad avanzada, para supervisar
el proceso de recuperacion en fisioterapia, y la creacién de un sistema completo para el
seguimiento y control del trafico en un escenario real. Desde el punto de vista tedrico,
vamos a seguir estudiando la forma de modelar el significado de diferentes expresiones
lingiiisticas que nos permitiran modelar y describir fendmenos complejos desde diferentes
perspectivas que no solo incluyen el grado de validez de la expresion en lenguaje natural,
sino también otros como la veracidad, la relevancia o la importancia del estado actual del
fenémeno bajo estudio.

Los prometedores resultados obtenidos durante la elaboracién de esta tesis nos han
llevado a desarrollar un proyecto empresarial ilusionante: la creacién de una spin-off pro-
movida también por el European Centre for Soft Computing. La idea de negocio de esta
spin-off consiste en ofrecer la posibilidad de crear descripciones lingiiisticas de los datos y
fenémenos complejos utilizando las técnicas y modelos desarrollados en esta tesis con el
fin de facilitar su interpretacién por parte de las personas, asi como el desarrollo de apli-
caciones comerciales que puedan interactuar y comunicarse con los usuarios en lenguaje
natural. En la actualidad, estamos trabajando en el primer prototipo, que consiste en una
aplicacion para Android instalada en un smartphone y un servidor que implementan un
entrenador personal que resumen la actividad diaria del ususario. Esta aplicacion medira
los datos de las aceleraciones del usuario proporcionadas por los sensores integrados en
el smartphone, a continuacion, se comunicara con el servidor y producird un resumen
en lenguaje natural con la progresion y el rendimiento de la actividad fisica diaria del

usuario.
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Cyril Connolly (1903 - 1974)

This chapter contains a complete copy of the presented publications. It is divided into
three different Sections corresponding to each article together with their bibliographic

reference.

31



32

6.1 Human gait modeling using a genetic fuzzy finite

state machine

A. Alvarez-Alvarez, G. Trivino, and O. Cordén. “Human Gait Modeling Using a Genetic
Fuzzy Finite State Machine”. Fuzzy Systems, IEEE Transactions on, Vol. 20, No. 2,
pp. 205-223, April 2012.



IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 20, NO. 2, APRIL 2012

33

205

Human Gait Modeling Using a Genetic Fuzzy
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Abstract—Human gait modeling consists of studying the biome-
chanics of this human movement. Its importance lies in the fact that
its analysis can help in the diagnosis of walking and movement dis-
orders or rehabilitation programs, among other medical situations.
Fuzzy finite state machines can be used to model the temporal evo-
lution of this type of phenomenon. Nevertheless, the definition of
details of the model in each particular case is a complex task for
experts. In this paper, we present an automatic method to learn the
model parameters that are based on the hybridization of fuzzy fi-
nite state machines and genetic algorithms leading to genetic fuzzy
finite state machines. This new genetic fuzzy system automatically
learns the fuzzy rules and membership functions of the fuzzy fi-
nite state machine, while an expert defines the possible states and
allowed transitions. Our final goal is to obtain a specific model for
each person’s gait in such a way that it can generalize well with
different gaits of the same person. The obtained model must be-
come an accurate and human friendly linguistic description of this
phenomenon, with the capability to identify the relevant phases of
the process. A complete experimentation is developed to test the
performance of the new proposal when dealing with datasets of 20
different people, comprising a detailed analysis of results, which
shows the advantages of our proposal in comparison with some
other classical and computational intelligence techniques.

Index Terms—Fuzzy finite state machines, fuzzy systems, genetic
algorithms (GAs), genetic fuzzy systems, human gait modeling.

1. INTRODUCTION

UMAN gait modeling consists of studying the biome-
H chanics of this human movement and can help in the
detection of gait disorders, identification of balance factors, and
assessment of clinical gait interventions and rehabilitation pro-
grams [1]. Typically, in human gait modeling there are a large
number of variables such as height, limb length, walking speed,
acceleration along axes, foot forces, etc., which are obtained by
means of different measurement techniques, thus making the
obtaining of an accurate model a very complex task.
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Traditionally in system identification, engineers use differ-
ential equations to model the behavior of real-world systems
(white-box models) [2]-[5]. However, when the system grows
in complexity, the number of variables and equations becomes
intractable. In the last 40 years, fuzzy logic (FL)-based mod-
els [6]-[9] have become a good alternative to deal with those
systems, where to obtain the appropriate differential equations
is difficult or impossible.

FL is widely recognized for its ability for linguistic concept
modeling and its use in system identification. On the one hand,
semantic expressiveness, using linguistic variables [10]-[12]
and rules [13], is quite close to natural language (NL), which
reduces the effort of expert knowledge extraction. On the other
hand, being universal approximators [14] fuzzy inference sys-
tems are able to perform nonlinear mappings between inputs
and outputs. Thanks to these advantages, FL has been success-
fully applied in classification [15], [16], regression [17], [18],
control [7], [19], [20], and system modeling [8], [9] achieving
a good interpretability accuracy tradeoff.

Fuzzy finite state machines (FFSMs) are specially useful tools
to model dynamical processes which change in time, becoming
an extension of classical finite state machines (FSMs) [21], [22].
The main advantage of FFSMs is that their fuzziness allows
them to handle imprecise and uncertain data, which are inher-
ent to real-world phenomena, in the form of fuzzy states and
transitions. The theoretical basics of FESMs were established
in [23] and later developed in [24]-[26]. In previous studies,
we have learned that FFSMs are suitable tools to model sig-
nals that follow an approximately repetitive pattern. In [27], we
explored the possibilities to use an FESM to create the linguis-
tic description of the temporal evolution of a signal by using
a skin conductivity meter and accelerometers to model the ac-
tivity of a person. Once we had checked the ability of FFSMs
to deal with temporal data, we analyzed the chance to consider
FFSMs for pattern recognition tasks such as human gait recog-
nition [28], [29] and gesture recognition [30]. Finally, in [31],
we used an FFSM to fuse information related to body posture
and WiFi positioning [32], which consists of recording and pro-
cessing signal strength information of WiFi networks to obtain
the estimated position in indoor environments.

As any fuzzy system, FFSMs require the definition of a
knowledge base (KB). It is well known that this is a complex
task for experts as it was the case in the previous applications
of FFSMs. In addition, the dynamic nature of FFSMs increases
the complexity of the process. For this reason, in this contri-
bution we consider the design of an automatic learning method
for the fuzzy KB of FFSMs. In particular, we will take the use
of genetic algorithms (GAs) [33] as a base, which have proven

1063-6706/$31.00 © 2012 IEEE
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largely their effectiveness and efficiency for this task during the
last two decades in the so-called genetic fuzzy systems (GFSs)
area [34]-[38].

In our approach, the fuzzy states and transitions will still
be defined by the expert in order to keep the knowledge that
she/he has over the whole system, while the fuzzy rules and
membership functions (MFs) that regulate the state changes will
be derived automatically by the GFS, making a robust, accurate,
and human friendly model, which is called genetic FFSM from
now on. In addition, the use of this expert knowledge and the
prefixed structure of the FFSM allows us to learn only the MFs
and part of the rules to build its fuzzy KB, dealing with a reduced
search space.

In the presented application, we show how the expert can
combine her/his knowledge about human gait dynamics with the
numerical data of the acceleration signals in order to produce an
accurate linguistic description of the phenomenon. According
to Licklider [39], our aim is to create a symbiotic relationship
between the user and the computer in such a way that human
motivation and creativity are strengthened by the computer’s
greater memory storage and higher computational performance.

In the experimental phase, we have worked with gaits of 20
different people. Regarding to the human gait modeling prob-
lem, the goal is to obtain a specific model (FFSM) for each
person in such a way that this FFSM can generalize well with
different gaits of the same person. Each FFSM will be composed
of a small set of linguistic fuzzy IF-THEN rules in the transition
function producing a linguistic description of the gait of this
person while identifying the relevant states of the model. The
design of the FFSM will be tackled in an automatic fashion by
the proposed GFS. The performance of the obtained FFSMs
will then be benchmarked against other system identification
approaches.

To our mind, this research constitutes an innovative applica-
tion of fuzzy set theory since, to the best of our knowledge, 1)
it is the first time that GAs are used to design an FFSM, and
thus, it is also the first time that human gait modeling is tackled
by means of an intelligent system of this kind, and ii) it outper-
forms other standard and nonfuzzy computational intelligence
techniques, allowing us to produce a linguistic description of the
human gait while identifying the relevant phases of the process
with an accurate and human friendly model.

The remainder of this paper is organized as follows. Section I1
presents the human gait modeling problem. Section III de-
scribes how to use FFSMs to model the temporal evolution
of a phenomenon. Section IV explains how to build FFSMs to
model the human gait. The automatic method to learn the fuzzy
KB of these FFSMs based on GAs is presented in Section V.
Section VI describes the experimentation carried out, compar-
ing the obtained results with other system identification tools.
Finally, Section VII draws some conclusions and introduces
some future research works.

II. HUMAN GAIT MODELING

Human gait modeling consists of studying the biomechanics
of this human movement aimed to quantify factors that govern
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Fig. 1. One gait cycle illustrating various phases and events and the dorsoven-

tral a, and mediolateral a, accelerations.

the functionality of the lower extremities. Gait is a complex
integrated task that requires precise coordination of the neural
and musculoskeletal system to ensure correct skeletal dynam-
ics [40]. Therefore, its analysis can help in the diagnosis and
treatment of walking and movement disorders, identification of
balance factors, and assessment of clinical gait interventions
and rehabilitation programs [1], [41].

The gait cycle is a periodical phenomenon which is defined
as the interval between two successive events (usually heel con-
tact) of the same foot [42]. It is characterized by a stance phase
(60% of the total gait cycle), where at least one foot is in contact
with the ground, and a swing phase (40% of the total gait cycle),
during which one limb swings through the next heel contact (see
Fig. 1). These phases can be quite different between individuals
but when normalized to a percentage of the gait cycle they main-
tain close similarity, indicating the absence of disorders [43].

Typically, in human gait modeling there are a large number of
variables that are obtained by means of different measurement
techniques. Most gait parameters can be categorized as anthro-
pometric data which include height, weight, or limb length;
spatiotemporal data that comprise variables such as walking
speed, step length, or phases times; kinematic data of measure-
ments of joint angles, displacement, or acceleration along axes;
kinetic data variables that include foot force and torques; or
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electromyographic data which measure the muscle activation
levels.

Our approach consists of identifying the relevant phases of
the gait based on the accelerations that are produced during the
process, i.e., we will develop human gait modeling by means of
kinematic data. We have measured the accelerations using an ac-
celerometer which is placed in the waist and centered in the back
of the person that provides us with the dorsoventral acceleration
a,, the mediolateral acceleration a,,, and the anteroposterior ac-
celeration a, at each instant of time. In this contribution, we
only use a, and a, because a. has to do with the walking speed,
and this speed can vary for the same person.

Fig. 1 shows three different synchronized pictures. The first
one (at the top) illustrates the dorsoventral acceleration a, and
the mediolateral acceleration a,, that are obtained from the three-
axial accelerometer. The middle picture plots a sketch of a per-
son who represent the different phases of the gait with the right
limb boldfaced. Finally, the picture at the bottom represents the
time period from one event (usually initial contact) of one foot
to the subsequent occurrence of initial contact of the same foot.

III. Fuzzy FINITE STATE MACHINES

In system identification, designers can choose among several
paradigms to represent system models. One of the more expres-
sive model structures is the state space representation [2]. In this
approach, the designer must find out the necessary and sufficient
subset of state variables (z1, 29, ... 2, ) to represent the entire
state X [t] of the system at the time instant ¢.

The designer uses her/his creativity and personal experience
to choose the adequate set of state variables regarding the system
goals. This set of variables emphasizes the relevant aspects of
the system and hides the irrelevant ones.

When the system evolves in time, the current state X [¢] fol-
lows a trajectory in the state space. The general form of the
model of a time-invariant discrete system in the state space is
formulated by the following set of equations [2]:

{X[t+1] = f(XTt, UTt]) )
Y[t] = g(X[t], Ut])
where

1) U is the input vector of the system: (uq,us, ..

with n,, being the number of input variables;

2) X is the state vector (x1,x9,...,x,), with n being the

number of states, and X is the initial state of the system,
ie., X(] = X[t = 0},

3) Y is the output vector: (y1,¥2,...,¥n, ), With n, being

the number of output variables;

4) f is the function that calculates the state vector at time

stept + 1;

5) g is the function that calculates the output vector at time

step ¢.

Unfortunately, for many systems in our environment, we are
unable, or it is very costly, to obtain the differential equa-
tions corresponding to the functions f and g. This situation
is described by Zadeh’s Principle of Incompatibility: “As the
complexity of a system increases, our ability to make pre-

U, ),

cise and yet significant statements about its behavior dimin-
ishes until a threshold is reached beyond which precision and
significance (or relevance) become almost mutually exclusive
characteristics” [6].

This is to say that, when systems to be modeled grow in
complexity, we have no other option but to work with imprecise
models. There have been several attempts to deal with this type
of problems by means of linguistic fuzzy models, which are
models where at least one variable is fuzzy [44].

During the last few years, FL-based models have grown in
complexity as a consequence of the modeling requirements in
terms of accuracy and interpretability. The number of variables
and the number of needed rules to create a fuzzy model have
grown up until making models difficult to understand and, con-
sequently, difficult to apply. Currently, researchers in the field
work to establish the formalism that will make the designed
fuzzy models more human friendly [45]-[49].

In this paper, we follow Zadeh’s computing with words and
perceptions paradigm [50]. The idea consists of extending FL.
to create system models based on the way that humans make
descriptions using NL. The aim is the use of complex structures
of NL to make robust imprecise models of complex systems.

As said, we will consider an FFSM to deal with the human gait
modeling problem. The initial concept of FFSM was introduced
by Santos [23] and developed by different authors (see, e.g.,
[24]). This family of FFSMs was characterized by having fuzzy
states but crisp inputs. Later, this initial model was extended
to have fuzzy inputs [25], [26]. Although the basic concept
of FFSM that is used in this paper is much related to the latter
one, the initial conception is quite different. The model of FFSM
presented is inspired by the concepts of the fuzzy state and fuzzy
system developed by Zadeh [51], [52]. More specifically, it can
be considered an implementation of the general idea of inpur—
output fuzzy models of dynamic systems proposed by Yager [53],
where the set (1) is implemented using sets of fuzzy rules. In
addition, we focus our contribution on the practical challenge
to develop a mechanism to learn automatically the set of rules
and MFs of the FFSM.

In this section, we introduce the main concepts and elements
of our paradigm for system modeling allowing experts to build
comprehensible linguistic fuzzy models in an easier way. In our
framework, an FFSM is a tuple {Q, U, f,Y, g}, where

1) @ is the set of states of the system;

2) U is the set of input vectors of the system;

3) f is the transition function that calculates the set of states

of the system;

4) Y is the set of output vectors of the system;

5) g is the output function that calculates the set of output

vectors of the system.

Each of these components is described in detail in the follow-
ing sections. See [28], [29], and [31] to find several previous
applications of this FFSM model.

A. Fuzzy States (Q)

Q is the set of states of the system, which is defined as
a linguistic variable [10]-[12] that takes its values in the set
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of linguistic labels {q1, ¢2, ..., q, }, with n being the number
of fuzzy states. Every fuzzy state represents the pattern of a
repetitive situation. The concept of fuzzy state was introduced by
Zadeh in [6]. Numerically, the state of the FFSM is represented
by a state activation vector:

S[t] = (s1]t], s2[t], - - ., sn[t]), where s;[t] € [0, 1].

Sy is defined as the initial value of the state activation vec-
tor, i.e., Sy = S[t = 0]. The FFSM implementation verifies
Sor 1 si[t] =1 in such a way that we maintain compatibility
with classical FSMs where only one state can be activated with
degree 1 at each time instant. Hence, in order to maintain the
latter characteristic in our FFSM model, the activation degree
of the states must sum up to 1 for any system input. This re-
striction has been applied in previous fuzzy extensions of crisp
phenomena such as fuzzy clustering [54], [55], where the sum
of the membership value of a pattern to different clusters must
also equal to 1. This decision of design is easily implemented
using (2) as is shown in Section III-C1.

B. Input Vectors (U)

U is the set of input vectors: (u1,us, . .., Uy, ), with n, being
the number of input variables. U is a set of linguistic variables
that are obtained after fuzzification of numerical data. Typically,
u; can be directly obtained from sensor data or by applying some
calculations to the raw measures, e.g., the derivative or integral
of the signal, or the combination of several signals.

The expert summarizes the domain of numerical values rep-
resenting them by a set of linguistic labels which define all the
possible values that u; can take.

Ay, ={A} ,AZ ... Al}, with n; being the number of
linguistic labels of the linguistic variable u;.

C. Transition Function (f)

f is the state transition function that calculates, at each time
instant, the next value of the state activation vector: S|t + 1] =
U, STE).

This function is implemented by means of a fuzzy KB. Once
the expert has identified the relevant states in the model, she/he
must define the fuzzy rules that govern the temporal evolution
of the system among these states.

We can distinguish between rules R;; to remain in a state g;,
and rules R;; to change from state g; to state ¢;. Fuzzy rules will
only be associated with allowed transitions, i.e., if a transition
is forbidden in the FFSM, it will have no fuzzy rules associated.

A generic expression of a rule R;; is formulated as follows.

where we have the following.

1) The first term in the antecedent (S[t] is ¢;) involves the
computation of the degree of activation of the state g;
in the time instant ¢, i.e., s;[t]. With this mechanism, we
only allow the FFSM to change from the state ¢; to the
state ¢; (or to remain in the state ¢;, when i = j) if it was
previously in that state.

2) The second term in the antecedent C;; describes the con-
straints imposed on the input variables that are required
to change from the state g; to the state g; (or to remain in
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state ¢;, when ¢ = j). For example, Cj; = (u [t] is Ail)
AND (u,[t] is A}, OR A5 )"

3) Finally, the consequent of the rule is the next value of the
state activation vector S[t + 1]. It consists of a vector with
a zero value in all of its components but in s;[t], where it
takes value 1.

1) Fuzzy Reasoning Mechanism: The next value of the state
activation vector is calculated as a weighted average of the indi-
vidual rules. The weight of a rule & is calculated from its firing
degree wy,. To calculate the value of wy,, we use the minimum
t-norm (T iy (a,b) = min{a, b}) for the AND operator and
the bounded sum of the Lukasiewicz t-conorm (L, (a,b) =
min{a + b, 1}) for the OR operator [60], e.g., the constraint C},
= (uy is A3 ) AND (u is A}, OR A})) will produce a firing
degree wy, = min{A3 (u1), min{1, A} (uz) + A5, (u2)}}.

As we have explained earlier, a certain output of a rule k
predicting state ¢; will be of the form (0, ..., s;[{] = 1,...,0);.
To calculate the total output of the rules and therefore, the state
activation vector (S[t + 1]), a weighted average of the individual

outputs of each rule is computed as defined in

ﬁ:Rl“]es Wi (81,0480 )k
#Rules )
k=1 g
Sle+1) = T 20
sl if SR — 0,

©))

This expression is a typical defuzzification mechanism that is
applied to a set of Mamdani-type fuzzy rules where the linguistic
labels of the consequent are singletons (see, e.g., [53]). With this
fuzzy reasoning mechanism, the state activation vector always
verifies the two constraints that are demanded in Section III-A:
si[t] € [0,1] and 3", s;[t] = 1. Moreover, it keeps the system
in its previous state if no rule is fired.

Notice that the similarity between the FFSM’s fuzzy rule
structure and a fuzzy classification rule can easily be recognized.
Among the three existing fuzzy classification rule structures,
which mainly differ on the composition of the consequent, the
simplest one is based on the use of a single class (the other
two variants either include the class and a certainty degree or a
certainty degree for each possible class) [16], [61]. Besides, a
significant relation can be identified between the fuzzy reasoning
mechanism used by the FFSM and that usually applied in fuzzy-
rule based classification systems based on the latter kind of
rules [61]. In fact, the computation of the next state for the
FFSM can be considered as a classification problem, where the
set of possible fuzzy states are taken as the classes, and the
fuzzy system provides a membership degree to each of them
by means of a single selection or an aggregation of the firing
degree of the fuzzy rules matching the class and the input pattern.
Nevertheless, the main difference between both fuzzy reasoning
mechanisms is that, while the membership degree to all the
possible fuzzy states must sum up to 1 in any case in an FFSM,

INotice that this fuzzy rule structure corresponds to a disjunctive normal form
(DNF), which has been largely used in fuzzy modeling and fuzzy classification
[56]-[59].
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there is no such restriction for the existing class labels in a fuzzy
rule-based classification system.

D. Output Vectors (Y)

Y is the set of output vectors: (y1,¥2,...,¥n, ), With n,
being the number of output variables. Y is a summary of the
characteristics of the system evolution that are relevant for the
application, i.e., each y; can be obtained as the average of certain
parameters of the system, while the model remained in the state
qi-

E. Output Function (g)

g is the output function: Y[t] = g(U[t],S[t]). It calcu-
lates, at each time instant, the value of the output vector
Y (¢). The most simple implementation of g is Y[t] = S[t| =
(s1[t], s2[t], - -, sn[t]). In this contribution, the output is the
current fuzzy state of the system that is represented by the state
activation vector. An application example of a complex output
function can be found in [29].

IV. Fuzzy FINITE STATE MACHINE FOR HUMAN
GAIT MODELING

This section presents the design of the main elements that are
needed to build an FFSM to model the human gait.

A. Fuzzy States

As stated in Section III-A, every state represents the pattern
of a repetitive situation. According to the diagram at the bottom
of Fig. 1 and using our own knowledge about the process, we
can define four different fuzzy states which explain when double
limb support, right limb single support, or left limb single sup-
port are produced. Therefore, we can easily define the possible
set of fuzzy states as follows.

1) 1 — the right foot is in stance phase, and the left foot is

in stance phase (double limb support).

2) @» — the right foot is in stance phase, and the left foot is
in swing phase (right limb single support).

3) g3 — the right foot is in stance phase, and the left foot is
in stance phase (double limb support but different of ¢,
because the feet position).

4) q4 — the right foot is in swing phase, and the left foot is
in stance phase (left limb single support).

B. Input Variables

As we have explained in Section II, we only use two of
the three available accelerations: a, and a,,. Therefore, the set
of input variables is U = {a,, a, }. We will build two differ-
ent FFSMs, where each input variable will have three (FFSM
3) or five (FFSM 5) associated linguistic labels because, as
we will show in the experimental results, they are enough to
achieve a good accuracy keeping a high interpretability. The
linguistic labels for each linguistic variable in FFSM 3 are
{S.,,M,,,B,, } and {S,,, M, ,B,,}, where S, M, and B
are linguistic terms that represent small, medium, and big, re-
spectively. While the linguistic labels for each linguistic vari-

Fig. 2.

State diagram of the FFSM for the human gait cycle.

able in the FESM 5 are {V'S, .S, ,M,, ,B,, ,VB,, } and
{VSa,,Sa,, Ma,,Ba,,V B,, }, where the additional terms V.S
and V' B are linguistic terms that represent very small, and very
big, respectively.

C. Transition Function

As shown in Section III-C, the only thing required to deter-
mine the structure of the fuzzy rule base (RB) is the definition of
which transitions are allowed and which are not. This is easily
represented by means of a state diagram. Fig. 2 shows the pro-
posed state diagram of the FESM for the human gait cycle. This
state diagram is very simple because the accelerations that are
produced during the human gait are quasi-periodic, i.e., they are
repeated with approximately similar values and periods. More-
over, all the states are correlative, i.e., they always follow the
same activation order. Therefore, it is rather easy to define the
allowed transitions and the forbidden ones.

From the state diagram that is represented in Fig. 2, it can be
recognized that there are eight fuzzy rules in total in the system:
four rules to remain in each state and other four to change
between states. Therefore, the RB will have the following
structure.

Ry1:1F (S[t] is g1) AND C1; THEN S|t + 1] is g1
Rao:IF (S[t] is g2) AND Cag THEN S|t + 1] is g2
R33:1IF (S[t] is g3) AND Cs3 THEN S[t + 1] is g3
Ra4:TF (S[t] is q4) AND C4qq4 THEN S[t + 1] is g4
Ri2:1F (S[t] is q1) AND Ci2 THEN S[t + 1] is g2
Ro3:IF (S[t] is g2) AND Ca3 THEN S|t + 1] is g3
R34:1F (S[t] is qg3) AND C34 THEN S|t + 1] is g4
Ry41:1F (S[t] is g4) AND C4q; THEN S|t + 1] is ¢

D. Output Vector and Output Function
In this contribution, we simply consider Y'[t] = S[t], i.e., the
output of the FFSM is the degree of activation of each state.
V. GENETIC Fuzzy SYSTEM

Fuzzy systems have showed their ability to deal with a large
number of applications. In most of cases, the key for the success
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was the ability of fuzzy systems to incorporate human expert
knowledge [47], [62], [63]. However, the lack of learning ca-
pabilities has generated a strong interest for the study of fuzzy
systems with added learning capabilities. One of the most pop-
ular approaches is the hybridization between FL and artificial
neural networks [64] leading to the well-known area of neuro-
fuzzy systems [65], [66]. Another very extended hybrid com-
putational intelligence system is based on the use of GAs (and,
in general, evolutionary algorithms) to learn the components
of a fuzzy system leading to the field of GFSs [34]-[38]. This
section introduces a new fusion framework of FFSMs, a fuzzy
system type, and GAs, which will be called genetic fuzzy finite
state machines (GFFSMs) from now on. Basically, a GFFSM is
an FFSM augmented by a learning process that is based on a
GA. In particular, this section is devoted to present the GFS that
is developed to learn the KB of the FFSM designed for human
gait modeling.

When using a GA to learn a rule-based system, we can cover
different levels of complexity according to the structural changes
that are produced in the learning system by the search algo-
rithm [67], i.e., we can do parameter optimization which is the
simplest case or we can learn the complete rule set of a fuzzy
rule-based system (FRBS). The KB is usually the object of
study in the GFS framework. From the view point of optimiza-
tion, the task to find an appropriate KB for a particular problem
is equivalent to parameterize the KB and to find those parameter
values that are optimal with respect to the optimization crite-
rion. The KB parameters constitute the search space, which is
transformed into a suitable genetic representation on which the
search process operates [35], [37].

As seen in Section III, the FFSM is a fuzzy system and, more
specifically, a FRBS as the transition function is implemented
by means of fuzzy IF-THEN rules. Therefore, we can define a
GFS to learn the main components of this fuzzy system.

In our approach, we allow the expert to introduce her/his
own knowledge over the whole system by defining the states
and transitions and specifying the general structure of the fuzzy
rules that define the state transitions. The fuzzy rules themselves
and the MFs of the input variables’ linguistic labels will be au-
tomatically derived by the GFS, thus making a robust, accurate,
and human friendly model. Therefore, according to the different
approaches presented in [34], [35], and [37], we will develop a
complete learning of the KB, i.e., our GFS will learn the MF
shapes associated with the linguistic terms and the fuzzy rules
simultaneously, although dealing with a reduced search space
thanks to the incorporated expert knowledge.

The joint learning of the RB and the MFs associated with the
input variables in the database (DB) can be used as a coopera-
tive way to obtain an FFSM that is not only accurate but also
compact. We have opted this genetic learning scheme since we
consider that the joint learning of DB and RB deals with the in-
teractions existing between both KB components in a better way
than following a multistage learning based on first deriving the
RB and later refining the preliminary DB definition [34]-[37].
Moreover, in real complex problems, most of the effort devel-
oped in an RB learning problem is typically devoted to increase
the performance of some wrong rules rather than to improve
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the performance of the overall system by performing a complex
MEF parameter learning process [68]. Nevertheless, learning the
DB and the RB concurrently can make the search space so large
that suboptimal models are generated [69]. Fortunately, in our
case the combination of the use of expert knowledge and the
prefixed structure of the FFSM allows us to deal with a more
reduced search space size, thus allowing the derivation of good
performing KBs.

The following sections will describe in detail the structure of
the different components of our GFS to learn the KB of FFSMs
devoted to human gait modeling.

A. Representation Scheme and Initial Population Generation

Since we are developing a complete learning of the KB, we
have divided the representation scheme into two parts: the RB
part and the DB part. In the following, we explain each of these
representations.

1) RB Part: Once we have the complete rule set defined in
Section IV-C, we codify the whole rule set in a chromosome
following the Pittsburgh approach [70] because the evaluation
of the FFSM requires a complete execution cycle. Moreover, the
fixed size and structure of the rules (where the consequent and
the first term of the antecedent are known) and the predefined
structure of the constraints imposed on the input variables shown
in Section III-C allow us to use the classical DNF representation
based on a binary string coding [58], [59] to codify only the
remaining part of the antecedent. For each of the two input
variables a, and a,, the rule representation consists of a binary
substring of the same length as the number of labels that refers
to its linguistic term set. Each bit has a 1 (0) which denotes the
presence (absence) of each linguistic term in the rule. Moreover,
the feature selection capability of this representation is used
since an input variable is omitted in the rule if all of its bits in
the representation become Os or 1s.

As an example of how this representation is developed in the
GFFSM 3, let us define a rule R, with the following constraint
over the input variables:

Cr = (a.[t] is M, ) AND a,[t] is M,, OR B, ).

Therefore, the representation of this DNF fuzzy rule will
be of the form {010 : 011}, where in the first substring the
second digit indicates the presence of the linguistic term M,
and the zeros indicate the absence of the terms .S,, and B,, .
The second substring has 1s in the second and third positions
indicating the presence of the linguistic terms M,,, and B, , and
azero in the first position, indicating the absence of the linguistic
term .S, .

The RB part of the chromosome will, thus, be composed of
8 rules x 2 linguistic variables x [ = 16 x [ binary-coded genes,
being [ the number of linguistic terms per input variable.

2) DB Part: Once we have decided the number of linguistic
terms for each input variable (see Section IV-B), we can show
how to represent the DB part of the KB, i.e., the representation
of the MFs definition.

We have used strong fuzzy partitions (SFPs) [54] to define
the fuzzy partitions. In an SFP, the membership degree forms
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Fig. 3. Parameters that form all the linguistic labels of the linguistic variable
a, in GFFSM 3, which are trapezoidal or triangular MFs.

a partition of unity. SFPs allow us to reduce the number of pa-
rameters to tune in such a way that the normalization constraint
is easily satisfied by only coding the modal points of the MFs
(one point for triangular MFs and two points for trapezoidal
shapes). Moreover, when we calculate the OR between two lin-
guistic labels using Lukasiewicz’s bounded sum as explained in
Section III-C1, the resulting linguistic label will be a convex
fuzzy set without sawtooth shapes that would be produced if
we use the maximum. From the interpretability point of view,
SFPs satisfy semantic constraints and help to get comprehensi-
ble fuzzy partitions [47].

We have used trapezoidal SFPs that are defined in the whole
domain of discourse of the input variable. Since the fuzzy parti-
tion of each input variable is generically comprised by [ linguis-
tic labels, we have to code 2 x [(I — 2) x 2 + 2] real parame-
ters, (I — 2) x 2 + 2 per input variable where one parameter is
enough to codify the first and last linguistic labels and two pa-
rameters are needed to codify each intermediate linguistic label.
In particular, working with three or five linguistic labels, the DB
part of the chromosome will be composed of 8 or 16 real-coded
genes, respectively:

2 2 3
Gy — {a’ a ’ a 7au, }
GFFSM3 2 5
ay — {aa,/ 1y ay au aa,/ }
1 2 2 3 3 4 5
Gy — {aa 7(]() 7ba 3aa 7b(1 ) n 7ba ) a }
GFFSM5 ) X ,
Ay - {a’av awba,/ awba,, a,,’ba,, a,,

Fig. 3 shows the graphical representation of the fuzzy partition
related to the linguistic input variable a, in GFFSM 3. For the
first linguistic label S,, , we only need one parameter a’ .- The
same stands for the last one B,, whose parameter is aj . For
the intermediate linguistic label, we need two parameters a?“
and b?“. Note that we have chosen trapezoidal MFs because
triangular MFs are a particular case of trapezoidal MFs, i.e., the
linguistic label B,, will be of triangular shape when the value

3

a, reaches the limits of the domain of discourse of the input

variable a,.

We should remark that this learning problem demands a real-
coded representation, and therefore, we have to implement real-
coded crossover and mutation genetic operators. Moreover, to
define the variation interval of each allele we have considered
that each parameter can be only modified within the interval that
is defined by its previous and next parameter, i. e in Fig 3, the
definition/variation interval of the parameter a2 is [a} b2
while that of the parameter a? is [b2 , max(a, )] (with max(az )
being the maximum value taken by the input variable a, ).

Hence, the final chromosome encoding a candidate problem
solution will be comprised by 48 + 8 = 56 genes in GFFSM 3,
and 80 4 16 = 96 genes in GFFSM 5. Fig. 4 shows the shape
of the complete chromosome encoding the RB and DB parts of
GFFSM 3.

We have initialized the first population by generating all the
individuals at random. However, in order to include our previous
knowledge about the problem, the DB part of the first individual
of the population will encode uniform fuzzy partitions for both
linguistic variables a, and a,,. Then, the following individuals
are created at random to introduce diversity.

B. Fitness Function

The fitness function measures the quality of the candidate
problem solution encoded in each chromosome. In the case of
our GFFSM for human gait modeling, the dependence of the
next state on the previous state makes it strictly necessary to test
the FFSM over the whole dataset and for each chromosome,
which is very computationally expensive. This problem also
appears when learning FL controllers, where the fitness measure
must be evaluated by simulating how the plant is controlled
[71]-[73].

We have chosen the minimization of the mean absolute error
(MAE) defined in (3) as the fitness function

1 1 n T
MAE = = 37 fsifj] - 1Ll )
=0

where

1) n is the number of states, i.e., n = 4 for the human gait

modeling problem (see Section 1V);

2) T is the dataset size (i.e., the considered time interval

duration);

3) s;[j] is the degree of activation of state ¢; at time ¢ = j;

4) s7[j] is the expected degree of activation of state ¢; at time

t=7.

The MAE is a very informative measure of the quality of
the candidate solution because it directly measures the differ-
ence between the expected state activation vector (S*[t]) and
the obtained one (S(t]). However, we need to define an expected
activation vector S*[t] for each input dataset that we want to
learn, i.e., a training dataset in the context of a supervised learn-
ing problem to design our human gait FFSM-based model. This
definition could be problematic and must be done carefully be-
cause sometimes it must be defined at each time instant more
than one state, activated with certain degree in the interval [0, 1].
In Section V-C, this issue is explained in detail.
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Fig. 4. Chromosome which codifies the RB and DB parts of GFFSM 3.

C. Defining the Training Dataset

As described in Section V-B, in order to learn an FFSM for
different gaits of the same person, there is a need to define an ex-
pected activation vector S*[t] for each one of the gaits we want to
learn. Hence, we have to create a training vector that consists of
aclt), a, (1), and S*[t] k.. (a,[t], ay t], 5112], s3[¢], 3 1], 3 [1).

To define the training vector, we have developed a user-
friendly graphical interface that allows the expert to select the
relevant points where each state starts and ends using her/his
knowledge about the human gait process. For instance, “the
double limb support that comes after the right single support
starts just after the heel contact” can be translated as “state ¢;
must start when a, increases drastically and a, tends to de-
crease” [74]. The fuzzy definition of the states is based on the
imprecision of the expert when defining the start and the end of
each state which she/he must identify and label within the time
series associated with the measured signals. We have defined
the training vectors for datasets which consist of five complete
cycles of the human gait. For each state ¢;, we will have ten dif-
ferent points: five comprising the beginning (b;") and another
five comprising the end (e}") of each state, withm = 1,...,5.
In the current FESM that involves four fuzzy states, the ex-
pert will have to tag each sample of five cycles with 40 points:
{b1,01,... el ef).

As an example, let us consider the definition of the degree of
activation of state g2 specified by (4). Between the end time of
¢1 (e]") and the start time of ¢ (b3'), the activation of the state
@2 is rising from O to 1. Between the start (by") and the end time
(e3") of g2 which is defined by the user, the activation has the
maximum of 1, and afterward, the activation drops to zero at the

g

start of g3 (b5"). Otherwise, the activation is zero

t—ef
—— ifel’ <t < by
byt —ef? 1 2
) 1 ithy <t<ey
Syt = 4
. 5 fep < t< b ()
——  ifel i
bé"’ _ 65"’ 2 3
0 otherwise.

