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RESUMEN (en español) 

 
La teoría de cuerdas ha sido un considerable avance conceptual y matemático hacia la 
posible teoría física más fundamental de todas. La idea comenzó en los años 60, 
considerando los constituyentes más elementales de la materia como objetos 
unidimensionales representados por cuerdas vibrando. De este modo se trató, sin 
éxito, de describir la interacción fuerte. Sin embargo, años más tarde, la teoría de 
cuerdas fue recuperada y se ha ido desarrollado como una posible teoría de 
unificación en la cual numerosos avances continúan llevándose a cabo a día de hoy, y 
la cual podría describir todas las partículas de materia e interacciones conocidas. 
 
En ésta tesis se presentan dos trabajos de investigación independientes en el área de 
la teoría de cuerdas. El primero se enmarca en el contexto de las configuraciones no-
BPS inestables, mientras que el segundo generaliza ciertas “particle-like branes” que 
aparecen en relación a la conjetura de AdS/CFT. Tras un capítulo de introducción a las 
cuerdas, branas y dualidades, cada trabajo de investigación aparece en una parte de 
la tesis (partes I, II). Las conclusiones se presentan al final de cada una de estas 
partes. 
 
En la primera parte introducimos ciertas configuraciones no-BPS inestables, que son 
las Dp-branas no-BPS y los sistemas de (Dp,anti-Dp)-brana. Su inestabilidad se refleja 
en la presencia de modos taquiónicos en su espectro de cuerdas. Estos modos 
taquiónicos pueden decaer (‘’condensar’’) dando lugar a una nueva configuración, que 
puede a su vez ser estable o no. El formalismo de “boundary state” es introducido, así 
como un enfoque de potencial efectivo, con el fin de sentar las bases para el trabajo 
de investigación presentado en esta primera parte de la tesis. El trabajo de 
investigación se presenta como una adaptación de [1]. En dicho trabajo presentamos 
una acción de “worldvolume” efectiva apropiada para el estudio de la fase confinante 
de un sistema (Dp,anti-Dp) en acoplo débil. Identificamos el mecanismo por el cual la 
cuerda fundamental aparece a partir de ésta acción cuando la Dp y la anti-Dp se 
aniquilan. También construimos una acción dual explícita, más adecuada para el 
estudio del régimen de acoplamiento fuerte. Nuestra descripción dual indica que los 
objetos taquiónicos que se condensan se originan a partir de D(p-2)-branas  
extendidas entre la brana y la antibrana. 
 
En la segunda parte de la tesis presentamos los más relevantes resultados relativos a 
las “particle-like branes” que aparecen en relación a AdS/CFT. Estas configuraciones 
se componen de branas que viven en el interior del espacio AdS y un cierto número de 
cuerdas que se extienden hasta la frontera de este espacio, donde son vistas como 
quarks. Repasamos el estudio de estabilidad del vértice bariónico en AdS5 x S5 y cómo 
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estas configuraciones fueron generalizadas introduciendo un flujo magnético. También 
repasamos las configuraciones de di-bariones que aparecen en este mismo contexto. 
Finalmente y antes de presentar [2], explicamos las bases de la teoría de ABJM, una 
propuesta de AdS/CFT realizada sobre un espacio AdS4  y relacionada con una teoría 
de Chern-Simons (de materia) supersimétrica en tres dimensiones. En [2] estudiamos 
el efecto de añadir carga de D-brana de inferior dimensionalidad, generalizando las 
configuraciones de “particle-like branes” que aparecen en AdS4 x PP

3. Mostramos que 
dichas configuraciones requieren cuerdas fundamentales adicionales con el fin de 
cancelar ciertos “tadpoles” de “worldvolume” que aparecen. Un estudio dinámico 
revela que las cargas deben pertenecer a un cierto intervalo para encontrar 
configuraciones bien definidas, y para el vértice bariónico y el di-barion, el número de 
cuerdas fundamentales también debe restringirse a un rango. Adicionalmente 
discutimos cómo estas configuraciones son modificadas en presencia de una masa de 
Romans no nula. 
 
[1]  N. Gutierrez, Y. Lozano, Phys. Rev. D79 (2009) 046010, arXiv:0809.1005 [hep-th] 
 
[2]  N. Gutierrez, Y. Lozano, D. Rodriguez-Gomez, JHEP 1009 (2010) 101, 
arXiv:1004.2826 [hep-th]. 
 
 
 
RESUMEN (en Inglés) 
 
String theory has been a considerable conceptual and mathematical advance in the 
search for the most fundamental theory of physics. The idea started in the 1960's, by 
considering the smaller constituents of matter as one-dimensional objects represented 
by vibrant strings, in an attempt to describe the strong interaction. The attempt failed, 
but years later, string theory was recovered and has been developed as a possible 
unification theory in which numerous advances continue to take place nowadays, and 
which would encompass all known matter particles and interactions. 
 
In this thesis two independent research works in the area of string theory are 
presented. The first one falls in the context of the unstable non-BPS configurations, 
while the other has to do with the particle-like branes appearing in relation to the 
AdS/CFT conjecture. After a general introductory chapter to the strings, branes and 
dualities, each research work appears in a separate part of the thesis (parts I, II). 
Conclusions are given at the end of each part. 
 
In the first part we introduce certain unstable non-BPS brane configurations, the non-
BPS Dp-branes and the (Dp,anti-Dp) systems. Their instability is reflected in the 
presence of tachyonic modes in their string spectra. These tachyonic modes can decay 
(`condense') giving rise to a new configuration, which can in turn be stable or not. The 
boundary state formalism is introduced, as well as an effective potential approach, in 
order to tackle the problem and lay the basis for the research work presented in this 
first part. That research is presented as an adaptation of [1]. In this work we present a 
worldvolume effective action suitable for the study of the confined phase of a (Dp,anti-
Dp) system at weak coupling. We identify the mechanism by which the fundamental 
string arises from this action when the Dp and the anti-Dp annihilate. We also construct 
an explicit dual action, more suitable for the study of the strong coupling regime. Our 
dual description indicates that the condensing tachyonic objects originate from open 
D(p-2)-branes stretched between the brane and the antibrane. 
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In the second part of the thesis we present the most relevant results from the particle-
like branes appearing in relation to AdS/CFT. These configurations are made of branes 
living in the bulk of AdS and a certain number strings stretched all the way to the 
boundary, where they are seen as external quarks. We review the stability study of the 
baryon vertex in the AdS5 x S5 background and how this configuration was generalized 
by introducing a magnetic flux. We also comment on the Di-baryon configurations that 
appear in the same context. Finally and before presenting [2], we explain the basis of 
the ABJM theory, an AdS/CFT proposal realized over an AdS4 space and related to a 
three dimensional supersymmetric Chern-Simons matter theory. In [2] we study the 
effect of adding lower dimensional brane charges, generalizing the particle-like brane 
configurations that appears in AdS4 x PP

3. We show that these configurations require 
additional fundamental strings in order to cancel certain worldvolume tadpoles 
appearing. A dynamical study reveals that the charges must lie inside some interval in 
order to find well defined configurations, and for the baryon vertex and the di-baryon, 
the number of fundamental strings must also lie inside an allowed interval. We also 
discuss how these configurations are modified in the presence of a non-zero Romans 
mass. 
 
[1]  N. Gutierrez, Y. Lozano, Phys. Rev. D79 (2009) 046010, arXiv:0809.1005 [hep-th] 
 
[2]  N. Gutierrez, Y. Lozano, D. Rodriguez-Gomez, JHEP 1009 (2010) 101, 
arXiv:1004.2826 [hep-th]. 
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Chapter 0

Introduction

Unification has been a highly important challenge in modern physics. It would mean going

one step forward towards interlacing and probably simplifying our most basic knowledge

about our world. In fact, after being successfully advancing in rather different directions,

it seems logical to try to put it all together and verify its consistency as a whole. This

reasoning has already lead to new physical discoveries in the past. In the middle of the

XIX century, thanks to prominent figures such as Faraday and Maxwell, the electromag-

netic unification was carried out. At that time, electricity and magnetism were elegantly

reduced to the so-called Maxwell equations. Let us briefly describe the main accomplish-

ments of XX century fundamental physics and motivate the appearance of string theory

in this context, a unification theory in which numerous advances continue to take place

nowadays and that would encompass all matter particles and interactions.

The Standard Model

In the beginning of the XX century, an authentic revolution took place in physics: with

the birth of special relativity and quantum physics completely new horizons were open. In

a few years the world became much more complex and strange than it was thought to be.

The new theories managed to explain the strange phenomena that started to be observed1,

but on the other hand these theories left lots of new open questions and, in some occasions,

they continued advancing in slightly different directions without an apparent connection

between them.

Some years after, both general relativity (GR) and quantum mechanics were subject of

study for some of the most celebrated physicists of that time. Huge advances were achieved

in those fields while some links between quantum physics, electromagnetism (EM) and

special relativity appeared, giving rise to the development of quantum field theory (QFT)

1The Michelson-Morley experiment, the black-body radiation spectrum, the photoelectric effect and

the atomic spectra.
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between the ’40s and ’60s. That was another big step in physics, starting by the enormous

success achieved by quantum electrodynamics (QED), which satisfactorily described the

interaction between charged particles2, including their creation and annihilation processes.

The Lamb-Retherford experiment verified its implications up to a precision never reached

before in any other field. It was little time after that, in the ’60s, when Glashow, Salam,

and Weinberg unified the EM and the weak interaction, using the ideas with which Yang

and Mills had failed in their attempt to unify the strong interaction and the EM in the ’50s.

We had to wait until the late 70’s for the establishment of quantum chromodynamics

(QCD), the QFT describing the (strong) interaction among quarks and gluons, responsible

for binding protons and neutrons in the atomic nucleus. That (strong) interaction success-

fully explains the phenomenon of asymptotic freedom3 observed for all particles possessing

the new charge called color. This theory has had excellent results, even though it is im-

possible to apply it directly in order to understand complex many-particle systems such

as the atomic nucleus, having problems even when describing “simple” quark-composed

particles (hadrons). The problem resides in the fact that the effective coupling constant

becomes extremely large at low energies, preventing any kind of perturbative treatment

to be done; computational lattice methods are used instead4. Furthermore, the potential

between quark and antiquark is linear in the distance between them, such that if one tries

to separate them there is a distance at which it is energetically favored that a new quark-

antiquark pair from the vacuum appears and recombines with the original particles. This

effect, known as hadronization, is the reason why we cannot observe any isolated colored

elemental particle (i.e. a quark or gluon) in nature. This is a low energy effect, and ac-

cordingly to what we have said, it cannot be studied by any known analytical method.

This color confinement occurs at energies of the order of ΛQCD ∼ 200MeV , where a phase

transition takes place. Below that energy we should use an effective theory with hadrons

as fundamental degrees of freedom (dof), instead of working with elementary particles.

With the success of these new QFTs the standard model (SM) was born, covering the

EM, weak and strong interactions. Those interactions are mediated by the vectorial gauge

bosons, particles with spin 1 ruled by a gauge group, in this case SU(3)×SU(2)×U(1). This
model also includes 12 fermions of spin 1/2 as matter particles, 6 of them being leptons

and 6 being quarks (in addition to their corresponding antiparticles) divided in tree gener-

2As in quantum field theory particles are described by fields, we are not going to make any distinction

between these terms in the following.
3As the effective coupling constant of this theory decreases when increasing the energy, the shorter

the distance between particles, the weakest their interaction, being effectively free at very small distances

(smaller than quark-composed particles, as protons and neutrons).
4Lattice models discretize the space or space-time, and are common in QCD, condensed matter physics

and even in polymers studies. The finiteness, as opposed to the continuous point of view, makes compu-

tational calculations an ideal tool for these models.
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Figure 1: The SM particle content is given by 6 quarks, 6 leptons, their corresponding 12

antiparticles, 4 intermediate bosons and the Higgs particle (not included in the figure).

ations, as it is showed in fig. 1. But we must add one extra boson, the Higgs field, in order

to provide mass to the particles in a consistent way5. Up to now this mechanism is the only

known consistent way of providing mass to the particles without spoiling the theory. Once

this Higgs particle is taken into account, the internal consistency of the theory is warranted.

One of the key concepts used by this theory is gauge invariance, which already ap-

peared in classic EM, i.e. the fact that there is a certain freedom in choosing the potentials

without modifying the dynamics of the system. This concept was generalized in field the-

ory in order to account for those transformations of the fields with more dof than relevant

physical variables. In this way the gauge invariance reflects a new kind of symmetry in the

system, but not only that, using that principle we are able to derive realistic interacting

field theories as QED and QCD (once the symmetries are made local, interactions appear

in order to preserve them).

Nevertheless, important questions still exist. Although the SM provides nice particle-

physics explanations and predictions from nearly 10−19m, corresponding to the TeV scale,

to cosmological distances6, it seems impossible to include gravitational interactions in the

model in a consistent way. This topic still awaits a satisfactory explanation, pointing in

the direction of a new theory.

5Results of the observation of a new boson at a mass of 125 GeV were recently reported from both

ATLAS and CMS experiments at the LHC at CERN (Geneva, Switzerland) [1, 2], which could correspond

to this Higgs field.
6Even though what seem to be the main elements of the universe have not yet been identified.
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In need of a new theory?

If the SM explains most of the experiments done so far, and in fact makes some predic-

tions about what could be found at higher energies, then why should we expend resources

considering other theories? First of all there is the possibility that the SM could not be

the right answer, and as experimental layouts cost so much time, personal and money, a

wide phenomenological exploration should be made in order to consider other reasonable

possibilities that could be observed in the following. On the other hand, one has to take

into account the fact that the SM itself does not contain gravity. A reason for why it is

possible for both theories to coexist nowadays, out from a common theoretical framework,

is the negligible effect of gravity in the processes that we can generate in particle colliders.

Since the required scale in order to study gravity is too large compared to the typical

one of these experiments, we can neglect its contribution, and it is nowadays practically

impossible to test both theories simultaneously. What is more, GR is often considered a

beautiful closed theory in opposition to the SM construction, but we have lots of experi-

mental data testing the later meanwhile we are not able to prove GR much more beyond

the classical perturbative tests already made, apart from certain supernova studies. For

some time now, black holes have become a usual playground for this kind of studies, as long

as both gravity and particle physics play an important role on their description. However,

we cannot ignore the fact that QFT becomes ambiguous and eventually breaks down when

it is applied to some systems where gravitation is too strong7.

But, why it is not possible to combine GR and the SM in a satisfactory way? The main

problem is that the Einstein-Hilbert action of GR turns out to be non-renormalizable, and

once the gravitational interaction between elementary particles is put to test, divergences

show up. Let us think of the following situation. Consider two gravity-interacting particles

propagating as in fig. 2. If we try to carry out a perturbative treatment as it is done with

the SM interactions, it must be taken into account that the coupling constant correspond-

ing to what we should call graviton will be GN . According to that, the ratio of exchange

of one of these gravitons with respect to the free propagation situation will be governed by

the only adimensional expression that can be created using the parameters of the problem,

GNE
2~−1c−5, where E stands for the characteristic energy of the process. Therefore the

results diverge for E >
√

~c5
GN

and the approach is no longer valid. This problem can be

compared to trying to extrapolate Fermi’s theory to arbitrarily high energies.

Lots of mechanisms and models that would consistently coexist within the actual frame-

work have been studied with the aim of developing a new theory. However the energy that

is required in order to test most of them is well beyond the capacities of the last particle

7Some advances in QFT in curved spaces have been made, although with no hope of completely solving

the problem.
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Figure 2: The evolution from one graviton interchange in QFT to the string theory proposal

is shown in a similar fashion to moving from the Fermi’s theory to the GSW model. In

string theory the trajectories (worldlines) that the particles describe in the space-time be-

come cylinders (worldsheets). The interaction becomes nonlocal and is no longer punctual,

eliminating the ultraviolet divergences that appear when interaction points are brought

too close to each other. The apparent divergences shown in QFT would only be due to not

having enough resolution to see the real diagram at the current energies.

accelerators. These sets of proposals comprise what is usually referred as beyond standard

model physics, which include ideas that range from supersymmetry (SUSY) to small com-

pact additional dimensions. However, most of these ideas are just proposed as possible

corrections to the SM without providing an explicit consistent frame for their realization.

Furthermore, both the SM and its possible BSM “upgrades” have a lot of parameters with-

out any dynamical origin, and are all in that sense, fundamental constants of the theory.

This is not “de facto” a problem in a certain theory or model but, as we already mentioned,

the search for “naturalness” and a possible hidden simplicity have lead to great discoveries

in the past, and this might well be the case.

String theory to the rescue

String theory has been a considerable conceptual and mathematical advance in the

search for a more fundamental theory. The idea started by considering the smaller con-

stituents of matter as one-dimensional objects represented by vibrant strings. The first step

was taken by Veneziano [3] who, in the 1960’s and followed by Susskind [4], wrote a phe-

nomenological amplitude for the strong interaction. At that time, before QCD appeared,

these kind of approaches were the only possible way of trying to describe the strong inter-

action8. Virasoro and Shapiro [5, 6] later improved the early work of Veneziano, being able

8In the 50’s many resonances and excited states of hadrons were found, and in the 60’s Regge the-

ory, based only in very general assumptions about the S-matrix, allowed to perform certain asymptotic

scattering calculations.
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to describe some features of that hadronic spectrum. They explained the relation between

the observed mass of the lightest hadron with a given spin and its angular momentum,

given by m2 ∼ TJ2 + const., such that both the mass and the angular momentum would

come from a rotating quantum relativistic string of tension T living in RD. Nevertheless

QCD turned out to be right answer, ruling the idea out for years. It was later on, in 1974,

when Schwarz and Scherk ([7]) discovered a possible connection between string theory and

GR. The theory indeed predicted a massless spin-two particle, which was identified with

the graviton, and became in a few years not only a theory of gravitation but also a unifi-

cation theory that could be capable of describing all known interactions. This was called

the first string revolution.

As we are going to see string theory is only consistent in spacetimes with additional

dimensions. The first precursor to the idea of proposing additional dimensions was the

German physicist Theodor Kaluza. In 1921 he presented a work by which he was trying to

unify EM and gravitation, including the first through the use of an extra fifth dimension

[8]. Few years later the mathematician Oscar Klein provided an explanation to that new

dimension of Kaluza, in such a way that any point of the tetradimensional space-time

would have a small circumference associated to it representing that new dimension [9].

This mechanism is actually named Kaluza-Klein compactification in their honor.

The idea of extra dimensions was recovered with string theory. An initial theory of 26

dimensions with only bosonic strings was considered at first, in which twenty-two of the

dimensions would be twisted around themselves in a little space of size comparable to the

Plank length9, being only able to notice our tetradimensional world at energies far smaller

than the Planck’s scale. In the next chapter, we are going to first elaborate on this initial

bosonic theory in order to get the basic ideas, introducing later the so-called superstring

theories which include fermionic states and live in 10 dimensions. We will partially follow

the approach taken in [10], where a quite broad introduction to string theory is given.

Nevertheless, for a more detailed introduction the classics [11] and [12] can be read.

9By dimensional analysis, the length that can be obtained by combining the speed of light c, Newton’s

gravitational constant G, and Planck’s constant ~ is known as Planck length, given by lp =
√
~G/C3 ≈

10−35m



Chapter 1

Strings, branes and duality

1.1 The bosonic string

As well as the trajectory of one particle in a N-dimensional space-time is given by a

worldline parametrized by a certain real parameter τ , we can parametrize the worldsheet

spanned by a one-dimensional spacial extended object, a string or fundamental string, with

two coordinates τ and σ, where σ localizes a point along the length of the string. These

strings are basic objects in the theory and can consistently be taken to be open or closed,

orientable or not, depending on their topology, and to wind around topological defects a

certain number of times (winding number).

Imposing global Poincaré invariance

Xµ → X ′µ = Λµ
νX

ν + aµ (1.1)

and worldsheet reparametrization invariance

(τ, σ) → (τ ′(τ, σ), σ′(τ, σ)) (1.2)

in a Minkowski type space, the simplest action that one can construct depends on the area

swept by the string, and it is referred as the Nambu-Goto action

SNG = − 1

2πα′

∫
M

dτ dσ
√
|g|. (1.3)

Here we have denoted |det(g)| as |g|, and the integral runs over the entire worldsheet M .

In turn gab = ∂aX
µ∂bX

νηµν represents the metric induced on M by the metric of the

ambient space ηµν = (−1, 1, ..., 1) via the pullback ∂aX
µ∂bX

ν , where Xµ(τ, σ) stand for

the N coordinates of the worldsheet in that space1. Therefore, when no interactions are

1These Xµ(τ, σ) embedding functions describe the string configuration in the ambient space. We will

use the notation xµ only when referring to the space-time coordinates themselves. In this way Greek indices

run through ambient space coordinates µ, ν = 0, ..., D−1, whereas Latin indices run through worldvolume

coordinates, in this case a, b = τ, σ.
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Figure 1.1: As a point particle describes a line in the space-time, a string span a bidimen-

sional surface.

considered, the string will propagate in such a way that the area spanned will be minimal.

This theory would have no free fundamental parameters other than α′, the Regge slope2,

which is a merely scale parameter whose order of magnitude would be l2p. The coefficient

in front T = 1/(2πα′) is usually known as string tension, as it gives information about the

energy per unit length of the string.

The Nambu-Goto action is classically equivalent to Polyakov’s action3 [13], first intro-

duced in [14]

SP = − 1

4πα′

∫
dτ dσ

√
|γ| γab ∂aXµ∂bX

νηµν , (1.4)

although (1.4) presents less difficulties for quantization. This Polyakov action additionally

exhibits local Weyl invariance

γab(τ, σ) → γ′ab(τ, σ) = e2ω(τ,σ)γab(τ, σ), ∀ ω(τ, σ), (1.5)

an invariance of the metric tensor under local changes of scale of the worldsheet metric γab.

In this action the worldsheet metric is an independent variable (although non dynamical)

and will in general differ from the ambient space metric.

Action (1.4) defines a two-dimensional scalar field theory in the worldsheet, with energy-

momentum tensor given by (“.” means contraction with the flat spacetime metric)

Tab = −4πα′ 1√
|γ|

δS

δγab
= ∂aX · ∂bX − 1

2
γabγ

cd∂cX · ∂dX = 0, (1.6)

2In Regge theory the Regge slope appears exponentiating the Mandelstam variable s in the amplitude.
3Using the equations of motion for the metric γ in the Polyakov action one obtains the Nambu-Goto

one.



1.1 The bosonic string 13

leading to the constraints

Tab = 0, T a
a = 0. (1.7)

By exploiting reparametrizations and Weyl rescalings the auxiliary field can be gauge fixed

to be γab = ηab. In this way and by ignoring interactions, it is possible to obtain a more

handy action for the free bosonic string

SP = − 1

4πα′

∫
M

dτ dσ ηab ∂aX
µ∂bXµ. (1.8)

Indeed the variation of (1.8) provides a bidimensional wave equation

(∂2τ − ∂2σ)X
µ = 0 (1.9)

with solutions given in terms of free waves depending on a pair of arbitrary functions,

representing the possible oscillation modes of the string, going to the left or to the right

Xµ(τ, σ) = Xµ
L(τ + σ) +Xµ

R(τ − σ). (1.10)

Imposing boundary conditions we can now Fourier expand these for closed strings, satis-

fying Xµ(τ, σ) = Xµ(τ, σ + 2π) 4, this gives

Xµ
±(τ ± σ) =

1

2
xµ + α′pµ(τ ± σ) + i

√
α′

2

∑
n ̸=0

1

n
αµ(±)
n e−in(τ±σ). (1.11)

xi and pµ denote, respectively, the position and momentum of the center of mass, while

the oscillatory last term provides additional dof to the strings as compared to point-like

particles. Here α
µ(+)
n and α

µ(−)
n are respectively the amplitudes of the left and right handed

modes of the string, and satisfy

α
µ(±)
−n = (αµ(±)

n )⋆ (1.12)

as the Xµ
± are real functions. We are going to alternatively use the +/− or the L/R nota-

tion for left- and right-movers in the following.

On the other hand, variations of the action (1.8) with the condition

δXµ(τinitial) = δXµ(τfinal) = 0 (1.13)

allow open strings satisfying either Neumann-type boundary conditions

∂σX
µ|σ=0, σ=π = 0, (1.14)

4For the closed strings it is typical to take a parametrization such that σ ∈ [ 0, 2π], whereas for the

open strings σ ∈ [ 0, π].
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in which case no momentum can flow through the string endpoints, or Dirichlet-type ones

∂τX
µ|σ=0, σ=π = 0, (1.15)

for which the string end-points are fixed to hypersurfaces of different dimensionalities, the

so-called Dirichlet branes or for short D-branes ([47]). In this context, Neumann boundary

conditions are also understood in term of those hyperplanes, indicating directions filled by

a D-brane, along which the string end-points can move freely.

The mode expansion for the open string satisfying Neumann boundary conditions at

both extrema is given by

Xµ
NN(τ, σ) = xµ + 2α′pµτ + i

√
2α′
∑
m̸=0

1

m
αµ
me

−imτcos(mσ), (1.16)

whereas the modes for the open string corresponding to Dirichlet boundary conditions at

both extrema are given by

Xµ
DD(τ, σ) = xµ +

1

π
(yµ − xµ)σ + i

√
2α′
∑
m̸=0

1

m
αµ
me

−imτsin(mσ). (1.17)

Finally, the last possibility consists in mixing Dirichlet and Neumann conditions. This

can be achieved by imposing the Dirichlet condition Xµ(τ, 0) = xµ at one end, and the

Neumann condition ∂σX
µ(τ, σ)|σ=π = 0 at the other

Xµ
ND(τ, σ) = xµ +

√
α′

2

∑
r ̸=0

1

r
αµ
r e

−irτsin(rσ), (1.18)

where r = n+ 1/2, n ∈ Z.

The following natural step is the canonical (first) quantization of the oscillation modes of

the string, from which the graviton will emerge as a massless spin 2 state of the closed string.

As usual, we can replace the theory’s Poisson brackets by commutators [...]P.B. → i[...].

This, by inserting the mode expansion for both coordinates and conjugate momenta, leads

to [
αµ(±)
m , αν(±)

n

]
= mηµνδm+n,

[
αµ(±)
m , αν(∓)

n

]
= 0, α

µ(±)
−n = (αµ(±)

n )† (1.19)

for the closed string, while a similar result holds for the open string. In this way we can

treat the αm’s as creation and annihilation operators, m indicating the number of particles

created (m < 0) or destroyed (m > 0). By definition, the ground state |0 > is annihilated

by the lowering operators

αµ
m|0⟩ = 0 for m > 0, (1.20)
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meanwhile a string state with momentum kµ is created by applying the rising operators

|ϕ⟩ = αµ1†
m1
αµ2†
m2
...αµn†

mn
|0; k⟩, pµ|ϕ⟩ = kµ|ϕ⟩, mi > 0. (1.21)

Note that from (1.19) commutators of time components get a minus sign from Minkowski

metric

[α0
m, α

0†
m ] < 0, m > 0, (1.22)

in such a way that negative norm states (in principle) appear in the bosonic string spectrum,

as ∣∣α0†
m |0⟩

∣∣2 = ⟨0|α0
mα

0†
m |0⟩ < 0. (1.23)

Besides, it is possible to check that for physical closed string states the number of ex-

citations in each direction is the same, i.e. NL = NR = N . This is called level matching

condition, and forces closed string states to be generated by using the same number of α(+)

and α(−) operators.

The constraints (1.7) can be written as an infinite number of conditions of the form

Ln = 0, with n ∈ Z. These Ln are the Fourier coefficients of the energy-momentum tensor,

called the Virasoro generators, and give rise to the so-called Virasoro algebra. In the quan-

tized theory those constraints are promoted to operator conditions on the states Ln|ϕ >= 0,

for n > 0. An arbitrariness in the ordering prescription of L0 leads to the inclusion of a

constant a, ending up in the appearance of a new quantum-mechanical term in the algebra.

At this point in time we should remark that the number of space-time dimensions D

has, up to now, been taken to be arbitrary. Nevertheless, the spectrum generated turns

out to be free of negative-norm states only for a ≤ 1 and D ≤ 26. Indeed, different analysis

exist all leading to the same critical conditions: a = 1 and D = 26. For seeing this it is

necessary to use the so-called light-cone gauge, a particular non-covariant gauge choice. In

this gauge, the Fock space generated can be manifestly free of negative-norm states and

all the Virasoro conditions are solved explicitly, instead of being imposed as constraints.

Light cone coordinates can be introduced as

X± =
1

2
(X0 ±XD−1), (1.24)

leaving the D − 2 transverse coordinates X i unchanged. In the light-cone gauge all the

excitations are generated by the action of the transverse modes αi
n over the vacuum. An

infinite tower of oscillator states is finally obtained in this way as can be observed in fig. 1.2,

with masses given by an on-shell condition. Notice that the first massless state obtained

belongs to a (D−2)-component vector representation of the rotation group SO(D−2), and

as a general rule, Lorentz invariance implies that this kind of states must be massless. This

condition implies a = 1 and, after certain considerations, D = 26. This avoids a Lorentz
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Figure 1.2: Bosonic closed string spectrum. An scalar is represented by the ground state,

which is tachyonic (i.e. possesses a negative (mass)2). The next non-zero object, a (D −
2) × (D − 2) matrix, can be decomposed into a symmetric tensor, an antisymmetric one

and a trace. Notice that due to the level matching condition only states with the same

number of excitations propagating in each direction are allowed. On the other hand, the

open string spectrum also contains a tachyonic state, in addition to a massless vector boson

as well as the correspondent tower of massive states.

anomaly in the light-cone gauge, that would lead to a conformal anomaly in a covariant

gauge. Alternatively, the same constraint can be derived by imposing the Lorentz genera-

tors to satisfy the Lorentz algebra [J i−, J j−] = 0, which is not manifest in the light-cone

gauge.

In order to study the low energy regime of the theory, only the lowest mass modes

compatible with the boundary conditions have to be considered. Those massless modes

join up into certain group representations, as physical states must appear in complete

Lorentz multiplets5. More concretely, for the closed string a symmetric traceless tensor

of spin 2 gij, an antisymmetric tensor of spin 2 Bij and an scalar particle ϕ are obtained

(fig. 1.2). The massless spin 2 particle gij couples to the energy-momentum tensor and

provides space-time general covariance to the theory. This state is going to be identified

with the graviton, whereas the massless antisymmetric tensor Bij is on the other hand

associated to an space-time gauge symmetry. In the open string sector, the first state

obtained turns out to be tachyonic, with the implications previously remarked. The only

massless state coming from this sector corresponds to a vector boson. Finally, higher har-

monics of both sectors resulting in massive excitations would represent different (massive)

elementary particles.

It is possible to generalize the action (1.4) by including couplings to background fields

5This is because Lorentz generators, seeing as quantum operators, and the Lm commute [Lm, Jµν ] = 0,

and so the physical-state condition is invariant under Lorentz transformations.
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associated to the just obtained massless bosonic fields as follows

S = − 1

4πα′

∫
dτ dσ

√
|γ|
(
γab ∂aX

µ∂bX
νgµν(X) + ϵab∂aX

µ∂bX
νBµν(X)

+ α′R(2)(γ) ϕ(X)
)
.

(1.25)

Imposing conformal invariance to this theory6 the ambient space metric gµν is forced to

satisfy the Einstein equations in 26 dimensions. This justifies our previous statement about

the graviton, and in this way gravity is naturally contained in string theory. We should

remark that the coupling to Bµν in (1.25) is only present in bosonic theories with oriented

strings, as reversal orientation invariance does not allow for it. This coupling can be re-

garded as a 2-form generalization of a 1-form Maxwell field coupling to the world line of a

charged particle q
∫
dτAµẋ

µ. Finally, the dilaton couples to R(2)(γ), the scalar curvature

of the 2-dimensional string worldsheet.

In order to account for interactions among strings we use the fact that the worldsheet

metric and the ambient space metric are independent in (1.4). In this way we can allow

for non-trivial topologies by using the general metric gµν(x
µ) instead of ηµν . In order to

see how this can be done, let us consider a constant dilaton ϕ = ϕ0. In this case the

dilaton term becomes a total derivative, and so its integral is determined by the global

topology of the worldsheet and does not contribute to the classical equations of motion.

More concretely, its integral is given by the Euler characteristic of the worldsheet M

χ(M) =
1

4π

∫
M

dτ dσ
√

|γ|R(2)(h), (1.26)

a topological invariant. The Euler characteristic of a bidimensional surface can be com-

puted as χ = 2(1− h)− b− c, being h, b and c its number of handles, holes and cross-caps

respectively. The simplest case would then be given by a 2-sphere, with χ = 2; χ = 1

would be the case of a disk (b = 1) or a projective plane (c = 1), and so on and so forth.

For a non-constant dilaton, its vacuum expectation value (vev) <ϕ> can also be treated

this way. At this point we can define a low energy perturbative expansion in gs = e<ϕ>,

where each diagram would come with a weight g−χ
s (χ running over all the different possible

topologies of the worldsheet). The existence of this new parameter gs does not contradict

what we said before about α′, i.e. that this is the only adjustable parameter of the theory,

as this coupling constant is actually dynamically generated from the dilaton field.

Notice that both α′ and gs can be used to make perturbative expansions in string the-

ory. At low energies we can expand in α′ if gs<<1 (weak coupling regime), whereas we can

sometimes explore the gs>>1 region (strong coupling regime) if we use duality relations

6This can be achieved by requiring the β functions of the 2D theory to vanish.
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Figure 1.3: Before having elaborated a QFT of strings, interaction was proposed in terms

of breakings and unions among them. It is possible to resum the perturbative series created

by the different γ metrics of the Polyakov action, in an analogous way to the Feynman

diagrams in perturbative QFT. Note that no string theory with open but not closed strings

does exist; this would not be consistent with string interactions, as open strings would lead

to the appearance of closed ones.

that map weak and strong coupling regions of the same or different string theories, as we

are going to see later in certain superstring theories. In the middle a non perturbative

regime is left with gs∼ 1, which is much more difficult to explore.

The main problem of the bosonic string theory, besides the absence of fermionic states,

is that the lowest energy propagating state both in the open and closed string spectra is

tachyonic, as we previously mentioned. Nowadays tachyonic states are seen as an instabil-

ity of the system. In the case at hand the vacuum of the theory itself seems to be unstable,

a problem that remains unsolved. Let us now introduce the different superstring theories

that exist once SUSY is imposed which, besides adding fermionic excitations7, eliminate

the tachyonic modes of the spectrum.

1.2 Superstring theories

SUSY is introduced in order to allow the appearance of fermions in string theory. Two

basic approaches exist, the Ramond-Neveu-Schwarz (RNS) and the Green-Schwarz (GS)

formalisms, leading to an explicit SUSY invariance on the worldsheet or in the space-time

respectively, although other proposals do exist. These two formalisms lead to the same

results in 10-dimensional Minkowski space-time. We are going to make use of the first one

and we will see that, in 10 dimensions, a total of five different superstring theories are

consistent.

In the following, the Xµ(σ, τ) bosonic fields will be paired up with the new fermionic

fields ψµ(σ, τ), worldsheet spinors which transform as vectors under the Lorentz group

7SUSY relates bosons and fermions. It can be described by an invariance under an infinitesimal trans-

formation which mixes both types of fields, and implies the existence of the same number of dof of each

kind. As this is not observed in nature, SUSY must be broken at low energies.
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SO(1, D − 1) of the ambient space-time. We can add a total of D Majorana fermions to

the initial D massless bosons as follows

S = − 1

4πα′

∫
dτdσ

(
∂iXµ∂

iXµ + ψ̄µγi∂iψµ

)
, (1.27)

where the γi’s (i = 0, 1) represent the two-dimensional Dirac matrices. This action is

invariant under the following worldsheet SUSY transformations

δXµ = iϵ̄ψµ, δψµ = γi∂iX
µϵ. (1.28)

Here ϵ represents a constant infinitesimal Majorana spinor. It is now possible to split the

spinor ψ into two chiral components, and in doing so, the component with positive/negative

chirality will be the right/left-moving respectively

(∂τ − ∂σ)ψ
µ
+ = 0, (∂τ + ∂σ)ψ

µ
− = 0. (1.29)

In the open string case, boundary conditions are

(ψµ
−δψ− µ − ψµ

+δψ+ µ)
∣∣∣σ=π

σ=0
= 0, (1.30)

which implies

ψµ
+ = ±ψν

−, δψµ
+ = ±δψν

−, σ = 0, π. (1.31)

From here two different fermionic sectors appear for the open strings. The sector corre-

sponding to a relative plus sign in equation (1.31), which is called the Ramond (R) sector,

and the one corresponding to a relative minus sign which is called the Neveu-Schwarz (NS)

sector.

In the closed string case, we have the following choice in the periodicity of the fermions

ψµ
+(σ = 2π) = ±ψµ

+(σ = 0), ψµ
−(σ = 2π) = ±ψµ

−(σ = 0), (1.32)

where the plus sign defines the R-sector and the minus defines the NS-sector. Thereby,

four different possibilities exist when combining left- and right-movers in the closed string.

This results in the NS - NS, R - R, R - NS and NS - R sectors.

When quantizing the theory, the bosonic states are the same as the ones previously ob-

tained, and the fermionic sector can be expanded in fermionic oscillators also interpreted

as rising and lowering operators. Without entering in much detail, let us just consider

the massless sector of the superstring. As we previously remarked, massless states can be

classified into representations of the SO(D−2) = SO(8) group. This group has one vector

and two chiral representations, denoted 8v, 8+ and 8− respectively. It turns out that the

R-sector is in either 8+ or 8− representations, while the NS-sector is in the 8v.
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We should mention that in order to identify the physical propagating states, one must

previously perform the so-called GSO projection introduced by Gliozzi, Scherk and Olive

[25]. This projection is necessary to obtain a consistent worldsheet conformal field theory

(CFT). Space-time SUSY (induced by the just introduced worldsheet SUSY) requires the

same number of bosonic and fermionic dof, and applying GSO projection ensures that. In

addition, a tachyonic mode in the superstring spectrum is eliminated by this projection

and does not propagate, eliminating the instability endemic to the bosonic string. Con-

cretely, GSO projection discards all NS states created by an even number of fermionic

creation operators, as well as fixes the chirality of the R sector’s ground state. In order

to derive this projection, 1 and 2-loop modular invariance8 can be demanded, which is in

fact automatically satisfied in the GS formalism.

Now, in order to construct the massless states that will finally show up in the strings,

we have to glue left and right-movers. This can be made consistently in only five ways,

resulting in five different superstring theories, one denoted type I superstring theory, two

type II theories, and two heterotic superstring theories. Let us now briefly introduce them,

presenting their decomposition in representations as well as the corresponding low energy

supergravity limits. Fermionic counterparts can be obtained by imposing SUSY although

will generally be ignored throughout this thesis.

1.2.1 Type II string theories

The two type II theories are obtained by initially considering just closed strings withN = 2

space-time SUSY, constructed as tensor products of two open strings with N = 1 space-

time SUSY. Fermionic 10-dimensional Dirac spinors with 16 components9 of the initial

effective theory of the open string gives rise to 32-component spinors in the closed string

type II theory. As GSO projection allows for two different choices of the relative chirality

between left- and right-movers in the R-sectors, two consistent theories arise. The type IIA

superstring theory, with R-states of opposite chirality and thus non-chiral (i.e. left-right

symmetric), and the type IIB superstring theory, with R-states of the same chirality and

therefore a chiral theory (i.e. left-right asymmetric). The NS - NS sector (NSNS) is then

common to both theories, but not the R - R (RR), NS - R and R - NS (RNS) sectors. The

first two sectors are composed by space-time bosons whereas the last ones contain the

fermions.