Fig. 5 shows an example of how a part of the training vector
is labeled based on the beginning and the end points given by
the expert.

a, |
1
3 D -‘ . SZ
3 : %
5 i : .
v i . s
\ W 4
-05c ., ¢ L . LI . al
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¢ by b G by e b + b
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Fig. 5. Construction of the vectors of training data based on the start and end

points given by the user.

D. Genetic Operators

The definition of the genetic operators considered in our
GFFSM for human gait modeling is shown as follows.

1) Selection Mechanism: To select the parents that will un-
dergo crossover and mutation, a binary tournament selection is
considered. This operator is very useful since it does not require
any global knowledge of the population [33]. The idea is to se-
lect at random two parents and choose the best one with respect
to the fitness function, repeating this process until a complete
set of parents is built.

2) Crossover: The classical two-point crossover has been
used for the RB (binary-coded) part of the chromosome and
BLX-« crossover [75] for the DB (real-coded) part. The
BLX-« crossover is applied twice over a pair of parents in order
to obtain a new pair of chromosomes. When a pair of chromo-
somes is chosen for crossover that is based on a single crossover
probability, we separately crossover the binary part and the real
part. Notice that the proposed genetic operators can be indepen-
dently applied in both chromosome parts ensuring the obtaining
of an offspring encoding a coherent FFSM KB definition. That
does not always happen when working with GFSs learning the
whole KB using a representation scheme based on two infor-
mation levels (the DB and RB parts) since those two parts can
be related so that the action of a genetic operator in one of them
can cause the appearance of meaningless chromosomes because
the information encoded in the other part is no longer valid (see,
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for example, [76] and [77]). Nevertheless, that is not the case in
the current coding scheme.

3) Mutation: For the binary-coded RB part, the classical
bitwise mutation has been selected. For the real-coded DB part,
the corresponding mutation operator which is called uniform
mutation [33] has been chosen. It consists of changing the allele
value of each gene randomly within its definition interval. As
for the crossover, the same mutation probability defined at gene
level is considered for both chromosome parts.

4) Replacement Mechanism: In our approach, we directly
replace the current population by the offspring one (generational
replacement) keeping elitism.

5) Termination Condition: In this contribution, we have
implemented three different termination conditions. First, the
search is stopped when the algorithm has obtained a fitness
value equal to zero, which is the best value that the fitness func-
tion can take. However, this condition is almost impossible to be
reached. Therefore, we have decided to set the maximum num-
ber of evaluations and also to stop the search when, for a certain
number of evaluations, the fitness value of the best individual is
not improved.

VI. EXPERIMENTATION

This section presents the experimentation which is carried out
to validate our proposal. First, the experimental setup, which
comprises the data acquisition and the GFFSM parameter val-
ues, is explained. Section VI-B contains a brief description of
two alternative modeling approaches used for human gait mod-
eling. Finally, Sections VI-C and D report the obtained results
and their analysis, respectively.

A. Experimental Setup

1) Data Acquisition: To evaluate the proposed approach, we
have collected the acceleration signals of 20 different people in
order to create a specific FFSM to model the gait of each person.
The group of people consisted of healthy adults, 5 women and
15 men, with ages ranging between 23 and 52 years (with an
average age of 30 years) and weights between 45 and 97 kg
(with an average weight of 76 kg).

We attached to a belt, which is centered in the back of the per-
son, a three-axial accelerometer with Bluetooth capabilities that
provided measurements of the three orthogonal accelerations
with a frequency of 100 Hz. We programmed a personal digital
agenda (PDA) to receive the data via a Bluetooth connection
and to record them with a timestamp. Therefore, every record
contained the information (¢, a,, a,, a. ), where ¢ is each instant
of time, a, is the dorsoventral acceleration, a,, is the mediolat-
eral acceleration, and a. is the anteroposterior acceleration. As
explained in Section II, in this study, we only use a, and a,.

We asked each person to walk a certain distance at a self-
selected walking speed which comprises around ten complete
gait cycles in such a way that we were able to extract five
complete gait cycles discarding the first and last steps which are
not very stable. This process was repeated ten times for each
person that produces a total of ten datasets of five complete
cycles for each person. These datasets were then processed as

explained in Section V-C in order to define all the fuzzy states.
Therefore, once we captured and tagged all the signals, we
had ten different datasets for each person with the following
components:

(ax[t], ay[t], 51 [t], 53 [¢] s3[¢], s3[t])

where

1) a,[t] is the dorsoventral acceleration at time instant ;

2) ay[t] is the mediolateral acceleration at time instant ¢;

3) si[t] is the expected degree of activation of state ¢; at time

instant ;

4) s3[t] is the expected degree of activation of state g, at time

instant ¢;

5) sj[t] is the expected degree of activation of state g3 at time

instant ¢;

6) s;[t] is the expected degree of activation of state g, at time

instant ¢.

2) Parameter Values for the Genetic Fuzzy Finite State
Machine: Two different granularity levels have been considered
for the fuzzy partitions: 3 and 5 (noted as GFFSM 3 and GFFSM
5, respectively). The parameter values that are used by both
GFFSMs are as follows. Quite standard values are considered,
and a preliminary experimentation was developed to check their
good performance:

1) population size — 100 individuals;

2) crossover probability — p. = 0.8;

3) value of alpha (BLX-«a parameter) — o = 0.3;

4) mutation probability per bit — p,,, = 0.02;

5) termination conditions:

a) fitness value reached — MAE = 0;

b) maximum number of evaluations — 40000 for
GFFSM 3 and 60 000 for GFFSM 5;

¢) evaluations without improvement of the fitness func-
tion — 10 000.

B. Alternative Modeling Approaches

In order to compare the two GFFSM results with other sys-
tem identification approaches, we have considered two differ-
ent techniques which are commonly used in system model-
ing of time-dependent systems: autoregressive linear models
(ARX) [3] and neural networks (NNs) [64].

1) Autoregressive Linear Models: We have defined a
multiple-input multiple-output (MIMO) ARX model with the
structure defined by

Yl = Ay Yo =144 Ay, Ve — ]

+By-Ult]+ -+ By, -Ult —np] (5)
where
1) Y[t] = (s1]t], s2[t], s3[t], s4[t]) is the current output
vector;
2) Y[t —1],...,Y[t — na] are the previous output vectors

on which the current output vector depends;

3) Ult] = (ax[t], ay[t]),..., Ut — np] are the current and
delayed input vectors on which the current output vector
depends;
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TABLE I
PARAMETER VALUES CONSIDERED FOR THE DIFFERENT ARX
MODELS AND THEIR COMPLEXITY

MODEL n4 np COMPLEXITY
ARX 1 1 1 0

ARX 2 2 2 0.010
ARX 3 5 5 0.040
ARX 4 10 10 0.091
ARX 5 20 20 0.192
ARX 6 25 25 0.242
ARX 7 50 50 0.495
ARX 8 75 75 0.747
ARX 9 80 80 0.798

ARX 10 100 100 1

4) ny is the number of previous output vectors on which the
current output vector depends;

5) np is the number of previous input vectors on which the
current output vector depends.

6) Ai,...,A,,,By,...,B,, are the matrices that define
the models. They are estimated using the least-squares
method.

‘We have tested the performance of this model for ten different
values of the parameters n, and np in order to obtain several
models with a different accuracy—complexity tradeoff.

For the first parameter values, we have selected a simple
model similar to the delay of our GFFSM, i.e., ny =np =1
resulting in the ARX model number 1 defined by

Y] = Ay - Y[t — 1]+ By - Ut]. (6)

Then, another nine different values (with the maximum delay
of 100) were used to progressively increase the complexity of
the model. A linear complexity index is defined in such a way
that the complexity of the basic model with ny =np =11is
0 and the complexity for the most complex model with ny =
np = 100 is 1. The different parameter values for each model
together with the model complexity are shown in Table I.

2) Neural Networks: As for the ARX models, we have built
ten different feed-forward NN architectures that represent dif-
ferent levels of complexity. The first and simplest one (NN 1)
consists of two neurons in the input layer which represent the two
input variables a, ] and a, [t], one hidden layer, and four output
neurons in the output layer that correspond to the four compo-
nents of the state activation vector (s [t], s2[t], s3[t], s4[t]).

The other NN models, which represent different levels of
complexity, are determined by the number of delayed input vari-
ables. Moreover, in order to avoid NNs with a large number of
input neurons (which leads to overfitting and big training times),
we have considered delayed input variables that are separated
by a fixed interval of ten samples. For example, the second NN
architecture (NN 2) has a,[t], a, [t — 10], a, [t], and a, [t — 10]
as inputs, while the most complex one (NN 10) has 20 inputs that
cover a delay of 90 samples: a, [t], a, [t — 10],...,a,[t — 90],
and a,[t], a, [t — 10], ..., a,[t — 90].

The NN weights have been estimated using the Levenberg—
Marquardt method during 500 epochs. The number of neurons
in the hidden layer was chosen to minimize the test error of each
specific architecture. The architectures of the two extreme NNs
are represented in Fig. 6.
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Similar to the ARX models, a complexity index is defined in
such a way that the complexity of the NN with 2 inputs (NN 1)
is 0 and the complexity of the NN with 20 inputs (NN 10) is 1.
The different models, their input variables, and their complexity
are shown in Table II.

C. Results

To test the performance of the two GFFSMs and the alterna-
tive modeling approaches, we have done a leave-one-out cross
validation [78] for each of the ten datasets of each person. As
an example, Table III shows the MAE that is obtained for each
fold of the leave-one-out corresponding to the first person’s ex-
periments. It also depicts the average value of the MAE and its
standard deviation for the ten folds.

As a global summary of the results that are obtained,
Table IV reports, for each of the leave-one-out applications for
the ten datasets of each person, the average (MEAN) and stan-
dard deviation (STD) of the MAE for eight different models:
those two corresponding to our proposal (GFFSM 3 and GFFSM
5), three ARX models comprising a good tradeoff model (ARX
7) and the two extreme ones (ARX 1 and ARX 10), and three
NN models comprising a good tradeoff model (NN 4) and the
two extreme ones (NN 1 and NN 10).

To select the best accuracy—complexity tradeoff model for
both NN and ARX models, we compute 1000 random weights
w; € [0, 1]. We calculate the average MAE for each model for
the 20 people (MAE) and normalize the resulting set of MAEs in
the interval [0, 1]. We take the average value of the aggregation
function of both the normalized MAE (I\ZXE) and the complex-
ity index value (COMPLEXITY) of each model as shown in (7).
Finally, the model with the lowest aggregated value is selected
as that with the best tradeoff

1000
QMoODEL = Zwi - MAEMODEL

im1

+ (1 — wi) - COMPLEXITY\oDEL- 7

Moreover, since our final goal is to obtain a specific model
(FFSM) for each person’s gait, Table V shows the average of the
MAE for each one of the person’s models (FFSMs) generated
during the leave-one-out procedure when the input data are the
whole set of gaits of each person. The aim of these results is
to check if the generated models are significantly fitted to the
specific person’s gait than to other persons’ gaits, as expected
and desired.

As can be seen, that is clearly the case. For example, notice
that models GFFSM 3 and GFFSM 5 for the first person (P1)
corresponding to the first two rows get an average MAE (bold-
faced) of 0.088 and 0.076, respectively, with its own person’s
gait (first row, first column), while they get large average MAE
values for the gaits of the rest of the people (the rest of the
columns in the first row). This fact can also be checked for the
models of the rest of the people. In addition, the last column of
Table V (MEAN™) shows boldfaced the average value of all the
MAES obtained by each person’s FESM model with the gaits of
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hidden layer and the difference arises in the number of (delayed) inputs.
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Architectures of the simplest neural network (NN 1) and the most complex one (NN 10) designed for human gait modeling. All of them have a single

TABLE II
TEN DIFFERENT NN ARCHITECTURES WITH THEIR INPUT VARIABLES AND COMPLEXITIES
MODEL INPUT VARIABLES COMPLEXITY
NN 1 az[t], ayt] 0
NN 2 az[t], az[t — 10], ay[t], ay[t — 10] 0.111
NN 3 az[t], az[t — 10], az [t — 20|, ay[t], ay[t — 10], ay [t — 20] 0.222
NN 4 az[t],az[t —10],...,az[t — 30], ay(t], ay[t — 10],. .., ay[t — 30] 0.333
NN 5 azlt],az[t —10],.. ., az[t — 40], ay[t], ay[t — 10],. .., ay[t — 40] 0.444
NN 6 az(t], az[t —10],. .., az[t — 50], ay[t], ay[t — 10],. .., ay[t — 50] 0.556
NN 7 az[t], az[t —10],...,ag[t — 60], ay[t], ay[t — 10],. .., ay[t — 60] 0.667
NN 8 az[t], az[t —10],...,az[t — 70], ay[t], ay[t — 10],. .., ay[t — 70] 0.778
NN 9 az[t], az[t —10],...,az[t — 80], ay[t], ay[t — 10],. .., ay[t — 80] 0.889
NN 10 ag[t],az[t —10],...,ac[t — 90], ay[t], ay[t — 10],. .., ay[t — 90] 1

TABLE III
MAE OF THE LEAVE-ONE-OUT FOR THE DATASETS OF THE FIRST PERSON, WITH THE AVERAGE (MEAN)
AND STANDARD DEVIATION (STD) FOR EACH OF THE EVALUATED MODELS

FOLD | GFFSM3 ARX 1 ARX2 ARX3 ARX4 ARXS5 ARX6 ARX7 ARX8 ARX9 ARX 10
1 0.089 0.337 0.316 0.293 0.262 0.201 0.172 0.068 0.065 0.066 0.068
2 0.066 0.340 0.316 0.293 0.261 0.192 0.154 0.058 0.051 0.051 0.058
3 0.135 0.341 0.320 0.296 0.267 0.224 0.162 0.060 0.044 0.044 0.060
4 0.108 0.343 0.318 0.291 0.256 0.212 0.166 0.054 0.049 0.048 0.054
5 0.133 0.337 0.320 0.298 0.259 0.217 0.215 0.054 0.039 0.040 0.053
6 0.078 0.338 0.315 0.300 0.258 0.184 0.169 0.059 0.056 0.057 0.058
7 0.101 0.345 0.316 0.299 0.256 0.219 0.182 0.058 0.051 0.048 0.058
8 0.149 0.345 0.317 0.298 0.274 0.234 0.164 0.107 0.105 0.105 0.107
9 0.086 0.340 0.311 0.288 0.253 0.241 0.221 0.117 0.117 0.115 0.116
10 0.081 0.335 0.313 0.291 0.259 0.195 0.196 0.070 0.079 0.079 0.070
MEAN 0.103 0.340 0.316 0.295 0.261 0.212 0.180 0.070 0.065 0.065 0.070
STD 0.028 0.003 0.003 0.004 0.006 0.019 0.023 0.023 0.027 0.026 0.023
FOLD | GFFSM 5 NN 1 NN 2 NN 3 NN 4 NN 5 NN 6 NN 7 NN § NN 9 NN 10
1 0.107 0.218 0.138 0.098 0.084 0.077 0.076 0.065 0.061 0.060 0.059
2 0.081 0.209 0.114 0.087 0.068 0.067 0.057 0.056 0.048 0.049 0.046
3 0.077 0.221 0.125 0.089 0.072 0.065 0.056 0.051 0.053 0.043 0.041
4 0.085 0.219 0.123 0.096 0.084 0.070 0.066 0.053 0.054 0.058 0.050
5 0.085 0.221 0.132 0.092 0.074 0.073 0.060 0.061 0.055 0.050 0.051
6 0.063 0.219 0.146 0.110 0.087 0.084 0.069 0.060 0.062 0.055 0.058
7 0.083 0.209 0.123 0.088 0.078 0.070 0.063 0.061 0.061 0.054 0.051
8 0.142 0.236 0.144 0.113 0.085 0.089 0.079 0.073 0.075 0.068 0.074
9 0.076 0.212 0.131 0.107 0.085 0.077 0.074 0.074 0.066 0.057 0.065
10 0.080 0.207 0.119 0.080 0.067 0.062 0.057 0.056 0.050 0.045 0.046
MEAN 0.088 0.217 0.129 0.096 0.078 0.073 0.066 0.061 0.059 0.054 0.054
STD 0.022 0.009 0.011 0.011 0.008 0.009 0.008 0.008 0.008 0.008 0.010

all the people, except its own input gaits. It can be easily seen
that these values are much greater than the ones obtained with
the gaits of each person’s model (boldfaced in the diagonal cells
of the table).

D. Discussion

This section aims to present a discussion about four different
issues of our proposed model: its accuracy, its interpretability,
its computational cost, and the importance of the use of expert
knowledge.

1) Accuracy Analysis: The results given in Tables Il and IV
show that the GFFSM models exhibit better accuracies when
compared with the simplest competing models, namely ARX
1 and NN 1. Besides, it can be seen how the best tradeoff
model ARX 7 is able to outperform our proposal, although it
needs a big delay of 50 samples to do so. In contrast, the best
tradeoff model NN 4 shows a similar accuracy to our models.
Its results are slightly better than those of GFSSM 3 and slightly
worse than those of GFFSM 5. In fact, GFFSM 5 is better than
GFFSM 3 for the majority of the people because of its higher
granularity in the number of linguistic labels, which provides it
with additional freedom degrees for the modeling task.
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TABLE IV
AVERAGE (MEAN) AND STANDARD DEVIATION (STD) OF THE MAE FOR EACH ONE OF THE LEAVE-ONE-OUT FOR THE 10 DATASETS OF EACH PERSON
PERSON GFFSM 3 GFFSM 5 ARX 1 ARX 7 ARX 10 NN 1 NN 4 NN 10
MEAN STD | MEAN STD || MEAN STD | MEAN STD | MEAN STD || MEAN STD | MEAN STD
1 0.103  0.028 | 0.088 0.022 0.340  0.003 [ 0.070 0.023 | 0.070  0.023 0.217  0.009 | 0.078 0.008 | 0.054 0.010
2 0.063  0.025 | 0.055 0.020 0379  0.011 [ 0.064 0.027 | 0.064 0.027 0.194  0.007 | 0.061 0.009 | 0.053 0.008
3 0.091 0.018 | 0.077 0.022 0331  0.007 | 0.103 0.041 | 0.102  0.041 0.238 0.010 | 0.080 0.010 | 0.053 0.008
4 0.150  0.100 | 0.143  0.040 || 0.328 0.006 | 0.110 0.050 | 0.109 0.050 || 0257 0.007 | 0.118 0.012 | 0.078 0.011
5 0.071  0.047 | 0.055 0.031 0.254  0.006 | 0.071 0.016 | 0.071 0.016 | 0.248 0.005 | 0.093 0.008 | 0.063 0.010
6 0.106  0.030 | 0.117  0.022 0323 0.014 | 0.107 0.040 | 0.106 0.040 | 0.258 0.006 | 0.115 0.014 | 0.077 0.011
7 0.170  0.045 | 0.159 0.034 0.355 0.008 | 0.074 0.021 | 0.074 0.021 0.255  0.009 | 0.094 0.012 | 0.052 0.007
8 0.065 0.019 | 0.067 0.034 0352 0.004 | 0.065 0.020 | 0.065 0.020 | 0.211 0.003 | 0.072 0.005 | 0.048 0.006
9 0.098  0.041 | 0.121  0.075 0319  0.009 [ 0.115 0.076 | 0.115 0.076 | 0.243 0.010 | 0.120  0.020 | 0.088 0.016
10 0.121  0.056 | 0.098 0.050 0382 0.012 | 0.088 0.030 | 0.088 0.030 | 0.237 0.005 | 0.108 0.008 | 0.068 0.008
11 0.101  0.039 | 0.110 0.032 0376  0.004 [ 0.094 0.018 | 0.090 0.025 0.221  0.003 | 0.109 0.012 | 0.088 0.010
12 0303 0.143 | 0229 0.131 0.339  0.002 [ 0.078 0.018 | 0.076  0.028 0.301  0.021 | 0.261 0.048 | 0.257 0.065
13 0281 0.104 | 0263 0.126 0348 0.022 | 0.083 0.046 | 0.086 0.059 | 0.282 0.029 | 0.268 0.085 | 0.296 0.094
14 0.059  0.020 | 0.066 0.044 0370  0.005 | 0.070  0.029 | 0.066 0.026 | 0.204 0.005 | 0.062 0.011 [ 0.046 0.014
15 0279  0.125 | 0209 0.127 0339 0.020 [ 0.089 0.028 | 0.080 0.030 | 0.290 0.026 | 0.249  0.075 | 0.253 0.082
16 0.059 0.038 | 0.066 0.064 0.233  0.009 | 0.085 0.069 | 0.070  0.020 | 0.238 0.010 | 0.093 0.012 | 0.055 0.007
17 0215 0.135| 0.153 0.120 0333 0.004 | 0.114 0.038 | 0.124  0.051 0.297 0.034 | 0.233 0.110 | 0.233 0.124
18 0.088 0.046 | 0.070 0.015 0343 0.006 | 0.069 0.026 | 0.073  0.020 | 0.210  0.009 | 0.077  0.009 | 0.052 0.008
19 0.105 0.029 | 0.106 0.041 0384  0.007 [ 0.101 0.044 | 0.104 0.044 | 0.243 0.006 | 0.110  0.012 | 0.080 0.012
20 0.142  0.053 | 0.120  0.036 0366 0.018 | 0.117 0.056 | 0.101 0.039 | 0.270 0.005 | 0.099 0.012 | 0.062 0.007
MEAN 0.133  0.057 | 0.119 0.054 0.340  0.009 [ 0.088 0.036 | 0.087 0.034 | 0.246 0.011 | 0.125 0.025 | 0.103 0.026

TABLE V
AVERAGE OF THE MAE FOR EACH ONE OF THE PERSON’S FFSM MODELS WHEN THE INPUT DATA ARE THE WHOLE SET OF GAITS OF EACH PERSON

INPUT
MODEL Pl | P2 | P3| P4 | P5 | P6 | P7 | P8 | P9 [PIO|PIl|[PI2]|PI3|Pl4|PI5]|PI6|PI7|PI8|PI9 | P20 [MEAN™

Plarrsm 3 ||0.088]0.276(0.347|0.336/0.373]0.357{0.319(0.167/0.335/0.331]0.288]0.335|0.335{0.417{0.325|0.343| 0.349| 0.357|0.361{0.346| 0.331
Plarrsm s ||0.076]0.341]0.370{0.333]0.357]0.380{0.348(0.260|0.353|0.357|0.301|0.366|0.360{0.361|0.366/0.312]0.360|0.366|0.358|0.364|| 0.348
P2qrrsm 3 {|0.400(0.060(0.33110.415(0.405]0.419{0.393|0.402{0.394/0.344|0.400{0.395(0.362|0.404{0.392|0.435{0.405|0.399|0.417{0.407|| 0.396
P2arrsm 5 [|0.405/0.047]0.305]0.394]0.403]0.418{0.388/0.400/0.3900.362]0.395]0.383]0.341]0.351]0.386/0.410|0.386|0.404|0.404|0.406|| 0.386
P3arrsm 3 ||0.407(0.3190.082{0.400{0.375|0.407{0.397(0.410|0.405]0.383|0.224|0.381{0.369|0.425|0.374|0.400{ 0.386(0.398|0.447/0.399|| 0.384
P3arrsm s [|0.380/0.321]0.072{0.377]0.363]0.384[0.386/0.312|0.399|0.373]0.254]0.380|0.369{0.409|0.382|0.403| 0.382|0.386|0.429|0.367|| 0.371
Pdarrsm 3 |[0.284]0.309(0.409{0.103{0.279{0.287(0.333(0.300(0.358|0.374|0.323]0.347{0.313{0.325{0.342(0.224| 0.383]0.365|0.243|0.372|| 0.325
Pdgrrsm s [|0.252]0.315[0.360{0.109]0.345]0.285[0.290(0.310/0.400|0.389]0.316|0.340|0.308|0.342|0.355/0.249]0.365]|0.369{0.251|0.376|| 0.327
PSarrsm 3 ||0.410/0.399(0.467(0.345(0.046{0.360{0.369(0.372(0.3800.352]0.395]0.362{0.395{0.229{0.398|0.360| 0.376| 0.386|0.347|0.382(| 0.373
PSarrsm s [|0.378]0.368(0.409{0.373]0.039]0.319{0.356/0.4110.3520.345]0.317]0.365|0.387[0.355]0.381|0.364]|0.372]0.363|0.366|0.347|| 0.365
Pbarrsm 3 ||0.380/0.362(0.388(0.327{0.242{0.091{0.339(0.334|0.400|0.423]0.429|0.348|0.305{0.382{0.316/0.219]0.364|0.327{0.252{0.329|| 0.340
Pbarrsm s ||0.36310.298]0.360{0.342]0.256|0.085[0.345/0.285|0.419|0.418]0.410]0.349|0.331]0.406|0.363|0.259| 0.354|0.347|0.261|0.330|| 0.342
PT7arrsm s ||0.278/0.215{0.22910.287|0.381{0.267(0.135|0.213{0.379(0.396|0.240{0.335/0.317{0.411{0.350|0.302(0.333|0.310{0.328(0.378| 0.313
PT7arrsm s [|0.306/0.230{0.284]0.302]0.389]0.237{0.124/0.248|0.354|0.374]0.276]0.338/0.317[0.376/0.355/0.317|0.339]0.295[0.310{0.371|| 0.317
P8arrsm 3 ||0.264(0.239{0.327(0.3320.327{0.333(0.311]0.061{0.345(0.369|0.32210.3390.336{0.397(0.332|0.349(0.337|0.350{0.371{0.328| 0.332
P8arrsm s [|0.216]0.275[0.315]0.337]0.380]0.335{0.317/0.056|0.337|0.395|0.291]0.358|0.358|0.395|0.340/0.374]|0.331]0.378{0.370{0.361|| 0.340
P9arrsm 3 ||0.402]0.409(0.438(0.379{0.379{0.411{0.374(0.379(0.073|0.356|0.387|0.332{0.373{0.251{0.365(0.377|0.340| 0.357|0.359{0.378|| 0.371
P9grrsm s [|0.384]0.426(0.447|0.384|0.381]0.393{0.362(0.408|0.075|0.306|0.408]0.322|0.373[0.208|0.367|0.374)| 0.348|0.398|0.368|0.385| 0.371
P10crrsm 3([0.395/0.375]0.385(0.385(0.354{0.432{0.341{0.392/0.2520.093]|0.390|0.345|0.382{0.330{0.311(0.415|0.352]0.401{0.432{0.332{| 0.369
P10Grrsm 5 |[0.342|0.362]0.407|0.368|0.323]0.362{0.341{0.367|0.236|0.073|0.334]0.321|0.347(0.353]0.311|0.360| 0.367]| 0.383|0.358|0.318|| 0.345
Pllgrrsm 3(0.279(0.2540.243{0.312(0.334|0.305{0.357(0.251{0.404/0.3890.075{0.341{0.322|0.393{0.366|0.353{0.355|0.418|0.354|0.363|| 0.337
Pllgrrsms|[0.258|0.26510.266(0.320{0.323]0.300{0.311{0.210/0.354|0.337]0.072]0.332|0.309(0.337]0.348/0.318|0.331]0.373|0.324{0.341|| 0.314
P12¢rrsm 3(0.325(0.335|0.315{0.344/0.335|0.317{0.335(0.311{0.298]0.331|0.338|0.174(0.317/|0.351{0.319|0.292{0.329|0.342|0.316|0.340|| 0.326
P12grrsm 5 |[0.348|0.362]0.317]0.348|0.336]0.298[0.348/0.281|0.365|0.345|0.351]0.133|0.307{0.402{0.313|0.287|0.319]0.316{0.347|0.325|| 0.332
P13crrsm 3/ 0.333/0.380]0.342{0.308(0.369|0.350{0.344|0.328|0.360{0.340|0.337{0.333(0.188/0.393|0.320(0.318{0.311{0.325|0.369|0.353|| 0.343
P13¢rrsm5|[0.330/0.338]0.286{0.322{0.341{0.335{0.320{0.284|0.359|0.356|0.325]0.336|0.179(0.384|0.319(0.358| 0.322]0.310{0.318|0.344|| 0.331
Pldgrrsm 3([0.38310.416]0.451]0.406(0.358{0.415[0.388(0.385/0.318|0.342]0.382]0.383|0.388{0.053{0.401(0.399|0.394]0.384|0.372{0.399|| 0.388
Pldgrrsm 5 0.414/0.412]0.444{0.410(0.385/0.411{0.401|0.426{0.296|0.347|0.419{0.387|0.398]0.041|0.402|0.386|0.380|0.392|0.366|0.398|| 0.393
P15Grrsm 3([0.368/0.401]0.372{0.329{0.360{0.328{0.353(0.375(0.303|0.378|0.351]0.312|0.344{0.39810.180(0.352| 0.333]0.313|0.327{0.360(| 0.350
P15Grrsm5|[0.36310.37510.369{0.306|0.358{0.319{0.335[0.319/0.327|0.422|0.306|0.309|0.327{0.411]0.137/0.331]|0.332]0.319{0.301|0.334|| 0.340
P16crrsm 3([0.327|0.360]0.363]0.293|0.322{0.342{0.338(0.318/0.3590.369|0.336|0.330|0.329(0.359{0.353|0.044| 0.349| 0.339|0.233|0.338|| 0.334
P16¢rrsm 5 ([0.292|0.363]0.342{0.319]0.330{0.339{0.340{0.301|0.354|0.348|0.315]0.329|0.334|0.356|0.354|0.034| 0.347|0.342|0.235|0.344| 0.331
P17¢rrsm 3(0.299(0.358]0.261{0.340(0.423|0.358{0.361(0.267|0.380{0.386|0.260{0.339(0.312|0.349|0.330| 0.346{0.134|0.294|0.310{0.393|| 0.335

3 0.319]0.327]0.254]0.353[0.416/0.355|0.362|0.190]0.368{0.390{0.260{0.359/0.306/0.433|0.353]0.342|0.121]0.320{0.323[0.401 || 0.338
P18crrsm 3(0.32310.336]0.337{0.366(0.372|0.377{0.374|0.344{0.385]0.409|0.38310.350{0.351|0.399|0.349|0.326{0.368|0.070| 0.341|0.336| 0.359
P18rrsm 5 |[0.394/0.343]0.362{0.352{0.416{0.399[0.361{0.366/0.393/0.412|0.389]0.378|0.352(0.388|0.363|0.326| 0.405| 0.061|0.284|0.391|| 0.372
P19¢rrsm 3([0.303|0.350]0.387(0.291{0.350{0.343{0.353(0.310(0.372|0.367|0.365]|0.371|0.328{0.391{0.385/0.312| 0.364|0.287|0.082{0.352|| 0.346
P19¢rrsm 5||0.298/0.322]0.375{0.300{0.343]0.332{0.346|0.316{0.383]0.342|0.359{0.377/0.352|0.403|0.384|0.310{0.373|0.303]0.079|0.343|| 0.345
P20crrsm 3([0.36910.408]0.385(0.386(0.314{0.404/0.419{0.366(0.315|0.276|0.385]0.333|0.367(0.341{0.331(0.373|0.329| 0.343|0.388|0.107|| 0.360
P20¢rrsm 5([0.38310.428]0.395[0.396]0.329]0.380{0.429[0.379|0.318/0.294]0.386]0.313|0.361[0.314]0.310/0.376]/0.365]0.365]0.392|0.086|| 0.364
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TABLE VI
P-VALUES OBTAINED FOR THE THREE DIFFERENT WILCOXON SIGNED-RANK TESTS AND THEIR NULL HYPOTHESES
GFFSM 3
ALG Ho : perrsm 3 = pmobp | Ho : perrsm 3 < pmop | Ho @ pgrrsm 3 > umop | CONCLUSION
GFFSM 5 0.021 0.010 0.990 8]
ARX 1 1.91-107° 1 9.54-1077 [+]
ARX 2 1.91-1076 1 9.54-1077 [+]
ARX 3 3.81-107¢ 1 1.91-107¢ [+]
ARX 4 2.67-107° 1 1.34-107° [+]
ARX 5 0.004 0.998 0.002 [+]
ARX 6 0.231 0.892 0.115 =1
ARX 7 0.018 0.009 0.991 [-]
ARX 8 0.005 0.002 0.998 [
ARX 9 0.004 0.002 0.998 [
ARX 10 0.010 0.005 0.995 [
NN 1 1.20 - 1074 1 6.01-107° [+]
NN 2 8.20-107° 1 4.10-107° [+]
NN 3 0.121 0.939 0.061 [=]
NN 4 0.232 0.116 0.884 =
NN 5 0.022 0.011 0.989 [-]
NN 6 0.003 0.002 0.999 [
NN 7 0.002 8.01-107* 0.999 [
NN 8 5.93-107% 2.96-107* 1 [
NN 9 1.68 1074 8.39-107° 1 [
NN 10 3.22.104 1.61-10"% 1 [
GFFSM 5
ALG Ho : perrsm 5 = pvop | Ho @ pgrrsm 5 < pmop | Ho @ pgrrsm 5 > umop | CONCLUSION
GFFSM 3 0.021 0.990 0.010 [+
ARX | 1.91-107° 1 9.54-1077 [+]
ARX 2 1.91-10¢ 1 9.54-1077 [+]
ARX 3 8.84-107° 1 4.42.107° [+]
ARX 4 8.84-107° 1 4.42.107° [+]
ARX 5 2.10-1074 1 1.05-1074 [+]
ARX 6 0.040 0.980 0.020 [+]
ARX 7 0.033 0.017 0.983 [-]
ARX 8 0.005 0.003 0.997 [-]
ARX 9 0.005 0.002 0.998 [-]
ARX 10 0.016 0.008 0.992 [
NN 1 1.91-10"¢ 1 9.54.1077 [+]
NN 2 1.91-10"¢ 1 9.54.1077 [+]
NN 3 2.61-1074 1 1.31-107% [+]
NN 4 0.179 0.911 0.089 [=]
NN 5 0.601 0.300 0.700 [=]
NN 6 0.255 0.127 0.873 [=]
NN 7 0.151 0.075 0.925 =
NN 8 0.073 0.037 0.963 =]
NN 9 0.042 0.021 0.979 [
NN 10 0.090 0.045 0.959 =]

In order to assess whether significant differences exist among
the results of all models, we use the Wilcoxon signed-rank
test [79] for pairwise comparison between our models (GFFSM
3 and GFSSM 5) and the rest of competing models. We choose
this test because it does not assume normal distributions and
because it has been commonly used to compare performance
of methods in computational intelligence [80], [81]. To perform
the test, we use the standard confidence level of o« = 0.05.

We have run the Wilcoxon signed-rank test for three different
hypotheses: if the average MAEs of our proposed approaches
(ucrrsms and pgrrswms) are equal to, less than, or greater
than those obtained by the other modeling techniques (top)-
We conclude that our proposal is better (denoted by [+]) if
the test rejects both null hypotheses Hy : pigrrsm > UMOD
and Hy : perrsm = ivop- We conclude that our proposal is
worse (denoted by [—]) if the test rejects both null hypothe-
ses Hy : parrsm < pivop and Hy @ perrsm = pavon - Inall
other cases, we draw no conclusions (denoted by [=]).

Table VI shows the obtained p-values and the drawn conclu-
sions. The results particularly indicate that the GFFSM 3 model
is significantly better than the first five ARX models and the

first two NNs (while for ARX 6, NN 3, and NN 4, the testings
do not provide clear conclusions). The GFFSM 5 model is sig-
nificantly better than the GFFSM 3, the first six ARX models,
and the first three NNs (while for NN 4, NN 5, NN 6, NN 7, NN
8, and NN 10, the testings do not provide clear conclusions). In
view of these results, the accuracy of the GFFSMs, in particular
that of GFFSM 5, is competitive with almost every NN (all but
NN 9) and the first six ARX models.

The good accuracy of our model is also illustrated in Fig. 7.
The vertical axis depicts each component of the state activa-
tion vector for a gait of the first person obtained using our
proposal (S[t]6FFSM3 and S[¢]SFFSM5) the THRIFT-FFSM
model (S[t]THRIFT; see Section VI-D4), the best tradeoff ARX
model (ARX 7) (S[t]*RXT), and the best tradeoff NN architec-
ture (NN 4) (S[t]NN4). The actual values (S*[t]) are reported in
the bottom line for comparison. The activation value is repre-
sented by means of a gray intensity scale (black means 1 and
white means 0). Notice that both ARX 7 and NN 4 calculate
the activation vector after the first 0.5 and 0.3 s, respectively,
because of the fact that they need the first 50 and 30 samples to
operate (0.5 and 0.3 s with a sampling frequency of 100 Hz).
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It can be seen how GFFSM 3 and GFFSM 5 are able to follow
the appropriate sequence of states with the correct activation
degree.

2) Interpretability Analysis: From the interpretability point
of view, both NNs and the ARX models are black-box models
which are difficult to be understood by human experts and even
more if they have a big number of delayed input variables or a
high number of inputs. Nevertheless, our GFFSMs are able to
describe and model the human gait phenomenon by means of
only eight linguistic fuzzy IF-THEN rules (whose input variables
have only three or five associated linguistic labels) achieving a
good interpretability—accuracy tradeoff. As an example of how
our proposal is describing linguistically the temporal evolution
of the accelerations produced during the human gait, a complete
RB learned for GFFSM 3 in one of the executions of the GA is
shown as follows:

Ryy: IF (S[t] is q1) AND (a,[t] is Sa,)
THEN S[t + 1] is q1

Ros: TF (S[t] is g2) AND (a[t] is B
THEN S[t + 1] is g2

Ras: IF (S[t] is q3) AND (ax[t] is Ma,) AND (ay [t] is Ma,)
THEN S[t + 1] is g3 )

Ras: IF (S[t] is q4) AND (az[t] is Sa, OR Ba,) AND (ay[t] is Sa, OR M,,)
THEN S[t + 1] is q4

Ruz: TF (S[t] is q1) AND (a5 [t] is Sa,) AND (ay[t] is Sa, OR M)
THEN S[t + 1] is g2

Ra3z: IF (S[t] is g2) AND (az[t] is Ma,) AND (ay[t] is Suy)
THEN S[t + 1] is g3

Raa: IF (S[t] is q3) AND (ast] is Mq, OR B,,) AND (a,[t] is M,, OR By,)
THEN S[t + 1] is qa

Ry1: IF (S[t] is q4) AND (ay[t] is Sa, OR Mg, ) AND (ay[t] is Ba,,)
THEN S|t + 1] is q1

42) AND (a, [t] is Ma, OR Bu,)

M(t ! Bu
1 e =
"\ S
.." “.‘ ===Uniform
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Fig. 8. MFs which comprise the learned DB compared with the original

uniformly distributed MFs.

Fig. 8 shows the graphical representation of the learned DB
associated with this RB. The initial DB is also plotted, which
consists of uniformly distributed MFs. In both cases, the use of
SFPs produces comprehensible fuzzy partitions which allow us
to get an interpretable fuzzy system.

As mentioned earlier, the main advantage of our model of
human gait is its interpretability. The chance to properly under-
stand the obtained model can report a large number of benefits
for the designer. For example, in [29], we took advantage of this
interpretability to create a model which is aimed to compare the
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characteristics of different human gaits, which is a different but
related problem. With this aim, we elaborated upon two relevant
measures of human gait based on the degree of activation and
duration of successive states. We called these measures symme-
try and homogeneity. Symmetry is a measure of the similarity
among accelerations that are produced by steps given by the
right leg (states ¢; and ¢o) and accelerations that are produced
by steps of the left leg (states g3 and g4). Homogeneity is a
measure of how the same pattern of accelerations is repeated
on time, i.e., it is a measure of similarity between each two
steps and the following ones. Empirically, we have observed
that these measures are characteristic of the style of walking of
each person. In the paper mentioned earlier, we showed how
to use these parameters to authenticate one person among 11
individuals (see a research work with the same goal but with
a different approach in [82]). As in [1] and [41], we think that
the model presented in that paper could be used to detect and
analyze pathological disorders in the gait in the same way. It
seems evident that symmetry and homogeneity will be affected
by the presence of gait disorders, i.e., we can check this point
measuring the symmetry of gait when a person is carrying a
heavy bag in one hand and when she/he is free of that heavy
unbalancing load.

Focusing on the current contribution, the expert analysis of
the RB and the DB obtained of the human gait GFFSM model
constitutes another approach to detect gait disorders. The an-
tecedents of the learned rules in conjunction with the MFs of
each variable can provide relevant information about the quality
of the gait of a person, i.e., by showing abnormal member-
ship values of the dorsoventral acceleration (a, ) or inconsistent
rules not compatible with the expert’s knowledge. Moreover,
regarding the topic of gait modeling, it is worth noting that
the interpretability of the model allows us to calculate relevant
temporal features of the gait, i.e., the duration of the states and
their temporal sequence. With this information, we can easily
count the number of steps and the duration of each of them and
therefore the instantaneous walking speed. This is a significant
issue in gait disorder analysis because of the fact that, e.g., pa-
tients tend to alter speed in order to accommodate loads that are
applied on the knee.

3) Computational Cost Analysis: We have already com-
pared the different algorithms in terms of the complexity and
accuracy. Nevertheless, it is also interesting to evaluate their
computational cost. The average times needed to build GFFSM 3
and GFFSM 5 models were 4076 and 6022 s, respectively, while
the ARX 1, ARX 7, and ARX 10 models took 0.25, 72, and
630 s, respectively. NN 1, NN 4, and NN 10 took 40, 118, and
314 seconds, respectively. All the methods were run in a single
computer, with 4 GB RAM and an Intel Core 2 Quad Q8400
with 2.66 GHz.

As expected, the GFFSMs spent a larger run time as they do
not only involve parameter estimation but also structure identifi-
cation. As said in Section V-B, the dependence of the next state
on the previous state in our GFFSM makes it strictly necessary to
test the FFSM over the whole dataset for each chromosome eval-
uation, which is very computationally expensive. Nevertheless,

the additional interpretability advantage makes this computa-
tional cost increase worthy. In addition, while NNs and ARX
models are implemented in well-established and -optimized li-
braries, the GFFSMs were programmed in not optimized MAT-
LAB code (more refined implementations could be done in the
future).

4) Importance of the Use of Expert Knowledge Analysis:
Our GFFSMs are designed to take advantage from the avail-
able expert knowledge, exploiting the power of fuzzy systems
which are capable of integrating this knowledge with machine
learning techniques. The possibility to merge expert informa-
tion with the information derived from data using GAs al-
lows us to obtain a rough linguistic description of the gait,
i.e., the final set of fuzzy rules obtained provides a linguis-
tic description of the phenomenon. In the current GFFSMs,
the designer has chosen a model of human gait with four ba-
sic fuzzy states that are easily recognized when we observe
a walking person (see Fig. 1). Applying this constraint in the
model, the designer makes the model easily understandable.
Then, the GA explores possibilities into this restricted frame-
work to define the final model structure and to estimate its
parameters.

Even so, we have also decided to check whether the pro-
posed GFFSM method is powerful enough to handle the over-
all learning problem, i.e., to extract the whole model (fuzzy
rule set) structure from scratch along with the relevant labels
and MFs in the case of three linguistic labels per input vari-
able. We have assumed full ignorance of the RB and tried to
build an FESM using the classical genetic learning method pro-
posed by Thrift [83] to derive the RB of the FFSM keeping
the previous derivation of the DB based on a GA with real-
coded chromosomes (from now on, this method will be called
THRIFT-FFESM).

Thrift’s RB derivation method is based on encoding all the
cells of the complete decision table in the chromosomes. In our
case, we have three antecedents: the current state (with four
different possibilities corresponding to the number of possible
states, the only information provided by the expert in the cur-
rent experiment, together with the granularity of the fuzzy parti-
tions), the input variable a, (with three different linguistic labels
corresponding to .S, , M, , and B,, ), and the input variable a,
(with another three different linguistic labels corresponding to
Sau , M, ,and B, ). Therefore, the decision table will be a 3-D
structure of size 4 x 3 x 3 consisting of a total of 36 possible
rules. Each cell of the decision table will represent the output
of each fuzzy rule by means of an integer coding scheme rep-
resented by the set {0, 1,2, 3,4}, where 0 indicates the absence
of the rule and 1, 2, 3, or 4 indicates that the next state will be
q1, G2, q3, O q4, respectively. Hence, we substitute the first part
of the chromosome in Fig. 4 (RB part), which is composed of
48 binary genes (see Section V-A), by an integer-coded array of
size 36, encoding the consequents for each possible rule. The
resulting coding scheme has, thus, 44 genes (36 for the RB part
plus 8 for the DB part).

We have used the same genetic operators for the GA as ex-
plained in Section V and the same parameter values shown
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TABLE VII
MAE OF THE LEAVE-ONE-OUT FOR THE DATASETS OF THE FIRST AND SECOND
PERSON, WITH THE AVERAGE (MEAN) AND STANDARD DEVIATION (STD) FOR
THE TWO EVALUATED MODELS

FOLD PERSON 1 PERSON 2
THRIFT-FFSM ~ GFFSM 3 THRIFT-FFSM  GFFSM 3
1 0.115 0.089 0.054 0.049
2 0.085 0.066 0.091 0.072
3 0.115 0.135 0.072 0.065
4 0.102 0.108 0.107 0.047
5 0.205 0.133 0.092 0.072
6 0.172 0.078 0.107 0.037
7 0.083 0.101 0.169 0.048
8 0.111 0.149 0.051 0.066
9 0.152 0.086 0.079 0.124
10 0.083 0.081 0.121 0.046
MEAN 0.122 0.103 0.094 0.063
STD 0.041 0.028 0.035 0.025

Fig. 9.

State diagram obtained with Thrift’s RB derivation.

in Section VI-A2, except the bitwise mutation (designed for
binary-coded chromosomes) which was replaced by the origi-
nal Thrift’s mutation operator that randomly adds or subtracts 1
(with equal probability) to the current value of the allele within
the set {0, 1,2, 3,4}.

Table VII shows the MAE that is obtained for each fold of the
leave-one-out corresponding to the first and second person using
Thrift’s RB derivation keeping the DB derivation (THRIFT-
FFSM) compared with our expert information-based proposal
(GFFSM 3). It also depicts the average value of the MAE and
its standard deviation for the ten folds. As can be seen, the
lack of expert knowledge pays the cost of larger test errors.
Moreover, the average training time for each THRIFT-FFSM
model is 10 855 s, while the original GFFSM takes an average
of 4076 s.

We can also examine whether the RB extracted by the
THRIFT-FFSM model resembles to the expert knowledge-
based one. As an example, the RB obtained for the seventh
fold of the first person (with a MAE of 0.083) is shown as
follows:

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 20, NO. 2, APRIL 2012

RY:IF (S[t] is q1) AND (ag[t] is Ba,) AND (ay[t] is Sa,)
THEN S[t + 1] is q1

R2,:IF (S[t] is q1) AND (az[t] is Ba,) AND (ayt] is Ma,)
THEN S[t + 1] is q1

R3,:TF (S[t] is q1) AND (az[t] is Sa,) AND (ay[t] is Ba,)
THEN S[t + 1] is q1

R%,:IF (S[t] is q1) AND (ag[t] is Ma,) AND (ayt] is Ba,)
THEN S[t + 1] is q1

RS,:IF (S[t] is g2) AND (az[t] is Ba,) AND (aylt] is Ma,)
THEN S[t + 1] is g2

RS,:TF (S[t] is g3) AND (az[t] is Ba,) AND (ay[t] is Ba,)
THEN S[t + 1] is g3

R,:1F (S[t] is g3) AND (az[t] is Ma,) AND (ay[t] is Sa,)
THEN S[t + 1] is g3

RS.:IF (S[t] is g3) AND (az[t] is Ba,) AND (ay|t] is Ma,)
THEN St + 1] is g3

RY4:TF (S[t] is g3) AND (az[t] is Ma,) AND (ay[t] is Ba,)
THEN S[t + 1] is g3

RIO:IF (S[t] is q3) AND (az[t] is Ba,) AND (aylt] is Ba,)
THEN S[t + 1] is g3

RLLIF (S[t] is g4) AND (az[t] is Sa,) AND (ay[t] is Ma,)
THEN S[t + 1] is g4

R{Z:IF (S[t] is q1) AND (az[t] is Sa,) AND (ay[t] is Sa,)
THEN S[t + 1] is g2

RI3:TF (S[t] is q1) AND (az[t] is Sa,) AND (ay[t] is Ma,)
THEN S[t + 1] is q4

RLL:IF (S[t] is g2) AND (az[t] is Sa,) AND (ay[t] is Sa,)
THEN S[t + 1] is g3

RLS:TF (S[t] is g2) AND (ag[t] is Ba,) AND (ay[f] is Ba,)
THEN S[t + 1] is g4

RIS:TF (S[t] is q3) AND (az[t] is Sa,) AND (ay[t] is Ma,)
THEN S[t + 1] is q4

RT:TF (S[t] is g3) AND (ag[t] is Sa,) AND (ay[t] is Ba,)
THEN S[t + 1] is q4

RIS:IF (S[t] is qa) AND (az[t] is Ma,) AND (ay[t] is Ba,)
THEN S[t + 1] is q1

RLQ:TF (S[t] is q4) AND (az[t] is Ba,) AND (ay[t] is Ba,)
THEN S[t + 1] is q1

R2%:TF (S[t] is q4) AND (az[t] is Ba,) AND (ay[t] is Sa,)

THEN St + 1] is go

:IF (S[t] is g4) AND (az[t] is Ba,) AND (ay|t] is Mag,)

THEN S[t + 1] is g2

RZZ:0F (S[t] is q4) AND (az[t] is Sa,) AND (ay[t] is Ba,)
THEN S[t + 1] is qo

2

=
0=

It consists of 22 rules (14 rules were automatically discarded)
which, as can be seen in the state diagram shown in Fig. 9,
are not able to capture the expert knowledge represented by the
state diagram of the human gait shown in Fig. 2. It presents some
weird transitions as that represented in rule number 13 from the
state ¢ to the state g, or the transitions between states go and
qq in rules 15, 20, 21, and 22. The effects of these transitions
are reflected in Fig. 7, where the state activation vector corre-
sponding to the THIRFT-FFSM model (S[t]THRIFTY activates
q4 when going from the state ¢; to the state ¢5.

In summary, it is clear that the full consideration of the expert
knowledge is the best way to design an FFSM for the human
gait modeling problem by means of GAs.

VII. CONCLUDING REMARKS

We have presented a practical application where we described
how to build FFSMs to model the human gait of a set of people
by using GAs and expert knowledge. We have defined the prin-
cipal elements of the human gait cycle and developed a genetic
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learning procedure for FFSMs to model the gait cycle for each
person. It has been shown how this GFS can obtain automat-
ically the fuzzy rules and the fuzzy MFs associated with the
linguistic terms of the FFSM, while the states and transitions
are defined by the expert, thus maintaining the knowledge that
she/he has about the problem. To incorporate this expert knowl-
edge, we have designed a user-friendly graphical interface to
define the fuzzy states of the human gait. The results obtained
showed the goodness of our proposal.

We have increased the capabilities of FFSMs with a novel
GA-based procedure for the automatic definition of its KB.
Therefore, a great number of opportunities arise. We can set out
new applications of system modeling by means of GFFSMs. The
ability of our proposal to combine the available expert knowl-
edge with the accuracy achieved by the learning process can be
used to study several signals where the human interaction is de-
manded. Examples of application could range from biomedical
engineering (e.g., electroencephalogram or electrocardiogram
signals) to other time series analysis (e.g., econometrics or nat-
ural processes).

Our next research work in this direction consists of devel-
oping a model of the human gait where gait symmetry and
homogeneity can be analyzed in detail. This work will include
the automatic generation of linguistic reports about the human
gait quality.
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The human gait is a complex phenomenon that is repeated in time following an approximated pattern.
Using a three-axial accelerometer fixed in the waist, we can obtain a temporal series of measures that
contains a numerical description of this phenomenon.

Nevertheless, even when we represent graphically these data, it is difficult to interpret them due to
the complexity of the phenomenon and the huge amount of available data. This paper describes our
research on designing a computational system able to generate linguistic descriptions of this type of
quasi-periodic complex phenomena.

We used our previous work on both, Granular Linguistic Models of Phenomena and Fuzzy Finite
State Machines, to create a basic linguistic model of the human gait. We have used this model to
generate a human friendly linguistic description of this phenomenon focused on the assessment of the
gait quality. We include a practical application where we analyze the gait quality of healthy individuals

Keywords:

Human gait modeling
Gait quality assessment
Linguistic summarization
Fuzzy Logic

and people with lesions in their limbs.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Human beings describe phenomena in our environment using
natural language (NL). In order to perform this task, we interpret
the available data using our experience in both, namely, the field
of knowledge that allow us to recognize the phenomena and our
experience on using NL.

Our research line deals with the design and development of a
new family of computational systems capable of generating
linguistic descriptions of complex phenomena, i.e., these compu-
tational systems obtain data from a phenomenon and provide
linguistic descriptions that are relevant for specific users in
specific contexts. This type of systems will be used in supervision
and control applications and especially in the development of
user interfaces based on the use of NL.

Human gait is a quasi-periodic phenomenon which is defined
as the interval between two successive events (usually heel
contact) of the same foot (Begg et al., 2007). This process is
characterized by a stance phase (that approximately takes 60% of
the total gait cycle), where at least one foot is in contact with the
ground, and a swing phase (approximately 40% of the total gait
cycle), during which one limb swings through the next heel
contact. Gait phases can be quite different between individuals
but when normalized to a percentage of the gait cycle they

* Corresponding author.
E-mail addresses: alberto.alvarez@softcomputing.es (A. Alvarez-Alvarez),
gracian.trivino@softcomputing.es (G. Trivino).

0952-1976/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.engappai.2012.01.022

maintain close similarity, indicating the absence of disorders
(Perry, 1992). Fig. 1 shows two different synchronized pictures.
The top picture plots a sketch of a person representing the
different phases of the gait with the right limb boldfaced. The
picture at the bottom represents the time period from one event
(usually initial contact) of one foot to the subsequent occurrence
of initial contact of the same foot.

Due to the fact that human gait is a complex integrated task
which requires precise coordination of the neural and musculos-
keletal system to ensure correct skeletal dynamics (Winter, 1990),
its analysis can help in the diagnosis and treatment of walking
and movement disorders, identification of balance factors, and
assessment of clinical gait interventions and rehabilitation pro-
grams (Hamacher et al., 2011; Lai et al., 2009; Moustakidis et al.,
2010; Sant’Anna et al., 2011; Wren et al., 2011).

In human gait analysis, there are a huge number of variables
obtained by means of different measurement techniques. Most
gait parameters can be categorized as anthropometric data which
include height, weight, or limb length; spatiotemporal data
comprising variables such as walking speed, step length, or
phases time span; kinematic data of measurements of joint
angles, displacement, or acceleration along axes; kinetic data
variables including foot force and torques; or electromyographic
data which measures the muscle activation levels.

Two of the most common approaches to manage and analyze
human gait kinematic data are the computer vision approach
(Tafazzoli and Safabakhsh, 2010) and the sensor-based one. The
main advantage of the computer vision approach is the avoidance
of placing sensors on the user’s body. However, an expensive and
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Fig. 1. One gait cycle illustrating the four main phases.

complex system for capturing images is needed. Moreover, these
methods usually work in lab but fail in real world scenarios due to
clutter, variable light intensity and contrast. On the other hand,
the sensor-based approach consists of using small sensors
(usually accelerometers) placed in the body of the person. This
solution provides a smart solution to the problem of capturing the
signal, where data can be obtained anywhere by means of a
smartphone. Moreover, they can be used in the dark and provide
three-dimensional data. This line of research has attracted an
important number of researchers that focus the problem of
human gait modeling from different perspectives (see, e.g.,
Alaqtash et al., 2011; Najafi et al., 2003).

Our approach is based on the Computational Theory of
Perceptions (CTP). This field was introduced in the Zadeh’s
(1999) seminal paper “From computing with numbers to comput-
ing with words—from manipulation of measurements to manip-
ulation of perceptions” and further developed in subsequent
papers. CTP provides a framework to develop computational
systems with the capacity of computing with the meaning of NL
expressions, i.e., with the capacity of computing with imprecise
descriptions of the world in a similar way that humans do it. In
CTP, a granule is a clump of elements which are drawn together
by indistinguishability, similarity, proximity or functionality
(Zadeh, 1979). The boundary of a granule is fuzzy. Fuzziness of
granules allow us to model the way in which human concepts are
formed, organized and manipulated in an environment of impre-
cision, uncertainty, and partial truth (Zadeh, 1997). A granule
underlies the concept of a linguistic variable (Zadeh, 2008). A
linguistic variable is a variable whose values are words or
sentences in NL (Zadeh, 1975a,b,c).

In this paper, we do an extensive use of our previous research,
contributing to the human gait quality analysis field by providing a
new technique for modeling this type of phenomenon. We have
developed a computational application that uses a single three-axial
accelerometer to generate linguistic descriptions for assessing the
human quality. Here, we develop upon our previous research on the
Granular Linguistic Model of a Phenomenon (GLMP) improving its
expressiveness by introducing a new type of components based on
the concept of Fuzzy Finite State Machine (FFSM). First, we identify
the relevant phases of the gait based on the accelerations produced
during the process. Once the phases are recognized, we use two
relevant features of the human gait (homogeneity and symmetry) to
evaluate the gait quality corresponding to a specific person. Finally,
we develop a method for producing a linguistic report about the
quality of the gait in terms of the homogeneity and the symmetry.

This type of reports could be used to analyze the evolution of the
human gait, e.g., after a recovery treatment and also for preventing
falls in elderly people.

The remainder of this paper is organized as follows. Section 2
presents the main concepts of our approach to linguistic descrip-
tion of complex phenomena evolving in time. Section 3 describes
how to use these concepts for the linguistic description of the
human gait quality. Section 4 describes the experimentation
carried out, by describing the experimental setup and discussing
the results. Finally, Section 5 draws some conclusions and
introduces some future research works.

2. Linguistic description of phenomena evolving in time

Our approach to computational model of phenomena is based
on subjective perceptions of a domain expert that we call the
designer. The more experienced designer, with better under-
standing and use of NL in the application domain, the richer the
model with more possibilities of achieving and responding to final
users’ needs and expectations. The designer uses the resources of
the computer, e.g., sensors, to acquire data about a phenomenon
and uses her/his own experience to interpret these data and to
create a model of the phenomenon. Then the designer uses the
resources of the computer to produce the linguistic utterances.

In this section, we introduce the components of the GLMP, our
approach based on CTP for developing computational systems
able to generate linguistic descriptions of phenomena (Alvarez-
Alvarez et al., 2011a; Eciolaza and Trivino, 2011; Mendez-Nunez
and Trivino, 2010; Trivino et al., 2010b).

2.1. Computational perception (CP)

A CP is the computational model of a unit of information
acquired by the designer about the phenomenon to be modeled.
In general, CPs correspond to particular details of the phenom-
enon at certain degrees of granularity. A CP is a couple (A, W)
where:

A=(a,ay,...,ay) is a vector of n linguistic expressions (words or
sentences in NL) that represents the whole linguistic
domain of the CP. Each a; describes the value of the CP in
each situation with specific granularity degree. These
sentences can be either simple, e.g., a;="The dorso-
ventral acceleration is high” or more complex, e.g.,

(2012), doi:10.1016/j.engappai.2012.01.022
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a;="The homogeneity during the double limb support of
the reference foot is low”.

W = (wy,Wy,...,wy) is a vector of validity degrees w;e[0,1]
assigned to each q; in the specific context. The concept
of validity depends on the application, e.g., it is a
function of the truthfulness of each sentence in its
context of use.

2.2. Perception mapping (PM)

We use PMs to create and aggregate CPs. There are many types
of PMs and this paper explores several of them and contributes to
this research line including a new one. A PM is a tuple (U, y, g, T)
where:

U is a vector of input CPs, U= (uq,uy,...,u,), where
u;j = (Ay,,Wy,) and n is the number of input CPs. In
the special case of the first order perception mappings
(1-PMs), these are the inputs to the GLMP, which are
values ze R provided either by a sensor or obtained
from a database.

y is the output CP, y = (A),W,).

g is an aggregation function employed to calculate the
vector of validity degrees assigned to each element in y,
Wy = (wq,wy, ..., wp). It is an aggregation of input vec-
tors, Wy, =g(W,,,W,,, ...,Wy,), where W, are the valid-
ity degrees of the input perceptions. In Fuzzy Logic,
many different types of aggregation functions have been
developed. For example, g might be implemented using
a set of fuzzy rules. In the case of 1-PMs, g is built using a
set of membership functions as follows:

Wy = (g, (2, g, (2), - - +Ha,, (2)) = (W1,wy, ..., Wp)

where W, is the vector of degrees of validity assigned to
each ay, and ze R is the input data.

T is a text generation algorithm that allows generating the
sentences in A,. In simple cases, T is a linguistic tem-
plate, e.g., “The dorso-ventral acceleration is {low|
medium |high}”.

2.3. Granular Linguistic Model of a Phenomenon

The GLMP consists of a network of PMs. Each PM receives a set
of input CPs and transmits upwards an output CP. We say that
each output CP is explained by the PM using a set of input CPs. In
the network, each CP covers specific aspects of the phenomenon
with certain degree of granularity. Fig. 2 shows an example of a
GLMP. In this example, the phenomenon can be described at a
very basic level in terms of three variables providing values z;, z,,
and z3 respectively at a certain instant of time.

Using different aggregation functions and different linguistic
expressions, the GLMP paradigm allows the designer to model
computationally her/his perceptions. In the case of Fig. 2, other
two higher-level descriptions of the phenomenon are provided.
These descriptions are given in the form of computational
perceptions CP4 and CPs. The second order perception mappings
(2-PMs) PM4 and PMs indicate that CP4 and CPs can be explained
in terms of CPy, CP,, and CPs, i.e., how the validity of each item in
CP4 and CPs is explained by those of CP;, CP,, and CPs. Finally, the
top-order description of the phenomenon is provided, at the
highest level of abstraction, by CPg, explained by PMg in terms
of CP4 and CPs. Notice that, using this structure, one can provide
not only a linguistic description of the phenomenon at a certain

cpP

6

V4 z z
1 2 3

Fig. 2. Example of a GLMP.

“The quality of the
gait is medium”

“The symmetry of
the gait is medium”

“The homogeneity of

] the gait is medium”
1)
2 “The homogeneity during
i the double limb support of
g the reference foot is low”
S
A\
A

“The dorso-ventral
acceleration is high during the
double limb support dfter the
reference limb swing phase”

“The current gait phase is
double limb support after the
reference limb swing phase’”

gait cycle

- A

s a a,
2

@

E “The dorso-ventral “The antero-posterior

= v acceleration is high” acceleration is medium’,

Fig. 3. GLMP for the linguistic description of the human gait quality divided into
three different levels of granularity.

level, but also an explanation in terms of linguistic expressions at
a lower level.

2.4. Report generation

Once the GLMP is fed with input data, the aggregation functions
are used to calculate the weights corresponding to potentially
hundreds of linguistic expressions. Now, the challenge consists of
choosing the more adequate combination of these sentences to
generate a useful linguistic description of the phenomenon evolu-
tion including the current state. The design of this report requires a
deep analysis of the application domain of language and, therefore,
the collaboration of the specific final user.

In this paper, we provide a simple solution to this problem.
Here, we are focused on a demonstration of concept that can be
solved with a simple report. For this first version of our human
gait report generator, we will choose the linguistic expressions
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with the highest validity degree and we will include detailed
explanations of a perception using the conjunction “because”.

3. Linguistic description of the human gait quality

Fig. 3 shows the GLMP designed for the linguistic description
of the human gait quality. The grey speech bubbles show different
examples of linguistic expressions associated to several CPs.

We use the dorso-ventral acceleration (ay) and the antero-
posterior acceleration (a,) to identify the relevant phases of the
human gait. Then, using the information provided by the human
gait phases, we analyze the homogeneity and the symmetry of
each phase based on the dorso-ventral acceleration (ay) during
each phase. Finally we use the total homogeneity and symmetry
of the gait to obtain its quality. In the following subsections, we
explain the different PMs and related CPs in the model.

It is worth remarking that the trapezoidal membership func-
tions and the sets of rules used below were designed empirically
after an important experimental effort. Nevertheless, in order to
apply this model in practice, these parameters should be tuned
according with the criteria of the specific final user. Moreover, we
must say the same regarding with the definition of the most
suitable set of sentences for describing each CP.

3.1. Dorso-ventral acceleration perception mapping (PM,,)

It is a 1-PM whose input is the numerical value of the dorso-
ventral acceleration (ay € R) that is normalized by subtracting its
average.

The output CP y, includes the following set of NL sentences:

q

ap, — “The dorso-ventral acceleration is medium”

a,

as, — “The dorso-ventral acceleration is high”

@y, — “The dorso-ventral acceleration is low”

The validity degrees (wy, ,w, ,ws, ) are obtained by means of
the aggregation function g,, which uses a set of trapezoidal
membership functions, i.e., to obtain these validity degrees from
the input variable a,, we fuzzify the numerical values using three
linguistic labels which consist of uniformly distributed trapezoi-
dal membership functions: {L,,Mq,,Hq,}, where L,, M, and Hg,
are linguistic terms representing low, medium, and high respec-
tively in such a way that validity degrees are directly wy, =
Lg, (ax), Wa, =M, (ax), and w3, = Hg, (ay).

3.2. Antero-posterior acceleration perception mapping (PM,,)

This 1-PM is similar to PM,. It has the numerical value of the
antero-posterior acceleration (a, e R) as input. This input variable
a, is also normalized by subtracting its average value.

The output CP y,, includes the following set of NL sentences:

a,, — “The antero-posterior acceleration is low”

az

a, — “The antero-posterior acceleration is medium”

az

as,, — “The antero-posterior acceleration is high”

The validity degrees (wy, ,w,, ,ws, ) are also directly obtained
from trapezoidal membership functions: w,, =Lg,(a;), Wy, =
Ma,(az), and ws,, = Hg,(ay).

3.3. Gait phase perception mapping (PMpnase)
This 2-PM has two 1-CPs as inputs: the dorso-ventral accel-

eration and the antero-posterior acceleration. Therefore, the set of
input CPs is U = (uq,,Uq,)-

According to the diagram of Fig. 1 and using our own knowl-
edge about the process, we define four different phases which
explain when double limb support, reference limb single support,
or opposite limb single support are produced. Therefore, the
output CP ypnqs. identifies different four gait phases having the
following set of four possible sentences:

a1, — “The current gait phase is double limb support after the
reference limb swing phase”

az,,..— “The current gait phase is reference limb single support
and swing phase of the opposite limb”

a3, — “The current gait phase is double limb support after the
opposite limb swing phase”

ay . — “The current gait phase is opposite limb single support

phase

and swing phase of the reference limb”

The aggregation function (gpnase) calculates, at each time
instant, the next value of the validity degrees for each sentence
based on the previous validity degrees and current input CPs. The
aggregation function is, therefore, an expert knowledge based
FFSM. In a previous work, we have used a model of the human
gait based on a FFSM to recognize the gait pattern of a specific
person (Trivino et al., 2010a). Our model differs significantly from
others, e.g., based on machine learning techniques, because we
use a linguistic model to represent the subjective designer’s
perceptions of the human gait process. This model is easily
understood and does not require high computational cost. Never-
theless, there exists the possibility of making use of an automatic
machine learning technique to tune the elements of the FFSM as
explained in Alvarez-Alvarez et al. (in press).

Due to the characteristics of the human gait as a quasi-periodic
process, there are eight fuzzy rules in total in the system, four
rules to remain in each phase and other four to change between
phases. We chose the phase 1 as the initial phase, i.e., the
sentence “The current gait phase is double limb support after the
reference limb swing phase” will initially have a validity degree of
1. In this way, the FFSM will synchronize with the gait, without
the need of doing previous segmentation of the signal, when the
conditions to be in that phase are fulfilled. We defined the
conditions over the input CPs to remain in a state or to change
between states by combining the information obtained from the
sensors and the available expert knowledge about the human
gait. The rule base of gphqse is as follows:

Rix: IF @y, AND a3, AND (a;,, OR dy,) AND Ty, (di)
THEN ay,,,,,

Rzt IF az, AND (a1, OR az, ) AND Tyay,(d>) THEN az,,.
Rss: IF a3,,,, AND a3, AND (a;,, OR dz,,) AND Tiqy, (ds)
THEN a3,

Raa: IF ag,, . AND (a1, OR az, ) AND Ty, (ds) THEN ay,,,
Ryz: IF a]pmm AND as,, AND Tchangq (d]) THEN azpm

Ry3: IF ay,,,, AND as, AND T hange, (d2) THEN a3,

R34: IF agphm, AND as,, AND Tchange; (d3) THEN a4pm

R4q: IF a4phm AND as,, AND Tchunge4(d4) THEN alﬂhm
Where

e The first term in the antecedent computes the previous
validity degree of the sentence a;, . ie, w;, . With this
mechanism, we only allow the FFSM to change from the phase
i to the phase j (or to remain in phase i, when i=j). For
example, in Rqq, it is computed the validity degree of the
sentence “The current gait phase is double limb support after the
reference limb swing phase” (wy,,,).

e The second term in the antecedent describes the constraints
imposed on the dorso-ventral acceleration input CP (ug,).
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It computes the validity degree of one or two of the three
possible sentences that this CP has, e.g., “the dorso-ventral
acceleration is low” (wy, ).

The third term in the antecedent describes the constraints
imposed on the antero-posterior acceleration input CP (ug,). It
computes the validity degrees of one or two of the three
possible sentences that this CP has, e.g., “the antero-posterior
acceleration is low or medium” (wy,, OR wy,).

The fourth term in the antecedent describes the conditions
that constrain the phases duration. To control this duration,
we define two linguistic labels for each phase i: Tsqy, (wWhich is
the maximum time that the phase i is expected to lasts) and
T change; (Which is the minimum time that phase i is expected to
lasts before changing to phase j). For example, in Ry;, we
calculate the membership degree of d; to the linguistic label
Tstay, where d; is the time that wy,,, > 0. Fig. 4 shows an
example of the linguistic labels Tstqy, and T¢pange, used to define
the temporal constraints of phase 1. In agreement with our
knowledge about the typical human gait cycle, we assign to
each phase a duration according to its percentage of the gait
period T, which is calculated using the Fast Fourier Transform
(FFT) (Brigham and Morrow, 1967) over the antero-posterior
acceleration (a,).

Finally, the consequent of the rule defines the next phase. To
calculate the validity degrees of the sentences associated with
each phase j (‘/vjphu:e ), a weighted average using the firing degree
of each rule R; (¢;;) is computed as defined in Eq. (1):

4
> EY”
Wipnase = 4 7
Zi:le:I(/)ij

M

where ¢;; is calculated using the minimum for the AND operator
and the bounded sum of tukasiewicz (Alsina et al., 2006) for the
OR operator.

Note that each rule of this set is, therefore, a complete
linguistic expression as can be seen in the following expanded
expression of the rule R;; to remain in phase 1: “If the previous
gait phase is double limb support after the reference limb swing
phase, and the dorso-ventral acceleration is low, and the antero-
posterior acceleration is low or medium, and it is time to remain in
this phase. Then, the current gait phase is double limb support after
the reference limb swing phase”.

As an example of the performance of our proposal for human
gait modeling, Fig. 5 represents the validity degrees of each
sentence together with the dorso-ventral acceleration input vari-
able (uq ) and the antero-posterior acceleration input variable
(ug,). 1t shows how this set of fuzzy rules is able to model
linguistically the four phases of the human gait.

It is worth noting that this is an especial type of PM, which is
applied here for the first time, i.e, in this paper, we contribute to
this research field by combining both of our previous results,
namely, GLMP and FFSM. The interested reader could see our
previous papers on FFSM for a more detailed description of this

T,

stay change
1 1
0.5 4 0.5
0 | \ 0= \ \
0 0.157 0.37 0 0.15T 03T
dy (s) d (s)

Fig. 4. Temporal conditions for phase 1.
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Fig. 5. Graphical representation of the validity degrees of each sentence together
with the evolution of the dorso-ventral acceleration input variable (ug,) and the
antero-posterior acceleration input variable (ug, ).

paradigm and its applications (Alvarez-Alvarez et al., 2010, 2011b,
in press; Trivino et al., 2010a).