Type IIA theory

8invariance under the SL(2,Z) group of large diffeomorphisms of the torus.
9They match with the 8 bosonic dof of the gauge vector field as the corresponding Dirac equation

reduces the number of independent fermionic components by half.
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The type IIA theory has R-sectors of opposite chirality, resulting in a non-chiral space-

time theory and making anomalies to trivially cancel. This theory can be decomposed into

SO(8) representations in the following way

(8v + 8+)⊗ (8v + 8−) =

(1 + 28 + 35v)NS−NS + (8v + 56v)R−R + (8+ + 56−)NS−R + (8− + 56+)R−NS.
(1.33)

In the NSNS sector we find the same massless states as in the closed bosonic string, although

living in 10 dimensions, i.e. the dilaton scalar field ϕ (one state), the antisymmetric 2-form

gauge field B2 (28 states) and the traceless symmetric graviton g of spin 2 (35 states). In

the RR sector two new antisymmetric tensor fields appear, a 1-form denoted C1 (8 states)

and a 3-form C3 (56 states). Finally, the RNS sector contains the space-time fermions. It

is also convenient to introduce the Hodge duals of the RR forms in this case, which are a

7-form C7 and a 5-form C5 respectively.

The low energy limit of the Type IIA superstring theory is a Type IIA supergravity

(SUGRA) [31, 32]. Supergravity theories are QFTs constructed as supersymmetric exten-

sions of general relativity in a different number of dimensions. In these theories SUSY

is a local symmetry, and is combined with the usual Poincaré algebra giving rise to the

so-called super-Poincaré group10. It is remarkable that superstring theories indeed provide

finite ultraviolet completions of these SUGRA theories. In the case of IIA SUGRA, it is

described by the effective action (the following low energy effective actions are all given in

the string frame)

SIIA =
1

2κ2

∫
d10x

√
|g|

{
e−2ϕ

(
R− 4(∂ϕ)2 − 1

2 · 3!
H2

)
− 1

4
(G2)

2

− 1

2 · 4!
(G4)

2

}
− 1

4κ2

∫
d10x G4 ∧G4 ∧B,

(1.34)

where G2 = dC1 , H = dB , G4 = dC3 −H ∧C1, are the RR and NSNS field strengths

and κ is related to the gravitational constant in 10 dimensions GD by κ =
√
8πGD. This

low energy SUGRA action admits classical solutions which are interpreted as extended

p-dimensional objects known as branes or p-branes. These branes couple to the RR and

NSNS fields, in such a way that an electric p-brane couples to a (p + 1)-form potential

whereas a magnetic one couples to a (7− p)-form potential. In type IIA we find NS-1 and

NS-5 branes11, as well as RR p-branes for p = 0, 2, 4, 6. Surprisingly, in 1995, Polchinski

10For a string theory introduction with an exhaustive self-contained introduction to SUGRA theories

one can read [33].
11An NS-string (NS-1) exists in the type II and heterotic superstring theories and is identified with

the corresponding fundamental string (F1) [34]. The NS-string is electrically charged under the B2 field,
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identified black p-brane solutions (those RR branes) with the aforementioned D-branes

on which open strings can end12 [28]. Therefore open strings can also appear in type

II theories, with ends attached to D-branes. In the case at hand, Dp-branes appear for

p = 0, 2, 4, 6, (8), where the D8-brane appears as charged to a RR 9-form C9 [28, 30] with

no much dynamics. Apart from that, in any superstring effective action we also expect to

find both gravitational waves (GW) and Kaluza-Klein (KK) monopole solutions13.

Romans massive Type IIA SUGRA

The C9 RR form is the EM dual of an F0 RR flux that can be introduced in the type

IIA theory. This field is the so-called Romans mass parameter, and the corresponding

extension of type IIA is referred as Romans massive type IIA SUGRA [26, 27]. D8 branes

couple magnetically to this F0 field, and electrically to its EM dual, a C9 RR potential. In

this massive version, one gives mass to the NS 2-form of standard IIA SUGRA through

the deformation G2 → G2 +mB2, and the RR 1-form C1 is then gauged away. The mas-

sive deformation gives rise aswell to an effective cosmological constant, of undetermined

magnitude in the case of IIA string theory [28]. Romans massive IIA describes part of the

space-time when a D8-brane is present in the type IIA theory; more concretely, the F0 flux

is an integer in the quantum theory [28], which jumps by one unit as crossing the D8-brane.

Type IIB theory

The type IIB theory has R-states with the same chirality and thus the theory is chiral.

Therefore, the anomaly cancellation is not trivial at all, although it does occur [45]. The

massless fields of the theory are

(8v + 8+)⊗ (8v + 8+) =

(1 + 28 + 35v)NS−NS + (1 + 28 + 35+)R−R + (8− + 56+)NS−R + (8− + 56+)R−NS.

(1.35)

While sharing the same NSNS sector with the IIA theory, the RR sector has the zero, two-

and 4-forms C0, C2 and C4 respectively. Again, we shall introduce their corresponding

Hodge duals for convenience, which are an 8-form C8 and a 6-form C6. Finally it is also

as a 2-form can be integrated on a 2-dimensional worldvolume. On the other hand, an NS5-brane is

magnetically charged with respect to B2, given that the EM dual of a 2-form is a 6-form ⋆dB2 = dB6,

that can be integrated on the 6-dimensional worldvolume of the NS5-brane.
12This discovery triggered the so-called second superstring revolution, leading to both the holographic

and M-theory dualities that are going to appear in different parts of this thesis.
13Gravitational waves carry momentum charge in a certain direction, whereas the less familiar KK-

monopoles are purely gravitational solutions that only appear in KK compactifications [63].
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possible to introduce a 10-form C10. This 10-form does not have any propagating dof as its

field strength would be a 11-form in a 10D space-time, and so no space-time kinetic term

can be generated.

This type IIB theory hasN = 2 chiral SUSY and is effectively described by IIB SUGRA,

whose bosonic part is described by [35, 36, 37, 38]

SIIB =
1

2κ2

∫
d10x

√
|g|

{
e−2ϕ

(
R− 4(∂ϕ)2 − 1

2 · 3!
H2

)
− 1

2
(G1)

2

− 1

2 · 3!
(G3 − C0H)− 1

2 · 5!
(G5)

2

}
− 1

κ2

∫
d10x C4 ∧G3 ∧H.

(1.36)

In this case, the field strengths are given by H = dB , G1 = dC0 , G3 = dC2,

G5 = dC4 − H ∧ C2. Additionally we have the self duality condition G5 = ⋆G5. In this

theory we also find NS-1 and NS-5, as well as Dp-branes for p = −1, 1, 3, 5, 7 14 deduced

from the RR field content of the theory.

1.2.2 Type I string theory

Modding out the type IIB theory by a particular Z2 discrete symmetry (known in general as

performing an orientifold projection) one obtains another new theory with half of the initial

SUSYs, the type I superstring theory, containing open and closed non-oriented strings.

Open strings appear as fundamental objects of the theory, while closed strings appear once

interactions are considered. Type IIB theory has this worldsheet parity symmetry Ω acting

in the following way in the open and closed string modes

closed : ΩX(τ, σ) Ω−1 = X(τ, 2π − σ) ⇒ αµ(+)
m ↔ αµ(−)

m ,

open : ΩX(τ, σ) Ω−1 = X(τ, π − σ) ⇒ αµ
n → ±(−1)nαµ

n .
(1.37)

By effect of the first transformation left- and right-movers become interchanged15, while

end points of the open strings are exchanged by the second one. Projecting the type IIB

spectrum by this Ω transformation changes the sign of C0, B2 and C4 and leaves the rest

of the massless spectrum invariant, in this way the spectrum of the type I string theory is

14The D(-1)-brane is an instanton-like solution, whereas the D9-brane is charged under a 10-dimensional

RR-form C10. That C10 is non-dynamical in 10 dimensions, as it not possible to define an 11-dimensional

field-strength.
15This Z2 discrete symmetry is not a symmetry of IIA theory, as left- and right- movers have opposite

chirality in that case.
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obtained

(8v + 8+)⊗ (8v + 8+)

Ω
= (1+ 35v)NS−NS + (28)R−R + (8− + 56+)R−NS. (1.38)

This leads to the appearance of a graviton, a scalar and an antisymmetric tensor, as well as

some fermionic states, which can all be combined into an N = 1 10-dimensional SUGRA

multiplet. However type I SUGRA in 10-dimensional Minkowski space is inconsistent due

to gravitational anomalies. The only way to avoid this is by coupling it to an N = 1

super-Yang-Mills (SYM) 10-dimensional gauge theory with an SO(32) or E8 × E8 gauge

group. For the type I superstring only the former case is possible, and the corresponding

gauge symmetry comes from certain non-dynamical dof related to open string ends; these

are the Chan-Paton factors16. According to this, the low energy type I effective action is

given by N = 1 D=10 SUGRA coupled to N = 1 SYM with gauge group SO(32). Its

bosonic part reads [40, 41, 42, 43]

SI =
1

2κ2

∫
d10x

√
|g|
{
e−2ϕ

(
R− 4(∂ϕ)2

)
− 1

2 · 3!
(G3)

2 − α′

4
e−ϕtr

(
F 2
)}

. (1.39)

The gauge fields F a
b transform in the adjoint of SO(32) and are given by

Fµν(b) = ∂µbν − ∂νbµ +

√
2

α′ [bµ, bν ] , (1.40)

whereas the field strength G3 introduces C2 and the YM fields

G(3)
µνρ = ∂µC

(2)
νρ − 1

2
tr

(
bµFνρ(b)−

1

3

√
2

α′ bµ [bν , bρ]

)
+ cyclic permutations. (1.41)

No charged NSNS solitons appear (and therefore no fundamental strings), but Dp-branes

with p = 1, 5, 9 are found in this theory, as their associated RR charges are not affected by

(1.37). Associated to the previous orientifold projection Ω there is a so-called orientifold

O9-plane. O-planes are non-dynamical, mirror-like extended objects defined as fixed points

of an special orientifold projection17. Indeed, type I anomalies cancel out by considering

a vacua filled by an O9-plane with −16 units of D9-brane charge, cancelled by the addi-

tion of 16 space-time-filling D9-branes and resulting in SO(32) gauge symmetry [39]. This

configuration preserves one of the two type IIB SUSYs, and its total energy density cancels.

16Chan-Paton factors work as a kind of label that, when considering multiple coincident D-branes,

indicates on which of the D-branes an open string ends. They are going to be introduced in the next

chapter, where D-branes are studied in more detail
17Those objects, as the Dp-branes, are also sources of electric and magnetic RR forms, and appear in

superstring theories with different tensions, charges and dimensionality. Depending on the kind of O-plane,

it can have a positive or negative tension, given by TOp = ±2p−5TDp.
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1.2.3 Heterotic strings

Finally, the possibility of mixing both bosonic and superstring modes in a consistent way

was not overlooked, and it is indeed possible to compactify 16 dimensions of the bosonic

string states in order to match them with the 10-dimensional superstring ones. Those

heterotic strings do not have any open string sectors, just closed ones, because locking

left and right sectors is no longer a consistent condition. One bosonic mode can not be

reflected in the boundary if there are only fermionic modes in the other direction and vice

versa. Without entering in much detail, there only exist two consistent ways of constructing

those theories, which result in two different theories with gauge groups SO(32) and E8 ×
E8, depending on whether periodic or anti-periodic boundary conditions are taken in the

fermionic sector. The right-moving sector contains the usual closed string spectrum, while

the left-moving one has vector fields in the adjoint of either of those gauge groups

(8v + 8+)R ⊗ (8v)L = (1+ 28+ 35v)B + (8− + 56+)F . (1.42)

These states assemble an N = 1 SUGRA multiplet. On top of this there are vector bosons

in the adjoint representation of the gauge group, therefore the low energy effective action

involves N = 1 SUGRA and 10-dimensional N = 1 SYM with gauge group SO(32) or

E8 × E8. Its bosonic part is then given by [40, 41, 42, 43]

SHet =
1

2κ2

∫
d10x

√
|g| e−2ϕ

{
R− 4(∂ϕ)2 − 1

2 · 3!
H2 − α′

4
tr
(
F 2
)}

, (1.43)

where the YM field strength F is

Fµν(V ) = ∂µVν − ∂νVµ +

√
2

α′ [Vµ, Vν ] , (1.44)

and the 3-form field strength H reads

H(3)
µνρ = ∂µBνρ −

1

2
tr

(
VµFνρ(V )− 1

3

√
2

α′ Vµ [Vν , Vρ]

)
+ cyclic permutations. (1.45)

These theories have no RR fields, and so no D-branes appear on it. On the other hand NSNS

strings and 5-branes do show up. Should also be remarked that the YM SO(32) coupling

to the N = 1 SUGRA is different in type I and SO(32) heterotic theories. Nevertheless

a connection between both theories does exist, concretely in terms of a duality relation [39].

Indeed, the five superstring theories turn out to be all interrelated as we are going to

see in the next section. It is remarkable the fact that all these theories are non-anomalous,

and therefore quantum-consistent, which is not the case with certain SUGRAs. In this

way, string theory does not only provide a wide framework for them, but a consistent one.
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Theory Strings Chirality SUSY NSNS RR

Type I open & closed, chiral N = 1 g, ϕ C2

non-orientable

Type IIA open & closed, non-chiral N = 2 g, ϕ, B C1, C3

orientable

Type IIB open & closed, chiral N = 2 g, ϕ, B C0, C2, C4

orientable

Heterotic

SO(32) / closed, orientable chiral N = 1 g, ϕ, B −
E8 × E8

Table 1.1: 10-dimensional superstring theories, with: type of strings, chirality, SUSYs

preserved and NSNS and RR massless field content.

Theory Dp-branes NS q-branes

Type I p = 1, 5, 9 −

Type IIA p = 0, 2, 4, 6, 8 q = 1, 5

Type IIB p = −1, 1, 3, 5, 7 q = 1, 5

Heterotic

SO(32) / − q = 1, 5

E8 × E8

Table 1.2: Stable Dp-brane and NS q-brane content of the different 10-dimensional super-

string theories. As was previously pointed out, GW and KK monopole solutions are also

present in all these theories.
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1.3 String dualities and M-theory

By duality relation we understand a set of rules relating two equivalent descriptions of

a given physical system. It results that relations of this type relate sectors of the same

string theory, or even sectors of different theories. It was a great surprise to discover that

the five different consistent superstring theories are in fact related among them. What

is more, they can be seen as different limits of a unique non-perturbative 11-dimensional

theory. First of all, let us present two types of string dualities that play a crucial role

in this understanding of the superstring theories as a whole, the target space duality or

T-duality, and the strong-weak coupling duality or S-duality.

1.3.1 T-duality

Target space duality may occur when at least one of the dimensions is toroidally compact-

ified18. Let us consider the simpler case of the bosonic string. For a closed bosonic string

with an spatially compactified dimension k

xk ≡ xk + 2πR ⇒ Xk(τ, σ + 2π) ≡ Xk(τ, σ) + 2πRw, w ∈ Z, (1.46)

where R is the radius of the dimension and w the winding of the string around it (its sign

encodes the direction). Due to periodicity pk = m/R, with m ∈ Z, so that it is possible

to describe the winding and momentum modes by w and m respectively. In this case, all

fields are expanded as in (1.11) except for the k direction, for which

Xk
±(τ ± σ) =

1

2
xk + α′pk±(τ ± σ) + oscillations, (1.47)

with

pk± =

(
m

R
± wR

α′

)
. (1.48)

We notice some kind of invariance under the following transformation, called T-duality

R ↔ α′

R
, w ↔ m. (1.49)

Indeed, it is possible to check that right-moving oscillators change sign under (1.49)

αk(+)
n → αk(+)

n , αk(−)
n → −αk(−)

n , (1.50)

18An Abelian isometry in the target space must exist so that this duality can be generalized to other

spaces, through the so-called Buscher procedure ([15, 16]).
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and so it can also be seen as a space-time parity transformation acting only on the right-

moving dof

Xk = Xk
L +Xk

R → X ′k = Xk
L −Xk

R. (1.51)

Indeed, imposing the on-shell condition m2 = −p2 for the ((D − 1)-dimensional) mass of

the states, it is possible to see that the mass spectrum is given by

M2 =
m2

R2
+
R2w2

(α′)2
+

2

α′ (NL +NR − 2), (1.52)

which is invariant under transformation (1.49) [17, 18]. This is the basis of T-duality, it

relates a theory compactified on a radius R with the same or a different theory compactified

on a radius α′/R 19, with an exchange of momentum and winding modes. Indeed physical

quantities such as the energy-momentum tensor and correlation functions are also left in-

variant by this transformation, from what follows that T-duality is not only a symmetry

of the spectrum, but a symmetry of the theory.

Whereas a T-duality transformation leaves the closed string invariant, a change in the

open strings boundary conditions does occur. Let us come back to the open bosonic string

expansion (1.16) with Neumann-Neumann boundary conditions and take the k-direction to

be compact pk = m/R. By applying the transformation rules (1.51) the expansion remains

the same except for the k-th direction, which becomes

X ′k = yk + 2α′m

R
σ + i

√
2α′
∑
n ̸=0

1

n
αk
ne

−inτ sin nσ. (1.53)

yk is just the magnitude of a constant vector pointing in the k-th direction, and can

be introduced in the mode expansion without modifying the Xµ
L + Xµ

R sum. This k-th

component carries winding but no momentum, and satisfies Dirichlet boundary conditions.

The endpoints of the string will then be fixed and located at

Xk(σ = 0) = yk, Xk(σ = π) = yk + 2πm
α′

R
, (1.54)

where α′

R
plays the role of the dual radius20. This also works the other way around and so,

surprisingly, by T-dualizing a compact direction of the open string Neumann and Dirichlet

boundary conditions become exchanged. As Dirichlet conditions are provided by D-branes,

this T-duality transformation makes these hyperplanes to naturally appear in the theory.

19There is a minimum length below which there is no new physics, the fixed point of the transformation:

R0 =
√
α′ = ls.

20The initial open string had no winding modes, as with Neumann-Neumann boundary conditions in all

directions the configuration is topologically trivial. Nevertheless the winding modes are now topologically

stable, since the endpoints of the open string are fixed in the k direction by the Dirichlet condition.
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The transformation is such that a D-brane not extended in the original circle will wrap

the dual one, while momentum modes of the strings in the original dimension are trans-

formed into winding modes in the dual version. This transformation can in general be

realized over n circular directions, resulting in a T-dual description in which the open

strings have fixed extrema in n directions. Therefore, as a general rule, T-duality changes

the dimensionality of a Dp-brane by p → p ± 1 when moving from a compact dimension

to the dual circle (a D-brane wrapping a circle, does not wrap the dual one, and vice-

versa). As a consequence, we should now understand the original case of open strings

with Neumann-Neumann boundary conditions in every direction (n = 0) as having them

ending on a space-time-filling D-brane. All this occurs both in bosonic and superstring

theories. On the other hand, we have that when T-dualizing a compact coordinate of ra-

dius R on which an orientifold projection Ω is defined as in (1.37), two fixed 9-dimensional

hypersurfaces appear in the 10-dimensional case: two O8 planes. In general, n T-dualities

can in this way generate 2n non-dynamical O(9−n) planes extended in 10−n dimensions21.

It is remarkable that a T-duality transformation indeed maps the type IIA theory into

the type IIB and vice versa [47, 48], given that (1.51) changes the chirality of the right-

moving fermions in (1.34) and (1.36). Because of this, type IIA theory with one dimension

compactified on a certain circle is equivalent to type IIB theory compactified on a circle

with inverse radius. This is valid at both perturbative and non-perturbative levels. At

low energies these compactified theories can be written in terms of 9-dimensional fields,

and in 9 dimensions there is only one N = 2 SUGRA (in Minkowski space). Hence it is

obvious that both type II theories should be mapped to the same 9-dimensional theory,

which allows to write down a set of transformation rules between their massless fields [46].