3.4. Dorso-ventral acceleration during each gait phase perception
mapping (PM,_)

This PM belongs to an upper level of granularity (gait cycle
level). Its output CP is calculated for each gait cycle instead of
being calculated at each time instant. As can be seen in Fig. 3, it
has two CPs as inputs: the dorso-ventral acceleration and the gait

phase, i.e., U= (Uq,, Upnase)-

The output CP y; includes the following set of NL sentences:

a1, — “The dorso-ventral acceleration is low during the double
limb support after the reference limb swing phase”

a1z, — “The dorso-ventral acceleration is low during the refer-
ence limb single support and swing phase of the opposite limb”
a3, — “The dorso-ventral acceleration is low during the double
limb support after the opposite limb swing phase”

4, — “The dorso-ventral acceleration is low during the opposite
limb single support and swing phase of the reference limb”

a1, — “The dorso-ventral acceleration is medium during the
double limb support after the reference limb swing phase”

ax, — “The dorso-ventral acceleration is medium during the
reference limb single support and swing phase of the opposite
limb”

a3, — “The dorso-ventral acceleration is medium during the
double limb support after the opposite limb swing phase”

a4, — “The dorso-ventral acceleration is medium during the
opposite limb single support and swing phase of the reference
limb”

a3y, — “The dorso-ventral acceleration is high during the double
limb support after the reference limb swing phase”

asy, — “The dorso-ventral acceleration is high during the refer-
ence limb single support and swing phase of the opposite limb”
as3, — “The dorso-ventral acceleration is high during the double
limb support after the opposite limb swing phase”

asq, — “The dorso-ventral acceleration is high during the oppo-
site limb single support and swing phase of the reference limb”

The aggregation function (g; ) calculates, for each gait cycle k,

the validity degrees wy, of each sentence. This function is defined
by Eq. (2), which merges the validity degrees of the input CPs at
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each time instant t during the total duration T of each cycle k:

of o Wi, [t wy,. [£]

@)
3= 0 Wi lt]

Wij,, k1=

3.5. Symmetry of the phases perception mapping (PMs,,, PMs,,)

In Fig. 3, we can see that these PMs are on an upper level of
granularity (complete gait level) compared to the previous one
because their output CPs are calculated for a complete gait instead
of being calculated for each gait cycle. These PMs have the dorso-
ventral acceleration during each gait phase as input CP. Therefore,
the set of input CPs is U = (ug,). The symmetry of a gait is obtained
by comparing the movement of both legs. We can analyze the
symmetry during the double limb support phases by comparing
the dorso-ventral acceleration during phases 1 and 3, or during
the swing phases by comparing the dorso-ventral acceleration
during phases 2 and 4. Each PM has a set of three NL sentences as
output CP, e.g., the output CP of PMs,, (ys,,) includes the following
set of NL sentences:

ai, “The symmetry during the double limb support phase is
low”

az , “The symmetry during the double limb support phase is
medium”

as,, — “The symmetry during the double limb support phase is
high”

The validity degrees (w15”,w25” ,W3SB) are obtained by means
of the aggregation function gg .. This function makes use of the
Jaccard index (Hamers et al., 1989) as similarity function J(x,y),
which is defined using Eq. (3), in order to compare the dorso-
ventral acceleration of the different limbs during the same gait
phase

1 ifx=y=0
Joey={ miney) ®
max(x,y)

First, we calculate three similarities for each gait cycle k:

e The similarity between the validity degrees of the sentences
a1, and ass, @ J(wag, [K],was, [K]), which refer to a low dorso-
ventral acceleration during these phases.

e The similarity between the validity degrees of the sentences
@1, and a3, ](w21ﬁx[l<],w23‘ix [k]), which refer to a medium
dorso-ventral acceleration during these phases.

e The similarity between the validity degrees of the sentences
a3, and ass, @ J(wsy, [K],wss, [k]), which refer to a high dorso-
ventral acceleration during these phases.

Then, we calculate the average value of the three similarities
by means of Eq. (4), which gives us a value of the symmetry
during the phases 1 and 3 (symmetry,;[k]) for each gait cycle k:

Jwiq, [Klwas, [KD+J(war, [Kl,was, [KD+](Ws1, [Kwss, [K])
3

symmetry,;[k] =
)

Once we have a complete set of symmetry values during the
total number of available cycles (symmetry;3), we apply the
ordered weighted averaging operator (OWA) (Dubois and Prade,
1985; Yager, 1988) showed in Eq. (5), over the lowest three values
of symmetry;3 in order to obtain a conservative symmetry value

] — ;- = === N
,’/ \\ — Low(x)
0.5 // N --- Medium(x)
K N e High(x)
0 - ‘__._._4_.‘/...”....‘ i “ i
0 0.2 0.4 0.6 0.8 1

Fig. 6. Trapezoidal membership functions used to calculate the validity degree of
low, medium, and high values of the symmetry and the homogeneity.

which ensures that the gait symmetry is low when any of the
steps is not symmetric during phases 1 and 3
3/6
symmetry,; = | 2/6
1/6

- symmetry; )

Finally, the validity degrees of the NL sentences associated to
the output CP ys, ., are calculated using Egs. (6)-(8), which make
use of the trapezoidal membership functions showed in Fig. 6.
These membership functions convert the numerical value of
symmetry; €[0,1] into three fuzzy linguistic values (low, med-
ium, and high)

wyg, = low (symmetry;;) ©
Wa , = medium (symmetry’s) @
ws, = high (symmetry’) @®

In the same way, the output CP of PMs,, (ys,,) includes the
following set of NL sentences:

a;, — “The symmetry during the swing phase is low”

Sa4 . . . .
az,, — “The symmetry during the swing phase is medium”
as,, — “The symmetry during the swing phase is high”

Whose validity degrees (wls“ ,w2524,w35“) are obtained in a
similar way to the ones associated to the output CP ys , i.e., first
we obtain a complete set of symmetry values during the total
number of available cycles (symmetry,4) using the Jaccard index
as showed in Eq. (4), then we apply the OWA operator to get the
value symmetry,,, and finally the validity degrees are calculated
using Eqgs. (9)-(11)

wy, | =low (symmetry),) )
Wy, = medium (symmetry),) (10)
ws, = high (symmetry),) 11

3.6. Homogeneity of the phases perception mapping (PMy,, PMp,,
PMy,, PMy,)

These PMs, as the previous ones, are on an upper level of
granularity (complete gait level) because their output CPs are
calculated for a complete gait and they also have the dorso-ventral
acceleration during each gait phase as input CP. Therefore, the set of
input CPs is U= (u;,). The homogeneity of a gait is obtained by
comparing a gait with itself in subsequent instants of time and it is
calculated for each phase using two consecutive gait cycles. Each PM
has a set of three NL sentences as output CP, e.g., the output CP of
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PMy, (vy,) includes the following set of NL sentences:

a, - “The homogeneity during the double limb support after the
reference limb swing phase is low”

az, — “The homogeneity during the double limb support after the
reference limb swing phase is medium”

as, — “The homogeneity during the double limb support after the
reference limb swing phase is high”

The validity degrees (lel W, W, ) are obtained by means of
the aggregation function gy, . This function is similar to the one
explained for PMs,, and PMs,,, however, there is an important
difference: while in the previous PMs we are comparing the
dorso-ventral acceleration during phases 1 and 3 or during phases
2 and 4 for each gait cycle k, here, we compare the dorso-ventral
acceleration of a single phase i during the current gait cycle k and
the previous one k—1. Therefore, we calculate three similarities
for each gait cycle k (starting in the second gait cycle):

e The similarity between the validity degrees of the sentences
a1, [k—1] and aq1, [K]:

Jway, [kl wi, [k—1]), which refer to a low dorso-ventral accel-
eration during phase 1 in the current gait cycle (k) and the
previous one (k—1).

The similarity between the validity degrees of the sentences
a1, [k—1] and a, [K]:

Jwar,, [k]»W21a~, [k—17), which refer to a medium dorso-ventral
acceleration during phase 1 in the current gait cycle (k) and
the previous one (k—1).

The similarity between the validity degrees of the sentences
a3y, [k—1] and asy, [K]:

Jws1, [kl,wsq, [k—1]), which refer to a high dorso-ventral
acceleration during phase 1 in the current gait cycle (k) and
the previous one (k—1).

Then, we calculate the average value of the three similarities
by means of Eq. (12), which gives us a value of the homogeneity of
the phase 1 (homogeneity,[k]) for each gait cycle k

homogeneity,[k]
_Jway, [Kwa, k=1D+]War, [K]war, k=11 +](Ws1, [K]lwsy, [k—1])
- 3

(12

Once we have a complete set of homogeneity values of
phase 1 during the total number of available cycles (homogeneity,),
we apply the OWA operator over the lowest three values of homo-
geneity, in order to obtain a conservative homogeneity value of the
phase 1 as showed in Eq. (13)

3/6
homogeneity, = | 2/6
1/6

- homogeneity, (13)

Finally, the validity degrees of the NL sentences associated to
the output CPyy , are calculated using Egs. (14)-(16), which make
use of the trapezoidal membership functions shown in Fig. 6

wy,, =low(homogeneity,) (14)
Wy, = medium(homogeneity}) (15)
ws, = high(homogeneity}) (16)

The rest of PMs, have the output CPs yy,, yy,, and yy,; which
include NL sentences expressing if the homogeneity is low,
medium, or high during each gait phase. Their aggregation
functions work similar to gy, , they compare the dorso-ventral
acceleration during each single phase, then they get an

homogeneity value of the complete gait for each phase using
the OWA operator, and finally this value is qualified as low,
medium and high using the trapezoidal membership functions.

3.7. Symmetry of the gait perception mapping (PMs)

This PM has two CPs as inputs: the symmetry during the
double limb support phases and the symmetry during the swing
phases. Therefore, the set of input CPs is U= (us,,,Us,,). This PM
includes a set of three NL sentences in its output CP (ys)

a;;— “The symmetry of the gait is low”
ay,— “The symmetry of the gait is medium”
as,— “The symmetry of the gait is high”

The aggregation function (gs) calculates the validity degrees
(wy,) for each sentence. This function is defined by Eq. (17), which
calculates the average value of each pair of validity degrees of the
input CPs associated with a low, medium, and high symmetry

W,'513 +Ww;

w;, = 17)

s 2

3.8. Homogeneity of the gait perception mapping (PMy)

This PM has four CPs as inputs: the homogeneities of each of
the four phases. Therefore, the set of input CPs is
U = (uy,,un, ,up,,up,). This PM has a set of three NL sentences as
output CP (yy)

ay, — “The homogeneity of the gait is low”
ay, — “The homogeneity of the gait is medium”
as, — “The homogeneity of the gait is high”

The aggregation function (gy) calculates the validity degrees
(w, ) for each sentence. This function is defined by Eq. (18), which
calculates the average value of the four validity degrees of the
input CPs associated with a low, medium, and high homogeneity
_ WiHl +Wi“z +Wi”3 +Wi”4

WiH 2

(18)

3.9. Quality of the gait perception mapping (PMq)

The top PM has two CPs as inputs: the symmetry and the
homogeneity of the gait. Therefore, the set of input CPs is
U = (us,uy). We have defined five different levels of quality: very
low, low, medium, high, and very high. Therefore, the output CP
Yq has the following set of five possible sentences:

ay,— “The gait quality is very low”
ay, — “The gait quality is low”
as, — “The gait quality is medium”

a4, — “The gait quality is high”

as, — “The gait quality is very high”
The aggregation function (go) is an expert knowledge based
fuzzy rule-based system, with one rule for each sentence:

Ry: IF a;; AND ay,, THEN ay,

Ry: IF (a1, AND ay,,) OR (az; AND ay,) THEN ay,

Rs: IF (a;; AND as,) OR (a3, AND ay,,) OR (ap; AND ay,)
THEN a3,

R4: IF (ay; AND a3, ) OR (as; AND a,,) THEN g,

Rs: IF az; AND a3, THEN as,

(2012), doi:10.1016/j.engappai.2012.01.022
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The consequents of the rules define the gait quality. To calculate
the validity degrees of the sentences associated with the different
levels of gait quality (w;,), a weighted average using the firing
degree of each rule R; (¢;) is computed as defined in Eq. (19)

Wiy = s (19)
o1

Each rule of this set is a complete linguistic expression as can

be seen in the following expanded expression of the rule R4 that

predicts a high value of the gait quality: “If the gait symmetry is

medium and the gait homogeneity is high, or if the gait symmetry is

high and the gait homogeneity is low. Then the gait quality is high”.

4. Experimentation

In this section, we present the experimental results obtained
with our proposal. First, Section 4.1 presents the experimental
setup, which includes the data acquisition details. Then, the next
subsection shows and discusses the obtained results for different
people’s gait and different gaits of the same person.

4.1. Experimental setup

The data acquisition was done using a sensor device including
a three-axial accelerometer and Bluetooth communication cap-
abilities. It was attached to a belt, centered in the back of each
person providing measurements of the three orthogonal accel-
erations with a frequency of 100 Hz. We programmed a personal
digital agenda (PDA) to receive the data via a Bluetooth connec-
tion and to record it with a timestamp. Therefore, every record
contained the information: (t,ay,ay,a;) where t is each instant of
time, ay is the dorso-ventral acceleration, a, is the medio-lateral
acceleration, and a, is the antero-posterior acceleration. As
explained in Section 3, in this work we only use a, and a,. We
asked each person to walk a certain distance at a self-selected
walking speed which comprises around 10 complete gait cycles.
This process was repeated 10 times for each person producing a
total of 10 datasets for each person.

To evaluate the proposed approach, we collected the acceleration
signals of a set of 17 different people in order to assess the gait
quality of each person. One set of people consisted of 15 healthy
adults, 3 women and 12 men, with ages ranging between 23 and 51
years (with an average age of 30 years) and weights between 45 and
95 kg (with an average of 74 kg). The remaining two individuals
have different lesions that modify their gait quality.

Table 1

The first injured person was a 28 years old man with a weight
of 88 kg that was not previously in our database. He suffered a
medial malleolus (which is the prominence on the inner side of
the ankle) fracture in the left limb. After that, he was undergo
under parallel screw fixation of the medial malleolus surgery, and
followed a rehab treatment during one and half months. We only
had two gait data sets obtained after one month of rehab
treatment and when this treatment was finished.

The other injured individual was a 39 years old man with a
weight of 93 kg whose gaits were in our database as a healthy
individual for another study only related to gait modeling (Alvarez-
Alvarez et al,, in press), but one month after capturing his data he
seriously injured his left knee (meniscus tear) playing football. After
that, he was undergo under a meniscus removal (meniscectomy)
using arthroscopic surgery, and followed a rehab treatment during
one month. Therefore, we have a complete database of different
gaits of this person that will show the gait quality evolution.

4.2. Results and discussion

This section presents the results obtained for each person. It
shows the different summaries obtained about the gait quality of
the people. We have divided the results into three parts: first, the
results related to healthy people are showed; second, we analyze
the obtained sentences related to the person injured in his ankle;
and finally, we focus on the gait quality evolution of the man
injured in his knee by comparing his healthy gaits versus the gait
data obtained after the lesion.

4.2.1. Healthy people

Table 1 shows the validity degrees of the sentences associated
with the gait qualities of the 15 healthy individuals. Those validity
degrees whose value is the maximum for each attribute are
boldfaced. Therefore, the generated sentences are those ones
which have the maximum validity degrees as can be seen in the
following examples:

e “The gait quality of person 2 is very high because the gait
symmetry is high and the gait homogeneity is high”.

e “The gait quality of person 6 is medium because the gait
symmetry is medium and the gait homogeneity is medium”.

e “The gait quality of person 15 is high because the gait
symmetry is medium and the gait homogeneity is high”.

It can be clearly seen how the quality of these gaits is always
medium or greater than medium, being high for six people and
very high for two people.

Validity degrees of the sentences associated with the gait qualities of the healthy people.

Person Wi, Wa, W, Wa, Ws, wi, W, Wi, wy, wy, ws,
1 0.00 0.00 0.11 0.31 0.58 0.00 0.35 0.65 0.00 0.12 0.88
2 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00
3 0.00 0.04 0.40 0.42 0.14 0.05 0.78 0.17 0.00 0.49 0.51
4 0.02 0.02 0.49 0.25 0.22 0.02 0.69 0.29 0.02 0.64 0.34
5 0.00 0.00 0.36 0.42 0.22 0.00 0.73 0.27 0.00 0.47 0.53
6 0.09 0.21 0.66 0.04 0.00 0.24 0.76 0.00 0.10 0.85 0.05
7 0.00 0.04 0.40 0.34 0.22 0.05 0.65 0.30 0.00 0.55 0.45
8 0.00 0.00 0.29 0.38 0.33 0.00 0.53 0.47 0.00 0.42 0.58
9 0.12 0.22 0.49 0.17 0.00 0.28 0.72 0.00 0.15 0.63 0.22

10 0.02 0.04 0.51 0.24 0.19 0.02 0.74 0.24 0.05 0.65 0.30

11 0.00 0.00 0.28 0.40 0.32 0.00 0.55 0.45 0.00 0.39 0.61

12 0.11 0.15 0.24 0.26 0.24 0.17 0.44 0.39 0.23 0.37 0.40

13 0.15 0.16 0.56 0.10 0.03 0.20 0.77 0.03 0.19 0.68 0.13

14 0.00 0.00 0.48 0.41 0.11 0.00 0.87 0.13 0.00 0.54 0.46

15 0.00 0.01 0.40 0.49 0.10 0.02 0.88 0.10 0.00 0.45 0.55

(2012), doi:10.1016/j.engappai.2012.01.022
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Table 2
Validity degrees of the sentences associated with the gait quality of the man
injured in his ankle.

Sentence After 30 days of After 45 days of
rehab treatment rehab treatment
wi, 0.23 0.15
W, 0.44 0.16
ws, 0.31 0.66
Wy, 0.02 0.03
ws, 0.00 0.00
Wi 0.59 0.17
Wy 0.41 0.83
Wy 0.00 0.00
wy, 030 0.18
w,, 0.67 0.78
ws, 0.03 0.04
wi 1.00 0.06
S13
Wi, 0.00 0.94
wsg | 0.00 0.00
wq 0.18 0.29
S24
Wy, 0.82 0.71
24
Wi, 0.00 0.00
wi,, 0.00 0.00
Wi, 0.89 0.92
ws,, 0.11 0.08
wy, 0.06 0.40
5
wa,, 0.94 0.60
ws,, 0.00 0.00
wy, 0.92 0.00
3
w2, 0.08 0.92
3
ws,, 0.00 0.08
wy,, 0.23 0.32
A
Wa, 0.77 0.68
ws, 0.00 0.00
s

4.2.2. Man injured in his ankle

Table 2 shows the validity degrees of the sentences associated
with the gait quality of the man injured in his ankle. As explained
above, the generated sentences are those ones which have the
maximum validity degrees. Thanks to the hierarchical fashion of
the GLMP, the final recipient of the report can choose the
granularity level which better fits to her/his desired detail. In
this case, the report not only details the quality, symmetry and
homogeneity of the gait but also details the symmetry and
homogeneity during each gait phase

e “After 30 days of rehab treatment, the gait quality of this
person is low because the gait symmetry is low and the gait
homogeneity is medium. The gait symmetry is medium
because the symmetry during the double limb support phase
is low and the symmetry during the swing phase is low. The
gait homogeneity is medium because the homogeneity during
the double limb support after the reference limb swing phase
is medium, the homogeneity during the reference limb single
support and swing phase of the opposite limb is medium, the
homogeneity during the double limb support after the oppo-
site limb swing phase is low, and the homogeneity during the
opposite limb single support and swing phase of the reference
limb is medium”.

“After 45 days of rehab treatment, the gait quality of this
person is medium because the gait symmetry is medium and
the gait homogeneity is medium. The gait symmetry is

medium because the symmetry during the double limb sup-
port phase is medium and the symmetry during the swing
phase is medium. The gait homogeneity is medium because
the homogeneity during the double limb support after the
reference limb swing phase is medium, the homogeneity
during the reference limb single support and swing phase of
the opposite limb is medium, the homogeneity during the
double limb support after the opposite limb swing phase is
medium, and the homogeneity during the opposite limb single
support and swing phase of the reference limb is medium”.

4.2.3. Man injured in his knee

Finally, Table 3 shows the validity degrees of the sentences
associated with the gait quality of the man injured in his knee. In
this case, we have three different situations: one set of gaits before
the lesion (second column), different gait sets taken at different days
after the knee lesion (columns three, four, and five), and different
gait sets after the surgery (columns six and seven). The short
versions of the reports (without the details about symmetry and
homogeneity during each gait phase) are listed as follows:

e “Before the knee lesion, the gait quality is high because the
gait symmetry is medium and the gait homogeneity is high”.

e “28 days after the knee lesion, the gait quality is very low because
the gait symmetry is low and the gait homogeneity is low”.

e “35 days after the knee lesion, the gait quality is low because
the gait symmetry is low and the gait homogeneity is
medium”.

e “42 days after the knee lesion, the gait quality is low because
the gait symmetry is low and the gait homogeneity is low”.

e “71 days after the knee lesion and 27 days after the surgery,

the gait quality is medium because the gait symmetry is low

and the gait homogeneity is medium”.

“195 days after the knee lesion and 151 days after the surgery,

the gait quality is high because the gait symmetry is medium

and the gait homogeneity is medium”.

As can be seen in these results, this person had a high gait
quality before this lesion, which drastically was reduced after the
lesion. Our proposal is able to identify correctly the gait quality
during these different phases.

Moreover, thanks to the granularity of our proposal, we can
directly describe the main details for each gait quality level in each
period of time. For example, the gait quality is high 195 days after
the knee lesion and 151 days after the surgery, but the homogeneity
during the second phase (reference limb single support and swing
phase of the opposite limb) is medium in contrast with the gaits
obtained before the knee lesion (where it was high). This can be
explained at the gait cycle level (see Fig. 3) by analyzing the
sentences related to the dorso-ventral acceleration during each gait
phase CP (ay), in this case, the validity degrees of the sentence “The
dorso-ventral acceleration is low during the reference limb single
support and swing phase of the opposite limb” (w1, ) are zero in
some cycles while during another cycles are greater than zero, thus
reducing the homogeneity of the gait during this phase. Therefore,
we can produce a linguistic expression that explains the causes at
gait cycle level, e.g., “the homogeneity during the reference limb single
support and swing phase of the opposite limb is medium because the
dorso-ventral acceleration during this phase sometimes is low while
other times is not”.

5. Conclusions and future works

This paper presents important results of a long term research
project aimed to develop computational systems able to generate

(2012), doi:10.1016/j.engappai.2012.01.022
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Table 3

Validity degrees of the sentences associated with the gait quality of the man injured in his knee.

Sentence Before lesion 28 days after 35 days after 42 days after 71 days after the lesion 195 days after the lesion
the lesion the lesion the lesion and 27 days after the surgery and 151 days after the surgery
wi, 0.00 0.51 0.27 0.30 0.21 0.00
Wa, 0.00 0.35 043 0.32 0.36 0.08
w3, 0.25 0.14 0.28 0.31 0.36 0.30
W, 0.53 0.00 0.02 0.07 0.07 043
Ws, 0.22 0.00 0.00 0.00 0.00 0.19
wi 0.00 0.84 0.61 0.50 0.50 0.10
W 0.71 0.16 0.39 0.50 0.50 0.64
W3 0.29 0.00 0.00 0.00 0.00 0.26
wy, 0.00 0.59 0.38 045 0.28 0.00
Wy, 0.32 0.41 0.59 0.45 0.62 0.41
w3, 0.68 0.00 0.03 0.10 0.10 0.59
Wi, 0.00 0.68 0.22 0.00 0.00 0.00
Wi, 0.47 0.32 0.78 1.00 0.99 0.48
Wag 0.53 0.00 0.00 0.00 0.01 0.52
wig,, 0.00 1.00 1.00 1.00 1.00 0.21
Wag,, 0.96 0.00 0.00 0.00 0.00 0.79
wsg, 0.04 0.00 0.00 0.00 0.00 0.00
Wiy, 0.00 0.79 0.17 0.00 0.00 0.00
W, 0.07 0.21 0.83 0.72 0.72 0.13
w3, 0.93 0.00 0.00 0.28 0.28 0.87
w1, 0.00 0.61 0.61 1.00 0.48 0.00
Way, 0.33 0.39 0.39 0.00 0.52 0.72
W3, 0.67 0.00 0.00 0.00 0.00 0.28
Wiy, 0.00 0.23 0.00 0.00 0.00 0.00
W, 0.40 0.77 0.90 0.88 0.87 0.44
W3, 0.60 0.00 0.10 0.12 0.13 0.56
Wi, 0.00 0.72 0.75 0.79 0.66 0.00
Wa,, 0.47 0.28 0.25 0.21 0.34 0.34
w3, 0.53 0.00 0.00 0.00 0.00 0.66
linguistic descriptions of complex phenomena. Here, we have used References

the human gait as an interesting example of complex phenomenon
evolving in time. We have shown that the new version of GLMP
including a FFSM is an expressive tool to represent the behavior of
this type of phenomena in a human friendly way.

In the current stage of development, we have generated linguistic
descriptions that correspond to the context of a laboratory experi-
mental setup. In future projects, we will deep into two important
fields, namely, Linguistics in order to improve the generated texts,
and the specific application field, in order to improve the meaning
and, therefore, the usability of these texts. We will deal with
applying these results to generate NL expressions in the context of
specific applications, e.g., to assess the risk of falling in elderly
people and to monitor the recovery process in physiotherapy.

The main contribution of this paper is the practical result of a
user friendly model of the human gait. Moreover, this is an
example of other possible linguistic models of complex quasi-
periodic phenomena, e.g., other biological cycles such as the
breath rhythm or the electrocardiogram signals, or artificial cycles
such as the ones produced during the manufacturing processes of
many products. In this paper, we show results that demonstrate
the feasibility of these future projects.
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In the field of intelligent transportation systems, one important challenge consists of maintaining
updated the electronic panels installed in roads with relevant information expressed in natural language.
Currently, these messages are produced by human experts. However, the amount of data to analyze in
real time and the number of available experts are imbalanced and new computational tools are required
to assist them in this work. Moreover, the same problem appears when we deal with automatically gen-
erating linguistic reports to assist traffic managers that must take their decisions based on large amounts
of quickly evolving information.

In this paper, we contribute to solve this problem by designing a computational application based on
our research in the field of computational theory of perceptions. Here, we present an application where
we generate linguistic descriptions of the traffic behavior evolving in time and changing between differ-

ent levels of service. We include some results obtained with both, simulated and real data.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Intelligent transportation systems (ITS) aim to get safer traffic
conditions and comfort in transportation, and also to increase the
road traffic efficiency by improving the functionality of cars and
roads (Angulo, Romero, Garca, Serrano-Guerrero, & Olivas, 2011;
Bas, 2007; Button & Hensher, 2001).

Due to increasing social demands of mobility and safety in road
transportation and the increasing computer capabilities, the need
of automatic, economic and real-time solutions for reliable traffic
flow analysis becomes a priority for many governments. In this
context, one goal of automatic traffic analysis is the detection
and tracking of vehicles driving through a controlled area in order
to discover abnormal events such as traffic congestions, speed vio-
lations, some other illegal behavior of drivers or even the detection
of accidents (Atkiciounas, Blake, Juozapavicius, & Kazimianec,
2005; Durduran, 2010). The availability of new suitable computa-
tional applications certainly will improve the efficiency of roads,
assisting in the quick detection of traffic alarms, and also helping
to foresee some problems when traffic is normal in road and
highways.

An interesting and paradigmatic problem consists of generat-
ing dynamically the most adequate natural language (NL) mes-

* Corresponding author.

E-mail addresses: alberto.alvarez@softcomputing.es (A. Alvarez-Alvarez),
daniel.sanchezv@softcomputing.es (D. Sanchez-Valdes), gracian.trivino@softcom
puting.es (G. Trivino), angel.sanchez@urjc.es (A. Sanchez), pedro.suarez@urijc.es
(P.D. Suérez).

0957-4174/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
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sages to communicate with drivers using electronic panels
installed in the roads. Currently, these messages are produced
by human experts but this task can be tough and tedious. More-
over, the balance between the amount of changing data to analyze
and the number of experts available is getting worse dramatically.
This situation causes the need of computational systems that can
interpret and describe linguistically the large amount of available
information.

In Drane and Rizos (1998), we can found a survey of technolo-
gies for locating the position of vehicles on the road. In this direc-
tion, the works by Wen show an intelligent traffic management
expert system with radio frequency identification (RFID) technol-
ogy (Wen, 2010) and a dynamic and automatic traffic light control
expert system for solving road congestion problems (Wen, 2008).
In Messelodi et al. (2009), authors present a technology to collect
and organize data about the vehicles moving in a road network.
Nevertheless, to the best of our knowledge, currently, a technology
able to generate automatic linguistic descriptions of the traffic
behavior in a granular fashion is not available.

In this paper, we aim to contribute to this field by presenting a
computational application able to generate linguistic descriptions
in real-time about the traffic evolution. Our approach is based on
the use of Fuzzy Logic (FL), which is widely recognized for its
ability for linguistic concept modeling and its use in system iden-
tification (Quek, Pasquier, & Lim, 2009). On the one hand, semantic
expressiveness, using linguistic variables (Zadeh, 1975a, 1975b,
1975c¢) and rules (Mamdani, 1977; Zadeh, 1973), is quite close
to NL. On the other hand, being universal approximators (Castro,
1995) fuzzy inference systems are able to perform nonlinear
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mappings between inputs and outputs. More specifically, our ap-
proach is based on the computational theory of perceptions (CTP)
introduced in the Zadeh’s seminal paper “From computing with
numbers to computing with words - from manipulation of mea-
surements to manipulation of perceptions” (Zadeh, 1999) and fur-
ther developed in subsequent papers. CTP provides a framework to
develop computational systems with the capability of computing
with the meaning of NL expressions, i.e., with the capacity of com-
puting with imprecise descriptions of the world in a similar way
that humans do it.

In previous works on this line, we have generated linguistic
descriptions of different types of phenomena. For example, we
generated financial reports from data taken from the Spanish
securities market commission (CNMV) (Mendez-Nunez & Trivino,
2010) and linguistic descriptions about relevant features of the
Mars’ Surface (Alvarez-Alvarez, Sanchez-Valdes, & Trivino,
2011a). Specifically, in the field of ITS, we generated linguistic
reports about the traffic on roundabouts (Trivino et al., 2010b)
and we generated assessing reports in truck driving simulators
(Eciolaza & Trivino, 2011; Eciolaza, Trivino, Delgado, Rojas, &
Sevillano, 2011).

In this work, we focused on the perception of change. We ex-
plored possibilities to perform linguistic descriptions of how the
traffic evolves in time. We have researched on how to model the
meaning of sentences such as “the phenomenon is changing from
state A to state B”. In order to model the evolution of phenomena
in time, we have used our previous works on fuzzy finite state ma-
chines (FFSMs). Here, we have extended the use of the FFSM’s out-
put function to be used with this aim. With a different approach,
see in Pouzols, Barriga, Lopez, and Solano (2008) how this idea
has also been explored with the aim of summarizing network flow
statistics.

The remainder of this paper is organized as follows. Section 2
presents the main concepts of our approach to linguistic descrip-
tion of complex phenomena evolving in time. Section 3 describes
how to use these concepts for the linguistic description of the traf-
fic behavior. Afterwards, Section 4 describes the experimentation
carried out. Finally, Section 5 draws some conclusions and intro-
duces some future research works.

2. Linguistic description of complex phenomena

In this section, we present several basic concepts of our contri-
bution to CTP aimed to develop computational systems able to
generate linguistic descriptions of phenomena. According to Zadeh,
the object of perceptions are not only the attributes of objects, e.g.,
the distance, velocity and angle. The object of perceptions can be
the whole systems, e.g., a person parking a car, the traffic in a
roundabout, the air-conditioned system in buildings, etc. In this
way, we use the term phenomenon to represent an object, or a
set of interrelated objects, that is perceived in the computer envi-
ronment. Phenomena are located in certain context and evolve in
time among different situation types.

The Granular linguistic model of a phenomenon (GLMP) is
based on subjective perceptions of a domain expert that we call de-
signer. The more experienced designer, with better understanding
and use of NL, the richer the model with more possibilities of
achieving and responding to final users’ needs and expectations.
The designer uses the resources of the computer, e.g., sensors, to
acquire data about a phenomenon and uses her/his own experi-
ence to interpret these data and to create the model. Then, the de-
signer uses the resources of the computer to produce the linguistic
utterances. In the following subsections, we introduce the main
elements of our architecture for the linguistic description of com-
plex phenomena.
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2.1. Computational perception (CP)

A CP is the computational model of a unit of information ac-
quired by the designer about the phenomenon to be modeled. In
general, CPs correspond to particular details of the phenomenon
at certain degrees of granularity. A CP is a couple (A, W) where:

A =(ay,ay,...,a,)is a vector of n linguistic expressions (words or
sentences in NL) that represents the whole linguistic domain of
the CP. Each a; describes the value of the CP in each situation
with specific granularity degree. These sentences can be either
simple, e.g., a;= “Traffic density is high” or more complex, e.g.,
a; = “Usually, at midday, the traffic density increases in this part
of the road”.

W= (wy,Wa,...,w,) is a vector of validity degrees w; e [0,1]
assigned to each g; in the specific context. The concept of valid-
ity depends on the application, e.g., it is a function of the truth-
fulness and relevance of each sentence in its context of use.

In this application paper, in order to model our perception of
temporal evolution of phenomena, we applied a paradigm com-
posed of three types of CP, namely, the perception of the current
state (assertive CP), the perception of the trend to evolve (deriva-
tive CP) and the summary of accumulated perceptions (integrative
CP). The assertive CP is associated with a linguistic expression of
the current state of a characteristic of the phenomenon, e.g., “the
traffic density is high”. The derivative CP corresponds to trend anal-
ysis information and gives insight into how the phenomenon is
evolving in time, e.g., “the traffic density is decreasing”. Finally, the
integrative CP represents the accumulated perception of the phe-
nomenon over a period of time, e.g., “the traffic density in the last
period has been low”.

2.2. Perception mapping (PM)

We use PMs to create and aggregate CPs. A PM is a tuple
(U,y,g,T) where:

U = (uy,Uy,...,uy,) is a vector of n input CPs u; = (A, W,,). In the
special case of first order perception mappings (1-PMs), these
are the inputs to the GLMP and they are values z € R being pro-
vided either by a sensor or obtained from a database.
y=(Ay,W,) is the output CP.

W, =g(Wy,,,W,,,...,W,,) is an aggregation function employed
to calculate Wy = (w1, W,,...,wy,) from the input CPs. In FL,
many different types of aggregation functions have been devel-
oped. For example, g might be implemented using a set of fuzzy
rules. In the case of 1-PMs, g is built using a set of membership
functions 4, (z) as follows: Wy = (i, (2), Uy, (2), ..  Hay, (2))
= (W1, Wy, ..., Wy)

T is a text generation algorithm that allows generating the sen-
tences in A,. In simple cases, T is a linguistic template, e.g., “road
vehicle density is {highjmedium|low}”.

There are many types of PMs. In this paper, we contribute to this
research line by exploring two of them focused on describing how
phenomena evolve on time. In Section 3.2.8, we introduce a PM
based on fuzzy quantifiers and in Section 3.2.9, we introduce a
PM based on a FFSM.

2.3. Granular linguistic model of a phenomenon (GLMP)

The GLMP consists of a network of PMs. Each PM receives a set
of input CPs and transmits upwards a CP. We say that each output
CP is explained by the PM using a set of input CPs. In this network,
each CP covers specific aspects of the phenomenon with certain
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degree of granularity. Using different aggregation functions and
different linguistic expressions, the GLMP paradigm allows the de-
signer to model computationally her/his perceptions.

Fig. 1 shows an example of a GLMP. In this example, we describe
the phenomenon at a very basic level in terms of three input vari-
ables that provide values z;, z,, and z3 respectively at a certain in-
stant of time. These variables are introduced in the perception
mappings PM;, PM, and PMs, providing CP;, CP, and CP;. Using
these three 1-CPs, we use the perception mappings PM, and PMs
to explain CP4 and CPs. Finally, a top-order description of the phe-
nomenon is provided, at the highest level of abstraction, by CPg, ex-
plained by PMs in terms of CP4 and CPs. Notice that, by using this
structure, one can provide not only a linguistic description of the
phenomenon at a certain level, but an explanation in terms of lin-
guistic expressions at lower levels.

2.4. Report generator

Fig. 2, shows the basic architecture of our report generator. The
main processing modules of this computational system are,
namely, the data acquisition (DAQ) module, the validity module,
and the expression module that are described in the following
sections.

2.4.1. DAQ module

This processing module provides the data needed to feed the 1-
CPs. The data acquisition module provides the interface with the
application physical environment. This module could include
either sensors or access to information in a database. In this paper
we generate examples of these data using both, a road traffic sim-
ulator and an image processing module.

2.4.2. Validity module
Once a sample of input data is available, the validity module
uses the aggregation functions in the GLMP to calculate the validity

Fig. 1. Example of a simple GLMP.
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Fig. 2. Main components of the proposed architecture of our report generator.

degree of each CP. Therefore, this module provides as output a col-
lection of linguistic clauses together with associated degrees of
validity.

2.4.3. Expression module

Provided a set of valid linguistic clauses, the goal is to combine
this information to build a linguistic report. This module deals with
generating the most relevant linguistic report by choosing and con-
necting the adequate linguistic clauses based on a report template
data structure.

3. Linguistic description of traffic behavior

This section describes how to apply our approach for linguistic
description of complex phenomena to the analysis of the traffic
behavior. We explain the relevant modules needed to produce
the linguistic description of traffic behavior.

From the study of several sources, including the Highway
Capacity Manual (Board, 1985), we obtained a first list of parame-
ters about the traffic behavior that our reports should contain,
namely, the speed of vehicles, traffic density and level of service
in road (LOS). These parameters allow us to report the traffic
behavior and to study anomalous situations that may occur, e.g.,
a vehicle traveling at a speed too high or too low, a vehicle circu-
lating in opposite direction. To enrich the report, the linguistic
description should include a time reference to place each event
in the fraction of time in which it occurred.

3.1. DAQ module

Here, we used basic measures of traffic parameters that can be
obtained from different type of sensors, e.g., video cameras, radar,
pressured hoses and inductive burial loops. These basic measures
are, namely, the vehicles speed (vs), the average road speed (rs),
that is calculated as the average of speeds at each moment, and
the traffic density (td), which is calculated as the percentage of
road that is occupied at each time instant.

3.2. Validity module

Fig. 3 shows a GLMP which tries to summarize and highlight the
relevant aspects of the traffic behavior. In the following subsec-
tions, we describe each of the PMs and associated CPs in this model.

3.2.1. Road speed (1-PMks)

It is an assertive 1-PM whose input is the numerical value of the
average road speed (rs € R). The output CP ygs includes the follow-
ing set of NL sentences:
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Fig. 3. GLMP for the linguistic description of the traffic behavior. The circles represent perception mappings while the rectangles stand for computational perceptions.

ags, — “The average road speed is very low”
ags, — “The average road speed is low”

ags, — “The average road speed is medium”

ags, — “The average road speed is high”

ags, — “The average road speed is very high”

As in the rest of 1-PMs described in the following subsections, the
validity degrees are obtained by means of a set of uniformly distributed
trapezoidal membership functions (MFs) forming a strong fuzzy partition
(SFP) (Ruspini, 1969). Here, e.g., the validity degrees are directly
Wrs, = VLgs(15), Wrs, = Lgs(TS), Wgs, = Mgs(1s), Wgs, = Hgs(rs),  and
Wes, = VHgs(rs).

3.2.2. Road speed trend (1-PMgst)

This derivative 1-PM has validity degrees obtained from the
numerical derivative of rs (drs/dt). It allows to generate the follow-
ing set of NL sentences:

agsr, — “The average road speed is decreasing”
agst, — “The average road speed is keeping constant”
agsr, — “The average road speed is increasing”

3.2.3. Road speed in the last period (1-PMgs;p)

It is an integrative 1-PM whose input is the numerical value of
the average road speed (rs € R). The output CP ygsp includes the
following set of NL sentences:

agsip, — “The average road speed in the last period was very low”
agsip, — “The average road speed in the last period was low”
agsip, — “The average road speed in the last period was medium”
agsip, — “The average road speed in the last period was high”
agsip, — “The average road speed in the last period was very high”

The validity degrees are obtained by means of the aggregation
function ggs p, Which calculates the average value of rs during a
period (75) defined empirically.

3.2.4. Traffic density perception mapping (1-PMyp)
It is an assertive 1-PM that produces the following set of NL
sentences:

arp, — “The traffic density is extremely low”
arp, — “The traffic density is very low”

arp, — “The traffic density is low”

arp, — “The traffic density is high”

arp, — “The traffic density is very high”

arp, — “The traffic density is extremely high”

3.2.5. Traffic density trend (1-PMrpr)

This derivative 1-PM has validity degrees obtained from the
numerical derivative of td (dtd/dt). It allows to generate the follow-
ing set of NL sentences:

arpr, — “The traffic density is decreasing”
arpr, — “The traffic density is keeping constant”
arpr, — “The traffic density is increasing”

3.2.6. Traffic density in the last period (1-PMyp;p)
It is an integrative 1-PM that produces the following set of NL
sentences:

arprp, — “The average road speed in the last period was very low”
arprp, — “The average road speed in the last period was low”
arpp, — “The average road speed in the last period was medium”
arprp, — “‘The average road speed in the last period was high”
arprp; — “The average road speed in the last period was very high”
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The validity degrees are obtained by means of the aggregation
function grprp, which calculates the average value of td during a
period (td) defined empirically.

3.2.7. Vehicle speed (1-PMys)
This assertive 1-PM produces, for each detected vehicle, the fol-
lowing set of NL sentences:

ays, — “The vehicle speed is very low”
ays, — “The vehicle speed is low”

ays, — “The vehicle speed is medium”

ays, — “The vehicle speed is high”

ays, — “The vehicle speed is very high”

3.2.8. Unsafe speed conditions (2-PMysc)

This integrative 2-PM aggregates the information provided by
1-CPys during a period of time. Its output includes the following
set of NL sentences where we combine crisp quantifying expres-
sions with imprecise quantifying expressions:

aysc, — “Zero vehicles speeding”
aysc, — “‘One vehicle speeding”
aysc, — “Two vehicles speeding”
aysc, — “‘Three vehicles speeding”
aysc, — “Four vehicles speeding”
aysc; — “Several vehicles speeding”
aysc, — ““Many vehicles speeding”

The validity degrees are obtained by means of the aggregation func-
tion gusc, which is based on the a-cuts method proposed by Delgado,
Sanchez, and Vila (2000). For example, using the validity degree wys,
of “The vehicle speed is very high”, we calculate the percentage of vehi-
cles with a very high speed contained at each o-level (N,;) by means of
Eq. (1), with o € A={0,0.1,0.2,0.3,04,0.5,0.6,0.7,0.8,0.9}.

1 n
N, :EZFa(sts) (1)
i=1
where:
1 if wy, >a
F = ’ 2
1(WVSS> {0 if st5 <o ( )

Then, we calculate the membership degree of each N, to each
element of the set of linguistic quantifiers: {Qo,...,Qs}=
{Zero,One, Two, Three, Four, Various,Many}, e.g., o, (N) = Three(N,).
Fig. 4 shows these linguistic labels defined on the domain of the
number of vehicles n.

The last step is to calculate the average value of the member-
ship degrees obtained for each a-level using Eq. (3). The number
of elements in the set A is the resolution degree, i.e., here,
|A| = 10.

1
Wuse, = 51 . Ho,(Na) 3)
Al ™

This final value contains the relevant information about the
amount of vehicles circulating at a very high speed, e.g., the valid-
ity degree of the sentence “Three vehicles speeding” (wsa,) will be
determined by Eq. (4):

1
Wuse, = 57 > " Three(N,) (4)

VoeA

3.2.9. Level of service (2-PMyos)

The level of service (LOS) is a measure used by traffic engineers to
determine the effectiveness of elements of transportation infra-
structure. LOS is most commonly used to analyze highways by cate-
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gorizing traffic flow with corresponding safe driving conditions. The
Highway Capacity Manual (Board, 1985) distinguishes between six
levels of service: A, B, C, D, E, and F. Therefore, we have defined an
assertive output CP (y,0s) that identifies these six levels having the
following set of possible sentences:

“The level of service is A. Free-flow operation”

“The level of service is B. Reasonably free flow, the
ability to maneuver is only slightly restricted and the
effects of minor incidents still are easily absorbed”
“The level of service is C. Stable flow, speeds at or near
free-flow and queues may form”

“The level of service is D. Approaching unstable flow,
speeds decline slightly with increasing flows while
density increases more quickly”

“The level of service is E. Unstable flow, with operation
near or at capacity and no usable gaps in the traffic
stream”

“The level of service is F. Forced or breakdown flow,
queues form behind breakdown points and demand is
greater than capacity”

This 2-PM has two 1-CPs as inputs: the traffic density (1-CPsp)
and its trend (1-CPypr).

The aggregation function (g;os) calculates, at each time instant
(t), the value of the validity degrees for each sentence based on
the previous validity degrees (time instant t — 1) and current input
CPs. Therefore, the aggregation function is a FFSM. For a more de-
tailed description of this paradigm and its applications, the inter-
ested reader could see our previous papers (Alvarez-Alvarez,
Trivino, & Cordén, 2012, 2011b, 2010; Trivino, Alvarez-Alvarez, &
Bailador, 2010a). Fig. 5 shows how we use a FFSM to define con-
straints on the possibilities to change of LOS. Using this state dia-
gram, we identify 16 fuzzy rules: 6 rules (R;) to remain in each
LOS and other 10 rules (Rjy) to change between different LOS. This
rule base is defined using expert knowledge based on the descrip-
tions of the Highway Capacity Manual (Board, 1985), which links
terms related to traffic density and its evolution along time. It is
clear how the system evolution is given by the traffic density,
which has a different associated linguistic term for each LOS; and
its trend, which governs the change to a better or worse state if
the density trend is negative or positive, respectively. These rules
are listed as follows:

dros, —
Aros, —

Aros; —

aros, —

Qros; —

Qros; —

Ri1: IF aios, AND arp, AND arpr, THEN aios,
Rzzi IF aios, AND arp, AND arpr, THEN aios,
Rs3: IF aos, AND arp, AND arpr, THEN aios,
Raq: IF aios, AND armp, AND arpr, THEN aos,
R55: IF aross AND arp, AND arpr, THEN aross
Ree: IF aros, AND Aarpg AND arpr, THEN arosg
Riz: IF aios, AND armp, AND arpr, THEN aios,
R23: IF aios, AND arp, AND arpr, THEN aros,
Rs4: IF aios, AND armp, AND arpr, THEN aios,
R452 IF aios, AND Aarp, AND arpr, THEN aross
Rsg: IF aioss AND Aarpg AND arpr, THEN arosg
Roq: IF dios, AND arp, AND arpr, THEN aios,
R321 IF aios, AND arp, AND arpr, THEN aios,
Ry3: IF aios, AND arp, AND arpr, THEN aros,
Rsy4: IF aios; AND amp, AND arpr, THEN aios,
Rssl IF arosg AND arps AND arpr, THEN aross

where:

e The first term in the antecedent computes the previous validity
degree of the sentence a;os,, i.€., Wios,. With this mechanism, we
only allow the FFSM to change from the LOS i to the LOS j (or to
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Zero(x)
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X

Fig. 4. Linguistic labels that represent the linguistic quantifiers “Zero”, “One”, “Two”, “Three”, “Four”, “Various”, or “Many" vehicles speeding.

Fig. 5. State diagram of the FFSM for LOS modeling.

remain in LOS i, when i = j). For example, in Ry, it is computed
the validity degree of the sentence “The level of service is A. Free-
flow operation” (wyos, ).

e The second term in the antecedent describes the constraints
imposed on the traffic density 1-CPyp, e.g., “the traffic density
is extremely low” (wip, ).

e The third term in the antecedent describes the constraints
imposed on the traffic density trend 1-CPrpr, e.g., “the traffic den-
sity is keeping constant” (wrpr, ).

o Finally, the consequent of the rule defines the next LOS. To cal-
culate the validity degrees of the sentences associated with
each LOS; (wyos;), @ weighted average using the firing degree of
each rule R(¢;) is computed as defined in Eq. (5):

6
Wios Zi:l (/)ij

| = =6 6
D DR Pt

where ¢; is calculated using the minimum for the AND operator.

(5)

Note that each rule of this set, is therefore, a complete linguistic
expression as can be seen in the following expanded expression of
the rule Ry; to remain in the LOS A: “If the previous level of service
was A, and the traffic density is extremely low, and the traffic density
is decreasing. Then, the current level of service is A. Free-flow
operation”.

3.2.10. Level of service trend (2-PMost)

During the design of this derivative 2-PM, we explored different
ways of expressing linguistically the perception of change and,
therefore, how to calculate their validity degree. This derivative
2-PM has the level of service (2-CP,os) as input. The output CP y;osr
includes four types of NL propositions for each LOSi at each time in-
stant t:

aost,, — “The level of service is keeping constant in level i”

aiost,; — “The level of service is changing from level i to level j”
Arosty; — “The level of service of the road has changed to level j”
aost,, — “The level of service of the road has returned to level i.

The change has not been completed”

Here, the aggregation function g;osr calculates the trend of each
LOS by analyzing the derivative of the validity degrees of each sen-
tence aos, (Wios;). At each time instant we determine if a certain
LOS i is decreasing (Dyosr,), keeping constant (KCyosr,), Or increasing
(Iost,) by fuzzifying its derivative. We also defined that there has
been a change in the level of service (denoted by Cy), when a certain
level i, which had a higher validity degree than other level j, be-
comes smaller thanj. This binary indicator takes value 0 when there
is not a change and 1 when a change is produced. After careful
experimentation, we have defined the validity degrees of each type
of sentence at each time instant t as follows:

Wiost,[t] = min(KCposr,, 1 — Cjj). A level i is keeping constant
when two conditions are satisfied. The first condition involves
that the current level must be keeping constant (KCyosr,). The sec-
ond one implies that the previous level must be the same (G; = 0).
Wiosty, [t] = min(Dyosr,, Liost;, 1 — Cy). A level i is changing to a
level j when three conditions are satisfied. The first condition
involves that the current level i must be decreasing (Diosr,).
The second one implies that the next level j must be increasing
(ILOST]). Finally, the third condition is that the change between
levels must not have been completed yet (G; = 0).

Wiosty, [t] = Cy. A LOS has recently changed to a level j when one
condition is satisfied: the LOS of the previous time instant must
have been different to the current one (G;=1).

Wiost,, [t] = min(liost,, Diost;, Wiosr,, [t — 1]). In some many cases, a
LOS could have been changing but the change was not completed.
For example, the LOS could be changing from level E to level Fbut
suddenly the density decreases and the change is stopped, keep-
ing atlevel E. This case is recognized when the system was chang-
ing from level i to level j(wwsrzy [t — 1]) but the level i starts to
increase (I;ost;) and the expected level j starts to decrease (DLOSTJ ).

3.2.11. Level of service in the last period (2-PM,osp)

Here, we experiment with another example of 2-PM. This inte-
grative 2-PM has the Level of service (2-CP,os) as input CP. The out-
put CP y;os.p includes four types of NL propositions for each LOS i
that summarize the amount of times that each LOS has been acti-
vated during a certain period of time:

aosip,, — “In the last period, the level of service has never been i”

— “In the last period, the level of service has been few
times i’

— “In the last period, the level of service has been
sometimes i”

— “In the last period, the level of service has been many
times i’

ALOSLP,;
ALosLP;;

aLosLp,;
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These sentences are based on the summarizers proposed by
Yager (1995): “Q the LOS has been i”. Where Q is a fuzzy quantifier
(Zadeh, 1983) applied on the cardinality of the perception “the LOS
has been R”. And R is the summarizer, in this case the set of possible
LOS. The set of linguistic labels for each quantifier are uniformly
distributed trapezoidal SFPs denoted by the expressions never,
few times, sometimes and many times.

This information is really important to summarize traffic behav-
ior in a certain amount of time because it allows to compare the
state and trend of traffic in a specific road whose study is interest-
ing to obtain conclusions such as checking the need to redirect the
traffic. The aggregation function (g,0s;p) calculates the validity de-
grees for each sentence based on the cardinality values (Card) of
the validity degrees of each sentence a;os,(Wios;) during the desired
period duration:

aiosip,; = never[Card(wigs, )]
agostp,, = few times[Card(wyos,)]
arostp, = sometimes[Card(wyos,)]
aostp, = many times[Card(wyos,)]

3.3. Expression module

Apart from the goal of obtaining suitable texts to be showed to
drivers, the linguistic reports can be used by traffic experts with
the aim of understanding changes in traffic and foreseeing its fu-
ture behavior. Using the set of available CPs in the GLMP, namely,
the evolution of the LOS, vehicles speed, road speed trend, extraor-
dinary speed conditions and so on, the developed application pro-
vides two different types of linguistic description reports: an
specific report which describes the instantaneous state of the traf-
fic, and a periodical report that summarizes traffic behavior
throughout a specific period of time. In both cases, we have applied
basic report templates, see in Alvarez-Alvarez et al. (2011a) an
example of a template that change the structure of the report
depending on the validity degrees of the sentences.

3.3.1. Specific report

A specific time instant or eventual report about the traffic
behavior is given. The periodicity of these reports depends on the
final user’s needs (one minute, five minutes, ten minutes, etc). Each
report informs about the LOS trend (changing, recently changed or
keeping constant), the traffic density and road speed in the last
period of time, traffic density trend and road speed trend.

The report template is represented in Fig. 6. It uses the sen-
tences provided by the traffic density and its trend CPs (1-CPrp
and l-CPTDT), the LOS and its trend CPs (Z—CPLOS and Z'CPLOST)y and
the road speed and its trend CPs (1-CPgs and 1-CPgsr). The sentences
with the highest validity degree are chosen at each time instant for
each CP. This type of information shows us that it is possible that
some CPs are changing while the LOS is keeping constant, e.g.,
the traffic density can be increasing inside the level C but this does
not mean that LOS is changing from level C to level D. This is the
difference between the changes of the traffic density during a cer-
tain LOS and the changes between different LOS. One possible spe-
cific traffic report may be as follows: “currently, the traffic density is
low and it is increasing. The level of service is changing from level B to
level C, stable flow, speeds at or near free-flow and queues may form.
the road speed is medium and it is decreasing”.

3.3.2. Periodical report

This report summarizes traffic behavior throughout a period
of time, e.g., a full day or other sets of periods that can give
relevant information about the traffic progress. Traffic experts
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decide how many periods they want to analyze separately, in or-
der to verify the differences existing among them. This type of
information allows them to extract conclusions and to imple-
ment appropriate measures to improve the quality of traffic
(improving infrastructure, notice drivers and so on). For example,
one type of differentiation could be analyzing separately sunrise,
morning, midday, afternoon, evening and night. In the same way,
the final user could decide to segment the day into smaller peri-
ods and to extract information about periods of different sizes.
The traffic summary report also gives information relative to
the average traffic density and the average level of service in
each period of time.

Therefore, a different report template must be used. It is repre-
sented in Fig. 7 and it uses the sentences provided by the traffic
density in the last period CP (1-CPrp.p), the LOS in the last period
CP (2-CPyosip), the road speed in the last period CP (1-CPgs;p), and
the unsafe speed conditions CP (1-CPysc). Similarly to the specific
report, the sentences with the highest validity degree are chosen
for each CP. One possible global traffic report throughout the after-
noon may be as follows: “In the afternoon, the Traffic Density has
been medium. The level of service has never been A and B; and some-
times C, D, E and F. Theroad speed has been low. There were not vehi-
cles speeding”.

4. Experimentation
4.1. Simulated traffic data

In order to deal with a broad number of situation types, we
have designed a simulator after analyzing several databases of

Currently, |—>| 1-CP, — Traffic Density
|——>: 1 'CPmr — Traffic Density Trend |<—| and
1
2-

-CP, _— Level Of Service Trend |<—| and

LOST.

I-CP  — Road Speed

F e s e

2-CP, . — Level Of Service
I-CPRST — Road Speed Trend |<—| and

Fig. 6. Template for the specific report.

In the last period,

(e

— Traffic Density in the Last Period

CP o
P

C — Level Of Service in the Last Period

LOSLP

2
2-CP, ., ,— Road Speed in the Last Period
Z-CP('_SC — Unsafe Speed Conditions

Fig. 7. Template for the periodical report.
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Fig. 8. Graphical representation of the traffic density, road speed, and the validity degrees of the sentences associated to each level of service.

traffic control centers of important cities, such as Madrid, Valen-
cia, and Sevilla (http://www.trajano.com, 2012). The simulator is
based on the Monte Carlo method where simulated data (number
of cars, its size and its speed) follow a normal distribution. Each
normal distribution is defined by its mean and its standard devi-
ation, e.g., these parameters vary depending on the period of the
day. This simulator allow us to generate data that recreates the
traffic behavior in different situation types providing data each
five minutes of simulated time. Fig. 8 shows an example of sim-
ulation of traffic density and road speed along a typical working
day, and includes the validity degrees obtained for the sentences
related to the LOS.

In the following, we show several examples of specific (repre-
sented with the symbols B, A, e, and 4 in Fig. 8) and periodic traffic
reports associated to these simulated data. Every report, specific or
periodic, is accompanied by its reference of time, either the period of
the day or the specific time of measurement. Results are consistent
and show accurately the simulated situations.

o Specific reports:

W “At 10:55, the traffic density is extremely high and it is
decreasing. The level of service is keeping constant in level F,
forced or breakdown flow, queues form behind breakdown
points and demand is greater than capacity. The road speed is
low and it is keeping constant”

A “At 16:15, the traffic density is medium and it is decreasing.
Thelevel of service has changed to level C, stable flow, speeds at
or near free-flow and queues may form. The road speed is low
and it is keeping constant”

e “At 4:10, the traffic density is extremely low and it is
increasing. The level of service is changing from level A to

level B, reasonably free flow, the ability to maneuver is only
slightly restricted and the effects of minor incidents still
are easily absorbed. The road speed is high and it is
decreasing”
¢ “At 4:45, the traffic density is extremely low and it is
keeping constant. The level of service has returned to level
A, free-flow operation. The road speed is medium and it is
increasing”
o Periodical reports:

- “In the morning (from 7:00 to 10:00), the traffic density has
been extremely high. The level of service has never been A and
B; few times D; sometimes C and E; and many times F. The road
speed has been low. There were 4 vehicles speeding”

- “In the afternoon (from 13:00 to 22:00), the traffic density has
been low. Thelevel of service has never been A and B; and some-
times C, D, E and F. Theroad speed has been low. There were not
vehicles speeding”

- “Atnight (from 22:00 to 7:00), thetraffic density has been extre-
mely low. Thelevel of service has never been E and F; few times
C and D; sometimes B; and many times A. The road speed has
been medium. There were many vehicles speeding”

- “During the whole day, thetraffic density has been medium. The
level of service has been few times B, D, E and F; and sometimes
A and C. Theroad speed has been low. There were many vehicles
speeding”

4.2. Video camera real data

In order to check the performance and effectiveness of our
application in a real situation, we have used digital image process-
ing techniques to acquire the input data from a video camera. In a
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Fig. 9. Traffic tracking visual results on two different sample frames (the red numbers are the vehicle identifiers). (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

previous work (Trivino et al., 2010b), we have already used the
images of a video stream, where we used an overhead camera to
acquire real images and generate successfully linguistic descrip-
tions about traffic conditions in a roundabout. Here, we used
images obtained from the right side of the road. Here, we acquired
information from live video recordings, recognizing vehicles and
their different features (speed, position and size).

In order to recognize the image content, we considered enter
and exit regions, rail regions, image perspective and obstacles that
could appear in images. In our model, each vehicle moving along
the analyzed road region is characterized by a unique identification
number that is assigned after it is first detected passing by any en-
ter region of the road. Fig. 9 shows graphically a typical situation in
which we can observe a set of vehicles identified by a number and
highlighted with its bounding box.

The specific traffic reports obtained for these two frames were
as follows: “currently, the traffic density is high and it is decreasing.
Thelevel of service has returned to level D, approaching unstable flow,
speeds decline slightly with increasing flows while density increases
more quickly. The road speed is low and it is decreasing” and “cur-
rently, the traffic density is low and it is decreasing. Thelevel of service
is keeping constant in level C, stable flow, speeds at or near free-flow
and queues may form. The road speed is low and it is increasing”.

5. Concluding remarks

During the last few years, we have developed an extension of CTP
that allows generating linguistic descriptions of complex phenom-
ena. In this work, our goal consists of exploring a practical applica-
tion in the field of ITS that led us to design new types of PMs, i.e., we
aimed to improve the number of available types of linguistic expres-
sions and therefore the versatility of our technology. Together with
the practical application, in this paper, we have contributed to the
development a new general approach to produce linguistic descrip-
tions of complex phenomena evolving in time. Specifically, we have
designed several 2-PMs demonstrating how to model the meaning
of several different linguistic expressions belonging to the specific
application domain of language. Moreover, we have showed that
depending on the user requirements, our approach allows us to gen-
erate a great variety of customizable linguistic reports.

However, there is still too much work to do. Indeed, NL has a
limitless potential of meaning. From the theoretical point of view,
we will continue exploring how to model the meaning of different
linguistic expressions, i.e.,, new CPs and PMs. From the practical
point of view, we will continue developing practical applications,
e.g., we will try to set up a complete system for monitoring and
control the traffic in a real world scenario. The experiments

performed using simulated data have allowed us to demonstrate
the great expressiveness of the presented resources. The experi-
ments performed using data obtained from real video images have
allowed us to demonstrate the viability of our approach to create
real industrial applications.
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Chapter 7

Impact factor of the presented

publications

There is no safety in numbers, or in anything

else.
James Thurber (1894 - 1961)

The impact factor (IF), is a measure reflecting the average number of citations to
recent articles published in science and social science journals. It is frequently used as
a measure of the relative importance of a journal within its field, with journals with
higher impact factors deemed to be more important than those with lower ones. IFs are
calculated yearly for those journals that are indexed in Thomson Reuters Journal Citation
Reports ®.

In the following sections, The Journal Citation Report (JCR) of each of the journals,

where the articles of Chapter 6 were published, is presented.
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7.1 JCR of IEEE Transactions on Fuzzy Systems

IS| Web of Knowledge®™

Journal Citation Reports® 2011 JCR Science Edition
Journal: IEEE TRANSACTIONS ON FUZZY SYSTEMS

Journal Impact Factor

Cites in 2011 to items published in: 2010 =340 Number of items published in: 2010 =93

2009 =546 2009 =115
sum: 886 sum: 208
Calculation:Cites to recent items 886 =4.260
Number of recent items 208

Journal Ranking
For 2011, the journal IEEE TRANSACTIONS ON FUZZY SYSTEMS has an Impact Factor of 4.260.

This table shows the ranking of this journal in its subject categories based on Impact Factor.

Category Name Total Journals|Journal Rank| Quartile
gory in Category | in Category |in Category
COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 111 5 Q1
ENGINEERING, ELECTRICAL & ELECTRONIC 244 8 Q1

Category Box Plot
For 2011, the journal IEEE TRANSACTIONS ON FUZZY SYSTEMS has an Impact Factor of 4.260.

This is a box plot of the subject category or categories to which the journal has bheen assigned. It provides
information about the distribution of journals based on Impact Factor values. It shows median, 25th and 75th
percentiles, and the extreme values of the distribution.
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7.2 JCR of Engineering Applications of Artificial In-

telligence

IS| Web of Knowledge™

Journal Citation Reports® 2011 JCR Science Edition

Journal: ENGINEERING APPLICATIONS OF ARTIFICIAL
INTELLIGENCE

Journal Impact Factor

Cites in 2011 to items published in: 2010 = 149 Number of items published in: 2010 =130

2009 =274 2009 =124
Sum: 423 Sum: 254
Calculation:Cites to recent items 423 = 1.665
Number of recent items 254

Journal Ranking
For 2011, the journal ENGINEERING APPLICATIONS OF ARTIFICTIAL INTELLIGENC... has an Impact Factor of 1.665.

This table shows the ranking of this journal in its subject categories based on Impact Factor.

Category Name e ol Potal k] Qe
AUTOMATION & CONTROL SYSTEMS 58 15 Q2
COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 111 34 Q2
ENGINEERING, ELECTRICAL & ELECTRONIC 244 65 Q2
ENGINEERING, MULTIDISCIPLINARY 90 10 Q1

Category Box Plot
For 2011, the journal ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENC... has an Impact Factor of 1.665.

This is a box plot of the subject category or categories to which the journal has been assigned. Tt provides information

ahout the distribution of journals based on Impact Factor values. It shows median, 25th and 75th percentiles, and the
extreme values of the distribution.
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7.3 JCR of Expert Systems with Applications

IS| Web of Knowledge®™

Journal Citation Reports® 2011 JCR Science Edition
Journal: EXPERT SYSTEMS WITH APPLICATIONS

Journal Impact Factor

Cites in 2011 to items published in: 2010 = 1422 Number of items published in: 2010 =1010

2009 = 3855 2009 =1385
sum: 5277 sum: 2395
Calculation: Cites to recent items 5277 =2.203
Number of recent items 2395

Journal Ranking
For 2011, the journal EXPERT SYSTEMS WITH APPLICATIONS has an Impact Factor of 2.203.

This table shows the ranking of this journal in its subject categories based on Impact Factor.

Total Journals|Journal Rank| Quartile

Category Name in Category | in Category |in Category

COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 111 22 Q1
ENGINEERING, ELECTRICAL & ELECTRONIC 244 41 Q1
OPERATIONS RESEARCH & MANAGEMENT SCIENCE 77 5 Q1

Category Box Plot
For 2011, the journal EXPERT SYSTEMS WITH APPLICATIONS has an Impact Factor of 2.203.

This is a box plot of the subject category or categories to which the journal has been assigned. It provides

information about the distribution of journals based on Impact Factor values. It shows median, 25th and 75th
percentiles, and the extreme values of the distribution.
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Chapter 8

Full list of publications

I find television wvery educational. The
minute somebody turns it on, I go to the li-
brary and read a good book.

Groucho Marx (1890 - 1977)

This chapter details the whole list of the author’s publications. It contains the full
bibliographic references of the articles divided into three sections. Sections 8.1 and 8.2
detail the articles publishes in national and international Conferences, while Section 8.3

enumerates the articles publishes in International Journals.
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8.1 National conferences

e A. Alvarez-Alvarez, J. M. Alonso, G. Trivino, N. Herndndez, F. Herranz and
M. Ocana. “Towards people indoor localization combining WiFi and human motion

recognition”. In: Actas XV Congreso Espanol sobre Tecnologias y Logica Fuzzy
(ESTYLF), Huelva, Spain, pp. 7-12, February 2010.

e D. Sanchez-Valdes, A. Alvarez-Alvarez and G. Trivino. “Linguistic description
of temporal traffic evolution in roads”. In: Actas XVI Congreso Espanol sobre
Tecnologias y Logica Fuzzy (ESTYLF), Valladolid, Spain, pp. 614-619, February
2012.
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8.2 International conferences

e A. Alvarez-Alvarez and G. Trivino. “Comprehensible model of a quasi-periodic
signal”. In: Proceedings of the 9th International Conference on Intelligent Systems
Design and Applications (ISDA), Pisa, Italy, pp. 450-455, December 2009.

e A. Alvarez-Alvarez, J. M. Alonso, G. Trivino, N. Hernandez, F. Herranz, A. Lla-
mazares and M. Ocana. “Human Activity Recognition applying Computational
Intelligence techniques for fusing information related to WiFi positioning and body
posture”. In: Proceedings of the 2010 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), Barcelona, Spain, pp. 1881-1885, July 2010.

e A. Alvarez-Alvarez and G. Trivino. “Automatic linguistic report on the quality of

the gait of a person”. In: Ist International Open Workshop Fuzziness and Medicine
(FUZZ-MED), Mieres, Spain, March 2011.

e A. Alvarez-Alvarez, G. Trivino and O. Cordén. “Body Posture Recognition
By Means Of A Genetic Fuzzy Finite State Machine”. 1In: Proceedings of the 5th
IEEE International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS),
Paris, France, pp. 60-65, April 2011.

e A. Alvarez-Alvarez, D. Sanchez-Valdes and G. Trivino. “Automatic Linguistic
Description about Relevant Features of the Mars’ Surface”. In: Proceedings of
the 11th International Conference on Intelligent Systems Design and Applications
(ISDA), Cordoba, Spain, pp. 154-159, November 2011.
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8.3 International journals

G. Trivino, A. Alvarez-Alvarez and G. Bailador. “Application of the computa-
tional theory of perceptions to human gait pattern recognition”. Pattern Recogni-
tion, Vol. 43, No. 7, pp. 2572-2581, July 2010.

A. Alvarez-Alvarez, G. Trivino and O. Cordén. “Human gait modeling using a
genetic fuzzy finite state machine”. Fuzzy Systems, IEEE Transactions on, Vol. 20,
No. 2, pp. 205223, April 2012.

A. Alvarez-Alvarez, D. Sanchez-Valdes, G. Trivino, A. Sdnchez and P. D. Suérez.
“Automatic linguistic report about the traffic evolution in roads”. Fxpert Systems
with Applications, Vol. 39, No. 12, pp. 11293-11302, September 2012.

A. Alvarez-Alvarez and G. Trivino. “Linguistic description of the human gait
quality”. FEngineering Applications of Artificial Intelligence, 2012. In press. DOI:
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A. Alvarez-Alvarez, J. M. Alonso and G. Trivino. “Human activity recognition
in indoor environments by means of fusing information extracted from intensity of
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about relevant features of the Mars’ surface”. Submitted to Applied Soft Computing.
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Chapter 9

Additional selected publications

My thoughts are my company; I can bring
them together, select them, detain them, dis-

miss them.
Walter Savage Landor (1775 - 1864)

This chapter contains a complete copy of four additional publications that, although
they were not presented in Chapter 6 as the core of the thesis, they are very related to
the topics and works developed during the thesis. It is divided into four different Sections

corresponding to each article.
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9.1 Application of the computational theory of per-

ceptions to human gait pattern recognition

G. Trivino, A. Alvarez-Alvarez, and G. Bailador. “Application of the computational
theory of perceptions to human gait pattern recognition”. Pattern Recognition, Vol. 43,
No. 7, pp. 2572-2581, July 2010.
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This paper aims to contribute to the field of human gait pattern recognition by providing a solution
based on the computational theory of perceptions. Our model differs significantly from others, e.g.,
based on machine learning techniques, because we use a linguistic model to represent the subjective
designer’s perceptions of the human gait process. This model is easily understood and provides good
results. We include a practical demonstration with an equal error rate of 3%.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Currently, industry demands new techniques for user authen-
tication. Authentication based on biometrics is one area that has
grown over the last few years. There are two types of biometric
characteristics that are useful in this field: physiological char-
acteristics, such as fingerprints [1] or DNA, and behavioral
characteristics like signature [2], voice [3] or gait.

Gait analysis has been explored thoroughly during the last
decade as a behavioral biometric measurement. Some areas of
application include: access control, surveillance, activity monitor-
ing and clinical analysis.

Most research is based on computer vision [4-10]. The main
advantage of this approach is that there is no need to wear sensors,
therefore allowing identification from a distance. For some
applications, the main drawbacks of these methods are: depen-
dence on illumination, misinterpretations due to shadows, need of
a complex system for capturing images and its computational cost.

Nevertheless, solutions based on accelerometers [11-15] pro-
vide a smart solution to the problem of capturing the signal and its
practical implementation as a commercial product. They can be
used in the dark and provide 3-D data whereas computer vision
systems produce 2-D projections. However, the user must wear
sensors and this makes the solution invalid for certain applications.

* Corresponding author.
E-mail addresses: gracian.trivino@softcomputing.es (G. Trivino),
alberto.alvarez@softcomputing.es (A. Alvarez-Alvarez),
gonzalo.bailador@upm.es (G. Bailador).