The explicit rules can be found in [33]. These rules can be successfully used to interrelate

the worldvolume effective actions for D-branes in type IIA and type IIB theories (their

bosonic part is going to be introduced in section 1.4.2).

Finally, we would like to mention that T-duality also appears in the type I theory22, and

links the two heterotic string theories once their gauge groups are both broken down to the

subgroup SO(16)×SO(16) [50, 51, 52]. Let us now introduce the S-duality transformation.

21For an extensive review on orientifolds, see for example [44].
22T-duality acting on the type I superstring theory bring us to the so-called type I’ theory. A review in

the subject can be found in [49].
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1.3.2 S-duality

Another important duality is the so-called strong-weak coupling duality or S-duality. Clas-

sical solitonic solutions of field theory can sometimes fulfill a very interesting property,

namely they can saturate a bound for their mass, called the BPS bound (in honor to Bogo-

mol’nyi, Prasad and Sommerfield) [53]. This relates the mass and charge for the soliton23

so that when moving from weak to strong coupling states are preserved, transforming in

such a way that the perturbative spectrum become heavy while the solitonic solution be-

comes light. The existence of an exact symmetry in the theory (the S-duality) was then

conjectured to be responsible for that behavior, interchanging strong and weak coupling

limits and solitons with perturbative states [54]. This symmetry also appears in string

theory, in the context of supersymmetry, where the concept of BPS state is generalized to

states preserving a certain amount of SUSY, as will be detailed in chapter 2. S-dualities

sometimes relate the weak coupling limit of a string theory with its own strong coupling

limit, or even with the strong coupling limit of a different one. This occurs by means of

an inversion of the coupling constant gs to 1/gs, in a similar way to the radius transforma-

tion of T-duality. In certain situations one can determine properties of those BPS states

not depending on the coupling, and then, extrapolate them to a different coupling regime

by an S-duality transformation. This makes BPS states, in combination to S-duality, an

incredible tool for exploring otherwise inaccessible strong coupling regimes24.

More concretely, S-duality is present in type IIB superstring theory as part of a bigger

symmetry. Type IIB SUGRA has a global SL(2,R) invariance [37, 38]. However, this sym-

metry of the low energy effective action is not shared by the full type IIB theory. Instead,

it is conjectured that quantum effects break it down to a discrete SL(2,Z) subgroup. One

way of seeing this is by considering strings charged either under B2 (fundamental strings)

or under C2 (called D-strings). Their charges are usually denoted by (1, 0) and (0, 1) re-

spectively, as each one has just one unit of charge. These strings transform as a doublet of

SL(2,R) because so do the 2-forms under which they are charged25. In order to ensure that

these charges are integers, as required by Dirac quantization condition26, the global sym-

23Details about this are given in section 1.4.1.
24By using this kind of duality it is possible, for example, to take a system in its strong coupling regime

and, once being transformed, carry out perturbative computations on the weakly coupled system. In this

way we can finally return to the original system and get some kind of additional information.
25In general they transform into (p, q) strings, carrying both types of charge
26In quantum-mechanical systems with magnetic monopoles, the wave function of an electrically charged

particle is uniquely defined only if its charge e satisfies the Dirac quantization condition [55] e · g ∈ 2πn,

n ∈ Z, being g the magnetic charge. This result can be generalized to p-branes with charge µp by requiring

the wave function of an electric p-brane to be consistently defined in the field of the magnetic (D-p-4)-brane

µp µD−p−4 = 2π (single p-branes turn out to satisfy the relation for n = 1. Polchinski showed this for

D-branes in [28]).
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metry must be restricted to SL(2,Z). This symmetry group is generated by the following

transformations

S =

(
0 1

−1 0

)
, T =

(
1 1

0 1

)
, R =

(
−1 0

0 −1

)
. (1.55)

T corresponds to a shift in the RR scalar C0 → C0 + 1, while R leaves the type IIB

SUGRA complex field τ = C0 + ie−ϕ invariant. The S-duality subgroup is given by the S
transformation

C0 →
−C0

(C0)
2 + e−2ϕ

, e−ϕ → e−ϕ

(C0)
2 + e−2ϕ

. (1.56)

Taking C0 = 0 and recalling that gs = e−ϕ0 this transformation produces the inversion of

the coupling constant of the theory

gs →
1

gs
, (1.57)

as was previously advanced. The complete set of S-duality transformation rules for the

massless forms of type IIB theory is given in [33].

Heterotic SO(32) and type I string theories are also related by S-duality. As we said,

both theories have low energy descriptions given by 10-dimensionalN = 1 SUGRA coupled

to a YM SO(32) theory, although with different dilaton couplings. Nevertheless both

actions, (1.39) and (1.43), become equivalent under the following identifications

ϕ = −ϕ , gµν = e−ϕgµν , B = C2 , Aa = V a . (1.58)

The inversion of the dilaton coupling suggests the existence of a strong-weak coupling

relation between both theories [56]. This leads to the conjecture that both theories, not

just their low energy limits, are actually dual to one another, being just two descriptions

of two different regions of the same quantum theory. A possible non-perturbative check

of this duality consists in showing that certain objects of one of the theories map into

objects of the other theory under the conditions indicated. This indeed can be shown for

the heterotic string, a perturbative object which becomes mapped to a D1-brane of the

type I theory, a non-perturbative soliton. On the other hand, a type I D5-brane is also

mapped to a NS5-brane of the heterotic superstring theory.

1.3.3 An 11-dimensional theory

As we have previously mentioned, there exists an 11-dimensional theory that can be ac-

cessed from those interrelated 10-dimensional superstring theories. More concretely, it

can be obtained as a strong coupling limit of the type IIA and heterotic E8 × E8 theories

([57],[56]). This 11-dimensional theory is known asM-theory and its elementary objects are
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no longer strings. Stable BPS SUGRA solutions do exist, certain non-perturbative objects

called M-branes (from membrane27), but the fact that there is not a perturbative funda-

mental object eliminates any possible perturbative approach, with awful consequences for

the study of the theory. What is more, M-theory does not have any tunable coupling that

could give rise to a perturbative regime either, being the only parameter the Planck length

in eleven dimensions lp.

Following a top-down approach from M-theory compactifications it is possible to obtain

either the IIA theory or the heterotic E8×E8 theory, depending on whether we compactify

the 11-th dimension on a circle or on an interval respectively. Indeed, these compactifica-

tions give rise to the corresponding SUGRA theories in the low energy limit. In the first

case Type IIA 10-dimensional SUGRA can be obtained as a limit of the 11-dimensional

one [58], and it can be verified that their number of dof do indeed match. The bosonic

content of the 11-dimensional SUGRA consist of the metric ĝ and a 3-form gauge potential

Ĉ3, combined in the following way in the 11D action [59]

S11D =
1

2κ̂2

∫
d11x

{√
|ĝ|
(
R̂ − 1

2 · 4!
(Ĝ4)

2

)
− 1

6
Ĝ4 ∧ Ĝ4 ∧ Ĉ3

}
. (1.59)

The 4-form Ĝ4 is the field strength of the 3-form potential Ĝ4 = dĈ3. It is possible to see

that considering the maximum amount of SUSYs in 11 dimensions leads to the appearance

of different brane solitonic solutions in M-theory. These are a KK monopole, a GW (M0-

brane), an M2-brane (also calledmembrane), its EM dual, the M5-brane, and a domain-wall

M9-brane28. Each of these carries a certain (SUSY central) charge, being therefore stable.

In the same way D-branes are charged under RR forms of the 10-dimensional superstring,

M2 and M5-branes are charged under the 11-dimensional Ĉ3 form and its Ĉ6 dual.

11-dimensional fields can be expressed in terms of 10-dimensional ones after a Kaluza-

Klein reduction. In order to do that, let us split the space-time coordinates as xµ̂ = (xµ, y)

and consider the isometry generated by the Killing vector in the compactified dimension

k̂ = ∂y. The reduction rules for the reduction of the 11-dimensional metric and 3-form

27Although this terminology is usually reserved for the 3-dimensional M2-brane.
28The M9-brane in M-theory plays the same role as the D8-brane in type IIA (although there does not

seem to exist a massive extension for uncompactified M-theory). For this reason the M9 seems to be the

M-theoretic origin of massive type IIA string theory.
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obtained in this way are [33] 29

ĝµν = e−
2
3
ϕgµν + e

4
3
ϕC(1)

µ C(1)
ν , Ĉ(3)

µνρ = C(3)
µνρ ,

ĝµy = e
4
3
ϕC(1)

µ , Ĉ(3)
µνy = Bµν ,

ĝyy = e
4
3
ϕ .

(1.60)

From here we can see that the string coupling constant in the type IIA theory is related

to the asymptotic value of ĝyy, which can be identified with the compactification radius R

as well, as

|k̂|2 = |ĝyy| =
(
R

lp

)2

⇒ gs =

(
R

lp

)3/2

. (1.61)

Now, in order to relate units in eleven dimensions with the string units, that is to rewrite R

and lp in terms of ls, we impose that the 10-dimensional Newton constant has to coincide

with the 11-dimensional one

G10 =
G11

2πR
⇒ lp = g1/3s ls , R = gsls. (1.62)

Here it was used that the Newton constant in an arbitrary number of dimensions D is

given in terms of the Plank length by

16πGD = 2κ2D = (2π)D−3lD−2
p . (1.63)

From (1.62) we can see that for gs >> 1, which corresponds to the IIA theory at strong

coupling, the radius of the 11-th dimension becomes very large (in both string and eleven

dimensional units). Therefore the compactified dimension opens up, and a 11-dimensional

approach should then be used. In this way M-theory can be seen as the strong coupling

limit of IIA superstring theory, not being possible to access that additional dimension while

being in perturbation theory.

On the other hand, the strong coupling limit of the heterotic E8 × E8 superstring

theory is also given by M-theory. Starting again from an 11-dimensional point of view, it is

possible to perform the dimensional compactification in an interval. This compactification

leads to an 11-dimensional space-time which is a slab with two parallel 10-dimensional

faces that break half of the SUSYs, having one set of E8 gauge fields in each face whereas

gravitational fields reside in the bulk. These E8 gauge fields appear in order to cancel

gravitational anomalies [61]. The role played before by the compactification radius is now

played by the length of the interval L, in such a way that

g
2/3
het =

L

lp
. (1.64)

29We are using a mostly plus Minkowski metric, resulting in some sign differences with respect to the

reference [33].
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Figure 1.4: Scheme of the different superstring theories and their interrelations.

To conclude, fig. 1.4 shows the interrelations between the vacua of the different superstring

theories. The numbers 16 and 32 indicate the amount of supercharges preserved by the

vacuum of each theory, N = 1 or N = 2, being the number of space-time SUSYs preserved.

For example in D=10 Majorana-Weyl spinors have 16 real components, and so those su-

percharges can be grouped together in one or two of these spinors depending on the case

(we will study how strings and branes are related to the SUSY algebra in the following

chapter). T-dual and S-dual relations are also shown.

1.4 More on D-branes

We have shown how by acting with T-duality on the open strings, certain p-dimensional

dynamical hyperplanes called Dp-branes appear in different string theories, providing con-

sistent boundary conditions for these strings. D-branes were indeed identified with certain

solitonic solutions already found in SUGRA theories. In this section we elaborate a bit

more on what is known about these objects30, as some of their properties are going to be

relevant later on.

30See [24] for a detailed review on the subject.
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1.4.1 D-branes as BPS states

In supersymmetric theories BPS states are short multiplets of a representation of the su-

persymmetry algebra, preserving a certain amount of SUSY and having the property that

their (invariant) masses are equal to some central charge, being therefore stable and pro-

tected from quantum radiative corrections. Indeed the sole presence of the soliton requires

the extension of the original SUSY algebra, generated by Qα and Q†
β and describing non-

singular and topologically trivial field configurations, to include the central charges Z as a

boundary term31. These central charges are conserved quantities that commute with the

other generators of the SUSY algebra.

BPS states do appear in string theory, well as point-like soliton SUGRA solutions, or

as extended objects, the BPS p-branes. In general, the commutation algebra of the SUSY

charges has the form

{Qα, Qβ} = (ΓµC)αβPµ +
1

p!
(Γµ1...µpC)αβZµ1...µp . (1.65)

It is found that the central charges are given by antisymmetric tensors proportional to the

charges carried by the p-brane solitons. Therefore, the BPS condition relate these charges

with the tensions32 of these branes, that can be regarded as extended soliton solutions

of the effective field theory. A p-form central charge in D dimensions is originated by a

p-brane with charge density

Qp =
1

VS

∫
SD−p−2

⋆F (p+2), (1.66)

where the integral is taken over a (D − p − 2) sphere of volume VS transverse to the

p-brane. For a p-brane extended in the directions i1, ..., ip
33, and after identifying the

p-brane charge density with the magnitude of the p-form central charge per unit volume

of the brane Qp = |Zp|/VDp , the central charge associated is given by

Zi1···ip = Qp

∫
dX i1 ∧ · · · ∧ dX ip . (1.67)

Polchinski [28] related type II p-brane SUGRA solutions to D-branes, which are able to

describe non-perturbative 1
2
BPS states carrying non-trivial RR charges. D-branes break

only half of the N = 2 SUSY of the theory when their tensions saturate the BPS bound

31An explanation can be found in [62].
32The tension of a brane and not its mass is the relevant quantity to work with, as branes can in general

be extended in non-compact dimensions, causing its mass to diverge.
33Only the spatial components Zi1···ip of the p − form central charge are associated to the p − brane.

Z0i1···ip−1 components turn out to be associated to a (D − p)-brane after dualizing them [63, 62].
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[28], in which case some remarkable properties shows up. A non-renormalization theorem

protects the (semi-classical) spectrum of masses and charges of BPS states from quan-

tum radiative corrections to all order in perturbation theory, as long as the corresponding

SUSYs are preserved. These are the special states that we referred to in the advance given

at introducing S-duality, and play a privileged role in order to study supersymmetric the-

ories beyond its low energy limit since their properties cannot depend on any continuous

parameter of the theory (for example, the string coupling gs).Other interesting property of

these BPS states is that the force between such states is zero.

1.4.2 Bosonic effective actions

As we already mentioned, D-branes are hyperplanes with certain dynamics associated.

Indeed D-branes can be deformed and move34 as both open and closed strings are able to

transfer momentum by interacting with them35. We can ask ourselves if it would be possible

to write down certain actions for describing the low energy dynamics of these objects by

taking into account the strings attached. The answer is yes, as we are going to see. At weak

coupling, D-branes can be described by certain low energy (semiclassical) worldvolume

effective actions where the massless modes of the strings attached are restricted to the

worldvolume of the D-brane. In this way low energy Dp-brane dynamics are described by

a (p+1)-dimensional effective field theory of massless fields (scalars, spinors, and vectors).

In the action of the whole configuration is in general possible to distinguish a contribution

coming from the bulk of the strings, and other contribution associated to their extrema,

where the D-branes are

Seff = Sbulk + SD−brane. (1.68)

We are going to only work with bosonic actions in the following. Although fermionic excita-

tions could be taken into account in these formulas, they sometimes increase the complexity

in former calculations so much, that certain results had not even yet been proven when

those superpartners are present. On the other hand, it should be understood that we are

working in type II string theory unless the contrary is indicated, as well as the D-branes

here considered are going to be BPS objects. Non-BPS configurations are introduced in

34Although it is usually difficult to talk about movement if one considers an infinite extended brane.
35Closed strings can also be emitted and absorbed by D-branes, and so they feel gravitational interaction.

One can see this by considering an open string with both ends attached to a D-brane. If both ends join,

the resultant closed string can leave the brane worldvolume and be absorbed by a different D-brane by

the inverse process. This scattering can be computed in terms of open strings by means of the so-called

worldsheet duality transformation, which interchanges σ and τ string coordinates, turning the closed string

exchange (a cylinder between branes) into an open string 1-loop vacuum diagram, a Casimir effect between

D-branes.
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chapter 2.

As a first step, an approximate description of a p-brane can be given by generalizing

the classical dynamics for the trajectory of a point-like particle, in the same way the

Nambu-Goto action (1.3) was already a generalization to a bidimensional surface. An

action minimizing a (p + 1)-dimensional hypersurface associated to a p-brane evolving in

a D-dimensional space-time is given by

Sp = Tp

∫
dp+1ξ

(√
−detGab

)
, (1.69)

where Gab(σ) = gµν(X) ∂aX
µ∂bX

ν (µ, ν = 0, ..., D− 1; a, b = 0, ..., p) is again the pull-back

from the D-dimensional metric to its worldvolume, parametrized by the coordinates ξa.

Nevertheless, by using a so simple action we are not taking into account any of the afore-

mentioned dynamical dof of Dp-branes.

In order to properly describe a Dp-brane at low energies compared to the string scale,

we can construct effective actions by just taking into account the massless modes of the

open strings ending on it, integrating the massive modes. In this manner, in superstring

theories with Dp-branes an effective (p + 1)-dimensional theory of massless fields with

scalars, vectors, and spinors is obtained for them.

Dirac-Born-Infeld action

Let us first just take into account the coupling of the NSNS fields to the Dp-brane, assum-

ing a 10-dimensional space-time and N = 2 SUSY, i.e., type IIA/IIB. This results in a

U(1) gauge supersymmetric theory with a vector field Aa, associated to the endpoints of

open strings, 9− p real scalars Φi (i = p+1, ..., 9), which describe transverse excitations of

the D-brane, and the corresponding fermionic superpartners, a pair of real Majorana-Weyl

spinors ΘAm (A = 1, 2; m = 1, ..., 32) that, as was previously said, we are going to system-

atically skip. More concretely, only 9 − p dof of the original Xµ(ξ) functions describing

the embedding of the brane in the ambient space do propagate, these are the Φi fields. On

the other hand, only 16 of the 32 fermionic dof propagate, from where only 8 turn out to

be independent. The vector gauge field Aa has its origin in the open strings attached to

the Dp-brane, and it provides the rest of bosonic physical dof required by SUSY. This is

because gauge invariance requires two of its p + 1 components to be non-dynamical, and

so it results in a total of (9− p) + (p− 1) = 8 bosonic dof.

The bosonic action describing this interaction between string boundaries and D-branes

was proposed by Leigh [64] who, following some previous works, introduced a non-linear

σ−model in order to describe such a theory in arbitrary massless backgrounds. After one-

loop renormalization, the β−functions obtained lead to certain eom for the background
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fields equivalent to the ones obtained by the so-called Dirac-Born-Infeld (DBI) (or just

Born-Infeld) action in p+ 1 dimensions36. The DBI action for a Dp-brane is37

SDBI = −TDp

∫
dp+1ξ

(
e−ϕ
√
−det (P [G+B2]ab + 2πα′Fab)

)
, (1.70)

where TDp is the tension of the Dp-brane, F = dA is the field strength of the Born-Infeld

vector A associated to open strings, ϕ the dilaton field and B2 the NS 2-form. Usually the

dilaton field is taken to be constant and its contribution is extracted from the integral. In

this way it can be absorbed in an effective tension

TDp =
1

gs(2π)p(α′)(p+1)/2
. (1.71)

The 1/gs dependence of TDp provides a non-perturbative character to D-branes, becoming

very heavy at weak coupling38. This dependence can be deduced from the Maxwell term

− 1
g2

∫
F 2 coming from the expansion of (1.70). The gauge coupling in p+ 1 dimensions g

is proportional to the open string coupling constant gopen, since the gauge field comes from

the open string sector, and this coupling is related to the closed string one gs by gs = g2open.

On the other hand, the numerical factors in (1.71) are computed in [28].

Let us now make use of the so-called static gauge, on which worldvolume coordinates

of the D-brane are identified with p + 1 of the space-time coordinates ξa ≡ xa, by using

the diffeomorphism invariance of the action. In this way, and by relabeling the 9 − p

coordinates remaining as xi ≡ 2πα′Φi, (1.70) takes the more convenient form

SDBI = −Tp
∫
dp+1ξ

(√
−det (gab + (2πα′)2∂aΦi∂bΦi + Fab)

)
(1.72)

where F = B2+2πα′ F is a gauge-invariant combination of B2 and F in the worldvolume39.