0031-3203/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2010.01.017

Regarding algorithms used for gait pattern recognition, the
most frequent are based on neural networks [16] or hidden
Markov models [17,18]. However, the published results do not yet
demonstrate the availability of a sufficiently robust method for a
marketable product.

In this paper, we make emphasis in modeling the knowledge
acquired by a human observer of the system. For example, it is
interesting to consider how a human observer has not difficulties
recognizing the gait as a quasi-periodic process, i.e., the signal
evolves in time approximately repeating its shape and period.
Moreover, a human observer is clearly able to separate the
relevant from the irrelevant features in the observed signal.

Although, we consider that both procedures are complementary,
our approach is based on modeling the designer’s perception of the
system in contrast with a procedure based on machine learning.

We aim to contribute to the pattern recognition field by
providing a technique for modeling this type of human percep-
tions. We present a new method for human gait recognition
involving analysis of the accelerations produced during a
complete gait cycle. We used a fuzzy finite state machine (FFSM)
[19] to model the perception of the signal evolution, where each
state was established using our knowledge about the physiolo-
gical phases of the human gait.

The model was implemented using fuzzy linguistic variables
and rules to describe a set of states that the signal undergoes
during its evolution in time. This type of model provides sufficient
flexibility to represent the variations in both, signal amplitude and
states time span. The model is expressed using linguistic terms that
make its interpretation easier with a low computational cost.
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Once the model was available, we used three relevant features
of the human gait (homogeneity, symmetry and the relation
weight/legs length) to recognize the gait style corresponding to a
specific person. In the demonstration, we explain how to solve the
problem of authentication of one person among 11 people with an
equal error rate (EER) of 3%.

We have limited the scope of this paper to the case of using
accelerometers to obtain the signal, but also the described method
could be applied to signals that were obtained by computer vision.

2. Computing with the meaning of human perceptions

The computational theory of perceptions (CTP) was outlined in
the Zadeh’s seminal paper “From computing with numbers to
computing with words—from manipulation of measurements to
manipulation of perceptions” [20] and further developed in
subsequent papers [21]. The general goal of CTP is to develop
computational systems with the capability of computing with the
meaning of natural language (NL) expressions, i.e., with the
capability of computing with imprecise descriptions of the world
in a similar way that humans do it.

In this section, we introduce a set of definitions including and
developing ideas taken from CTP. We focus our effort on exploring
the possibilities of this theory in the field of pattern recognition.

2.1. Perceptions

In CTP, the computational model of a physical model is based
on the subjective perceptions of a person that we will call the
designer.

A perception (p) is a unit of information acquired by the
designer about different parts of the system and its environment.

The designer's perceptions are described using granules. A
granule is a clump of elements which are drawn together by
indistinguishability, similarity, proximity or functionality [22].

In CTP, the boundary of a granule is fuzzy. Fuzziness of
granules allows us to model the way in which human concepts
are formed, organized and manipulated in an environment of
imprecision, uncertainty and partial truth [23].

The concept of linguistic variable is essential in the formal
description of perceptions. Informally, a linguistic variable is a
variable whose values are words or sentences in a NL [26]. For
example, the linguistic variable Age, with possible values {very
old, old, quite new, new}, can be used to describe a subjective
perception of the age of an automobile.

The attributes of a perception are linguistic variables
with values defined using fuzzy sets. The designer describes his/
her perceptions using constraints [27], i.e., defining a set of
relevant attributes and the sets of their possible linguistic
values.

2.2. First-order perceptions

The designer uses first-order perceptions to define the max-
imum level of granularity in a model.

Typically, the designer obtains a first-order perception (p')
using data provided by a sensor.

There are two forms of representing (p!):

The linguistic representation, e.g.:

p': “ The Temperature is High”

And the formal representation:

p' T =1,

where:

e T is a linguistic variable (e.g., temperature).

e A;is a linguistic term belonging to the set of possible linguistic
values of T (e.g., {Low, Warm, High}).

® U, (2) is the membership function associated with the
linguistic term A;.

e z is a numerical value obtained from the sensor (e.g., 45 °C).

2.3. Second-order perceptions

The concept of granularity allows the designer to create a
hierarchy of perceptions. In this structure, the designer uses a set
of lower order perceptions to explain a higher order perception.

For example, two first-order perceptions:
pl: “The Temperature is Warm”.
p3: “The Humidity is Medium”.

could be used to explain the perception of Comfort in a room:
p?: “The Room is Comfortable”.

Typically this explanation has the form of a set of fuzzy rules
such as

IF p} AND p} THEN p?

The network in this example can be extended easily by
considering additional perceptions like “Acoustic noise” or “Number
of persons in the room” to explain the perception of “Comfort”.
Furthermore, this perception can be used to explain a higher order
perception, e.g., “Efficiency” of an air conditioning system (see Fig. 1).

A granular network represents the explanation of a perception
with certain level of granularity. For example, we summarize the
description of an object by hiding the irrelevant granules and
remarking the relevant ones. In CTP, the model of a generic
perception is called a Protoform [27]. Here, the value of the
attributes of a second-order perception changes dynamically
when the first-order perceptions change, e.g., when the values
provided by the sensors change.

2.4. Perception of a system evolving in time

The most of practical applications concern with the perception
of systems that evolve in time. The model of the perception of a
system evolving in time is a protoform that describes how the
system changes between the different states.

If, for the sake of simplicity, we restrict our attention to time
invariant discrete-time systems, the equations that represent the
evolution of a system in time are

X[t+1] = f(x[t], u[t])
Ye] = g(x[t], ut))

where

e Xx[t] is a vector that represents the state of the system at time t
as it is perceived by the designer.

e y[t] is a vector that represents the system output as it is
perceived by the designer.

e u[t] is a vector that represents the system input as it is
perceived by the designer.

o fix[t], u[t]) is an explanation of how the system state evolves in
time.

e g(x[t], u[t]) is an explanation of how the system output evolves
in time.
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p?: Efficiency

Values:
{Inefficient,
Normal,
Efficient}

explanation explanation

p?: Comfort

Values:
{Uncomfortable,
Acceptable,
Comfortable}

explanation explanation

p': Temperature p': Humidity

Values:
{Low, Medium,
High}

Values:
{Low, Warm,
High}

Fig. 1. Granular network corresponding to a higher-order perception.

We say that the system described by these equations is a fuzzy
system when at least one of the variables is fuzzy [23]. It is
important to remark that, from the point of view of our approach,
the model of a system consists of a particular description of the
designer’s perception of the system. This description contains, in
certain degree of detail, an explanation of how the perceived
outputs could be caused by the perceived inputs.

3. Fuzzy finite state machine

In the rest of this paper, we focus our attention on a specific
type of computational models that provide a linguistic summary
of data obtained by sensors. Here the designer must:

e Define a set of first-order perceptions (u[t]) using values
provided by sensors.

e Define a second-order perception (y[t]) of this information
with a level of granularity suitable for the final user purposes.

e Design an explanation of the system evolution consisting of a
set of fuzzy rules that allows obtaining the values of the output
linguistic variables in function of the inputs. This explanation
includes a set of intermediate order perceptions x[t] represent-
ing the relevant internal states of the system.

In a preliminary research, we have learnt that fuzzy finite state
machines are suitable tools for modeling signals which evolve
approximately following a repetitive pattern [29-31]. We will see
that finite state machines provide an interesting paradigm to
design the sets of fuzzy rules that allow us to implement the
functions fix[t], u[t]) and g(x[t], u[t]) for modeling this type of
signals.

A fuzzy finite state machine (FFSM) is a tuple:

X.U,Y.f,8 Xo}

where:

e X is the set of states {x1,x,,...,X,, }. Every state represents the
pattern of a repetitive situation. We say that, the system is in a
specific state, when the current input variables and the
previous state activations fulfill certain conditions. The activa-
tion of a state is a matter of degree, i.e., the FFSM could be
partially in several states simultaneously. We will denote
X; €[0, 1] the degree of activation of a state. Defining the states
includes determining their temporal order, i.e., the sequence
with which the system follows the different relevant states.

e U is the input vector {uj,uy,...,uy}. U is a set of first-order
perceptions where each variable u; takes its value in a domain
defined with a set of linguistic labels {A;1,Ap,...,Ap}. Fig. 3
shows an example of these linguistic labels over the vertical
axis.

e Y is the output vector {y1,y,...,Yn, ). Y represents a summary
of the values taken by the inputs while staying in a specific
state.

e f is the state transition function X[t+1]=fU[t], X[t]). This
function can be implemented using a set of fuzzy rules:

o Rules that constrain the signal amplitude. We distinguish
between rules to stay in a state x; (R;) and rules to change
from the state x; to the state x; (Ry):

Rii : IF Xi(t)v(u is C;) THEN X;(t+1)
Rjj : IF Xi(t) A(u is G) THEN Xxj(t+1)

where C; and G represent the conditions of amplitude for
the state x; and x;, respectively.
We used v in R; to introduce an inertia to change of state.
This makes the FFSM more robust against spurious in the
input. This OR is typically implemented using the maximum
operator.
We used A in R; to define the conditions to change more
sharply. This AND is typically implemented using the
minimum operator.
Rules that constrain the signal time span. We did this using
two additional linguistic labels (see Fig. 4):
Tstay,: is the maximum time that the signal is
expected to remain in state x;.
Tenange;* is the minimum time that the signal is
expected to remain in state x; before changing to
state x;.
Therefore, adding the temporal conditions:
Ri: IFXi(O)vu=C)v(d;= Tsmy) THEN X;(t+1)
Rij D IFXi()A(u= CJ)/\(dl = Tchange,]) THEN Xj(t-l—])

°

where d; is the duration of the state x;.

e g is the output function Y[t]=g(U[t], X[t]). The output variables
are obtained as a summary of the values of the inputs while the
system remained in the considered state, e.g., using the average
or the standard deviation (see an example in the next section).

e X, is the initial state.

4. Human gait pattern recognition

The following sections describe how to apply the introduced
above concepts in the field of human gait pattern recognition.

4.1. Linguistic terms in the application domain

Before embarking on a description of the different phases of
the human gait, it is needed to introduce a small set of terms
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belonging to the domain of language.

e Reference foot: One foot.

e Opposite foot: The other foot.

e Stance phase: It begins when the heel contacts the ground and
ends when the toes rise off the ground.

e Swing phase: It covers the period when the foot is not in
contact with the ground.

The human gait is a quasi-periodic process with peculiarities
that allow identifying a specific person. We used three character-
istics to distinguish among different human gait styles:

e Symmetry: The degree with which the movement of a leg is
similar to the other one.

e Homogeneity: The degree with which the whole gait profile
repeats in time.

e The estimated proportion between legs length and weight.

We have designed a model of the human gait, i.e., a protoform
where these characteristics appear remarked whereas the
irrelevant aspects remain hidden.

4.2. Input variables

We attached a sensor in the belt, centered in the back, that
provided measurements of three orthogonal accelerations every
100 ms. We programmed a PDA to receive the data via a Bluetooth
connection and to record them with a timestamp. Every record
contained the following information:

(Timestamp, ay, ay, a;)

where:

e a, is the vertical acceleration.
e a, is the lateral acceleration.
® a, is the acceleration in the progress direction.

During a first analysis of data, we realized that a, and a,
were indicative for the states we wanted to distinguish. a, was
more difficult to use because it has to do with the walking
speed and this speed can vary for the same person. Therefore, we
used the two first accelerations as input to the fuzzification
process.

4.2.1. Normalization

As an initial step, we normalized the signals. First, we
subtracted the average making them to be centered on zero.
Then, we rescaled them in the range given by their standard
deviations. This allowed us to perform the analysis at the scale
that gives us more information about the signal changes. Fig. 2
shows an example of the evolution of these two accelerations
during one cycle and a half.

4.2.2. Fuzzification

This step allows defining the first-order perceptions. In this
level of granularity, the linguistic variables take a value belonging
to the set {Negative, Zero, Positive}. Fig. 3 shows the drawing of
these trapezoidal linguistic labels over the vertical axis. Note that,
thanks to the normalization step, each trapezoidal linguistic label
covers one third of the total amplitude.

4.3. Set of rules
The states were defined as follows:

e x;: Reference foot is in stance phase and opposite foot is in
stance phase (double limb support).

e x,: Reference foot is in stance phase and opposite foot is in
swing phase (reference limb single support).

e x3: Reference foot is in stance phase and opposite foot is in
stance phase (double limb support but different of x; because
the feet position).

e x4: Reference foot is in swing phase and opposite foot is in
stance phase (opposite limb single support).

We used a set of fuzzy rules to explain the signal evolution
between the different states. In contrast to machine learning
techniques, we derived the rules from the designer’s perceptions
about the human gait acceleration signals. The use of linguistic
rules allows the designer to include his/her experience about the
human gait in a easy way.

The model is able to synchronize without the need of doing
previous segmentation of the signal. We chose the initial state
Xo={x1}(X1=1and x;=0Vi#1), i.e, the FFSM synchronizes
with the signal when the conditions of x; are fulfilled.

4.3.1. Conditions of amplitude

We defined the conditions of amplitude to remain in a state or
to change between states by combining the information obtained
from the sensors and the available generic knowledge about the
human gait. We defined eight rules (four to remain in each state
and four to change between states).

We aggregated the conditions to remain in a specific state using
OR to make the system more robust against spurious in the input.
For example, the lateral acceleration (a,) can fluctuate in the state
x3 while the vertical acceleration (a,) matches its condition.

We aggregated the conditions to change between states using
AND, trying to make the changes of state as sharp as possible:

Ri: IF X(t)v(ay = P)v(ay = P) THEN Xy(t+1)
Ryz: IF Xp(t)v(ay = N)v (ay = Z) THEN Xp(t+1)
Ras: IF X3(t)v(ay =P)v(ay = N) THEN X3(t+1)
Raa: TF X4(t)v (ay = N)v(@y = Z) THEN X4(t+1)
Rua: IF X1(t) A (ax = N) A(ay = Z) THEN X,(t+1)
Ras: IF Xa(t) A(ay = P) A (@, = N) THEN Xs3(t+1)
Raa: IF X3(t) A (ax = N) A(ay = Z) THEN Xq(t+1)
Raz: IF X4(t) A (ax = P) A(ay = P) THEN X;(t+1)

4.3.2. Temporal conditions

We applied self-correlation analysis to the vertical acceleration
to obtain an approximation of the signal period (T). In agreement
with our knowledge about the typical human gait cycle, we
assigned to each state approximately a 25% of T. Fig. 4 shows the
linguistic labels Tgq, and Tepgnge used to define the temporal
constraints. Ty, was tuned manually with the conservative
criteria of ensuring that the state will span at least the 25%.
Tchange Was designed to allow the change of state as soon as the
conditions for changing are fulfilled.

Adding these temporal conditions, the rules were formulated
as follows:

o Ri1: IF X1(t)v(ax = P)v (ay = P)v (d; = Tstay) THEN Xy (t+1)
® R IF X5(0)v(ay = N)v (ay = Z)v (da = Titay) THEN Xo(t+1)
 Ri3: IF X3(0) v (ay = P)v(ay = N)v(d3 = Titay) THEN X3(t+1)
® Ryt IF X4(t)v (ay = N)v (ay = Z) v (dg = Titay) THEN X4(t+1)
® Riz: IF A1(t) A (ax :N)/\(ay =) A(dr = Tclmnge) THEN X(t+1)
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Fig. 3. Trapezoidal linguistic labels for the normalized vertical acceleration.

® Ros: IF X(t) A (@x = P) A (@) = N) A(da = Tepange) THEN X3(t41)
® R IF X3(t) A (@x = N) A (ay = Z) A(d3 = Tepange) THEN Xg(t41)
® Ryy: IF X4(t) A (@x = P) A (@y = P) A (dg = Tepange) THEN (£ +1)

where d; is the duration of the state x;.

Fig. 2 represents the degree of activation X; of the four states of
the FFSM following the evolution of the human gait. It shows how
this set of fuzzy rules is able to separate efficiently the four phases
of the human gait.

4.4. Output variables

After some experimentation, we realized that, although a, is
useful to distinguish between the states x; and xs, it does not
provide relevant information for our purpose. Also, as mentioned
above, the acceleration in the direction of march a, depends on
the person’s walking speed.

Indeed, the use of these variables or other additional signals,
e.g. gyroscopes, could be considered. However, the algorithms
would grow up in complexity and we should lose the advantage of
the simplicity.

Therefore, once identified the four phases in the signal, we
focused on the characteristics of the vertical acceleration a,. This
acceleration provided sufficient information for our purpose. Here
in after, for simplicity, we denote the vertical acceleration as a.

Fig. 5 shows the evolution of a along the four phases. The four
rectangles represent graphically the relevant characteristics of
each cycle of a specific gait. The dimensions of every rectangle
summarize the values of the acceleration while staying in each
state, i.e. they are a graphical representation of a protoform of the
human gait. Therefore, the output of the FFSM is a vector:

yi=(&.a;, 0t,04;)
The elements of this vector are:
e f;: The horizontal coordinate of the center of each rectangle is
the temporal “center of mass” of the vertical acceleration in
the state x;. Note that the “mass” in every instant t is calculated

as the vertical acceleration a(t) weighted by the degree of
activation X;(t) of the state x;.

£ Si—ot-am- Xio
LS pa) - X
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a;: The vertical coordinate of the center of each rectangle is the
average of the vertical acceleration during the state x;.
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where:

e qa(t) is the vertical acceleration at the instant t.
e X;(t) is the degree of activation of the state x; at the instant t.
e T is the duration of a complete cycle.

5. Relevant characteristics

Using this model, we were able to analyze the differences
among gaits of different people. We used the areas of the
rectangles to distinguish the peculiarities of each specific gait.

In agreement with the section above, each cycle was modeled
using four rectangles (states) and each rectangle was represented
by the vector y; = (t;,@;, 0, 0q,).

As mentioned above, we used three characteristics of the
human gait that are useful to recognize the gait style correspond-
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ing to a specific person, namely, homogeneity, symmetry and the
relation between the weight and the length of legs.

5.1. Homogeneity

The homogeneity (+) was obtained by comparing a gait with
itself. The homogeneity is based on the standard deviation of the
sequence of rectangles of each state.

The homogeneity of the state x; (H;) was formulated as follows:

ATSAAD e ey < A
Hi= i
0 if std(A) = A;

where:

e 4; are the areas of the rectangles corresponding to the state x;
in the total number of available cycles.

e 4; is the mean of this sequence of areas.

e std(A)) is the standard deviation of this sequence of areas.

This equation provides a value #; € [0, 1]. A low standard deviation
indicates similar areas, i.e., homogeneity close to 1. A high standard
deviation indicates differences, i.e., homogeneity close to 0.

The total homogeneity (H) summarizes the homogeneities of
the four states as follows:

1 4
H=g2 M

i=1
5.2. Symmetry

Symmetry (S) was obtained by comparing the movement of
both legs. Symmetry is based on comparing the areas of the states
x1 and x; (stance and swing phase of the reference foot) versus the
areas of x3 and x4 (stance and swing phase of the opposite foot). A
gait will be symmetric if the areas of the states x; and x, are
similar to the areas of the states x3 and x4. The symmetry in a
cycle j (Sj €[0,1]) was formulated as follows:

Aj3 + Aj4 .
f A . . .
A+ Az if Ajp+Ap = Ajz + Ay
= Aj1 +.Aj2 .
f A . . )
Ap+ A if Ajj+Ap <Ap+Ajs
where:

Aj1, A, Ajs, Ajs are the areas of the rectangles corresponding
to states X1, X2, X3, X4 in the cycle j.

The total symmetry (S) was calculated as the average of the
symmetries of the sampled cycles M:

M
5

$=1

S

5.3. The fourth root model

The “fourth root model” is an empiric model for estimating the
distance covered with a number of steps measuring the vertical
acceleration [32]. This model includes an experimental parameter
(C) that is practically invariant for a certain person, but that varies
significantly among different people. C is related with the
proportion between the legs length and the weight. It is
calculated experimentally making a person to walk a known
distance. The stride length is given by the formula:

Step = C - (Amax—pmin)'/*

where:

e Step is the stride length.

e C is the experimental parameter.

® 0,4« iS the maximum of the vertical acceleration.
® i, is the minimum of the vertical acceleration.

The stride length can also be calculated as the product between
the walking speed of the person (V) and the period of the
corresponding cycle (T):

Step = C - (Amax—min)'/*
Step=V-T

I
v (amax*amin)l/4

We considered that V is approximately constant for each
person as a function of his/her selection (see Section 6). Therefore,
we assumed that C/V was a constant K:

_ T
(amax—amin)] ”

where:

e T is the mean of the period during various cycles.

® {4« iS the mean of the maximum vertical accelerations during
various cycles.

® ay,n is the mean of the minimum vertical accelerations during
various cycles.

We used this constant K as a third invariant characteristic of the
human gait.

5.4. Authentication

We applied these formulas to obtain a vector of characteristics
(H, S, K) for each person in a database. Empirically, we tested that
this vector provided sufficient separation among the gaits of
different persons whereas the samples of the same person were
distributed randomly around a center of gravity. Therefore, we
used Gaussian membership functions to represent the distribu-
tion of values of these variables on the axes of a three-
dimensional domain.

These membership functions were formulated as follows:

_ o~ (H-H)* /262
n=¢€ "

o
T2 2

Lhg = e~ E-57/20%
2 2

Ly = e~ KT /20t

where:

e 7{ is of the mean the homogeneity values of a person and oy
the standard deviation.

e S is the mean of the symmetry values of a person and ¢ the
standard deviation.

e IC is the mean of the K values of a person and o the standard
deviation.

Fig. 6 shows an example of two clusters with their respective
membership functions.

The process of authentication of a person was performed using
a sample of his/her gait (H*,S*, K*). We calculated the member-
ship values (i, fis+, fii-). And then, the intersection of these
conditions was formulated as follows:

Score = min(iy-, fLs-» tyc+)

where Score represents the degree of membership of this sample
to the cluster associated to the authenticated person. If Score > /
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Fig. 6. Gaussian membership functions for two different people.
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Fig. 7. The granular network explaining the n th-order perception needed for
authenticate a gait.

the human gait is accepted, being 4 a threshold that depends on
the application.

In summary, Fig. 7 shows a granular network that explains the
perception that allows the designer to identify a person using the
human gait.

6. Experimentation

We tested this pattern recognition method by authenticating
one person among 11 people. Subjects were instructed to walk at
a self-selected, comfortable walking speed. Each subject walked
20 samples of 10 steps each, so we obtained a total of 220 samples
(20 genuine and 200 impostors).

Each sample was tested using the leave-one-out cross valida-
tion (K-fold cross-validation with K being equal to the number of
observations in the original sample) against the remaining
training data.

The equal error rate (EER) is obtained from the intersection
between the false acceptance rate (FAR) and the false rejection
rate (FRR) versus the threshold 4 (see Fig. 8). With our
experimental data, we obtained the values: A=0.0118 and
EER = 3%.

In order to show the advantage of our approach, we studied
the results obtained by other researchers (see Table 1). It is worth
to remark that these equal error rates are relatively comparable.
These works use different number of subjects, different sensor
configuration and different methods to analyze the signal.

We have summarized the differences and similarities of these
works as follows:

Ailisto et al. [11] authenticate users of portable devices from
the accelerations obtained by a three-axis accelerometer placed
on the belt, at back. They divide the signal into one step long parts
using the maximum and the minimum of the signal. They assume
that the right and left steps are not necessarily symmetrical. They
used 36 subjects that walked in their normal, fast and slow speed.
They perform three different analysis: correlation, frequency
domain and they use two variants of data distribution statistics
method. They obtaining an EER of 7%, 10%, 18% and 19%,
respectively.

Gafurov et al. [12] authenticate 22 subjects walking in their
normal speed wearing a three-axial accelerometer in their hip.
They normalize each gait cycle in time. They use a cycle length
analysis method to obtain an EER of 16%. In a subsequent paper
[13] they authenticate 21 subjects with the accelerometer
fixed on the ankle. They use the same on time-normalized cycle
length method and histogram similarity analysis to obtain an EER
of 9% and 5%, respectively. Finally, in [14] they authenticate 50
subjects with the accelerometer placed in the trousers pocket.
They perform the same preprocessing and use four methods:
absolute distance, correlation, histogram and higher order
moments. The best result (with the absolute distance) is an
EER of 7%.
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Fig. 8. FAR and FRR versus the threshold A.
Table 1

Summary of accelerometer-based gait pattern recognition Works.

Work # Subjects EER%

Ailisto et al. [11] 36 7,10, 18,19
Gafurov et al. [12] 22 16

Gafurov et al. [13] 21 59

Gafurov et al. [14] 50 7.3,9.2, 14, 20
Rong et al. [15] 21 5.6, 21.1

This paper 11 3

Rong et al. [15] use a three-axis accelerometer fixed on the
user’s waist to obtain the signal of 21 subjects. They perform a
preprocessing of the signal that includes wavelet denoising, gait
cycles dividing and dynamic time warping. They analyze the
signal in time and frequency domains obtaining an EER of 5.6%
and 21.1%, respectively.

In our approach, the segmentation or preprocessing of the
signal was not needed. The FFSM was able to divide the
acceleration signals into cycles and to synchronize with the
signal automatically.

The main difference of our contribution is the use of
a fuzzy linguistic model for describing the human gait. The
flexibility of this paradigm allows the designer to focus the model
on the relevant characteristics of the signal for an specific
purpose.

7. Conclusions

In this paper, we have contributed to the field of pattern
recognition presenting a new method of signal analysis based on
the CTP. We have explored the possibility of using a model of the
perceptions of a human observer as a complement to the well
established automatic machine learning procedures.

We have focused our effort on modeling the perception of a
quasi-periodic signal. Specifically, we have proposed a flexible
model of the human gait that allows representing linguistically
the relative variations of period and amplitude of this type of
signal.
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9.2 Human activity recognition applying computa-
tional intelligence techniques for fusing informa-
tion related to WiFi positioning and body pos-

ture
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and M. Ocana. “Human Activity Recognition applying Computational Intelligence tech-
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Abstract—This work presents a general framework for
people indoor activity recognition. Firstly, a Wireless Fidelity
(WiFi) localization system implemented as a Fuzzy Rule-
based Classifier (FRBC) is used to obtain an approximate
position at the level of discrete zones (office, corridor, meeting
room, etc). Secondly, a Fuzzy Finite State Machine (FFSM)
is used for human body posture recognition (seated, standing
upright or walking). Finally, another FFSM combines both WiFi
localization and posture recognition to obtain a robust, reliable,
and easily understandable activity recognition system (working
in the desk room, crossing the corridor, having a meeting, etc).
Each user carries with a personal digital agenda (PDA) or
smart-phone equipped with a WiFi interface for localization
task and accelerometers for posture recognition. Our approach
does not require adding new hardware to the experimental
environment. It relies on the WiFi access points (APs) widely
available in most public and private buildings. We include a
practical experimentation where good results were achieved.

I. INTRODUCTION

People activity recognition provides interesting applica-
tions in many areas, e.g., to filter the phone calls depending
on different circumstances, personal navigation assistance,
personal security, etc. We are mainly interested in indoor
security applications (for instance sending warnings when
someone gets into a dangerous area in order to reduce the
occupational health and safety risk) and/or people assistance
(for instance helping elderly or handicapped people).

Our activity recognition system is mainly based on Fuzzy
Logic (FL) [1] because it allows to combine several het-
erogeneous sources of knowledge (mainly expert knowledge
and knowledge automatically extracted from experimental
data provided by sensors), dealing with vague information,
and its interaction with humans demands the design of an
easily understandable system. FL is widely recognized for its
ability for linguistic concept modeling and its use in system
identification. On the one hand, FL semantic expressivity,
using linguistic variables [2] and linguistic rules [3], is quite
close to natural language what reduces the effort of expert
knowledge extraction. On the other hand, being universal
approximators [4] fuzzy inference systems (FIS) are able
to perform nonlinear mappings between inputs and outputs.
Thus, there are lots of fuzzy machine learning methods for
knowledge induction from experimental data [5].

A. Alvarez-Alvarez, J. M. Alonso and G. Trivino are with the Euro-
pean Centre for Soft Computing (ECSC), Mieres, Asturias, Spain (email:
{alberto.alvarez.jose.alonso,gracian.trivino } @softcomputing.es).

N. Hernandez, F. Herranz, A. Llamazares and M. Ocafia are with the
Department of Electronics, University of Alcala (UAH), Madrid, Spain
(email: {nhernandez,fherranz,allamazares,mocana }@depeca.uah.es).
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There are other recent works [6], [7] that show the
advantages of using FL for modeling and monitoring human
activity. They are mainly based on fusing video sensors
what means installing additional hardware (HW) like video
cameras in the environment under study. On the contrary,
our approach takes profit from pre-existent HW and avoids
adding new devices to the environment.

In indoor environments, the use of the network infras-
tructure to estimate user’s location is quite common. Local
network based systems are sometimes based on pre-existing
networks like ZigBee networks designed for home control
applications [8]. However, the most used systems are based
on WiFi networks which are able to provide indoor absolute
localization. In contrast, the main drawback is the need
of a complete network infrastructure in the whole building
where we want to localize a person. Luckily, this technology
is quickly growing of coverage. Currently, there are WiFi
Access Points (APs) in most public buildings like hospitals,
libraries, universities, museums, etc. Moreover, measuring
the WiFi signal level is free even for private WiFi networks.
As a result, WiFi technology is a good choice for indoor
global localization systems yielding a good accuracy-cost
trade-off [9].

Regarding human activity recognition it is important to
know the place where a person is located but it is not
enough. We propose taking into account also information
related to the human body posture. It can be estimated
by means of sensor based systems which provide absolute
information (e.g., magnetic compass, ultrasonic or infrared
sensors) or relative information (e.g., inertial measurement
units or pressure sensors). One low-cost inertial sensor is the
accelerometer, based on the Micro Electro Mechanical Sys-
tems (MEMS) technology that has allowed its integration in
small and low energy consumption devices. Accelerometers
can be used as step length estimators; furthermore they let
us to obtain some information about body posture [10]. In
previous works we have already shown how human activity
can be analyzed in terms of combining one accelerometer
with a skin conductivity meter [11]. This work focuses on
exploiting the fusion of WiFi signal and accelerations.

This paper is organized as follows. Section II describes
how to design a Fuzzy Rule-based Classifier (FRBC) while
Section III formalizes the notion of the Fuzzy Finite State
Machine (FFSM). Afterwards, Section IV explains our pro-
posal related to people activity recognition. It combines
one FRBC and two FFSMs. Then, Section V shows the



experimental results. And finally, Section VI expounds the
conclusions and future works.

II. Fuzzy RULE BASE CLASSIFIERS

A FRBC is a fuzzy system able to select one output class
from a pre-defined set of classes C={C"',C?,...,CN}.
Given an n-dimensional input space (X C R"), a fuzzy
inference mechanism yields an activation degree associated
to each class C?. Of course, several classes can be activated
at the same time with activation degree greater than zero.

Our FRBC is designed following the fuzzy modeling
methodology called HILK (Highly Interpretable Linguistic
Knowledge) [12]. It focuses on building comprehensible
fuzzy classifiers, i.e., classifiers easily understandable by
human beings. Useful pieces of knowledge are automatically
extracted from experimental data and represented by means
of linguistic variables and rules under the FL formalism. The
whole modeling process is made up of three steps:

o Partition design. The readability of fuzzy partitioning
is a prerequisite to build interpretable FRBCs. There-
fore, it is based on the use of Strong Fuzzy Partitions
(SFPs) which are the best ones from the comprehensi-
bility point of view.

o Rule base learning. Linguistic rules are automatically
extracted from data keeping in mind the comprehensi-
bility goal. Therefore, we have chosen Fuzzy Decision
Tree (FDT) [13] as rule induction method. It generates
a neuro-fuzzy decision tree which is translated into
quite general incomplete rules where only a subset
of input variables is considered. In addition, inputs
are sorted according to their importance (minimizing
the entropy). FDT is a fuzzy version of the popular
decision trees defined by Quinlan [14]. Rules are of
form If Premise Then Conclusion, where both Premise
and Conclusion use linguistic terms previously defined
for expressing linguistic propositions that describes the
system behavior.

R:If I is A AND...AND Iy is A%, Then Yp is C"
N—— —_———— SN—_——

Premise Py Conclusion

Premise Py

Premise

where given a rule R, rule premises are made up of
tuples (input variable, linguistic term) where I, is the
name of the input variable a, while A represents the
label 7 of such variable, with a belonging to {1,..., NI}
and being NI the number of inputs. In the conclusion
part, C' represents one of the possible output classes.
Knowledge base improvement. It is an iterative re-
finement process that comprises both rule base simpli-
fication and fuzzy partition optimization. The former
increases interpretability while keeping high accuracy.
The later gets higher accuracy without penalizing the
high interpretability previously achieved.

Designed FRBCs are endowed with the usual fuzzy clas-
sification structure based on the Max-Min inference scheme,
and the winner rule fuzzy reasoning mechanism:
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yrrpe(a?) = C' & pci(a?) = max, Kok (a?)

k=1

ok (2?P) = R:rlniachRpR(x”) & Ygis OF

pr(a?) =
where given an input vector z? = {1, ..., 2%}, the output
class O is derived from the highest jic:(2?) which is the
membership degree of a? to the class C. It is computed as
the maximum firing degree of all rules yielding C* as output
class. For each rule, the firing degree is computed as the
minimum membership degree of 2 to all the attached A’
fuzzy set, for all the NI inputs.

ITI. FUZZY FINITE STATE MACHINES

In previous studies, we have showed that FFSM are
suitable tools for modeling phenomena that follow an ap-
proximately repetitive pattern [15], [16], [17], [18]. During
the development of these works, the concept of FFSM has
grown up in clarity and usability. In the following, we will
introduce the current version of this paradigm for system
modeling.

A FFSM is a tuple {Q, S, Sy, U.Y, f, g}. We will describe
each one of its components in the next subsections.

A. Fuzzy States

Every state represents the pattern of a repetitive situ-
ation. The fuzzy state of the system (Q)) is a linguistic
variable [2] that takes its values in the set of linguistic
labels {Q1,Q2,...,Q,}, where n is the number of states.
Numerically, the fuzzy state of the FFSM is represented with
a state activation vector:

S[t] = (s1[t], s2[t], .. ., sn[t]), where s; € [0, 1].

n

Moreover, the FFSM implementation verifies > s; = 1.

We require the state activation vector to fulfill tﬁelprevious
relation for two reasons; first, we want that the degree of
activation works like a quantity that is distributed among the
different states keeping the total degree as a constant equal to
one; second, the state activation vector may be used as input
of a second FFSM (serial connection), so we want that these
input values are normalized in the interval [0, 1] in such a
way that we do not need to renormalize them.

We define, Sj as the initial value of the state activation
vector at t =0, i.e., Sop = S[t = 0].

B. Input variables

U is the input vector (u1,us,...,unr). Typically, U is
a set of linguistic variables obtained after fuzzification of
numerical measures obtained from sensors. Moreover, u; can
be directly obtained from sensor data and also applying some
calculations, e.g., the derivative or integral of the signal, or
by combination of several signals.
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The designer summarizes the domain of the possible
numerical values provided by sensors representing them by
a small set of fuzzy intervals.

Ay, ={A}, A2 ... A=} is the set of all the possible
values that u; can take, being n, the number of linguistic
labels of the linguistic variable u,;.

C. Transition function f

The next value of the state activation vector is obtained
by means of the transition function f:

Slt+1] = F(UH), S[t)).

This function is implemented by means of a set of expert
fuzzy rules. Once the designer has identified the relevant
states in the model, he/she must define the rules that govern
the temporal evolution of the system among these states (e.g.,
see Figure 2).

We can distinguish between rules R;; to remain in a state
Q;, and rules R;; to change from the state (); to the state
Q;. To design the allowed transitions and the forbidden ones,
we follow a simple procedure: the allowed transitions have
explicitly associated fuzzy rules while there are not rules
associated with the forbidden transitions.

1) Rules to remain in a state: The designer uses these
rules to express the conditions of the system to remain in a
specific state. The generic expression of R;; is formulated as
follows:

where:

o The antecedent (S[t] is Q;) calculates the degree of
activation of the state ); in the instant of time ¢, i.c.,
si(t). Note that the FFSM cannot remain in the state
Q; if it is not in this state previously.

o The antecedent C;; describes the constraints over the
input variables to remain in the state ();. For example:
C“ = (ul is A13u) AND (UQ is Aiz) OR (U3 is AiJ)

o Finally, the consequent of the rule is the next value of
the state activation vector S[t+1]. It consists of a vector
with a zero in all of its components except in s;, where
it has a one.

2) Rules to change of state: The designer uses these rules
to express the conditions that make the system change from
state Q; to state ;. Here, the generic expression of R;; is
formulated as follows:

Riji If S[t] is Qz‘ AND Cij Then S[t + 1] is Qj
where:

o The antecedent (S[t] is @Q;) calculates the degree of
activation of the state (Q; in the instant of time ¢, i.e.,
s;(t). Note that the FFSM cannot change from the state
Q; to the state @ if it is not in Q; previously.

o The antecedent Cj; describes the constraints over the
input variables to change from the state (); to the
state ();. In a first approach, these conditions could
coincide with the amplitude conditions to remain in
the destination state of the transition, i.e., Cj; = Cjj.
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Then, some tuning could be needed to express different
conditions to change.

Finally, the consequent of the rule is the next value of
the state activation vector S[t+1]. It consists of a vector
with a zero in all of its components except in s;, where
it has a one.

D. Output variables

Y is the output vector (yi,¥2,...,¥Yn,), Where n, is
the number of output variables. Y is a summary of the
characteristics of the system evolution that are relevant for
the application, e.g., each y; can be obtained as the average
of certain parameters of the system while the model remained
in the state ;.

E. Output function g

The output function g(U[t], S[t]) calculates the value of
the output vector Y (¢). E.g., a possible implementation of
g is doing Y'[t] = S[t] = (s1[t], s2[t], ..., sn[t]). Here, the
output is the current fuzzy state of the system represented
by the state activation vector.

F. Computational implementation

In order to implement the transition function, we use the
Takagi-Sugeno-Kang (TSK) approach [19]. The advantage of
using TSK is that it provides directly the numerical values
of S[t].

Using the TSK implementation, the transition function (f)
of the FFSM is formulated as follows:

RL: If S[t] is Q; AND C}
Then S[t +1]' = (0,...,s;, =1,...,0)

Ry I S[t] is Qi AND CJ;
Then S[t + 1" = (0,...,5;, = 1,...,0)

The state activation vector (S[¢t+ 1]) will be the weighted
average of the individual outputs:

XT: wi-S[t+1]* T

S Y w40
sirt=0  Ee i

S[t] iYW =0

k=1

where wy, is the degree of firing of the rule & using the
minimum for the AND operator. This formulation keeps the
system in its previous state when no rule is fired. Moreover,
it makes s; € [0,1] and )" s; = 1.
i=1
IV. PROPOSAL

This section introduces the proposed fusion framework for
human activity recognition. It is made up of three main mod-
ules as illustrated in Figure 1. Each block will be described in
the following subsections. First, subsection IV-A focuses on
building a FRBC devoted to estimate the location of a person



in an indoor environment by means of processing WiFi
strength signal levels (SLi). Then, subsection IV-B describes
the FFSM1 in charge of human body posture recognition.
Finally, subsection IV-C gives the details related to the
FFSM2 that combines both WiFi positioning and posture
recognition yielding the desired human activity recognition.

SL1 —~
SL2 —» WiFi

. Positioning | “°P,

o (FRBC) Human »
SLn —= Activity activity

ay ] Recognition

Posture pos (FFSM2)

mov —= Recognition

Gilt —] (FFSM1)

Fig. 1. Scheme of the proposed fusion framework

A. WiFi positioning module (FRBC)

WiFi localization systems use 802.11b/g network infras-
tructure to estimate a device position without using additional
hardware. The received SL from each AP depends on the
distance but also on the obstacles between the emitter and
the receiver. Therefore, the simplest method for estimating
the device position consists of applying a triangulation algo-
rithm. Unfortunately, in indoor environments SL is strongly
affected by the well-known multipath effect that comprises
reflection, refraction and diffraction. Thus, SL becomes a
complex function of the distance that dynamically changes
with time because it is affected by every modification made
in the environment [20].

Only approximate solutions are able to get nice results.
Authors of [21] propose the use of a priori radio map storing
the received SL of each AP belonging to an interest region.
The radio map is built during the training stage. Then, in
the estimation stage, a vector with received SL of each AP
is created and compared with the radio map to obtain the
estimated position. We have previously proposed the use
of fuzzy classification for WiFi localization inspired on the
radio map method, handling the signal measure uncertainty
and getting small localization errors [9]. In this contribu-
tion we propose the use of an enhanced version of such
WiFi localization system, yielding room-level localization.
Notice that, the output of the FRBC will be one zone of
the environment along with an activation degree which is
understood as a degree of confidence on the system output.
Of course, the interpolation ability of fuzzy systems makes
possible to define a hierarchical localization system where
the position may be refined as much as desired. In a first
level it is possible to identify the floor of the building, in
a second level it points out the room where the person is
located, but in a third level (depending on the application) it
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may be interesting giving also the position inside the room.
Thus, thanks to this approach, a FRBC made up of a small
number of rules is used for each level, keeping a good trade-
off between accuracy and interpretability. Although we have
measured the SL in many points of each room, we will only
consider the second level of this hierarchy, i.e., we work at
the room level with all rooms located at the same floor of
the building.

As an illustrative example, let us suppose that two zones
A and B are one close to the other (with a common wall) and
one person is inside zone A but near the wall. The FRBC is
made up of rules like If Signal received from APi is High
AND Signal received from APj is Low Then The person is
close to Position P which belongs to zone Z. In this example,
at least two rules may be fired yielding as output an activation
degree of 0.7 related to zone A and 0.3 regarding zone B.
Output is computed as the result of a fuzzy inference that
takes into account all defined variables and rules.

First of all, we need to identify the zones of interest
in a map of the environment under analysis. The number
of zones determines the number of classes of the FRBC.
Second, we have to find out the APs visible in such en-
vironment. The number of APs determines the number of
input variables of the FRBC. Then, in the training stage
we build the radio map of the environment. To do so, we
collect a training data set (LRN) with the SL measures (from
all visible APs) carried out in several locations for each
of the zones of interest. Then, HILK methodology [12] is
applied (as it was introduced in section II) on LRN in order
to automatically generate a FRBC with a good accuracy-
interpretability trade-off. All input variables (one per each
AP visible in the environment) are characterized by strong
fuzzy partitions of nine linguistic terms (extremely low, very
low, low, etc). In addition, linguistic rules are automatically
generated from data by means of the algorithm FDT. Finally,
the simplification procedure provided by HILK is run getting
a more compact and general FRBC, keeping high accuracy
while increasing even more its interpretability. Notice that,
the FRBC follows the usual fuzzy classification structure
and the winner rule fuzzy reasoning mechanism. For further
information the interested reader is referred to the cited
papers.

Thanks to its flexibility and adaptability the designed
FRBC can be used whenever the environment does not
suffer a great modification, i.e., when some access points are
switched off. In such case, the system should be re-adjusted,
but usually these things do not happen and the fuzzy system
is able to deal with slight modifications like people moving
in the environment or changes in the state of the doors.

B. Posture recognition module (FFSMI)

In previous works, we have shown how a FFSM is able to
synchronize with the acceleration signal produced during the
human gait and to extract the relevant characteristics suitable
for our purpose [16]. In the following, we explain how to
design a FFSM for body posture recognition:
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1) Fuzzy States: Here, the fuzzy states are defined to
recognize different body postures and human activity. So, we
have identified three fuzzy states: {Q1: Seated, Q2: Upright,
Q3: Walking}.

2) Input variables: The set of linguistic variables U,
as stated in the definition of the FFSM, can be directly
obtained from sensors. In this case, we have used a three-
axial accelerometer tight with a belt in the middle of the
back, therefore, the numerical values that we obtain from
the sensor are: the dorso-ventral acceleration (a,), the medio-
lateral acceleration (a,) and the antero-posterior acceleration
(a,). With these numerical values, and in order to distinguish
between the three different states, we have created three
linguistic variables {a;, mov, tilt}:

o a, is the dorso-ventral acceleration as it was obtained

from the sensor.

e« mov measures the movement, it is the sum of the
difference between the maximum and minimum of a,,
a, and a. respectively contained in a interval of 1
second.

o tilt is a variable that measures the tilt of the body, it
is calculated as the sum of the absolute value of the
medio-lateral acceleration (a,) and the absolute value
of the antero-posterior acceleration (a.), i.e., |ay|+|az|.

The linguistic labels, that summarize the domain of each
linguistic variable, are uniform strong fuzzy partitions based
on trapezoidal or triangular membership functions in order
to achieve a good interpretability, satisfying semantic con-
straints on membership functions in order to respect semantic
integrity within the partitions. They are defined for each
linguistic variable in the intervals defined by their maximum
and minimum values taken by their numeric values, i.e., they
are adapted for each user in an off-line process. The possible
values of the three linguistic variables are summarized as
follows:

o a; = {L,,,H,,} which corresponds to the terms Low

and High respectively.

e M0V = {Lpov; Mmov;s Himov } Which corresponds to the

terms Low, Medium and High respectively.

o tilt = {Ltus, Hyp} which corresponds to the terms

Low and High respectively.

The input vector (U), with the set of its possible values,
represents the system input with lower granularity than the
domain of numerical values directly obtained from sensors.

3) Transition function f: As we have stated previously,
we will obtain the next value of the activation vector using
the transition function: S[t + 1] = f(U][t], S[t]).

Figure 2 shows how we use the FFSM to define constraints
on the possibilities to change of state. More specifically, we
force the model to pass by the state Upright (Q2) when
the subject passes from Seated (()1) to Walking (Q3). The
subject cannot be seated and start walking, first he/she must
get upright. This restriction makes the system more robust.

o Rules to remain in a state. Using the generic expression

of R;; explained in section III-C.1, we can define the
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Fig. 2. Diagram of states of the FFSM1 (body posture recognition)

three constraints over the input variables to remain in
each state:

C11 = ag 18 La, AND mov is Loy AND tilt is Hyypy

Ca2 = ag is Ha, AND mov is Loy AND tilt is Lyt

C33 = ag is Ha, AND mov is (Mmov OR Hinov)

o Rules to change of state. In a first approach, the con-
straints over the input variables to change of state could
be the same as the constraints over the input variables to
remain in the destination state of the transition, i.e., Cy;
= Cj;. But, as we have stated, some tuning is needed
to express different conditions to change:

Ch2 = ag is Hq, AND mov is Lyow AND tilt is Ly
Ca1 = ag is La, AND mov is Loy AND tilt is Hype
Ca3 = ag is Ha, AND mov is Hinow AND tilt is Lyt
C32 = ag is Haq, AND mov is Lyow AND tilt is Ly
C31 = ag 18 La, AND mov is Hipop AND tilt is Hyypy

4) Output variables: Since we are going to use the output
of this FFSM1 as input in the FFSM2, we can use as output
variable the state activation vector, i.e., Y[t] = S[t].

5) Output function g: The output function, as we have
stated above, is simply: g = S[t].

C. Human activity recognition module (FFSM2)

Currently, a new generation of smart-phones and PDAs
including capabilities for WiFi communications and ac-
celerometers is available. We use a PDA to obtain the
information that our system requires for inferring the user
activity. In the following, we explain how to design a
FFSM for combining the WiFi Positioning module and the
Posture Recognition module to achieve a Human Activity
Recognition system:

1) Fuzzy States: The system must be adapted to each
specific user. We manage linguistic descriptions of the dif-
ferent activities daily performed by the user. For example we
distinguish among the following fuzzy states of activity in
an office:

o (Q1: Walking. Typical body movement detected by ac-

celerometers

o (Q2: Working at his/her desk. Usually, the user is seated,

in specific WiFi coordinates, the most of time.

o (Q3: Visiting a colleague. Seated or standing upright, in

several possible WiFi coordinates, for little time.

o (Q4: Having coffee. Seated or standing upright, in spe-

cific WiFi coordinates, some time.



e (J5: Having a meeting. Seated in specific WiFi coordi-
nates for some time.

2) Input variables: In order to distinguish among the
different states, we have created two linguistic variables
{wep, pos} that characterize the outputs of the two previous
modules (FRBC and FFSM1):

« wep is the WiFi estimated position (FRBC computed it

as explained in section IV-A).

o pos is the posture estimation obtained from the posture
recognition module (FFSM1 described in section IV-B).

These variables are characterized by the following linguis-
tic labels which are defined in the interval [0,1]:

o wep = {WAA MC,WAB,WO,CA, MR}, which
are the zones of our experimental scenario (see later
section V).

o pos = {Seated,Upright,Walking} which corre-
sponds to the three different states of the FFSMI1.

3) Transition function f: As in the FFSM1, we will obtain
the next value of the activation vector using the transition
function S[t + 1] = f(U[t], S[t]).

Since we have already identified the relevant states in
the model, we can represent the fuzzy rules that govern the
temporal evolution of the system among these states. Figure
3 shows the transition diagram of the FFSM2. There are five
rules to remain in a state (R;;) and eight rules to change of
state (R;;). In this application not all the possible transitions
are allowed, the majority of the states are connected to the
state Q1 (Walking).

Fig. 3.

Diagram of states of the FFSM2 (human activity recognition)

o Rules to remain in a state: Using the generic expression
of R;; explained in section III-C.1, we can define the
constraints over the input variables to remain in each
state.

C11 = pos is Walking

Ca2 = pos is Seated AND wep is WAA

C33 = pos is (Seated OR Upright) AND wep is (WO OR W AB)
C4a = pos is (Seated OR Upright) AND wep is C A
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Cs5 = pos is Seated AND wep is MR

o Rules to change of state: Using the generic expression
of R;; explained in section III-C.2, we can define the
constraints over the input variables to change of each
state.

C12 = pos is Seated AND wep is WAA

Ch3 = pos is (Seated OR Upright) AND wep is (WO OR W AB)
Ch4 = pos is (Seated OR Upright) AND wep is CA

Ci5 = pos is Seated AND wep is MR

Co1 = pos is Walking AND wep is (WAA OR MC)

C31 = pos is Walking AND wep is WAB

Cy1 = pos is Walking AND wep is MC'

C51 = pos is Walking AND wep is MR

4) Output variables: We can use as output variable the
state activation vector, i.e., Y[¢] = S[t]. But we have to give
a crisp description of the activity of the person. Therefore, we
can consider as output the state with the maximum degree of
activation at each instant of time ¢. However, this selection
will make the FFSM very sensitive to noise and spurious
in the signal, and that is precisely what we want to avoid.
Therefore, the output is designed as the state which has
had the maximum average degree of activation over the last
second.

5) Output function g: The output function g(U[t], S[t])
that calculates the value of the output variables is, as we
have stated above, the average operator in an interval of one
second combined with the maximum operator to make the
decision.

V. EXPERIMENTS

The experimentation took place at the premises of the
European Centre for Soft Computing (ECSC). The layout of
ECSC environment is shown in Figure 4. It has a surface of
440 m? illustrated on the top picture. We have identified six
zones (look at the bottom picture): WAA (working area A),
MC (main corridor), WAB (working area B), WO (working
office), CA (coffee area), and MR (meeting room).

The user carried a HP iPAQ hw6910/hw6915 PDA. Tt
has a WiFi interface with a maximum acquisition frequency
of 4Hz, i.e., it is able to capture up to four samples per
second. In addition, an external accelerometer (WiTilt v2.5)
with acquisition frequency of 100Hz was connected to our
PDA through Bluetooth. The user wore the accelerometer
tight with a belt in the middle of his back. Our program
measures both WiFi signal and accelerations in the same
cycle with the aim of keeping synchronization. Notice that,
each 25 measures provided by the accelerometer correspond
to only one WiFi measure.

As it can be seen at the top picture in Figure 4, there
are four APs in the environment covering most of the zones.
Inside each zone we have set several training fixed positions.
They are represented by filled circles at the bottom picture in
the Figure. For each of them, we collected 100 samples from
all the four APs. The resultant data set was taken as LRN for
training the WiF1i positioning module as explained in section
IV-A. The FRBC contains four inputs (one per AP). First,
we set strong fuzzy partitions with nine linguistic terms per
input. Second, linguistic rules were induced with FDT. Third,
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Fig. 4.

Discretization of the ECSC environment

simplification was carried out. As a result, the final FRBC
is made up of 14 rules with a total of 41 premises.

Table I gives the description of our experimental scenario
that tries to summarizes a normal day at the work. Of course,
this is a simplified scenario where we have set a reduced
time for the different tasks. For example, Having a meeting
lasts less than 2 minutes. Notice that we wanted to test how
our system is able to recognize all defined states of activity.
The whole experiment takes about 9 minutes because the
time walking is approximated. Furthermore, the same user
has repeated eleven times the same experiment yielding more
than one hour and a half of experimentation. There may be a
slight time lag between different repetitions of the experiment
when the user is walking. The first trial was used for tuning
the FFSMs. Then, another different day, we run in a row the
rest of ten executions which have been used for testing the
previously designed system.

Table II includes the test averaged results for the ten
repetitions of the experiment. We have reported results (in
terms of misclassified samples) for all the three modules that
constitute the system (look at Figure 1). The first row shows
the percentage of error (about 14%) for the FRBC module.
The two last rows are related to the two FFSMs. In both
cases, the percentage of misclassified samples is very small
(1.2 and 1.5% respectively). This is due to the characteristic
memory effect of FFSMs which define the new state taking
into account the transition conditions but also the previous
state. In addition, output of FFSM2 is averaged in an interval
of only one second what makes feasible the use of our system
in real-time applications. It is also important to remark how
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TABLE 1
DESCRIPTION OF THE EXPERIMENTAL SCENARIO

Length (s) | Description Activity
60 Seated and typing Working at the desk
30 Standing up and walking Walking

towards the coffee area
75 Staying up in front of Having a coffee

the coffee machine.

Sitting and having

the coffee
25 Standing up and walking Walking

until the office of

a colleague
50 Staying up and waiting Visiting a colleague

for a colleague
30 Walking towards Walking

the meeting room
100 Seated in the meeting room | Having a meeting
40 Standing up and walking Walking

back to the work-desk
100 Seated and typing Working at the desk

TABLE II

PERCENTAGE OF MISCLASSIFIED SAMPLES

Mean (%) | St. Deviation (%)
FRBC 13.8 4.7
FFSM1 1.2 0.2
FFSM2 1.5 0.7

FFSM2 is able to absorb and correct the errors produced by
the FRBC due to the high variability in the WiFi signal. Note
how the error is dramatically reduced from 14 to 1.5%.

Figure 5 plots the system output for the worse trial of our
experiments, the one yielding the largest percentage of error.
The figure is made up of three pictures. The first one (at the
top) illustrates in the vertical axis each component of the state
activation vector S[t], while its activation value is printed
by means of the gray intensity (black means one and white
means zero). The picture below plots the output vector Y |[¢]
obtained from the output function g, i.e. the state which has
had the maximum average degree of activation over the last
one second. Finally, the picture at the bottom represents the
expected output vector Y[t], i.e., the right output of the FFSM
at each instant of time defined in our experiment (as detailed
in Table I). As it can be appreciated, most errors correspond
to the situations of Having a coffee and Visiting a colleague.
Indeed, it seems that the user was slightly moving while
waiting for the coffee and for his colleague. In consequence,
the state Walking is activated for a few seconds.

VI. CONCLUSIONS

In this paper we have described a system able to detect
some simple tasks carried out by a human in a usual working
day. The main contributions can be summarized as follows:
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Fig. 5. System output (human activity recognition)

(1) the FRBC is mainly based on automatically induced
knowledge yielding the approximated location of the user;
(2) the FFSMs allow the designer to introduce constraints in
the model based on the available expert knowledge about the
activity states; (3) they also allow to fuse data from different
sources and to compensate the partial errors, with the aim
of producing a robust, reliable and easily understandable
activity recognition module; and (4) the whole system is quite
interpretable because it comprises several sets of linguistic
variables and rules. In the future we will extend our model
with the aim of detecting more complex human activities.
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Abstract—Body posture recognition is a very important issue
as a basis for the detection of user’s behavior. In this paper, we
propose the use of a genetic fuzzy finite state machine for this
real-world application.

Fuzzy finite state machines (FFSMs) are an extension of
classical finite state machines where the states and inputs are
defined and calculated by means of a fuzzy inference system,
allowing them to handle imprecise and uncertain data. Since the
definition of the knowledge base of the fuzzy inference system
is a complex task for experts, we use an automatic method for
learning this component based on the hybridization of FFSMs
and genetic algorithms (GAs). This genetic fuzzy system learns
automatically the fuzzy rules and membership functions of the
FFSM devoted to body posture recognition while an expert
defines the possible states and allowed transitions.

‘We aim to obtain a specific model (FFSM) with the capability
of generalizing well under different subject’s situations. The
obtained model must become an accurate and human friendly
linguistic description of this phenomenon, with the capability of
identifying the posture of the user. A complete experimentation
is developed to test the performance of the new proposal,
comprising a detailed analysis of results which shows the
advantages of our proposal in comparison with another classical
technique.

I. INTRODUCTION

Body posture recognition consists of identifying the differ-
ent poses of a human being. This research field has attracted
considerable attention as a basis for the detection of user’s
behavior, which could provide new context aware services.
Example of applications range from proactive care for elderly
people to safety applications based on fall detection.

There are two well distinguished approaches to tackle this
problem: the sensor-based and the computer vision approach.
The sensor-based approach consists of using small sensors
(usually accelerometers) placed in the body of the person.
In [1], the authors showed how acceleration data can aid the
recognition of pace and incline. The main advantages of this
approach are the possibilities of embedding these sensors
into clothes or electronic devices such as mobile phones due
to the advances in miniaturization, the capabilities of com-
munication between sensors through wireless connections,
and the low cost and energy consumption thanks to to the
Micro Electro Mechanical Systems (MEMS) technology. Its
principal drawback is the user’s need of wearing the sensors.

The computer vision approach is based on the use of video
cameras installed in the scenario under study [2]. While the
sensor-based approach made the user to wear sensors, in
this case, the additional hardware must be installed in each
room of the environment. This approach usually works in
lab but fails in real world scenarios due to clutter, variable
light intensity, and contrast. Moreover, the video cameras are
sometimes perceived as invasive and threatening by some
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people. Another important drawback is the computational
cost of working with video signals.

In this work, we propose the use of fuzzy finite state
machines (FFSMs) for body posture recognition within the
sensor-based approach. FFSMs are specially useful tools
for modeling dynamical processes which change in time,
becoming an extension of classical finite state machines.
The main advantage of FFSMs is the use of Fuzzy Logic
(FL), which provides semantic expressiveness by the use of
linguistic variables [3] and rules [4] close to natural language
(NL). Moreover, being universal approximators [S5], fuzzy
inference systems are able to perform nonlinear mappings
between inputs and outputs, allowing FFSMs to handle
imprecise and uncertain data, which is inherent to real-world
phenomena, in the form of fuzzy states and transitions.

In previous studies [6], [7], we have learnt that FFSMs
are suitable tools for modeling signals that follow an ap-
proximately repetitive pattern. As any fuzzy system, FFSMs
require the definition of a knowledge base (KB). It is well
known that this is a complex task for experts as it was
the case in these previous works. In addition, the dynamic
nature of FFSMs increases the complexity of the process. For
that reason, in [8], we proposed a new automatic learning
method for the fuzzy KB of FFSMs based on the use of
genetic algorithms (GAs) [9]. GAs have proven largely their
effectiveness and efficiency for the latter task in the last
two decades in the so-called genetic fuzzy systems (GFSs)
area [10], [11], [12]. In our approach, the fuzzy states and
transitions are defined by the expert in order to keep the
knowledge that she/he has over the whole system while the
fuzzy rules and membership functions regulating the state
changes will be derived automatically by the GFS. This
combined action thus results in a robust, accurate, and human
friendly model called genetic fuzzy finite state machine
(GFFSM) [8].

In this contribution, we propose the use of a GFFSM
for the body posture recognition problem. Our final goal
is to obtain a specific model (FFSM) in such way that
this FFSM can generalize well under different subject’s
situations. Moreover, the obtained FFSM will result in an
accurate and human friendly linguistic description of this
phenomenon, with the capability of identifying the posture
of the user. A complete experimentation is developed to
test the performance of the new proposal, comprising a
detailed analysis of results which shows the advantages of
our proposal in comparison with another classical technique.
Furthermore, we will also compare this new proposal against
a FFSM previously developed for body posture recognition,
whose KB had been defined by the expert in [13].
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The remainder of this paper is organized as follows.
Section II presents how to use FFSMs for modeling the
temporal evolution of a phenomenon. Section III explains
how to build FFSMs for recognizing the body posture. The
automatic method for learning the KB of these FFSMs based
on GAs is introduced in Section IV. Section V presents the
experimentation carried out, comparing the obtained results
with another system identification tool. Finally, Section VI
draws some conclusions and future research works.

I1. Fuzzy FINITE STATE MACHINES

In this section, we introduce the main concepts and ele-
ments of our paradigm for system modeling allowing experts
to build comprehensible fuzzy linguistic models in an easier
way. In our framework, a FFSM is a tuple {Q,U, f,Y, g},
where:

o ( is the state of the system.

o U is the input vector of the system.

o f is the transition function which calculates the state of

the system.

o Y is the output vector of the system.

e g is the output function which calculates the output

vector.

Each of these components are described in the following
subsections. Furthermore, the interested reader can refer to
[6], [71, [8], [13] for a more detailed description.

A. Fuzzy States (Q)

The state of the system (Q) is defined as a linguistic
variable [3] that takes its values in the set of linguistic labels
{1,492, --,qn}, With n being the number of fuzzy states.
Every fuzzy state represents the pattern of a repetitive situ-
ation and it is represented numerically by a state activation
vector:

nS[t} = (s1[t], s2[t], - -

S sift] = 1.

1=1
So is defined as the initial value of the state activation
vector, i.e., Sy = S[t = 0].

,sn[t]), where s;[t] € [0,1] and

B. Input Vector (U)

U is the input vector (uy,us,...,un,), with n, being
the number of input variables. U is a set of linguistic
variables obtained after fuzzification of numerical data. Typ-
ically, u; can be directly obtained from sensor data or
by applying some calculations to the raw measures, e.g.,
the derivative or integral of the signal, or the combination
of several signals. The domain of numerical values that
u; can take is represented by a set of linguistic labels,
Ay, = {AL A2 ... A}i}, with n; being the number of

linguistic labels of the linguistic variable ;.

C. Transition Function (f)

The transition function (f) calculates, at each time instant,
the next value of the state activation vector: S[t 4+ 1] =
f(U[t], S[t]). 1t is implemented by means of a fuzzy KB.

Once the expert has identified the relevant states in the
model, she/he must define the allowed transitions among
states. There are rules R;; to remain in a state ¢;, and rules
R;; to change from state ¢; to state ¢;. If a transition is
forbidden in the FFSM, it will have no fuzzy rules associated.

A generic expression of a rule is of the form:
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where:

o The first term in the antecedent (S[t] is ¢;) computes the
degree of activation of the state ¢; in the time instant
t, i.e., s;[t]. With this mechanism, we only allow the
FFSM to change from the state g; to the state g; (or to
remain in state ¢;, when i = j).

e The second term in the antecedent C;; describes the
constraints imposed on the input variables in disjunctive
normal form (DNF) [10]. For example: C;; = (uq[t] is
A3 ) AND (uyt] is A% OR A3 ).

« Finally, the consequent of the rule defines the next value
of the state activation vector S[t + 1]. It consists of a
vector with a zero value in all of its components but in
s;[t], where it takes value one.

To calculate the next value of the state activation vector

(S[t+1]), a weighted average using the firing degree of each
rule k (wy) is computed as defined in Equation 1:

#Rules
P2 Wi (815580 )k ) #Rules
s T rra— if Z wk #0
St+1] = Z, “k k=1 1)
#Rules
St] it Y we=0
k=1

where (wy) is calculated using the minimum for the AND
operator and the bounded sum of Lukasiewicz [14] for the
OR operator.

D. Output Vector (Y)

Y is the output vector: (y1,¥2,...;Yn,), With n, being
the number of output variables. Y is a summary of the
characteristics of the system evolution that are relevant for
the application.

E. Output Function (g)

The output function (g) calculates, at each time instant,
the next value of the output vector: Y[t] = f(U[t], S[t]).
The most simple implementation of ¢ is Y[t] = S[¢].

II1. Fuzzy FINITE STATE MACHINE FOR BODY POSTURE
RECOGNITION

This section presents the design of the main elements
needed to build a FFSM for body posture recognition [13].

A. Fuzzy States

In this application, we have defined three different fuzzy
states which directly describe the body posture:

{q1 — Seated, g» — Upright, g3 — Walking}
B. Input Vector

In our experiments, we have used a three-axial accelerom-
eter tight with a belt in the middle of the back. Therefore,
the numerical values that we obtain from the sensor are the
dorso-ventral acceleration (a,), the medio-lateral accelera-
tion (ay), and the antero-posterior acceleration (a.). In order
to distinguish between the three different states, we have
created three linguistic variables {a,, mov, tilt} with these
numerical values:

e a, is the dorso-ventral acceleration as it was obtained

from the sensor.



o mov measures the amount of movement. It is the sum
of the difference between the maximum and minimum
of a,, ay, and a, respectively, contained in an interval
of 1 second.

o tilt is a variable that measures the tilt of the body. It
is calculated as the sum of the absolute value of the
medio-lateral acceleration (a,) and the absolute value
of the antero-posterior acceleration (), i.e., |a,|+|a.|.

The term sets for each linguistic variable
are: {Sa,, Mo, ,Ba,}, {Smovs Mmovs Bmov }» and
{Stitt, Myiit, Beir}, where S, M, and B are linguistic
terms representing small, medium, and big, respectively.

C. Transition Function

The definition of which transitions are allowed and which
are not can be easily represented by means of the state
diagram. Figure 1 shows how we use the FFSM to define
constraints on the possibilities to change of state. More
specifically, we force the model to pass by the state Upright
(g2) when the subject passes from Seated (q1) to Walking
(g3). This restriction makes the system more robust.

From the state diagram represented in Figure 1, it can be
recognized that there are 8 fuzzy rules overall in the system:
3 rules to remain in each state and other 5 to change between
states.

Fig. 1. State diagram of the FFSM for body posture recognition.

Therefore, the RB will have the following structure:

RUIIF (S[t] is (I1) AND Cll THEN S[t + 1] is q1
:IF (S[t] is g2) AND Cy; THEN S[t + 1] is ¢
3:IF (S[t] is g2) AND Cy3 THEN S[t + 1] is g3
IF (S]t] is ¢3) AND C33 THEN S[t + 1] is g2

where C;; could be: (a, is S,,) AND (mov is M,,0,) AND
(tilt is Miiir OR Byiry).

D. Output Vector and Output Function

In this contribution, we simply consider Y[t] = S[t], i.e.,
the output of the FFSM is the degree of activation of each
state.

IV. GENETIC FUZZY SYSTEM

The current section reviews the fusion framework between
FFSMs and GAs developed in [8], which will be considered
to solve a new application in the current contribution. In
this case, we will learn the KB of the FFSM designed for
body posture recognition. The KB is comprised by the data
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base (DB), which contains the linguistic labels’ membership
functions (MFs); and the RB, which collects the fuzzy if-
then rules. The following subsections describe the structure
of the different components of this GFS.

A. Representation Scheme and Initial Population Generation

We have divided the representation scheme into two parts:
the RB part and the DB part. In the following, we explain
cach of these representations.

1) RB part: We codify the whole rule set in a chromosome
following the Pittsburgh approach [15]. For each of the three
input variables a,, mov, and tilt, the rule representation
consists of a binary sub-string of length 3 that refers to its
linguistic term set {S,,, Ma,, Ba, }> {Smovs Mmovs Bmov }»
and {Syiit, Myie, Briit }, respectively. Only the non-fixed part
of the DNF rule antecedent (see Section III-C) is encoded.
Each bit has a one (zero) which denotes the presence
(absence) of each linguistic term in the rule. Moreover, the
feature selection capability of this representation is used
since an input variable is omitted in the rule if all of its bits in
the representation become zeros or ones. The RB part of the
chromosome will thus be composed of 8 rules x 9 linguistic
terms (3 per input variable) = 72 binary-coded genes.

2) DB part: We have considered the use of trapezoidal
strong fuzzy partitions (SFPs) [16] because they allow us to
reduce the number of parameters to tune, in such way that
the normalization constraint is easily satisfied by only coding
the two modal points of each MF. Therefore, we have to code
12 real parameters, 4 per input variable where one parameter
is enough to codify the first and third linguistic label and two
parameters are needed to codify the second linguistic label.
Therefore, the DB part of the chromosome will be composed
of 12 real-coded genes:

1 2 2 3 1 2 2 3 1 2 2 3
{”‘ar s Qg bar s Qays Cmovs Amov» bmovv Amovs Cires Viges bm‘lt’ amlt}

We use a real-coded representation. The variation interval
of each allele is defined within the interval defined by its
previous and next parameter. Figure 2 shows the graphical
representation of the fuzzy partition related with the linguis-
tic input variable mov. Notice that, the parameters al,,, and
a,,, are enough to codify the first and third linguistic labels,
Smov and By, respectively, while two parameters a2, ,, and
b2, are needed to codify the intermediate linguistic label

mov

Mmov-

mov mov|

0.5 B
0 1 2 2 3
a a
mov mov mov mov
Fig. 2. Parameters that form all the trapezoidal linguistic labels of the

linguistic variable mov.

Hence, the final chromosome encoding a candidate prob-
lem solution will be comprised by 72+ 12 = 84 genes, with
the first 72 being binary-coded genes corresponding to the
RB part, and the last 12 being real-coded genes associated
to the DB part. We have initialized the first population by
generating all the individuals at random, except the DB part
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a mov tilt a mov tilt
RB
DB
a mov tilt
x

— /—H —

’a’a3b2 a’la | b2 al|az|b?|a"

a, a a a m ov| “mov| ™ moW] m ov| tilt tilt tilt tilt

S, M B, Spov Myuow BuowSi M By

a a a

Fig. 3. Chromosome structure encoding the RB and DB part.

of the first individual of the population that encodes uniform
fuzzy partitions for each linguistic variable. Figure 3 shows
the structure of the complete chromosome encoding the RB
and DB part.

B. Fitness Function

Since the computation of the next state is based on the
previous state, we need to evaluate the tentative FFSM
definition encoded in each chromosome over the whole data
set. We have chosen as fitness function the mean absolute
error (MAE) measure, defined in Equation 2:

Z 52[.] -5 .7”

MAE = 2

3\'—‘

H'M:

T

where:

o n is the number of states, i.e., n = 3.

o T is the dataset size (i.e., the considered time interval

duration).

o s;[j] is the degree of activation of state g; at time ¢ = j.

o s7[j] is the expected degree of activation of state ¢; at

time ¢t = j.

The MAE directly measures the difference between the
actual state activation vector (S*[¢]) and the obtained one
(S[t]). However, we need to define S*[t] for each input data
set that we want to learn. This definition could be problematic
and must be done carefully because, more than one state can
be defined at each time instant, each of those states activated
with certain degree in the interval [0,1]. In the following
subsection, this issue is explained in detail.

C. Defining the Training Data Set

We have to create a training vector which
consists of ay[t], ayft], a.[t] and S*[t], ie,
(ag[t], aylt], a-[t], si[t], s5[t], s5[t]). To define it, we

have developed a user-friendly graphical interface that
allows the expert to select manually the relevant points
where each state starts and ends using her/his knowledge
about body posture and the duration of each part of the
experiment. The fuzzy definition of the states is based
on the imprecision of the expert when defining those
relevant points. For each state ¢;, there are different points
comprising the beginning (b7) and the end of each state
(e2), with j € IN.

As an example, let us consider the definition of the actual
degree of activation of state g3 when there is a transition
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from state ¢o to state g3 and then from state g3 to state
¢1. The actual value of s3] is then specified by Equation 3.
Between the end time of g2 (€3) and the start time of g3 (b3),
the activation of the state g3 is rising from 0 to 1. Between
the start (b3) and the end time (e}) of g3, defined by the
user, the activation has the maximum of 1. Afterwards, the
activation drops till zero at the start of g1 (b]). Otherwise,
the activation is zero.

t—el

o= if e]? <t< b%
¥ 1 if b <t <el
83[t] = bjl—t f j B - bj (3)
e, i e3 <t <b
0 otherwise

The interested reader is referred to [8] for a deeper
description on the human definition of the activation degrees
for the fuzzy states in FFSMs.