Note that, after an expansion of (1.72) in powers of F and for constant dilaton, the first

term corresponds to the generic p-brane action 1.69.

36The original Born-Infeld Lagrangian L =
√
η + χF is an example of non-linear electrodynamics. It

cures the divergence of the electrostatic field of an stationary point-like charge at its origin by smoothing

the field at that region, providing the usual Coulomb field outside.
37The supersymmetric extension of the DBI action was constructed in [65, 66, 67, 68, 69].
38Therefore, in this limit, they can be treated as rigid objects, or when necessary, considered just as

small deformations when interacting with strings. It should be pointed out that other solitonic solutions

in string theories have tensions that grow faster when approaching gs = 0. For example, the NS5-brane

tension is proportional to 1/g2s . Due to this, D-branes have a wider weak coupling regime in which it is

possible to neglect the gravitational backreaction of the background geometry. This gives the D-branes

even more relevance, as they can be useful for probing string geometry. We will come back to this in

chapter 4.
39The concrete gauge transformations of the world volume fields in D-brane actions can be read in [33].
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Chern-Simmons action

RR string excitations are taken into account in the Chern-Simons (CS) or Wess-Zumino

term, which has the following form40 [70, 71, 29]

SCS = Tp

∫
dp+1ξ

(
10∑
n=0

Cn e
F

)
p+1

. (1.73)

The parenthesis in this action indicates that only terms with (p+1)-form total degree must

be considered, so that in general a certain electric coupling to the p + 1 RR form exists,

in addition to some multipole couplings. Note that when considering a background with

vanishing B-field, the expression has the form of an α′ expansion. Let us for instance think

of a D3-brane of the type IIB theory. In that case the CS action is in general given by

SCSD3
= T4

∫
d4ξ

(
C4 + C2 ∧ F +

1

2
C0 ∧ F ∧ F

)
, (1.74)

consistently with the massless RR field content of the theory. Notice that a single D-brane

always couples to RR forms with equal or less degree than its dimensionality. However,

when multiple coincident D-branes are considered higher dimensional couplings can be de-

veloped in certain backgrounds ([75]). This effect is closely connected to a non-Abelian

character exhibited by stacks of coincident D-branes, as we will see in section 1.4.3.

Additionally, when massive IIA SUGRA is considered, couplings to the F0 Romans mass

do also appear in the actions [26, 28, 27, 29] 41. More concretely, the Bianchi identities for

the RR gauge potentials C2k−1 can be violated by adding certain sources ρ

ddC2k−1 = ρ, (1.75)

providing an extra contribution to the CS actions of D(8− 2k)-branes of massive IIA.

Anti-D-Branes

It is possible to define anti-Dp-branes (D̄p) as objects identical to the corresponding Dp-

branes, but with inverted orientation in the worldvolume, such that they can carry opposite

charge with respecto to the RR fields42. In terms of the effective action, this produces a

40An extension of (1.73) considering couplings to a general space-time curvature can be found at [73, 74]
41The M-theoretical interpretation of this F0 Romans mass is not yet fully complete, although some

advances as [60, 72] have been done.
42As well as a D0 particle exists, its antiparticle exits too, but cannot be defined as a D0-brane with

opposite orientation.
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change in the relative sign between the DBI and CS parts of the original action for a

D-brane, so that they continue being 1
2
BPS objects but preserving the other one-half of

the supersymmetries. This implies that coincident interacting Dp-anti-Dp ( (Dp, D̄p) )

configurations break all SUSYs in the theory, eliminating their initial BPS character. This

subject is explained in chapter 2.

1.4.3 Multiple coincident D-branes and Chan-Paton factors

The previously mentioned non-Abelian character of an N D-brane stack is reflected in

the promotion of the worldvolume U(1)N theory of N separated Dp-branes, to a non-

commutative U(N) gauge theory. This promotion is driven by the fact that the initial

transverse scalar fields Φi, which described the position of a single brane in the ambient

space, become matrices when the D-branes are superimposed. In some cases the D-branes

constituting the ground state of the system cannot be treated as individual objects any

longer, forming what is known as a fuzzy manifold.

When considering multiple coincident D-branes, the open strings have freedom to end

on any of the different D-branes. That freedom can be described by “labeling” the string

endpoints. Additional indices i and j account for the fact that the string stretches from a

D-brane j to a D-brane i in the following way

|open string state⟩ ⊗ |ij⟩. (1.76)

If the state is a linear combination of eigenstates of the center-of-mass momentum k, it

can be described by

|k; a⟩ =
N∑

i,j=1

|k; ij⟩ λaij , (1.77)

being λaij Hermitian N×N matrices. These matrices form a representation of a U(N) gauge

group when the normalization Trλaλb = δab is chosen, and are called Chan-Paton factors.

The index i transforms in the fundamental representation of the group, whereas j trans-

forms in the antifundamental representation. In this way, Chan-Paton factors λaij belong to

the adjoint representation of U(N). It is remarkable that such simple non-dynamical dof

lead, from the space-time point of view, to a non-Abelian gauge symmetry. This can be

seen for example by considering a 3-point vertex (fig. 1.5), which contains an extra factor

Trλ1λ2λ3. The sum coming from the internal boundary gives a factor of N that guarantees

scattering amplitudes to be U(N) invariant.

Notice that, since Chan-Paton dof are non-dynamical, they do not show up in the Hamil-

tonian, not affecting the quantization process of open strings.
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Figure 1.5: Chan-Paton factors are non-dynamical, and so the label of an endpoint prop-

agates unchanged along the endpoint worldline. On the other hand one should sum over

all possible index values for internal boundaries.

Figure 1.6: Certain p-branes in type II theories are mapped one into each other under

T-duality. D-branes can be transformed in other D-branes with lower or higher dimen-

sionality, this can be used in order to generalize a result obtained for a concrete system of

D-branes to a generic dimension.

1.4.4 Branes and string dualities, a resume

After having studied D-branes in some more detail and having introduced their correspond-

ing semiclassical effective actions, let us come back to the T- and S- duality transformations

previously introduced in section 1.3 (fig. 1.6 summarizes some T-duality relations among

branes in type IIA and IIB theories.) By using these rules (and by showing how the differ-

ent dualities act on branes it is possible to establish a whole net of duality relations among

them. A summary of these relations can be found in fig. 1.7. Two different options do al-

ways appear when relating M-theory and IIA branes, depending on whether we compactify

on a longitudinal or transverse direction to the brane.
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Figure 1.7: Different relations between branes, GW and KK monopoles of D=10 IIA and

IIB theories, as well as from D=11. Arrows represent dimensional reduction relations,

normal lines T-dualities, and dashed ones S-duality relations.

1.5 The AdS/CFT correspondence

In [20] Maldacena presented his celebrated conjecture. In its strongest form, thatAdS/CFT

correspondence is an holographic strong-weak coupling equivalence between a string the-

ory realization in an d-dimensional Anti-de Sitter background (AdSd) and a conformal

field theory (CFT) living on its (d − 1)-dimensional frontier. This was a very important

result by itself, not only due to its continuously emerging new applications, but because

the correspondence could be revealing something really deep about gravity, as a theory of

gravitation could somehow be encoded in a lower dimensional local field theory.

In [140] ’t Hooft considered the rank N of the gauge group of a U(N) YM theory as a

free parameter, together with the coupling gYM . He realized that taking a large N limit

(N >> 1) and holding the ’t Hooft coupling λ = g2YMN fixed, the diagrams appearing in

the perturbative expansion of the theory came multiplied by N to a certain power, de-

pending only on the genus of the surface they span43. The similarity with the sum over

worldsheet topologies of the string theory perturbative expansion was the first indication

towards the so called AdS/CFT correspondence.

On the other hand, the AdS/CFT correspondence is a manifestation of ’t Hooft holo-

graphic principle [155, 156], according to which all the information of a given volume can

be contained on its boundary. This idea was based in the renowned black hole thermody-

43When N is taken to infinity this ’t Hooft limit is also called planar limit, as in that limit non planar

diagrams (with higher-genus contributions) are suppressed, providing a great simplification.
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namics studies elaborated by Bekenstein and Hawking [157], by which the entropy S (and

therefore the number of dof) of a black hole is proportional to the area A of its horizon

S = A/4G (with G the Newton’s constant). In local field theories one would expect an

entropy proportional to the volume of the horizon, instead to its area. This picture could

be consistent if gravity in d dimensions is equivalent, in some way, to a local field theory

in d− 1 dimensions.

Building on these considerations and on results from Witten [141] and Klebanov [142]

on coincident D-brane stacks, Maldacena conjectured the existence of a duality relation

between certain CFTs and supergravity [20] 44. Indeed, the strongest interpretation of

that initial proposal is an exact equivalence between the whole type IIB string theory

compactified in an AdS5 × S5 space and N = 4 SYM theory on R× S3 with U(N) gauge

group. This proposal should hold provided the following identification is made

4πgs = g2YM =
λ

N
,

L2

α′ =
√
λ, (1.78)

where α′ = l2s and L is the common radius of AdS5 and the S5. Note that the Maldacena

conjecture is a strong-weak coupling duality. As a good understanding of non-perturbative

type IIB string theory is still pending, it could be that a more appropriate perspective is to

look at the N = 4 SYM theory as the definition of that IIB string theory in the AdS5×S5

background.

Although the strongest version of the conjecture is supposed to hold for any value of

N , it is much easier to study it in the planar limit, where from (1.78) the string coupling

constant vanishes. This is the regime of the weak formulation of the AdS/CFT corre-

spondence, in which (in the AdS5/CFT4 case) the planar limit of the N = 4 SYM theory

(N → ∞, λ = g2YMN) is associated to non-interacting strings in the AdS5×S5 background,

and where most efforts have been focusing. Since the initial breakthrough, this version of

the duality has been very well tested by now. Nevertheless, providing a rigorous proof (or

disproof) of its strongest form has not yet been possible (although lots of partial tests and

hints do appear), mainly due to the aforementioned problems of testing any strong-weak

coupling duality and our current ignorance of the strong coupling regimes of both theories.

Proofs in both intermediate coupling regions could be the best way to face the problem,

but this continues to be a really tough task. Additionally, at strong t’ Hooft coupling

(λ >> 1) and large N type IIB string theory on AdS5×S5 is reduced to type IIB SUGRA,

resulting in that free type IIB in AdS5×S5 should be dual to planar N = 4 SYM on R×S3.

On the other hand, its strong-weak coupling nature would make the correspondence an

incredible potential tool in order to explore the darker areas of one side of the duality from

44For a review on this topic, the classic [143] can be read.
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the well known part of the other. Additional dualities between different theories (including

M-theory) have been proposed since the original conjecture45, even advances hinting for

certain non-AdS/non-CFT dualities have also been posed. In this way, in the last years,

the AdS/CFT correspondence has opened an incredibly wide window towards arid areas

as highly coupled QFT systems, usually unreachable by analytical methods46.

Before giving more explicit details about the AdS5/CFT4 duality and the novel ABJM

proposal, let us first briefly describe how branes can create a gravitational background, and

comment on the AdSm×Sn case. After this, we will discuss the role played by particle-like

brane solutions, which are going to be directly related to the research work presented in

chapter 5.

1.5.1 Branes as gravitational sources

It is possible to look for solutions of the previously introduced bosonic type IIA (1.34)

and type IIB (1.36) SUGRA actions containing only the metric gµν , the dilaton ϕ, and

just one of the antisymmetric tensors, say the (p+ 1)-form potential47. Imposing48 space-

time Poincaré invariance in p + 1 directions, rotational invariance in the remaining D −
p − 1 directions, a Minkowski asymptotical limit in the radial direction r → ∞, and the

preservation of half of the SUSYs, it is possible to obtain (in the string frame) a rather

simple metric49 [151]

ds2 = H(r)−1/2ηabdx
adxb +H(r)1/2δijdy

idyj, (1.79)

where H(r) = 1 +
(
L
r

)7−p
, and L is a certain characteristic length scale proportional to√

α′ = ls. There exists a unique p-brane gravitational solution with a given tension Tp
and “electric” charge Qp (w.r.t. the antisymmetric tensor field chosen). For Tp > Qp the

solution appears to have a horizon in the transverse directions, and so it is usually called

black p-brane. In the BPS case, the condition Tp = Qp is satisfied and the solution is called

extremal black p-brane, a denomination clearly inherited from classical black hole physics.

45For instance, the duality between certain 1+1 dimensional relatively well-understood CFT and type

IIB string theory compactified on AdS3 × S3 × T 4 [20]. That CFT was the one that featured in the first

counting of black hole microstates done by Strominger and Vafa [148].
46Numerical approaches such as lattice are the only way to attempt to face the problem.
47It is possible to check [149] that the fields kept do not act as sources for those not taken into account

(see [150] for a review on BPS branes as SUGRA solutions).
48Apart from an “electric” type ansatz for the antisymmetric potential, and a certain ansatz for the

dilaton field.
49We should remark that, in this way, it can also be seen how the generalization of Dirac’s quantization

condition for a p-brane and its EM dual (6− p) brane arises.
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This equality indicates the existence of an exact cancellation between the attractive in-

fluence of the NSNS fields, due to the brane tension Tp, and the repulsive (Coulomb-like)

force of the RR potentials due to the charge Qp. This precise cancellation of forces allows

us to pile up any number of coincident BPS p-branes.

We should note that three different regions appear in (1.79) depending on the radial

distance to the solution r. An asymptotic region r >> L, in which the metric becomes

flat, an intermediate region r < L, in which the deviation from Minkowski space-time is

fast, and a throat region r → 0, where the metric has an apparent singularity (which is

considered to be a horizon, and would correspond to the interior of the black-brane). We

should remark that the region of validity of (1.79) is gsN > 1 , where the characteristic

length scale is greater than the string scale (as gsN < 1 would mean L <
√
α′, and in that

case the characteristic length scale would be less than the string scale, where we do not

expect to trust this solution).

AdSm × Sn spaces from string/M theory

Maldacena [20] conjectured that “the full quantum M/string theory on AdS space, plus

suitable boundary conditions is dual to the corresponding brane theory”. At that point,

he did not specify the boundary conditions in AdS, instead, he made his conjecture based

on an AdS×(spheres) description at large N where it was possible to isolate some local

processes from that boundary conditions question, remarking that the supersymmetries

of both theories do indeed agree as was demonstrated by previous works: Although the

superconformal group has twice the amount of SUSYs of the corresponding super-Poincaré

group [152, 153], a SUSY enhancement near the horizon of extremal black holes was ob-

served [154] by showing that the near throat geometry reduces to those AdS×(spheres)

geometries. In the case of the AdS5 × S5 background, its SUSY group was known to be

the same as the superconformal group in 3+1 dimensions [152].

More concretely, in string theory and M-theory it is possible to generate AdSm × Sn

backgrounds in the near horizon limit of certain brane stacks. For maximal supersymmetry

the possible values for the (m,n) pair are: (5, 5), by considering a stack of type IIB D3-

branes, and (4, 7) or (7, 4) in M-theory, by considering an stack of M2 or M5 branes

respectively. The general metric for those spaces can be written as

ds2 = ds2AdSm
+ ds2Sn , (1.80)

with

ds2AdSm
= −

(
1 +

r2

L̃2

)
dt2 +

dr2(
1 + r2

L̃2

) + r2dΩ2
m−2, (1.81)
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and

ds2Sn = L2
(
dθ2 + cos2θ dϕ2 + sin2θdΩ2

n−2

)
. (1.82)

Here dΩm−2 and dΩn−2 are the metrics of a unit Sm−2 and Sn−2 respectively. The unit

metric of a Sd can be written as

dΩd = dα2
1 + sin2α1

(
dα2

2 + sin2α2(· · ·+ sin2αd−1dαd

)
. (1.83)

Given that the branes source the background, certain p-form fluxes exist with potentials

given by

Ctα̃1···α̃m−2 = −r
m−1

L̃

√
|g̃α|, (1.84)

in the AdSm part (tilded quantities are related to AdS), and

Cϕα1···αn−2 = βnL
n−1sinn−1θ

√
|gα|, (1.85)

in the Sm. gα̃ and gα are respectively the unit metric over the spheres parametrized by

α̃i and αi. The coefficient βn of the magnetic potential is responsible for the potential

sign, being β4 = 1, β5 = 1, β7 = −1 its possible values. On the other hand, L and L̃

are respectively the Sn and AdSm radius, which are related by L = n−3
2
L̃, and depend on

the number of branes that source the background. In the AdS5 × S5 case, we have that

L4 = 4πgs(α
′)2N , where N stands for the number of D3-branes in the stack, and so both

the radius of the AdS and the sphere are controlled by the total number of D3-branes that

source the background.

In addition to the global parametrization (1.81) of AdS, a suitable local coordinate

system called Poincaré coordinates (u, t, x⃗) can be used. In these coordinates, the AdSm

space-time metric takes the following form50 [143]

ds2 = R2

(
du2

u2
+ u2(−dt2 + dx⃗2)

)
, (1.86)

from where it can be more easily seen that AdS spaces have two quite special limits, di-

rectly related to the coordinate u. This u coordinate sets the scale of the Minkowski part of

the metric (1.86). One possible limit, u→ 0, completely contracts the Minkowski space to

a point, while the other one, in which we take the u coordinate to u→ ∞, and so blowing

up the size of the Minkowski subspace, takes us to the so-called boundary of AdS. It is in

this AdS boundary where the stack of branes that source the background is located and

50In this form of the AdS metric, the subgroups ISO(1,m−2) and SO(1, 1) of the SO(2,m−1) isometry

are manifest. ISO(1,m−2) is the Poincaré transformation on (t, x⃗) and SO(1, 1) ( (u, t, x⃗) → (c−1u, ct, cx⃗))

is identified with the dilatation transformation D in the conformal symmetry group of R1,m−2 by the

AdS/CFT correspondence.
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so the corresponding CFT.

Type IIB SUGRA has only two maximally SUSY vacua: flat Minkowski space, and

the AdS5 × S5 background just presented [37]. On the other hand, in order to consider a

probe D3-brane in the AdS background instead of being part of the source stack, which is

extensively used for diverse purposes in the context of the correspondence,we refer to the

initial works of Metsaev and Tseytlin [146, 144]. On the other hand, actions correspond-

ing to the M2-brane and the M5-brane in an AdS4 × S7 and AdS7 × S4 background were

derived in [145].

1.5.2 The AdS5/CFT4 duality

Before giving more details on the AdS5/CFT4 correspondence, let us just sketch some

relevant information about the 4-dimensional N = 4 SYM CFT with U(N) gauge group.

4D N = 4 SYM

The U(N) N = 4 SYM theory has the maximum number of supercharges in 4 dimensions,

and its Lagrangian is completely determined by SUSY:

L ∼ N

λ
Tr

(
1

4
F2 +

1

2
(DµΦm)

2 − 1

4
[Φm,Φn]

2 + · · ·
)
. (1.87)

The field content of the theory is given by an U(N) gauge field Aµ, 4 fermions Ψa
α, and

6 scalars Φm. The theory has an (exact) global superconformal symmetry PSU(2, 2|4),
and three unrenormalized (due to the conformal invariance) couplings λ,N, θtop. The su-

perconformal group is composed by the conformal symmetry group in 4D SO(4, 2) 51, and

a global SU(4) ∼= SO(6) R-symmetry52 which rotates the scalars and fermions of the theory.

The theory has a lot of interesting simplifying properties in its planar limit, many of

those under continuous development at the moment, although we are not going to detail

them.

51SO(4, 2) includes Poincaré invariance, scale transformations, and an special conformal transformation

which includes the inversion symmetry xµ → xµ

x2 .
52Generically, an R-symmetry is just a symmetry that commutes with SUSY (i.e., transforms the different

supercharges into each other). In extended SUSYs, as in this case, the R-symmetry group is non-Abelian.
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The correspondence

The subgroup SO(4, 2) of the global PSU(2, 2|4) symmetry of 4-dimensional N = 4 SYM

is (locally) the isometry group of the AdS5 space-time. On the other hand, SO(6) happens

to be the isometry group of S5.