D. Genetic Operators

A binary tournament selection and a generational replace-
ment with elitism are considered. The classical two-point
crossover has been used for the RB (binary-coded) part of
the chromosome and BLX-« crossover [17] for the DB (real-
coded) part. The BLX-a crossover is applied twice over a
pair of parents in order to obtain a new pair of chromosomes.
The classical bitwise mutation has been selected for the
binary-coded RB part, while uniform mutation has been
chosen for the real-coded DB part.

In this contribution, we have implemented three different
termination conditions. First, the search is stopped when the
algorithm has obtained a fitness value equal to zero, which
is the best value that the fitness function can take. Moreover,
we have decided to set a maximum number of generations
and also to stop the search when, for a certain number of
generations, the fitness value of the best individual is not
improved.

V. EXPERIMENTATION

This section presents the experimentation carried out. First,
the experimental setup, which comprises the data acquisition
and the parameters of the GA, is explained. The second part
contains a brief description of an alternative model used for
body posture recognition. Finally, the third part presents and
analyzes the results obtained.

A. Experimental Setup

1) Data acquisition: We have used a wireless three-axial
accelerometer attached to a belt, centered in the back of the
person. It provided measurements of the three orthogonal
accelerations with a frequency of 100 Hz. Therefore, every
record contained the information: (¢, ay,ay,a.) where ¢ is
each instant of time, a, is the dorso-ventral acceleration,
a, is the medio-lateral acceleration, and a. is the antero-
posterior acceleration.

We asked this person to perform a variety of activities,
such as sitting at her/his desk, having a coffee, visiting a
colleague, having a meeting, etc. In this simplified scenario,
we have set a reduced time for the different tasks because we
wanted to test how our system is able to recognize all defined
states related to body posture. This process was repeated
ten times producing ten different datasets. These datasets



were then processed as explained in Section IV-C getting
the following structure:
(azt]; ay[t], a=[t], s7[t], s3[t], s3[t])
where:
o ay[t] is the dorso-ventral acceleration at time instant .
o a,[t] is the medio-lateral acceleration at time instant ¢.
e a.[t] is the antero-posterior acceleration at time instant
t.
o s7[t] is the expected degree of activation of state ¢; at
time instant ¢.
o s3[t] is the expected degree of activation of state go at
time instant ¢.
o s3[t] is the expected degree of activation of state g3 at
time instant ¢.
2) Parameters of the GA:
« Population size — 30 individuals.
o Crossover probability — p, = 0.8.
o Value of alpha (BLX-a parameter) — o = 0.3.
o Mutation probability per bit — p,, = 0.02.
o Termination conditions:
— Fitness value reached — MAE = 0.
— Maximum number of generations — 200.
— Generations without improvement of the fitness
function — 50.

B. Autoregressive Linear Models

In order to benchmark the GFFSM results, we have con-
sidered another technique commonly used in system model-
ing of time-dependent systems: autoregressive linear models
(ARX) [18]. We have defined a multiple-input multiple-
output (MIMO) ARX model with the structure defined by
Equation 4:

Y] =AYt =1+ ...+ Ap, - Y[t — 14

+By-Ult]+ ...+ By, - Ult —np| @

where:

o Y[t] = (s1]t], s2[t], s3[t]) is the current output vector.

e Y[t—1],...,Y[t —na] are the previous output vectors
on which the current output vector depends.

o Ult] = (ag[t],mov[t], tilt[t]),..., Ut — npg| are the
current and delayed input vectors on which the current
output vector depends.

o n4 is the number of previous output vectors on which
the current output vector depends.

e np is the number of previous input vectors on which
the current output vector depends.

o Ay,...,A,, and By,...,B,, are the matrices that
define the models. They are estimated using the least
squares method.

The performance of this model has been tested with values
of ng = np = 20, resulting in the ARX model defined by
Equation 5:

Y[t] =41 Y[t —1]+...4+ Asp - Y[t — 20] 5
+ By -Ult]+ ...+ Big - Ut — 19] )
C. Results

To test the performance of the GFFSM and the ARX
model, we have done a leave-one-out cross validation for
each of the 10 datasets. Table I shows the MAE obtained
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TABLE I
MAE FOR EACH DATASET OF THE LEAVE-ONE-OUT.
GFFSM ARX

FOLD TRAIN  TEST | TRAIN TEST

1 0.010 0.016 0.071 0.083

2 0.009 0.007 0.072 0.093

3 0.010 0.009 0.076 0.064

4 0.009 0.010 0.078 0.059

5 0.010 0.013 0.076 0.072

6 0.009 0.012 0.075 0.073

7 0.010 0.010 0.075 0.081

8 0.011 0.009 0.070 0.104

9 0.008 0.010 0.077 0.065

10 0.009 0.009 0.076 0.072

MEAN 0.009 0.011 0.074 0.077

STD 0.001 0.002 0.003 0.014
TABLE 11

MAE OBTAINED FOR EACH DATASET BY THE FFSM DEFINED BY THE
EXPERT AND OBTAINED IN TEST WITH THE LEAVE-ONE-OUT.

DATASET | FFSM  GFFSM  ARX
1 0.023 0.016 0.083

2 0.027 0.007 0.093

3 0.016 0.009 0.064

4 0.020 0.010 0.059

5 0.022 0.013 0.072

6 0.028 0.012 0.073

7 0.022 0.010 0.081

8 0.030 0.009 0.104

9 0.017 0.010 0.065

10 0.018 0.009 0.072
MEAN 0.022 0.011 0.077
STD 0.005 0.002 0.014

for each fold of the leave-one-out in training and test. It
also depicts the average value of the MAE (MEAN) and its
standard deviation (STD) for the ten results of the procedure.

In addition, we have evaluated the FFSM manually defined
by the expert in [13] (where no training data has been used)
over these ten datasets. Table II shows the MAE obtained
for each dataset by the expert FFSM and the MAE obtained
in test with the leave-one-out procedure for the GFFSM and
the ARX model.

It can be easily observed that our proposal (GFFSM)
and the FFSM defined by the expert obtain better results
than the autoregressive linear model (ARX). Moreover, ARX
models are black-box models not understandable by the
human expert while our GFFSM is able to describe and

L - o
0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 4. Linguistic labels’ trapezoidal MFs of each linguistic variable which
comprise the learnt DB compared with the uniformly distributed original
ones.
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model the body posture by means of linguistic fuzzy if-then
rules achieving a good interpretability-accuracy tradeoff.

Note that, with the application of the genetic learning
procedure proposed in [8], we have increased the accuracy
of the FFSM defined by the expert (by reducing the average
MAE from 0.022 to 0.011) keeping her/his knowledge about
this application, and producing a RB and a DB that have the
same interpretability as the former.

As an example of how our novel proposal is describing
linguistically the temporal evolution of the body posture, a
complete set of constraints imposed on the input variables
(which forms the RB as explained in III-C) learned for the
second fold of the leave-one-out procedure is shown as
follows:

C11 = (az 18 Mg, ) AND (mov is Spmov OR Binou) AND (tilt is Byiit)
= (ag is Mq,) AND (mov is = Mmou)' AND (tilt is Bygz)

Ca2 = (ag is Ba,)

C33 = (mov is Mmouv)

Ch2 = (ap is =Sa,) AND (1m0v is =Smov) AND (tilt is = Byi)

Ch1 = (ag is Sa,) AND (mov is ~My00) AND (tilt is Byije)

Ca23 = (az is Ba,) AND (mov is Smov) AND (tilt is Sgie)

C32 = (mov is Smov) AND (tilt is = By¢)

C31 = (az is Sa,) AND (mov is Smov) AND (tilt is My;,)

Figure 4 shows the graphical representation of the learnt
DB associated with this RB. The initial DB is also plotted,
which consists of uniformly distributed MFs.

VI. CONCLUDING REMARKS

We have presented a practical application where we de-
scribed how to build a FFSM to recognize the body posture in
a dynamical environment. We defined three different states
related to the body posture and applied the FFSM genetic
learning procedure proposed in [8] to recognize these states.

This GFS can obtain automatically the fuzzy rules and
fuzzy MFs associated to the linguistic terms of the FFSM
while the states and transitions are defined by the expert,
thus maintaining the knowledge that she/he has about the
application. The results obtained by the GFFSM showed the
goodness of our proposal. Moreover, its ability to combine
the handling of the available expert knowledge with the
accuracy achieved by the learning process can be used to
study several phenomena where the human interaction is
demanded.

ACKNOWLEDGMENT

This work has been funded by the Spanish Ministerio
de Ciencia e Innovaciéon (MICINN) under project TIN2008-
06890-C02-01; and under project TIN2009-07727, including
EDRF fundings.

REFERENCES

[1] K. Aminian, P. Robert, E. Jequier, and Y. Schutz, “Estimation of speed
and incline of walking using neural network,” Instrumentation and
Measurement, IEEE Transactions on, vol. 44, no. 3, pp. 743-746,
1995.

[2] T. Banerjee, J. M. Keller, M. Skubic, and C. Abbott, “Sit-to-stand
detection using fuzzy clustering techniques,” in Proceedings of the
2010 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
Jul. 18-23, Barcelona, Spain, 2010, pp. 2836-2843.

Notice that, the symbol — stands for the negation of the linguistic term
Mimov, 1.6, " Mmooy (mov) = 1 — Mpn(mov). With the fuzzy reasoning
mechanism defined in II-C and the use of SFPs for the MFs, the antecedent
(mov is Smov OR Bpov) can be replaced by (mov is = Mmou).

65

[3] L. A. Zadeh, “The concept of a linguistic variable and its application
to approximate reasoning,” Parts I, II, and III. Information Sciences,
vol. 8, 8, 9, pp. 199-249, 301-357, 43-80, 1975.

[4] E. H. Mamdani, “Application of fuzzy logic to approximate reasoning
using linguistic systems,” Computers, IEEE Transactions on, vol. 26,
no. 12, pp. 1182-1191, Dec. 1977.

[5] J. L. Castro, “Fuzzy logic controllers are universal approximators,”
Systems, Man and Cybernetics, IEEE Transactions on, vol. 25, no. 4,
pp. 629-635, Apr. 1995.

[6] A. Alvarez-Alvarez and G. Trivino, “Comprehensible model of a
quasi-periodic signal,” in Proceedings of the 9" International Con-
ference on Intelligent Systems Design and Applications (ISDA). Los
Alamitos, CA, USA: IEEE Computer Society, 2009, pp. 450-455.

[7]1 G. Trivino, A. Alvarez-Alvarez, and G. Bailador, “Application of the
computational theory of perceptions to human gait pattern recogni-
tion,” Pattern Recognition, vol. 43, no. 7, pp. 25722581, 2010.

[8] A. Alvarez-Alvarez, G. Trivino, and O. Cordén, “Human gait modeling
using a genetic fuzzy finite state machine,” European Centre for Soft
Computing Research Report: AFE 2010-08, CGC 2010-01, Mieres,
Spain. 2010. Submitted.

[9] A.E. Eiben and J. E. Smith, Introduction to Evolutionary Computing.

Springer-Verlag, 2003.

O. Cordoén, F. Herrera, F. Hoffmann, and L. Magdalena, Genetic

Fuzzy Systems. Evolutionary tuning and learning of fuzzy knowledge

bases, Advances in Fuzzy Systems: Applications and Theory. World

Scientific, 2001.

O. Cordén, F. Gomide, F. Herrera, F. Hoffmann, and L. Magdalena,

“Ten years of genetic fuzzy systems: current framework and new

trends,” Fuzzy Sets and Systems, vol. 141, no. 1, pp. 5-31, 2004.

F. Herrera, “Genetic fuzzy systems: taxonomy, current research trends

and prospects,” Evolutionary Intelligence, vol. 1, no. 1, pp. 27-46,

Mar. 2008.

A. Alvarez-Alvarez, J. M. Alonso, G. Trivino, N. Hernandez, F. Her-

ranz, A. Llamazares, and M. Ocafia, “Human activity recognition

applying computational intelligence techniques for fusing information
related to WiFi positioning and body posture,” in Proceedings of the

2010 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),

Jul. 18-23, Barcelona, Spain, 2010, pp. 1881-1885.

C. Alsina, M. J. Frank, and B. Schweizer, Associative Functions: Tri-

angular Norms and Copulas. Singapore: World Scientific Publishing

Company, 2006.

K. De Jong, W. M. Spears, and D. F. Gordon, “Using genetic

algorithms for concept learning,” Machine Learning, vol. 13, no. 2-3,

pp. 161-188, 1993.

E. H. Ruspini, “A new approach to clustering,” Information and

Control, vol. 15, pp. 22-32, 1969.

L. J. Eshelman and J. D. Schaffer, “Real-coded genetic algorithms

and interval-schemata,” in Proceedings of the 2% Workshop on

Foundations of Genetic Algorithms (FOGA).  Morgan Kaufmann,

1993, pp. 187-202.

L. Ljung, System identification: theory for the user.

River, NJ, USA: Prentice-Hall, Inc., 1986.

[10]

(1]

[12]

[14]

[15]

[16]

[17]

(18

Upper Saddle



111

9.4 Automatic linguistic report about relevant fea-

tures of the Mars’ surface

A. Alvarez-Alvarez, D. Sanchez-Valdes, and G. Trivino. “Automatic Linguistic Descrip-
tion about Relevant Features of the Mars’ Surface”. In: Proceedings of the 11th Inter-
national Conference on Intelligent Systems Design and Applications (ISDA), Cérdoba,
Spain, pp. 154-159, November 2011.



112

978

Automatic Linguistic Description about Relevant Features of the Mars’ Surface

Alberto Alvarez-Alvarez, Daniel Sanchez-Valdes and Gracian Trivino
European Centre for Soft Computing (ECSC)

Mieres, Asturias, Spain
Email: {alberto.alvarez, daniel.sanchezv, gracian.trivino }@softcomputing.es

Abstract—Satellites in the orbit of Mars planet provide
thousands of images of its surface. Typically these images are
analyzed by experts that select relevant features and generate
textual reports containing the result of their observations. Nev-
ertheless, the database of images has grown up and currently
this procedure is not effective enough.

As a result of our research on Computational Theory of
Perceptions, we describe a computational application able to
generate simple linguistic descriptions of circular structures on
the Mars’ surface. We include several examples and analysis of
the obtained results.

Keywords-linguistic data summarization; computational the-
ory of perceptions; image description;

I. INTRODUCTION

New technologies allow us to acquire and store a vast array
of data about complex phenomena in many areas of science
and technology. However, to convert data into knowledge
it is necessary to interpret and represent the data in an
understandable way, giving in each type of situation, their
relationship with data context and, in general, with informa-
tion related with each specific phenomenon. Currently, this
type of descriptions are reports that contain text and graphics
produced by human experts. However, the relation between
the amount of data to analyze and the number of experts
available is growing dramatically. This situation causes a
strong demand for computational systems that can interpret
and describe linguistically the large amount of information
that is being generated in many areas.

This paper was motivated by the existence of a huge
database of thousands of images of the Mars’ surface pro-
duced by satellites and is part of a collaboration project
with the Spanish National Institute for Aerospace Technology
(INTA). These images are usually analyzed by a small
number of experts on Martian geology and provide impor-
tant applications, e.g., in [1] infrared to visible wavelength
images of the Mars’ surface were analyzed to obtain relevant
geological information that may help in the location of water
frost. The seek of water is also the final goal in [2], where the
measurements of elevations yielded a highly accurate global
map of the topography of Mars that determines an upper
limit of the present surface water inventory.

In this work, we will use digital image processing tech-
niques [3], [4], in order to obtain automatically relevant
features of each image. Our approach is based on the use
of Fuzzy Logic (FL), which is widely recognized for its
ability for linguistic concept modeling and its use in system
identification. On the one hand, semantic expressiveness,
using linguistic variables [S] and rules [6], [7], is quite
close to natural language (NL). On the other hand, being
universal approximators [8] fuzzy inference systems are able
to perform nonlinear mappings between inputs and outputs.

-1-4577-1675-1 ©2011 IEEE

Thanks to these advantages, FL has been successfully applied
to classification, regression, and system modeling.

From the viewpoint of describing images in NL using
FL, there are recent works such as [9], where authors
proposed a hierarchical fuzzy segmentation of the image
and a collection of linguistic features able to describe each
region. In [10], the authors explained how a Fuzzy Object-
Relational Database Management System can be employed
to implement and integrate the different elements needed
for the linguistic description of images, briefly ontology,
concept representation and language generation. Our research
develops the Computational Theory of Perceptions (CTP) in-
troduced by Zadeh [11], [12]. In previous works on this line,
we have generated linguistic descriptions about the traffic
on roundabouts [13], we generated financial reports from
data taken from the Spanish Securities Market Commission
(CNMV) [14] and we assessed reporting in truck driving
simulators [15]. This first prototype on describing images
of Mars’ surface is limited to create a report on detected
circular structures, i. e., volcanoes or meteorite impacts. If
these structures exist in the image, the report should provide
information about their size and relative position. The paper
deals with the challenge of creating human like useful reports
that could help experts to analyze the huge database of
available images. Here, we include several contributions to
this research line.

This paper is organized as follows. Section II describes the
architecture of a system able to create linguistic descriptions
of phenomena while Section III explains how to apply it
to our proposal to describe the Mars’ surface. Afterwards,
Section IV shows the experimentation carried out and the
validation. And finally, Section V expounds some concluding
remarks.

II. ARCHITECTURE

In this paper, we develop results of previous research. We
face the challenge of linguistic description of data with the
basic architecture depicted in Fig. 1. Here, we develop upon
the concept of Granular Linguistic Model of a Phenomenon
including in the architecture new elements and performing
new experimentation. The main processing modules of this
computational system are, namely, the Data Acquisition
(DAQ) module, the Validity module, and the Expression
module. We describe these modules and the associated data
structures in the following subsections.

A. Granular Linguistic Model of a Phenomenon

The kernel of the report generator is the Granular Linguis-
tic Model of a Phenomenon (GLMP). The system designer
creates the GLMP as a representation of her/his own per-
ceptions of the monitored phenomenon organized in several
levels of granularity.
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Fig. 1. Main components of the proposed computational system for
linguistic description of data.
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The basic element of the GLMP is called Computational
Perception (CP). A CP is the computational model of a
unit of information acquired by the designer about the
phenomenon to be modeled. A CP is a couple (A, W) =
{(a1,w1), (ag,w2),..., (an,w,)} where:

A is a set of NL sentences that is a linguistic rep-
resentation of the meaning of CP. These sentences
can be either simple, e.g., a; =“The circle is big”
or more complex, e.g., a;, ="“The image contains
a big circle, many medium circles and three small
circles”.
€ [0,1] is the vector of validity degrees assigned
to each a; in the specific context. The concept of
validity depends on the application, e.g., it is a
function of the truthfulness and relevancy of the
sentence in its context of use.

We call first-order perception mapping (1-PM) to a func-
tion that allows the designer to define the first-order com-
putational perceptions (1-CPs), i.e., her/his interpretation of
input data (u). A 1-PM is a tuple (u,y,g,T) where:

u is a variable defined in the input data domain, e.g.,
the value uw € R which represents the radius of a
circle in pixels.

y is an output CP, e.g., the size of a circle in
the image. It contains values y = (A,,W,) =
{(a1,w1), (a2, w2), ..., (an,, wn,)}.

g is built using a set of membership functions (MFs)
to fuzzify the input data

Wy = (w1, wa, . .. 7w7Ly) =g(u) =
(#tay (u), pag (u), - ... s Han, ()
where W, is the vector of validity degrees assigned
to each a;, and p,, (u) is the membership degree
of the input variable u to the fuzzy set a;.

T Here, it is typically a simple template that allows
generating the elements in A,, e.g., “The circle is
{small | medium | big}”.

Computational perceptions whose meaning is based on
other subordinate perceptions are called second-order compu-
tational perceptions (2-CPs). They are obtained using second-
order perception mappings (2-PMs). A 2-PM is a tuple
(U,y,9,T) where:

U is a set of input CPs (uy, ug, ..., up).

y is the output CP with values y = (A4;,W;) =
{(alvwl); (a2,w2), cee (avzy>wny)}-
g is the aggregation function.
Wy = g(Wu,l ) Wu27 ceey Wun)

where W, is a vector (w1, ws, ..., wy, ) of validity
degrees assigned to each element in y and W,,, are
the degrees of validity of the input perceptions. The

designer chooses the most adequate aggregation
function to each case. In FL, many different types
of aggregation functions have been developed. In
this application, we present a new aggregation
function.

T is a text generation algorithm that allows generating

the sentences in A,.

The designer uses a network of PMs to create a description
of the monitored phenomenon with different levels of gran-
ularity that constitute the GLMP. The GLMP corresponding
to the practical application can be seen in Fig. 3, it will be
throughly explained in Section III-B.

B. Validity Module

Once a sample of input data is available, the Validity
module uses the aggregation functions in the GLMP to
calculate the degree of validity of each CP. Therefore this
module provides as output a collection of linguistic clauses
together with associated degrees of validity.

C. DAQ Module

This module provides the data needed to feed the 1-CPs.
The Data Acquisition module provides the interface with the
application physical environment. This module could include
either sensors or access to information in a database. In the
Section III-A, we present an example of application where
the DAQ module takes the information from satellite images
and implements an image processing algorithm.

D. Expression module

Provided a set of CPs, the goal is to combine this infor-
mation to build a linguistic report. This module deals with
generating the most relevant linguistic report by choosing
and connecting the adequate linguistic clauses. In this paper
we develop a new technique to perform this task by the
introduction of the concept of Fuzzy Tree of Choices (FTC).
It is a mechanism to represent part of the constraints imposed
to the linguistic report which consists of a directed graph
including choices and the linguistic expressions to be linked
together.

III. LINGUISTIC DESCRIPTION OF THE MARS’ SURFACE

In this section, we will describe the relevant modules
needed to produce a linguistic description of the Mars’
surface.

A. DAQ Module: Image Processing

This module is in charge of recognizing circles in the
image. The recognition of patterns is an open issue of
research in the field of automatic image processing. In this
first prototype, in order to extract information about the
presence of circular structures, we have applied classical
filtering techniques to remove the background, techniques of
edge detection, and the generalized Hough transform which
is particularly suitable for detecting the presence of circles
[4]. [16].

In the first task, known as pre-processing, everything
that is not interesting in the image is “deleted”. This is a
procedure that transforms the image slightly to eliminate any
noise, imperfections, shine, etc.

Then, we detect the edges in the image that can be defined
as transitions between two significantly different levels of
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color intensity. This provides valuable information on the
borders of objects that can be used for image segmentation.
In our application, we used a modified version of the Sobel
operator [4] as boundary filter which consists of two arrays
whose size is 5 x 5 pixels.

Finally, the search for circles in the image is tackled by
means of the Hough Transform [17], which was initially
concerned with the identification of lines in the image, but
later it has been extended to identify arbitrary shapes such as
circles or ellipses. To get good results with this procedure,
the pre-processing stage is essential, since the procedure
is mainly based on the color jump produced at the edge
of either meteorite impacts or volcano craters. The great
difficulty of this procedure lies in the analysis of those
photographs in which, by its nature, the land has many
irregularities, which accumulates inaccuracies in the analysis
and, therefore, we must assume a margin of error in the
obtained results. Moreover, since we do not know in advance
the size and shapes of the relevant objects, we have to work
with a generalized Hough transform that enables detection of
objects whose shapes and dimensions are, initially, unknown.

As an example of the performance of this module, Fig. 2
shows the circles detected for a specific image.

Fig. 2.

Example of detection of circles in an image.

B. GLMP for the Linguistic Description of the Mars’ Surface

In this application, the designer has built a GLMP which
tries to summarize and highlight the relevant aspects of
the data obtained from the DAQ module. In the following
subsections, we will explain in detail how each CP is built
based on the definition given above.

1) 1-CPs: These CPs are obtained from the output of
the DAQ Module, which recognizes circles in the image.
We distinguish three different 1-CPs, namely, the size of the
circles (the radius of each circle in pixels), the position in
the X coordinate, and the position in the Y coordinate. The
template 7" defines three different NL propositions for each
1-CP. In Fig. 3, the possible values of each 1-CP can be seen.
The terms S, M and B denotes small, medium and big and
are calculated using trapezoidal MFs over the value of the
radius. The same procedure is done to get the terms T, C,
and B which denote top, center, and bottom and the terms L,
C, and R which denote left, center, and right; the MFs are
uniformly distributed along the vertical and the horizontal
axes.

2) 2-CPs: As explained in Section II-A, these CPs are
calculated based on subordinate CPs. For this application,
we defined five different 2-CPs which describe the circles
in the image at different levels of detail. In this GLMP, we
can distinguish between two types of 2-CPs: there are 2-PMs
that aggregate (X) the information from the same subordinate
CP (2-CPy, 2-CP5 and 2-CP3) and 2-PMs which combine

TABLE 1
DOMAIN OF POSSIBLE VALUES (A, W) OF 1-CP3 FOR EACH CIRCLE.

Circle | small | medium | big
! (ag, w}) | (ag,wy) [ (az,w})
2 (a7, w?) | (a3, w3 (a3, w3)
n | (af,wp) | (a5, w3) | (a5, wy)
TABLE II

SET OF POSSIBLE SENTENCES ASSOCIATED WITH 2-CP3.

| small circles | medium circles | big circles

Zero (ao1,wo1) (aoz, wo2) (a0, wo3)
One (a11,w11) (a12,w12) (a13,w13)
Two (az1,w21) (azz2,w22) (a23,w23)
Three (as1, w31) (az2, w32) (a3s3,ws3)
Four (aa1,war) (@42, wa2) (a43,wa3)
Various | (as1,ws1) (as2,ws2) (as3,ws3)
Many (ap1,we1) (ap2,we2) (as3,we63)

(IT) information from different subordinate CPs (2-CP,4 and
2-CPs).

C. Validity Module

The implementation of the aggregation function (g) of the
2-PMs that combine information from different subordinate
CPs calculates the product of the validity degrees of these
CPs, e.g., the sentence “A big circle in the bottom left
part” will have as validity degree the product of the validity
degrees of the sentences “A big circle”, “A circle in the
bottom part”, and “A circle in the left part”.

The implementation of the aggregation function (g) of
the 2-PMs which aggregate information from the same
subordinate CP is less straightforward. As an example, we
show here how we implement the 2-PMj3 that calculates
the validity degrees of the sentences associated with 2-CP3.
These validity degrees are calculated using 1-CP3 for the
total of the n circles in an image. The domain of possible
values (A, W) of 1-CPj3 for each circle is represented in
Tabel 1. On the other hand, the set of possible sentences
associated with 2-CPj is represented in Table II.

We used the a—cut based method proposed by Del-
gado et al. [18] to define the validity degree of each sen-
tence associated with 2-CP3. For each fuzzy set j (small,
medium and big), we calculate the percentage of circles
contained at each a—level (N7) by means of Eq. 1, with
a€ A =1{0,01,0.2,0.3,04,0.5,0.6,0.7,0.8,0.9}.

I )
Nj == Fa(w)) o)
i=1
It is worth noting that we are considering strict a.—cuts,
as can be seen in Eq. 2.

1 if w;ﬂ>a
0 if w?ga

@

Then, we calculate the membership degree of each
NI to each element of the set of linguistic quantifiers:
{Qo,...,Q¢} = {Zero,One, Two, Three, Four, Various,
Many}, e.g., pg,(N?) = Three(Ni). The shapes of these
linguistic labels are determined by the total number of
circles n as can be seen in Fig. 4.

The last step is to calculate the average value of the
membership degrees obtained for each a—level using Eq.
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Z-CPJ: Position XY
Acircle in the {TL | TC | TR | CL| CC | CR | BL | BC | BR} part

A {S|M|B} circle in the

2-CP: Size and position of each Circle
{TL|TC|TR|CL|CC|CR|BL|BC|BR} part

2- CP Number of Circles in Position X'

Zeru circles in the {L | C | R} part
One circle in the {L | C | R} part
Two circles in the {L | C | R} part
Three circles in the {L | C | R} part
Four circles in the {L | C | R} part
Various circles in the {L | C | R} part
Many circles in the {L| C | R} part

2-CP_: Number of Circles in Position ¥
Zero circles in the {T | C | B} part
One circle in the {T | C | B} part
Two circles in the {T | C | B} part
Three circles in the {T | C | B} part
Four circles in the {T | C | B} part
Various circles in the {T| C | B} part
Many circles in the {T | C | B} part

2-CP : Number of Circles of each Size
Zero {S| M | B} circles
One {S| M| B} circle
Two{S | M | B} circles
Three{S | M | B} circles
Four {S|M | B} circles
Various {S | M | B} circles
Many {S|M | B} circles

1-CP : Position X'
Acircle in the {L | C | R} part

Fig. 3. GLMP for the linguistic description of the Mars’
perceptions.

I ;
—Zero(x)

0.8 One(x)

0.6 Two(x)
——Three(x)

0.4, Four(x)
— Various(x)|

0.2 —Many(x)

00 4/n 5/n 6/n 7/n &

/n 9 10/n

Fig. 4. Linguistic labels that represent the linguistic quantifiers “Zero”,
“One”, “Two”, “Three”, “Four”, “Various”, or “Many” circles.

3. The number of elements in the set A is the level of
resolution, i.e., |A| = 10 in this particular case.

Z 1 (N,

YaceA

This final value contains the relevant information about the
amount of circles belonging to each fuzzy set (small, medium
or big). For example, the validity degree of the sentence
“Three medium circles” (ws2) will be determined by Eq.

4:
wsp = o > Three(N?) )
| |Va€A

D. Expression Module

In this application, we developed the FTC that can be
seen in Fig. 5. It contains four choices made over 2-CPj.
The choices order is determined by the relevance of the
sentences for the final user. Here, our aim is to emphasize
the presence of big circles, then medium circles and finally
the small circles. Therefore, the four choices are as follows:

qi Does the image contain circles?

q2 How many big circles does the image contain?

qs How many medium circles does the image contain?
A4 How many small circles does the image contain?

It is worth noting that, in general, choices in the FTC have
not a crisp response but a fuzzy one. This means that we need
to analyze every combination of branches in the tree until
we can find out the sequence that accumulates the highest
degree of validity calculated using Eq. 5, which calculates

1-CP;: Position ¥
Acircle in the {T | C | B} part

A {S|M|Bj circle

surface. The circles represent perception mappings while the rectangles stand for computational

.—»{ The image does not contain circles)—».

0 ¥l ¥™M
| 1 big circle | | 2 big cnrcles
0 2] ¥™M
|1 medium circlei | 2 medlum circles |
[ | S

0 ¥l <q>

| 1 small circle | | 2 small circles

°

Fig. 5. This FTC is part of the constraints imposed to the linguistic
description.

Y™

many small circles

the product of all the possible perceptions that take part in
that sequence:

[I

Vi€sequence

Wsequence = w; (5)

The FTC represents the user’s preferences regarding with
the format of the report. Nevertheless, in general, we will
apply additional constraints. In our application example, an
obvious limitation is that the finally chosen sequence must
speak about the total number of circles in the image, e.g.,
if an image has a total of 3 circles, we cannot choose
the report: “the image contain one big circle, two medium
circles and many small circles”, because it does not fulfill
the compatibility with the total number of circles. Moreover,
once we have determined the sequence that expresses the
total number of circles according to their size, we used 2-
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(a) Image 1

(f) Image 6

Fig. 6.

CPs to specity the position of the big circle(s) or the position
of a single circle (independently of its size), if there is only
one circle in the image. Of course, different perceptions
and different possibilities can be expressed making different
FTCs.

IV. EXPERIMENTATION

We worked with a total of 10 different images that can be
seen in Fig. 6.

A. Descriptions Obtained

The linguistic description for each image is presented.
The obtained sequence is the one with the highest degree
of validity that fulfills the compatibility requirements of the
image.

1) Image 1: “The image contains one big circle, many
medium circles and four small circles. The big circle is in
the center of the image.”

2) Image 2: “The image contains one medium circle in
the center.”

3) Image 3: “The image contains one big circle in the
center.”

4) Image 4: “The image contains two big circles and two
medium circles. The two big circles are in the bottom center
and in the top center parts of the image.”

5) Image 5: “The image contains one big circle, three
medium circles and various small circles. The big circle is
in the center left part of the image.”

6) Image 6: “The image contains one big circle and many
medium circles. The big circle is in the bottom center part
of the image.”

7) Image 7: “The image contains one big circle and two
medium circles. The big circle is in the center right part of
the image.”

8) Image 8: “The image contains two big circles. The two
big circles are in the center of the image.”

(h) Image 8

(d) Image 4 (e) Image 5

(i) Image 9 (j) Image 10

The ten analyzed images of the Mars’ surface.

9) Image 9: “The image contains one big circle and three
medium circles. The big circle is in the center right part of
the image.”

10) Image 10: “The image contains one big circle and
three medium circles. The big circle is in the top center part
of the image.”

B. Evaluation of the Results

Assessing the performance of a a system which aims to
summarize data using NL is a challenging task. The meaning
of NL sentences is determined by its context of use, including
the personal experience of the writer and the reader [19]. In
order to contribute to solve this problem, we have used a
straightforward strategy: we have used the computer to create
a list of sentences to build a basic domain of meaning.

To measure the quality of the obtained descriptions, we
have done a survey which consisted of five different de-
scriptions for each of the ten images. These five different
descriptions were those compatible sequences which got the
best validity degrees, including, of course, the best one which
is considered the actual output of our system. We asked
a total of 22 different people to choose the best of these
five descriptions. In Table III, we show, for each image,
the average percentage of agreement of these people with
our system (System agreement), i.e., the percentage of times
that the choice of the people is the same as the description
obtained by our system; and we also show the average
percentage of agreement of these people among them (People
agreement), i.e., the average percentage of times that the
choice of each person is the same as the description obtained
by the rest of the people. The global average values for all
the images are also represented at the bottom.

The system agreement gets an average for all the images
of 59.5% which is indeed greater than the average people
agreement (45.3%). The highest values correspond to the
images number 4, 8, and 3, which have a low number of
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TABLE III
PERCENTAGE OF AGREEMENT OF THE HUMAN OBSERVERS WITH OUR
SYSTEM (SYSTEM AGREEMENT) AND PERCENTAGE OF AGREEMENT OF
THESE HUMAN OBSERVERS AMONG THEM (PEOPLE AGREEMENT).

Image System agreement (%) | People agreement (%)
1 59.1 377
2 54.5 41.1
3 72.7 56.2
4 90.9 82.3
5 54.5 338
6 59.1 45.9
7 54.5 34.6
8 773 63.2
9 18.2 20.8
10 54.5 37.7
All images 59.5 453

circles easy to identify. Moreover, the system agreement
is greater than the people agreement for all of the images
except the number 9, which means that each person agrees,
in average, more with our system than with the descriptions
chosen by the rest of the people. This fact can be explained
focusing on Fig. 2, where the four recognized circles of
the image number 9 are represented. The description made
by our system based on these four circles is: “The image
contains one big circle and three medium circles. The big
circle is in the center right part of the image”. However,
a human observer who tends to include the big circle in
the center right part of the image, tends also to include the
circle at the top left corner that is not recognized by the DAQ
Module. Therefore, not only is the description obtained by
our report generator extremely dependent on the results of
the DAQ Module, but also on the subjectivity of the people.

V. CONCLUDING REMARKS

This paper presents a contribution to solve the important
challenge of generating linguistic reports from data. We
have developed upon our previous works with two new
contributions:

1) The introduction of the concept of Fuzzy Tree of
Choices to describe the template of a linguistic report.

2) The proposal of an evaluation test to obtain a partial
measure of the quality of the generated linguistic
reports.

In human generated linguistic reports, the use of NL depends
on the application context and specifically of the writer
experience and intentions. Here, the chosen linguistic ex-
pressions should capture the subjectivity of the human beings
participating in the process of designing the computational
system, namely, the expert on Martian geology that will
provide the functional requirements and the designer that will
try to implement that functionality. However, this procedure
can also be applied to different fields, the difficulties of
this adaptation will depend on the complexity of the desired
linguistic reports.

In future works, the idea is to improve the DAQ Module
in order to recognize different structures that allow us to
provide a more complex description of the Mars’ surface.
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