We have already seen that the near horizon limit of N D3-branes has an AdS5 × S5

geometry, which is a valid description for great values of gsN (R >> ls). Note that this

is a closed string description, as the graviton particle in string theory is a closed string

state. On the other hand, we have also seen that the low energy worldvolume dynamics

of a system of D-branes generates a U(N) gauge symmetry for the theory of open strings

attached, which in this case, is going to have N = 4 SUSY. This later point of view is valid

in the perturbative regime, for low values of gsN . In the gravitational description, people

observed that by getting closer to a black brane horizon of an N D-brane stack, the large

gravitational field produces a redshift in the brane excitations seen from the far transversal

region, in such a way that only the highly energetic modes do get to there, and they do it

as low energy modes. In this way, for large N , the strongly coupled CFT in the boundary

is associated to low energy excitations in the bulk of AdS space (and so the AdS/CFT

correspondence appears as a consequence of the duality between open and closed strings).

Indications of this came from calculations of low energy graviton absorption cross sections,

in which gravity and SYM calculations do agree53.Additionally, in using this picture it is

important to keep in mind that the AdS boundary is at spatial infinity, and although it is

possible for a light ray to go and come back in a finite time, massive particles can never

get to there.

Maldacena, in its initial proposal [20], did not yet provide a map between AdS and

CFT quantities. That map came with [19, 28], and made the correspondence much more

explicit. For illustration, let us just consider the bosonic dof here. Considering a free

scalar field ϕ with mass m moving in AdS, its Klein-Gordon equation has two linearly

independent solutions behaving as

e−∆r, e∆−4r, (1.88)

in the r → ∞ limit, and having that ∆(∆− 4) = m2. The coordinate r is defined in terms

of the u Poincaré coordinate of AdS that we used in (1.86) by u = er. If we now consider

a SUGRA solution with the following condition for the fields at the boundary

ϕ(r, xµ) ∼ ϕ0
i (r, x

µ)e(∆−4)r, (1.89)

53Inspired in calculations of D1-D5 systems.
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then the AdS/CFT map is given by

exp
(
−Γsugra(ϕi)

)
=

⟨
exp

(∫
d4xϕ0

iOi

)⟩
. (1.90)

The LHS of the equality represents the SUGRA action evaluated on the classical solu-

tion given by ϕi, whereas the RHS is a generating function of correlation functions in the

SYM theory. Indeed, at the LHS of (1.90) we should be using the full string theory parti-

tion function subject to the relevant boundary conditions (this SUGRA version is only its

saddle-point approximation). We should note that there should be a YM operator Oi for

every ϕi in AdS. On the other hand, it is possible to show that this operator needs to have

conformal dimension δi. We have restricted to the scalar fields ϕi, but the full AdS/CFT

correspondence should involve all the AdS dof.

In this way, under the correspondence, the gauge-invariant local operators of the con-

formal theory are associated to certain states in the string theory side, and their conformal

scaling dimensions ∆ are associated to the energy of the stringy states. The dilatation

operator corresponds to a non-compact generator of the global symmetry group, that can

get quantum corrections and depends on the coupling constant. The rest of the charges are

discrete and correspond to angular momenta of certain string states moving in non-trivial

cycles of the geometry.

More concretely, in order to avoid the problem of testing a strong-weak coupling du-

ality, the early tests were realized working with the chiral primary operators54 Tr ZJ1 , Tr

Y J2 , Tr XJ3 [173, 21], being Z, Y , X complex linear combinations of the scalar fields of

the SYM theory. Each of these linear combinations has a single unit of R-charge, J1, J2
and J3 respectively. The importance of these operators is that they are BPS, and because

of that, their scaling dimensions are protected by supersymmetry, so that they do not

receive quantum corrections and are independent of the value of the ’t Hooft coupling λ
55. Due to this, it is possible to compare them directly to classical string energies in the

λ >> 1 limit. Their dual string states turned out to be point-like particles rotating along

a great circle of the S5 from AdS5×S5 with angular momentum J1, J2 and J3 respectively.

Berenstein, Maldacena and Nastase [158] proposed to study operators with a very large

R-charge J = J1 with the idea of turning the perturbative expansion of the gauge theoret-

ical conformal dimension ∆ in a power series with corrections scaling as higher powers of

1/J (this was called BMN scaling). This spectrum could be maintained well-behaved even

54Chiral primary operators are those with minimal conformal weight. We refer to [147] for an introduc-

tion to CFTs with applications to string theory .
55Massive string modes correspond to operators in long multiplets with dimensions diverging for large

λ, and therefore, the stringy nature of the dual picture is hard to guess due to the decoupling of the

non-chiral operators, which constitute the large majority of possible gauge invariant operators.
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at strong coupling and compared to perturbative string energies. Following that, it was

possible to reproduce at one loop and leading order in J the quantum spectrum of certain

gravity states. Something very remarkable was that, following very general arguments in

the CFT side, families of quiral primaries expected to have an infinite number of elements,

are instead truncated and finite. By relating (via R symmetry of the CFT) the charge

of these operators with the angular momenta of the aforementioned stringy states, one

deduces that their angular momenta have to be bounded from above. This is the so-called

string exclusion principle [204], and is understood in terms of giant graviton states cor-

responding to certain D-branes moving inside an Sr part of the geometry, stable as their

tensions equal their charges, and seeing as point-like objects from outside the compact

space in which they move. These states turns out to have their momenta associated to

their radius, and being the Sr a compact space, the hole picture makes sense.

Quarks and duality

A Wilson loop is a is a quantity defined by the trace of the path-ordered exponential of a

gauge field transported along a closed loop in space-time. In a Yang-Mills theory

W (C) = 1

N
TrPei

∮
c A, (1.91)

where Tr stands for the trace taken over the fundamental representation and P is the

path-ordered operator. We can view the Wilson loop as the phase factor associated to the

propagation of a very massive quark in the fundamental representation of the gauge group.

Its vev gives the quark-antiquark (qq̄) potential, making this quantity a valuable tool for

example, to study whether a theory is confining or not. N = 4 SYM has no dynamical

quarks, although it is still possible to introduce static quarks and compute the appropriate

Wilson loop to obtain the qq̄ potential.

The problem of computing static Wilson-loops in N = 4 SYM in the ’t Hooft limit is

mapped, under the AdS/CFT duality, to the problem of minimizing the classical action

for a string that extends into the radial direction and connects the quark and antiquark at

the AdS5 boundary (fig. 1.8) [161]

W (C) ∼ e−S. (1.92)

Taking this into account a Wilson loop can be computed both at weak ’t Hooft coupling,

directly in the field theory [160], or at strong ’t Hooft coupling in the gravity side of the

correspondence [161, 162]. An agreement is found as in both regimes the qq̄ potential turns

out to be proportional to 1/d, being d the separation between quark and antiquark. This

particular coulombian shape exhibits no confinement, which is related to the conformal
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U=0

U= 8

Figure 1.8: REHACER FIGURA The string worldsheet ends in the contour C on the AdS

boundary.

invariance of the theory56.

It was already shown in [161, 162] that fundamental strings ending on the D3-brane

and going all the way to the AdS boundary are seen as external quarks or antiquarks in

the dual theory, depending on the strings orientation. We can consider a U-shaped string

with both ends attached to the boundary. That would be seen as a qq̄ pair on the field

theory side. It is remarkable how, after so many advances in string theory, the fundamental

string (in AdS) ends up identified with the QCD string of YM theory, which motivated

the initial development of the theory as an effective way for describing strong interaction.

On the other hand we can ask ourselves how to study more realistic CFTs, i.e. with

confinement and no SUSY, similar to QCD. There are different ways of breaking SUSY,

one example is to consider a certain orbifolding that produces the SUSY breaking, as oc-

curs with the conifold, at which tip SUSY is broken57.

56Confinement breaks the conformal invariance of a theory by the introduction of an energy scale, below

which, quarks form bound states. In QCD that scale is λQCD ∼ 200MeV , obtaining a conformal theory

in its chiral limit.
57Additionally in this case, by smothering the shape of the conifold we can obtain a linear potential for

the qq̄ pair ending on the AdS boundary, and henceforth, confinement [177].
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Towards a theory of coincident supermembranes

In the last three years important progress have taken place in understanding the world vol-

ume theory of coincident supermembranes of M-theory in the context of the AdS4/CFT3
correspondence. These interacting superconformal CFTs are expected to be Chern-Simons

gauge theories coupled to massless matter [176]. These highly supersymmetric three dimen-

sional CFTs are of interest in the description of some conformal fixed points in condensed

matter systems. Their high degree of SUSY makes them more solvable, and can be used

as toy models for certain studies.

The theories initially studied had N ≤ 3 supersymmetry, thus not meeting the required

amount SUSY for describing theory of M2-branes (the M2-branes exhibit anN = 8 SUSY).

Nevertheless a significant advance in that direction occur. Bagger and Lambert [178] (and

independently [179]) constructed a theory with N = 8 supersymmetry that was conjec-

tured to be related to a specific theory of M2-branes; however, it only described correctly

two M2-brane systems. More details about this and the more general ABJM proposal are

given in chapter 4.
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Summary

We are going to present two independent research works in the area of string theory,

each one presented in a separate part of this thesis (parts I, II). The following chapters are

organized so that each part contains one chapter (chapters 2, 4) briefly introducing rele-

vant advances related to the correspondent research, that appears in the very next chapter

(chapters 3,5). The researches are presented merely as an adaptation of the original arti-

cles. Conclusions are given separately at the end of each part of the thesis. A summary of

the following chapters is presented below.

Part I

Chapter 2:

In this chapter we introduce certain unstable non-BPS brane configurations, the non-

BPS Dp-branes and the (Dp, D̄p) systems. Their instability is reflected in the presence

of tachyonic modes in their string spectra. These tachyonic modes can decay (‘condense’)

giving rise to a new configuration, which can in turn be stable or not. The boundary state

formalism is introduced, as well as an effective potential approach, in order to tackle the

problem.

Chapter 3:

This chapter is an adaptation of [22]. In this work, made in collaboration with my

supervisor Y. Lozano, we present a worldvolume effective action suitable for the study of

the confined phase of a (Dp, D̄p) system at weak coupling. We identify the mechanism

by which the fundamental string arises from this action when the Dp and the D̄p annihi-

late. We also construct an explicit dual action, more suitable for the study of the strong

coupling regime. Our dual description indicates that the condensing tachyonic objects

originate from open D(p− 2)-branes stretched between the brane and the antibrane.



Part II

Chapter 4:

In this fourth chapter we present the most relevant results from the particle-like branes

appearing in relation to the AdS/CFT conjecture. These configurations are made of branes

living in the bulk of AdS and a certain number strings stretched all the way to the bound-

ary, where they are seen as external quarks. We review the stability study of the baryon

vertex in the AdS5 × S5 background and how this configuration was generalized by intro-

ducing a magnetic flux. We also comment on the Di-baryon configurations that appear in

the same context. Finally, we explain the basis of the ABJM theory, an AdS/CFT proposal

realized over an AdS4 space and related to a three dimensional supersymmetric CS matter

theory. A review of the particle-like branes appearing in this theory let us lay the ground

for the research presented in chapter 5.

Chapter 5:

Here we present the research work [23] in which we study the effect of adding lower

dimensional brane charges, generalizing the particle-like brane configurations of AdS4×P3

introduced in the previous chapter. We show that these configurations require additional

fundamental strings in order to cancel certain worldvolume tadpoles appearing. A dynam-

ical study reveals that the charges must lie inside some interval in order to find well defined

configurations, and for the baryon vertex and the di-baryon, the number of fundamental

strings must also lie inside an allowed interval. As our configurations are sensitive to the

flat B-field recently suggested in the literature, we make some comments on its possible

role. We also discuss how these configurations are modified in the presence of a non-zero

Romans mass.



Part I

Tachyon condensation, confinement

and non-perturbative phenomena in

(Dp, D̄p) systems





Chapter 2

Non-BPS D-branes, (Dp, D̄p) systems

and tachyon condensation

In the previous chapter we have shown what the BPS Dp-branes are and how they appear

in certain string theories. We are now going to consider non-BPS configurations, which

stability is no longer assured by SUSY. Directly related to this stability is the process

known as tachyon condensation, which can take place in a system containing tachyons

in their string spectra. In this process a tachyonic mode which is initially in a relative

maximum or a saddle point of a certain potential rolls down towards a stable classical

minimum, in a way analogous to the spontaneous symmetry breaking (SSB) mechanism in

QFT. The process is known as the “condensation” of the tachyon, by which the unstable

initial configuration can decay into a different one, that can in turn be stable or not. Is in

this context in which the research work presented on chapter 3 was done. In order to study

the tachyon condensation phenomena, we will introduce the boundary state formalism and

the effective potential approach for the tachyonic modes.

Non-BPS configurations and unstable systems are also interesting for various reasons in

string theory, beyond the simple search for stability. For example (Dp, D̄p) systems, apart

from having been widely used in the literature in the study of string theory in time depen-

dent backgrounds, they have also been used more recently in the study of chiral symmetry

breaking in holographic models of QCD [100, 101, 102, 103].It should be emphasized that

states which are not BPS can be stable due to charge conservation (a pedagogical review

on this topic can be seen in [82]). In most cases the description of these states in the strong

coupling limit remains unknown, although in some cases string dualities do enable us to

identify the strongly coupled states and calculate their masses [81]. On the other hand,

there are configurations unstable due to the presence of tachyonic modes in the system,

for example, the bosonic string due to the existence of the closed string tachyon. In a sim-

ilar fashion, tachyonic open strings ending on unstable non-BPS D-brane systems do also

appear in superstring theories. More concretely, non-BPS DD̄ systems have been widely
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used in the literature in the study of string theory in time dependent backgrounds1.

As we had previously mentioned, an anti-Dp-brane is a 1/2 BPS object preserving the

half of SUSYs broken by the corresponding 1/2 BPS Dp-brane. On top of that, they

have opposite charges, and therefore when considering a pair of coincident Dp and D̄p

the total charge of the configuration exactly vanishes. In this way, when interactions are

taken into account (so that each one cannot be taken as an independent object anymore),

SUSY becomes completely broken and with zero total charge nothing prevents the branes

to annihilate each other. At low energies, this instability is realized by the presence of

tachyonic modes in the open strings connecting brane and antibrane. One can start to

separate the (Dp, D̄p) pair until the system gets close to be decoupled, which is usually

called BPS limit. In that limit, interaction between branes practically vanishes and so it is

possible to neglect its effect in their separate effective actions, and hence recovering SUSY.

If that distance is not too large in comparison to the string scale, open massive strings will

stretch between the two2.

On the other hand, we had observed that in type IIA (IIB) there are only odd (even)

RR forms. As suitable RR fields are needed in order to form the CS term of the SUSY ac-

tion for a Dp-brane, Dp-branes with odd (even) p in type IIA (IIB) are not BPS nor stable,

as they do not preserve any RR charge; these non-BPS Dp-branes are said to have wrong

p. The instability of those systems is again reflected in the presence of tachyonic modes

in the open strings attached, in this case, strings with both ends ending in the unstable Dp.

The existence of tachyons in a physical system is a reflection that the configuration

is settled in a relative maximum or saddle point of the potential. In that case, one has

to search for a stable solution at some relative minimum in order to be able to make a

perturbative treatment, as happens with the Higgs mechanism in the SM. For the tachyons

appearing in the low energy spectrum of the bosonic string, a fully satisfactory interpre-

tation has not been found yet. The vacuum itself seems to be unstable, and it is not even

known whether a minimum of the corresponding tachyonic potential exists. The corre-

sponding open string tachyons have been understood in the previous terms, however the

problem of the closed string tachyon appearing after quantization of the bosonic string

remains unsolved.

1For an extensive review on the subject see [90], whereas a shorter and very clear introduction can be

found in [91].
2If the distance separating the branes becomes too large in string units, a perturbative treatment would

not be possible. On the other hand we can also imagine the opposite case, with brane and antibrane getting

closer to each other and recovering the massless open strings with tachyonic modes in their spectra. Indeed,

the open strings themselves tend to approximate the branes to each other as they tend to minimize its

area.
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2.0.3 Motivation

In the late 90’s, a new framework was developed in which D-branes can be understood as

topological solitons in the worldvolume of unstable brane configurations of higher dimen-

sionality [89, 92]. It is remarkable that, through a hierarchy of embeddings (the so-called

brane descent relations), a complete classification of D-brane charges in terms of K-theory

groups [92, 93] was possible in this way. As we are going to see, (Dp, D̄p) systems can

decay into a SUSY D(p− 2) stable brane, or into a non-SUSY D(p− 1)-brane. Depending

on the theory considered, this D(p − 1)-brane can be stable of not. In Type II theories

this brane is going to be unstable, able to decay into a SUSY D(p− 2)-brane. In turn, in

type I the D(p−1)-brane resulting from the (Dp, D̄p) system annihilation can be stable, as

happens with the D0-brane coming from an unstable (D1, D̄1) pair. This has been used to

provide a test, not based on SUSY, of the duality between type I and the heterotic SO(32)

superstring theories. We will show this more explicitly below, but we should mention that

there are other similar results in testing non-perturbative dualities in string theory beyond

the BPS limit, related to orbifold compactifications, for example in testing the S-duality

symmetry of type IIB theory [81].

Usually, one looks at the BPS states in order to test a non-perturbative duality relation.

As we have discussed, they are stable and protected by quantum radiative corrections. In

this way their properties can be studied perturbatively at weak coupling and be safely

extrapolated to strong coupling, and reinterpreted in terms of non-perturbative configura-

tions of the dual theory. However, non-perturbative tests based on BPS states are really an

evidence for a duality conjecture, or just unavoidable results dictated by supersymmetry?

In order to clarify this, any non-perturbative tests of the string dualities beyond the BPS

limit are key. Nevertheless, stable non-BPS states do receive quantum corrections, and so

identifying the strong coupling states is a much more complicated task.

An interesting work in testing the S-duality between the heterotic SO(32) and the

type I theories at a non-BPS limit was carried out by Sen in [86, 87]. Certain massive

perturbative states, stable but not BPS, exist in the heterotic SO(32) theory. They are

stable because they are the lightest states carrying the quantum numbers of the spinorial

representation. However, the dual of these states remained unknown until it was found

out that a (D1, D̄1) pair carries the same quantum numbers of the spinor representation

of SO(32). Although this (D1, D̄1) system is unstable, the condensation of its tachyonic

mode gives rise to a non-BPS D0-brane, which in type I is stable. This is the S-dual of the

states in the spinorial.

As non-BPS D-branes are non-supersymmetric objects, another topic in which the

tachyonic condensation may be useful is in getting results about non-SUSY gauge theories
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via the AdS/CFT correspondence (which is going to be introduced in chapter 4). For

example, Drukker, Gross and Itzhaki [83] constructed unstable classical solutions of N = 4

SYM and found their dual unstable states in type IIB in AdS5 (an unstable D0-brane

located at the AdS center). This kind of studies are non-SUSY tests of the AdS/CFT

duality, however, some problems exist related to the SUGRA solutions.

2.0.4 (Dp, D̄p) systems

As we have mentioned (Dp, D̄p) systems are unstable due to the presence of a tachyonic

mode in the open strings connecting brane and antibrane. In order to see this, let us make

use of the boundary state formalism [84]. In this formalism, a stable SUSY Dp-brane is

represented by a boundary state

|Dp⟩ = 1√
2
(|Dp⟩NSNS + |Dp⟩RR) , (2.1)

representing a source for both NSNS and RR closed strings states emitted by a Dp-brane.

By taking the GSO projection into account, the NSNS sector has the form

|Dp⟩NSNS =
1

2
(|Dp; +⟩NSNS − |Dp;−⟩NSNS) , (2.2)

where |Dp;±⟩NSNS represent the two possible implementations of the fermionic boundary

conditions appropriate for a Dp-brane

(ψa ∓ iψ̃a)
∣∣∣
τ=0

= 0 ; (ψi ± iψ̃i)
∣∣∣
τ=0

= 0 . (2.3)

Similarly, for the RR sector we have

|Dp⟩RR =
1

2
(|Dp; +⟩RR − |Dp;−⟩RR) . (2.4)

Projecting with (−1)FL

We are now going to see that, acting with the (−1)FL proyection (where FL stands for the

left-moving space-time fermion number operator), we can relate different BPS and non-BPS

D-brane systems. The boundary state formalism can be used to compute the spectrum of

the open strings that begin and end on a Dp-brane. The closed string exchange between

two Dp-branes (2-point function tree level cylinder amplitude) can be rewritten as a trace

over open string states3 (annulus amplitude). The NS sector is then GSO projected with4

3A modular transformation τc → τa = 1/τc maps the length τc of the cylinder described by the closed

strings into the modular parameter of the annulus τa spanned by the open strings.
4The modular transformation maps the contribution coming from the exchange of RR states into the

contribution of the NS (−1)F sector of the open strings. The sum of the NSNS and RR sector of the closed

string is then equivalent to the NS sector of the open string with the usual GSO projection.
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1+(−1)F

2
. Therefore, the NS sector ground state, which by convention is taken (−1)F -odd,

is projected out and there is no tachyon, resulting in a SUSY spectrum for the open strings

in that case.

Now, if the closed string exchange takes place between a Dp and a D̄p, we have the

same sign for the NSNS sector closed string exchange and opposite sign for the RR one

(it is proportional to the product of the RR charges of the two branes), which implies

a GSO projection operator for the NS sector5 1−(−1)F

2
. Therefore, the NS sector ground

state, which is tachyonic, is not projected out in this case, and both the DD̄ and D̄D open

strings contain tachyonic excitations. An open string state in this system is characterized

by a Chan-Paton (CP) factor, which we take to be(
1 0

0 0

)
for a (pp) string,

(
0 0

0 1

)
for a (p̄p̄) string,(

0 1

0 0

)
for a (pp̄) string,

(
0 0

1 0

)
for a (p̄p) string.

(2.5)

In this way the tachyonic states are

|t⟩ = |ka⟩NS ⊗
(
0 1

0 0

)
,

|t̄⟩ = |ka⟩NS ⊗
(
0 0

1 0

)
,

(2.6)

being |ka⟩NS the NS ground state (which is a complex field as it comes from two sectors),

or

|T ⟩ = |t⟩+ |t̄⟩ = |ka⟩NS ⊗ σ1 ,

|T̄ ⟩ = |t⟩ − |t̄⟩ = |ka⟩NS ⊗ iσ2 .
(2.7)

being σi the Pauli matrices.

Now, let us look at the action of (−1)FL . Suppose that we start, for definiteness, in

type IIA. It is well known that orbifolding type IIA by (−1)FL gives type IIB [85]. Since

(−1)FL reverses the sign of the left-moving space-time fermions, it reverses the sign of all

RR fields, and so maps a Dp into a D̄p and vice versa. Therefore the (Dp, D̄p) system is

invariant under (−1)FL . If we project out by (−1)FL ((−1)FL = σ1 over the CP factors, as

5One can say that the requirement that a cylinder diagram can be reinterpreted as an annulus diagram

through a modular transformation fixes the type of GSO projection that one has to perform on the various

open strings.
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it exchanges brane and antibrane), we have(
1 0

0 0

)
(−1)FL

−−−−→
(
0 0

0 1

)
;

(
0 1

0 0

)
(−1)FL

−−−−→
(
0 0

1 0

)
;(

0 0

0 1

)
(−1)FL

−−−−→
(
1 0

0 0

)
;

(
0 0

1 0

)
(−1)FL

−−−−→
(
0 1

0 0

)
.

(2.8)

Due to this, the only states that are invariant under (−1)FL are those with CP factors

commuting with σ1, i.e. 1 and σ1. States with CP factor 1 come from pp and p̄p̄ open

strings, with the right GSO projection. The states with CP factor σ1 come from pp̄ and

p̄p open strings, with the wrong GSO projection.

In that way, schematically the two contributions to the NS sector are

1

2
(NS +NS(−1)F ) +

1

2
(NS −NS(−1)F ) = NS. (2.9)

The resulting configuration is non-supersymmetric. It defines a non-BPS type IIB Dp-

brane6. From the point of view of the closed strings, the fact that the contribution of

NS(−1)F is missing in (2.9) means that there is no RR sector for the closed strings.

Therefore the non-BPS Dp-brane does not carry RR charge. There are other interesting

properties that can be easily deduced from here. For example the open strings ending on

this non-BPS Dp can carry CP factors 1 or σ1, and those with σ1 contain a tachyonic

excitation as well, which in this case is real. On the other hand, the tension for the non-

BPS Dp (|Dp⟩ = |Dp⟩NSNS) can be calculated as compared with the tension for a BPS Dp

(2.1), obtaining a
√
2 factor of difference

T���BPS Dp =
TDp√
2
=

1

gs
√
2(2π)p(α′)(p+1)/2

. (2.10)

Let us now mod out the non-BPS Dp-brane by (−1)FL again, as since it does not carry

RR charge, it is invariant under that projection. In this case the effect of (−1)FL is not

clear, because it does not exchange brane with antibrane. The CP factors of both type of

strings survive the projection, however

1

2
(NS +NS(−1)F ) +

1

2
(NS −NS(−1)F ) = NS. (2.11)

The states represented in the first of the two terms in the LHS of (2.11), coming from

open strings with CP= 1, do survive the projection, as one can check by looking at 2-

point functions. < BµνAρ > does not vanish, and so Bµν is even iff Aµ is even, and this

6In order to see that it describes a single object and not a pair, one must check that the additional

dof appearing when separating the two branes reside in the sector with CP factor σ3, and therefore it is

projected out by (−1)FL .
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Figure 2.1: Subsequent actions of the (−1)FL projection in a (Dp, D̄p) type II system

remove the tachyon instability.

field comes from the open strings with CP= 1 (this can be checked in full generality).

Regarding the other states, we can look at the 2 point functions < Cp+1T >, which is

also non-vanishing, and therefore Cp+1 is odd iff T is odd, and this field comes from the

open strings with CP= σ1. As states with CP= σ1 are odd under (−1)FL , these modes are

projected out, and we find, finally, the states associated to a BPS Dp-brane

1

2
(NS +NS(−1)F ). (2.12)

Hence, summarizing, we have that subsequent actions of (−1)FL remove the tachyonic

instability. A first non-BPS tachyonic Dp-brane appears in the other type II theory after

projecting the (Dp, D̄p) system by (−1)FL . In this way, there are non-BPS Dp-branes with

p odd (even) in IIA (IIB). These non-BPS Dp-branes are such that after another (−1)FL

projection, a BPS Dp-brane appears in the initial type II theory (fig. 2.1).

Let us now see that there are other connections between these objects, that appear

after tachyon condensation, as can be seen in fig. 2.2. The analysis of the action of (−1)FL

in (Dp, D̄p) systems is useful in order to define non-BPS Dp-branes, however, it is more

interesting to study how non-BPS D(p − 1)’s are obtained from (Dp, D̄p) systems in the

same theory, and D(p−2)’s from non-BPS D(p−1)’s, via tachyon condensation, since this

is giving rise to the brane descent relations (the vertical arrows in fig. 2.2).

Implications of duality

At strong coupling the instability of these (Dp, D̄p) systems should be manifested through

the existence of tachyonic modes in open D(p − 2)-branes stretched between the Dp and

the anti-Dp or with both ends on a non-BPS Dp-brane. This is indeed an implication

of the S-duality symmetry of type IIB theory. This can be seen, for example, taking a

(D3, D̄3) pair with an F1 connecting the branes and applying an S-duality transformation
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Figure 2.2: Net of different BPS and non-BPS configurations in type IIA and type IIB

theories related via T-duality, (−1)FL projection, and tachyon condensation.

to it. This transformation acting on a D3 has no effect, given that under S-duality type

IIB fields can be transformed in the following way [33]

g → 1

g
, B2 → C2, C2 → −B2, C4 → C4, (2.13)

(i.e. a D3 transforms as an SL(2,Z) singlet) but the S-dual of a fundamental string is

a D1-brane. The result will be a (D3, D̄3) system with a tachyonic D1-brane stretched

between both, as it is showed schematically in fig. 2.3. A T-duality generalization implies

that the (Dp, D̄p) system should contain tachyonic open D(p−2)-branes stretched between

them.

Tachyon condensation

In order to know if a tachyonic instability is an incurable problem of the unstable system

considered, or on the contrary, we are just expanding the tachyonic field around a false

vacuum, one should compute the tachyon potential. In this section, we are going to com-

ment on some useful results from string field theory (SFT) that allow for the construction

of effective actions for the previous unstable systems.
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Figure 2.3: The (D3, D̄3) system is self-dual under S-duality whereas the F1 is transformed

into a D1 and vice versa.

As it is explained in [90], some properties of the tachyonic fields can be deduced from the

analysis of the S-matrix at tree level, such that the real tachyon field T in the open strings

attached to non-BPS branes has m2 = −1/2 (α′ = 1) and it is Z2 invariant (T → −T ). On

the other hand, the two real tachyons of the (Dp, D̄p) system (one going from the brane to

the antibrane and the other going from the antibrane to the brane) that can be combined

into a single complex (tachyonic) field, also have m2 = −1/2, in this case respecting a U(1)

invariance (T → eiαT ). SFT results are important for studying the tachyon condensation

process7, although the tachyon mass-squared is of the order of the string tension and so

there is no systematic way for computing the effective potential V (T ) (usually calculated

in perturbation theory as an expansion in α′). Such potential would be created by the

branes to which the endpoints of those open strings belong.

Sen demonstrated ([88]) that the tachyon condensation process in a (Dp, D̄p) system

can occur as the total energy of the pair, which is twice its tension, is exactly cancelled

by the negative value of the potential, giving a zero-energy configuration and resulting in

the annihilation of the pair. An equivalent situation appears with a non-BPS brane, as

can be seen in fig. 2.4. It is also inferred that the non-BPS (real) tachyon potential should

have two minima, whereas the (complex) brane-antibrane tachyon potential should have

a continuous ensemble of vacua parametrized by eiα. Moreover, SFT results reflect that,

in order to describe correctly these systems, the contribution of the tachyonic potential to

the effective action must be of the following form when all the massless fields are set to

zero (assuming a space-time independent field configuration)

Seff = −
∫
dp+1ξ V (T ). (2.14)

Obviously, another constraint will be that V ′′(0) < 0 in order to be tachyonic. Additionally

the additive constant in the potential must be chosen such that V (0) = 0.

7As the problem rests on the fact that the physics is necessarily “off-shell”, this is outside the domain

of the first quantized theory and needs a SFT treatment
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Figure 2.4: Tachyonic potential on an unstable non-BPS D-brane in superstring theories.

Revolving this diagram about the vertical axis the tachyon potential on a brane-antibrane

system is obtained. Here TP is the tension of a BPS Dp-brane, whereas T ′
P is the corre-

sponding one for the non-BPS case.

A DBI action for the (Dp, D̄p) system

Despite not being able to construct a worldvolume effective action for the (Dp, D̄p) system

from first principles, this action has been calculated in the literature (including the complex

tachyonic field) by performing disk amplitudes with an open string tachyon inserted at the

boundary and a RR boson in the interior. In this way, some symmetries and consistency

conditions derived from SFT results have to be kept in mind. Let us now briefly elaborate

on the DBI part of the (Dp, D̄p) action, and afterwards, present similar results for the

non-BPS Dp-brane. Finally, a CS part of this kind of actions for a (Dp, D̄p) system is

presented in section 2.0.4.

Symmetries that must be taken into account in order to derive the DBI part of a

(Dp, D̄p) worldvolume effective action are ([90]):

- The usual Poincaré invariance in the corresponding dimensions.

- The gauge symmetry

T → e2iα(x)T, A(1)
µ → A(1)

µ + ∂µα(x), A(2)
µ → A(2)

µ − ∂µα(x). (2.15)

- The symmetry at interchanging brane and antibrane produced by (−1)FL , imposing the

conditions

T = real, A(1)
µ = A(2)

µ ≡ Aµ, ΦI
(1) = ΦI

(2) ≡ ΦI . (2.16)

On top of this, the consistency condition of recovering the separate brane and antibrane

actions in the BPS limit must be added.
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Notwithstanding it is important to stress that the later conditions do not fix uniquely

the form of the action. Imposing them Sen [98] proposed the following effective DBI action

for a brane-antibrane system

SDBI = −
∫
dp+1ξ V

(
T,ΦI

(1) − ΦI
(2)

) (√
−detAAA(1) +

√
−detAAA(2)

)
, (2.17)

where

AAA(i)µν = ηµν + F (i)
µν + ∂µΦ

I
(i)∂νΦ

I
(i) +

1

2
(DµT )

∗(DνT ) +
1

2
(DνT )

∗(DµT ) (2.18)

and

F (i)
µν = ∂µA

(i)
ν − ∂νA

(i)
µ , DµT =

(
∂µ − iA(1)

µ + iA(2)
µ

)
T, (2.19)

with V (T ) depending only on |T | and
∑

I(Φ
I
(1) − ΦI

(2))
2, and such that for small T :

V (T,ΦI
(1) − ΦI

(2)) = Tp

1 + 1

2

∑
I

(
ΦI

(1) − ΦI
(2)

2π

)2

− 1

2

 |T |2 +O(|T |4)

 (2.20)

It must be kept in mind that this is an effective action, providing a good description of the

system for T large and small second and higher derivatives.

A DBI action for non-BPS D-branes

As we have already mentioned, Dp-branes with p even/odd in the type IIB/IIA theories

are unstable, in a way similar to the brane-antibrane systems. Defining the corresponding

potential for the tachyonic modes and searching for the classical minimum, the original

Dp-brane will decay in a BPS stable D(p − 1)-brane, with the “correct” p depending on

the theory.

The construction of effective actions describing non-BPS branes was carried out in [94]

and [95]. An effective action describing the dynamics of the tachyonic field is given by:

S = −
∫
dp+1ξV (T )

√
−detAAA, (2.21)

7 with

AAAµν = ηµν + ∂µT∂νT + ∂µΦ
I∂νΦ

I + Fµν . (2.22)

In this case certain results imply that V (T ) must be symmetric under T → −T , with a

maximum located in T = 0 producing the instability. On the other hand, its minimum is

at T = ±∞, where the tachyon potential vanishes.

One must always keep in mind that this effective action describes a non-BPS brane

as long as the tachyon field T is large and we are able to consider the second and higher

derivatives of its potential V (T ) small.
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Figure 2.5: Kink solution from of non-BPS Dp-brane.

Non-trivial time independent solutions

Some non-trivial static solutions can be obtained from the previous actions. For example,

a D(p− 1)-brane can appear as a kink solution both in the non-BPS Dp-brane case and in

the (Dp, D̄p) one. In the first one, the kink solution connects two opposite vacua in the

form showed in fig. 2.5, where the energy density is localized around a (p− 1)-dimensional

plane at the center. That is a BPS D(p− 1)-brane, and it is indeed possible to check that

the energy per unit volume in that plane corresponds to this type of object. In a similar

fashion a BPS D(p − 1)-brane can emerge from a (Dp, D̄p) system for Im(T ) = 0 and

Re(T ) playing the role of the (real) tachyon of the previous case.

Other different types of solutions of these actions can be written down. For example a

(Dp, D̄p) system can also give rise to a BPS D(p− 2)-brane as a vortex solution. Writing

the complex tachyonic field in cylindrical coordinates, as

T = T0f(ρ)e
iθ, f(∞) = 1 f(0) = 0, (2.23)

with

ρ =
√
(ξp−1)2 + (ξp)2 , θ = tan−1(ξp/ξp−1), (2.24)

the energy density represents a codimension-two soliton localized in the (p−2)-dimensional

region around ρ = 0.

Another possible solution is a BPS D(p − 3)-brane, obtained as a t‘Hooft-Polyakov

monopole solution from two non-BPS D-branes. Finally, it has also been shown that a

BPS D(p− 4)-brane can arise from a system of two (Dp, D̄p) pairs.
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The Chern-Simons effective action for the (Dp, D̄p) system

Partial results for the CS effective action for the (Dp, D̄p) pair have been obtained in [96]

The result is the following

SCS =

∫
R1,p

C ∧ STr eF , (2.25)

where the supertrace (STr) is defined such that the leading term is

SCS =

∫
R1,p

Cp−1 ∧ Tr

(
F (1) −F (2) − 1

2
F (1), tt̄+

1

2
F (2), t̄t+Dt ∧ D̄t

)
+ · · · . (2.26)

Now, by looking at the first part of the supertrace expansion one can read∫
R1,p

Cp−1 ∧ Tr
(
F (1) −F (2)

)
=

∫
R1,p

Cp−1 ∧ Tr
(
dA(1) − dA(2)

)
, (2.27)

which by integrating over the flux on the transverse R2 plane, results in the appearance of

a D(p− 2)-brane charge ∫
R1,p−2

Cp−1. (2.28)

In this way we can see the soliton is indistinguishable from the D(p−2)-brane, being simply

a different representation of the same object. This result can be proved as well by using

CFT techniques. In this case the difficulty is that we start without any RR charge, but

end up with a non-zero RR charge, and so we do not expect to find a marginal deformation

that continuously interpolates between the two configurations. However, Majumder and

Sen [97] showed that there is a marginal deformation that converts the boundary CFT of

the (Dp, D̄p) system to that of a (D(p− 2), D(p− 2)) system. This deformation interpo-

lates between the original (Dp, D̄p) and a vortex-antivortex pair on this system, and so

establishes the equivalence between a vortex solution and a D(p− 2)-brane.

Summarizing the two-step construction, we have that a BPS D(p − 2)-brane can be

obtained as a kink solution from a non-BPS D(p−1)-brane which, in turn, can also appear

as a kink solution of a (Dp, D̄p) system. The vortex solution connects the first and last

systems, since a BPS D(p− 2) brane can be directly obtained from a (Dp, D̄p) system in

that way (this construction appears as a vertical sequence in fig. 2.2). This observation

can be made more explicit by showing that the worldvolume theory on the vortex solution

is given by the DBI action on a D(p − 2)-brane [98, 104] (see also [105]), as we are going

to see in chapter 3.

To conclude this section, we recall that the vortex configuration can be generalized

to higher codimension solitons on the brane-antibrane pair [92], which is the base of the

aforementioned K-theory classification. On the other hand, the condensation of the com-

plex tachyon occurs as a Higgs mechanism in which the tachyon plays the role of the Higgs
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field, providing mass to the relative U(1) vector field A(1) − A(2), being removed from the

low energy spectrum. The overall U(1) vector field A(1) + A(2), under which the tachyon

is neutral, remains however unbroken, posing a puzzle [106, 107, 108]. We are going to

discuss this in the next chapter, where a novel result clarifying this is presented.

Finally, we would like to mention that relevant results in the type I theory can be

obtained via worldsheet parity reversal from type IIB. In this way the existence of D(-1),

D0, D7 and D8 non-BPS D-branes has been predicted.



Chapter 3

Confinement and non-perturbative

tachyons

As we have already mentioned at the end of the last chapter, the vortex solution coming

from the DD̄ tachyon condensation process is not completely understood, as in this process

the relative U(1) vector field is removed from the low energy spectrum whereas the overall

U(1) vector field, under which the tachyon is neutral, remains unbroken [106, 107, 108].

It was suggested in [108], based on the duality relation between the Type IIA superstring

and M-theory, that the overall U(1) is in the confined phase. The suggested mechanism

for this confinement is a dual Higgs mechanism in which magnetically charged tachyonic

states associated to open D(p− 2)-branes stretched between the Dp and the D̄p condense.

Evidence for such a situation comes from the M-theory description of a (D4, D̄4) system.

The superposition of a D4 and a D̄4 is described in M-theory as an (M5, M̄5) pair

wrapped in the eleventh direction. The open strings that connect the D4 and the D̄4 are

realized as open M2-branes wrapped in the eleventh direction and stretched between the

M5 and the M̄5. These M2-branes must contain as well a complex tachyonic excitation.

Since the tachyon condensing charged object is in this case extended (a tachyonic worldvol-

ume string) there are no ways to describe quantitatively this type of mechanism. However,

duality with the Type IIA superstring implies that whatever this mechanism is the conden-

sation of this tachyonic mode should be accompanied by a non-trivial magnetic flux, in this

case of the relative antisymmetric tensor field in the worldvolume of the (M5, M̄5). This

magnetic flux generates charge with respect to the 3-form potential of eleven dimensional

supergravity, as inferred from the coupling in the (M5, M̄5) Chern-Simons action1

∫
R1,5

Ĉ3 ∧ (dÂ2 − dÂ′
2) . (3.1)

1Here Ĉ3 stands for the 3-form of eleven dimensional supergravity and Â2 and Â′
2 for the worldvolume

2-form fields on the M5 and the M̄5. Note that Â2 (self-dual) and Â′
2 (anti-self-dual) combine to give an

unrestricted relative 2-form field [108].
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An M2-brane would then emerge as the remaining topological soliton.

Let us suppose that one performs now the reduction fromM-theory along a worldvolume

direction of the (M5, M̄5) transverse to the stretched M2-branes [108]. In this case a

(D4, D̄4) system is obtained in which tachyonic D2-branes are stretched between the D4

and the D̄4. Again, if this tachyonic mode condenses in a vortex-like configuration, B2-

charge will be induced in the system, as the reduction from the previous coupling along a

worldvolume direction transverse to the stretched M2-branes shows∫
R1,4

B2 ∧ (dA2 − dA′
2) , (3.2)

where now A2 and A′
2 are associated to open D2-branes ending on the D4 and the D̄4. A

fundamental string would then arise as the remaining topological soliton.

Note that in this case the Higgs mechanism is intrinsically non-perturbative, given that

this description emerges after interchanging two compact directions in M-theory. Indeed,

the coupling (3.2) shows that the worldvolume dynamics of the (D4, D̄4) system is gov-

erned by the 2-form gauge fields dual in the five dimensional worldvolume to the BI vector

fields. These fields couple in the worldvolume with inverse coupling, and are therefore more

adequate to describe the strong coupling regime of the system.

Therefore, qualitatively the duality between Type IIA and M-theory predicts the occur-

rence of both the perturbative and non-perturbative Higgs mechanisms for the (D4, D̄4)

system. The same conclusion can be reached for arbitrary (Dp, D̄p) systems by T-duality

arguments [108]. Applying T-duality to the coupling (3.2) along (p − 4) transverse direc-

tions2 one gets ∫
R1,p

B2 ∧ (dAp−2 − dA′
p−2) . (3.3)

This coupling indicates that the fundamental string would arise as a topological soliton in

a dual Higgs mechanism [109] in which magnetically charged tachyonic states associated

to open D(p − 2)-branes stretched between the Dp and the D̄p condensed3. In terms of

the original variables this would translate into confinement of the overall U(1), given that

due to the opposite orientation of the D̄p-brane the relative (p − 2)-form field is dual in

the (p+1)-dimensional worldvolume to the overall BI vector field. Therefore, its localized

magnetic flux at strong coupling translates into a confined overall U(1) electric flux at

weak coupling.

The explicit action that describes the dual Higgs mechanism at strong coupling has

not been constructed in the literature, although some qualitative arguments pointing at

2Or along a spatial direction of the stretched D2-brane if p < 4.
3When p = 3 this is exactly the S-dual picture of the creation of a D1-brane as a vortex in a (D3, D̄3)

system [108].



75

particular couplings have been given [108, 110, 111]. In any case, as we have mentioned,

this mechanism is intrinsically non-perturbative, and this makes this description highly

heuristic.

A related crucial question which was first addressed in [112, 113, 110, 111] is the pos-

sibility of describing both the perturbative and the non-perturbative Higgs mechanisms

simultaneously at weak coupling. Starting with Sen’s action [112, 113] reference [111]

studied the Hamiltonian classical dynamics of the (Dp, D̄p) system, and showed that it

describes a massive relativistic string fluid. The possibility of describing the region of van-

ishing tachyonic potential in terms of the (p−2)-form fields dual to the BI vector fields was

also addressed4 and although the explicit dual action was not constructed it was argued

that the dual Higgs mechanism proposed in [108] could be realized explicitly if this action

was the one associated to an Abelian Higgs model for the relative (p− 2)-form dual field.

The fundamental string would then arise as a Nielsen-Olesen solution. In this construction,

however, the (p− 3)-form field playing the role of the Goldstone boson associated with the

dual magnetic objects did not have a clear string theory origin.

One of the results that we will present in this study will be the construction of the ex-

plicit dual action describing the strongly coupled dynamics of the (Dp, D̄p) system in terms

of the (p−2)-form dual potentials and a (p−3)-form Goldstone boson. The generalization

of Sen’s action to include tachyonic couplings in a (Dp, D̄p) system [114, 99, 115, 116, 117,

118, 119, 120, 98, 121, 122, 123, 124] describes, to second order in α′, an Abelian Higgs

model in which the Abelian field is the relative BI vector of the brane and the antibrane

and the phase of the tachyon plays the role of the associated Goldstone boson. We will

show however that the dual of this action does not describe an Abelian Higgs model for

the relative (p− 2)-form potential, contrary to the expectation in [111]. The explicit dual

Abelian Higgs model will instead arise from a different generalization of Sen’s action from

which we will be able to describe the confining phase (for the overall U(1)) of the (Dp, D̄p)

system at weak coupling.

The dualization of the four-dimensional Abelian Higgs model is known since long ago

[125], motivated by the study of the confining phases of four dimensional Abelian gauge

theories in the context of Mandelstam-’t Hooft duality [126]. The dual action constructed

by Sugamoto describes the confining phase of four dimensional vector fields in terms of

a massive 2-form field theory which is an extension of the model for massive relativistic

hydrodynamics of Kalb and Ramond [127]. This field theory allows a quantized vortex

solution similarly to the creation of the Nielsen-Olesen string in the Abelian Higgs model.

The extension of Sugamoto’s construction to arbitrary d-dimensional p-form Abelian Higgs

models was carried out more recently in [128], with the aim at describing the confining

4This idea was also put forward in [110] in the 2+1 dimensional case.
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phases of p-form field theories in a generalization of Mandelstam-’t Hooft duality. In this

general case the dual action describing the confining phase is a massive (p + 1)-form field

theory.

In this study we will develop on the work of [128] and we will extend the construction

in [125] to the (p+1)-dimensional Abelian Higgs model that describes the Higgs phase (for

the relative U(1)) of a (Dp, D̄p) system. As we will see the massive Abelian field of the

Abelian Higgs model can still be dualized in the standard way into a massless (p− 2)-form

field once the phase of the tachyon is dualized into a (p − 1)-form. We will show that

the dual action is of the type of the massive (p− 1)-form field theories discussed in [128].

Furthermore, we will show that a D(p − 2)-brane can emerge as a confined electric flux

brane associated to the overall (p− 2)-form dual field. The precise mechanism involved in

this process is the Julia-Toulouse mechanism [129, 128], which as we will see is the exact

contrary of the more familiar Higgs mechanism.

The construction of the dual action is therefore useful in order to identify the mecha-

nism by which a D(p− 2)-brane can emerge at strong coupling after the annihilation of a

Dp and a D̄p. However, it sheds no light on the issue of the unbroken overall U(1), nor on

the creation of the fundamental string, since it involves only the overall (p−2)-form poten-

tial, and this field is dual to the relative BI vector field. Indeed, inspired by Mandelstam-’t

Hooft duality one expects that the dual action describes the creation of the D(p−2)-brane

in dual variables, since it should provide an explicit realization of the duality between the

Higgs phase (for the relative U(1)), described at weak coupling by Sen’s action, and the

confinement phase (for the overall (p− 2)-form field) at strong coupling. The Higgs phase

for the relative (p − 2)-form gauge potential at strong coupling should instead be dual to

the confining phase for the overall U(1) at weak coupling.

In this study we will present a worldvolume effective action suitable to describe pertur-

batively the dynamics of the (Dp, D̄p) system in the confining phase for the overall U(1).

Developing on the work of [128] we will start in the phase in which the tachyon vanishes,

the Coulomb phase, and show that the confining phase arises after the condensation of

(p−3)-dimensional topological defects which are interpreted as the end-points of D(p−2)-

branes. We will see that the fundamental string emerges at weak coupling as a confined

electric flux string after a Julia-Toulouse mechanism in which a 2-form gauge field asso-

ciated to the fluctuations of the topological defects eats the overall U(1) vector field. We

will also show, following [128] closely, that the confined phase for the original overall U(1)

vector field can be studied in the strong coupling regime as a generalized Higgs-Stückelberg

phase for its dual (p− 2)-form field. The explicit dual action is given by an Abelian Higgs

model for the relative (p− 2)-form potential. In this description the condensing tachyonic

objects are identified as (p−3)-branes that originate from the end-points of open D(p−2)-
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branes stretched between the Dp and the D̄p. The fundamental string then emerges as

a topological soliton after the condensation of this tachyonic mode through a dual Higgs

mechanism [109]. Therefore, through this construction we can make explicit the mecha-

nism suggested in [108] for realizing non-perturbatively the confinement of the overall U(1).

As we have seen the (Dp, D̄p) system admits two types of topological defects: particles

and (p− 3)-branes. The first originate as the end-points of open strings and are therefore

perturbative in origin. The second originate as the end-points of non-perturbative open

D(p − 2)-branes and can therefore only be described in terms of D(p − 2)-brane degrees

of freedom in the strong coupling regime. We have seen however that using Julia and

Toulouse’s idea we can incorporate these degrees of freedom in the perturbative action,

and study the confining phase for the overall U(1). If we combine the effective actions

describing the Higgs phase for the relative U(1) and the confining phase for the overall

U(1) we will be able to describe perturbatively the breaking of both gauge groups. We will

see that from this action both the D(p− 2)-brane and the fundamental string are realized

as solitons in the common (p + 1)-dimensional worldvolume. The D(p − 2)-brane arises

after a Higgs mechanism involving the relative U(1), and the F1 after a Julia-Toulouse

mechanism involving the overall U(1).

The organization of this chapter is as follows. In section 2.1 we construct the dual of

the Abelian Higgs model that describes the (Dp, D̄p) system at weak string coupling. We

see that contrary to expectation in [110] it does not describe an Abelian Higgs model for

the dual relative (p− 2)-form potential. The worldvolume field content of the dual action

consists on a (p − 1)-form, dual to the phase of the tachyon, and two (p − 2)-form fields

dual to the BI vectors. We show that the (p − 1)-form can become massive by eating

the overall dual (p − 2)-form potential through the Julia-Toulouse mechanism, and that

a D(p − 2)-brane arises as a confined electric flux brane in this process. Therefore the

Higgs phase for the relative BI vector is mapped onto the confining phase for the overall

(p− 2)-form field, with a D(p− 2)-brane arising either as a vortex solution after the Higgs

mechanism at weak coupling or as a confined electric flux brane after the Julia-Toulouse

mechanism at strong coupling. In section 2.2 we present our candidate action for describing

the confining phase of the overall BI vector field at weak coupling. We show that from this

action the fundamental string arises as a confined electric flux string after a Julia-Toulouse

mechanism. In section 2.3 we construct the dual of this action and show that it realizes

a generalized Higgs-Stückelberg phase for the relative (p − 2)-form field. Therefore, the

confining phase for the overall BI vector is mapped onto the Higgs phase for the relative

(p−2)-form field, with a fundamental string arising either as a confined electric flux string

after the Julia-Toulouse mechanism at weak coupling or as a generalized vortex solution

after the Higgs mechanism at strong coupling. Section 2.4 is our Discussion section. Here

we present the action from which we can describe simultaneously the Higgs phase for the
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relative U(1) and the confinement phase for the overall U(1) at weak string coupling.

3.1 The (Dp, D̄p) system in dual variables

The effective action describing a brane-antibrane pair has been extensively studied in the

literature using different approaches [114, 99, 115, 116, 117, 118, 119, 120, 98, 121, 122, 123,

124]. Although the complete action has not been derived from first principles it is known

to satisfy a set of consistency conditions [98]. It is invariant under gauge transformations

of the tachyon phase and the relative BI vector: χ→ χ+α(x), A− → A− + dα, it reduces

to the sum of the BI effective actions for the Dp and the D̄p for zero tachyon, and it gives

rise to the action for a non-BPS Dp-brane [112, 130, 131, 132] when modded out by (−1)FL

[90]. In the context of our discussion in this study this action describes the Higgs phase

for the relative BI vector field.

In this study we will work to second order in α′, and take the RR potentials Cp−3, Cp−5, . . .

to zero. We will also ignore the tachyonic couplings to the Cp−1 RR-potential derived in

[99, 116, 123]. Thus, our action represents a truncated version of the (Dp, D̄p) action that

can be derived from the results in [114, 99, 115, 116, 117, 118, 119, 120, 98, 121, 122, 123,

124] 5. We will see however that it contains the relevant couplings for describing the most

important aspects of the dynamics of the (Dp, D̄p) system, both in the Higgs and in the

confining phases6.

Our starting point is the action:

S(χ,A) =

∫
dp+1x

{
e−ϕ
(1
2
F+ +B2

)
∧ ∗
(1
2
F+ +B2

)
+

+
1

4
e−ϕF− ∧ ∗F− + |T |2(dχ− A−) ∧ ∗(dχ− A−) + d|T | ∧ ∗d|T | − V (|T |)

+Cp−1 ∧ F−
}
. (3.4)

Here we have set 2πα′ = 1, A+ and A− are the overall and relative BI vector fields:

A+ = A + A′, A− = A − A′, and the complex tachyon is parametrized as T = |T |eiχ.
V (|T |) is the tachyon potential [113], whose precise form will be irrelevant for our analysis.

Finally, the background fields B2 and Cp−1 are implicitly pulled-back into the (p + 1)-

dimensional worldvolume of the (Dp, D̄p).

5Note that in comparing with the boundary string field theory results [133] there is the usual discrepancy

by 2 log 2 in the kinetic term of the tachyon [116, 117, 120].
6Once it is extended as we do in next section in order to incorporate the non-perturbative degrees of

freedom associated to the (p− 3)-brane topological defects.
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The coupling
∫
Cp−1 ∧ F− is the one that we discussed at the end of the last chapter.

It shows that when the tachyon condenses in a vortex-like configuration a D(p− 2)-brane

is generated as a topological soliton [90], since the associated localized F− magnetic flux

generates Cp−1 charge. In this process the relative U(1) vector field eats the scalar field χ,

gets a mass and is removed from the low energy spectrum. The overall U(1) vector field,

under which the tachyon is neutral, remains unbroken, but it is believed to be confined

[108, 112, 113, 110].

In this section we construct the dual of the action (3.4), and show that it describes

the confining phase for the (p− 2)-form potential dual to the relative BI vector field, thus

providing an explicit realization of Mandelstam-’t Hooft duality for the Abelian Higgs

model associated to the (Dp, D̄p) system. We also discuss the mechanism by which the

D(p− 2)-brane arises as a confined electric flux brane.

3.1.1 The duality construction

Let us focus on the worldvolume dependence of the action (3.4) on A+, A− and the phase

of the tachyon. Note that since A− is massive it cannot be dualized in the standard way.

We can however use the standard procedure to dualize the phase of the tachyon and A+.

These fields are dualized, respectively, into a (p− 1)-form, Wp−1, and a (p− 2)-form, that

we denote by A−
p−2 given that due to the opposite orientation of the antibrane the relative

and overall gauge potentials should be interchanged under duality. The intermediate dual

action that is obtained after these two dualizations are carried out is such that A− becomes

massless7 and can therefore be dualized in the standard way into a (p− 2)-form, which we

denote as A+
p−2

8.

The final dual action reads:

S(Wp−1, Ap−2) =

∫
dp+1x

{
eϕ
(1
2
F+
p−1 +Wp−1 + Cp−1

)
∧ ∗
(1
2
F+
p−1 +Wp−1 + Cp−1

)
+
1

4
eϕF−

p−1 ∧ ∗F−
p−1 +

1

4|T |2
dWp−1 ∧ ∗dWp−1 + d|T | ∧ ∗d|T | − V (|T |)−B2 ∧ F−

p−1

}
(3.5)

7Up to a total derivative term.
8Alternatively, one can use a generalization of the intermediate action presented in [125], from which

it is possible to dualize a massive Abelian 1-form field.
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with the explicit duality rules being given by:

1

2
F+ +B2 =

1

2
eϕ ∗ F−

p−1 (3.6)

1

2
F− = eϕ ∗

(1
2
F+
p−1 +Wp−1 + Cp−1

)
(3.7)

dχ− A− =
1

2|T |2
(−1)p−1 ∗ dWp−1 . (3.8)

Here we see that the relative and overall gauge potentials are interchanged, as expected

due to the opposite orientation of the antibrane. Note that for p = 3 our notation is

ambiguous. When analyzing this particular case we will use A+ and A− to denote the

BI vector fields and Ã+, Ã− to denote the dual vector fields associated to open D-strings

ending on the branes.

The action (3.5) is an extension of the actions proposed in [128] for describing the

confining phases of field theories of compact antisymmetric tensors. After we discuss these

actions in some detail in the next section it will become clear that (3.5) describes the

confining phase for the overall (p − 2)-form dual potential. This phase arises after the

condensation of zero-dimensional topological defects which originate from the end-points

of open strings stretched between the brane and the antibrane. The interpretation of the

low energy mode Wp−1 is as describing the fluctuations of these defects, and is such that

away from the defects Wp−1 = dA+
p−2.

Note that the gauge invariance χ → χ + α(x), A− → A− + dα of the original ac-

tion has been mapped under the duality transformation into Wp−1 → Wp−1 + dΛp−2,

A+
p−2 → A+

p−2 − 2Λp−2. This symmetry can be gauge fixed by absorbing F+
p−1 into Wp−1,

which becomes then massive. The overall A+
p−2 gauge potential is then removed from

the low energy spectrum, through a mechanism that is the exact contrary of the Higgs

mechanism. This is the Julia-Toulouse mechanism mentioned in the introduction. Thus,

the Julia-Toulouse mechanism is identified as the mechanism responsible for the removal of

the relative U(1)at strong coupling. However it clearly sheds no light on the removal of A+.

When comparing the action (3.5) to the actions describing the confining phases of

antisymmetric field theories presented in [128] one sees that the modulus of the tachyon

plays the role of the density of condensing topological defects. In a way one can think of

|T | as an indicator of how unstable the system is. Since the instability in the confining

phase is originated by the presence of the topological defects it is reasonable to expect a

relation between both quantities. In the confining models of Quevedo and Trugenberger

a consistency requirement is that the antisymmetric field theory in the Coulomb phase

is recovered for zero density of topological defects. This is indeed satisfied by our action

(3.5) for vanishing tachyon, since the |T | → 0 limit forces the condition that Wp−1 must



3.2 Confinement at weak string coupling 81

be exact and can therefore be absorbed through a redefinition of A+. The action is then

reduced to the action describing the (Dp, D̄p) system in the Coulomb phase, i.e. to (3.4)

for zero tachyon.

Finally, following the analysis in [125] we can see that a D(p− 2)-brane arises as a con-

fined electric flux brane after the Julia-Toulouse mechanism. In order to see this explicitly

we need however to recall some basic facts on the construction of [125], so we will postpone

this discussion till the end of next section.

In the next section we present our candidate action for describing the confining phase

for the overall U(1) at weak coupling. We show that the fundamental string arises from

this action as a confined electric flux string. By direct generalization of this analysis we

also show that the D(p− 2)-brane arises as a confined electric flux brane from the action

(3.5) derived in this section.

3.2 Confinement at weak string coupling

In this section we present our candidate action for describing the dynamics of the (Dp, D̄p)

system in the confining phase. We use the results in [128], where an action describing the

confined phase of field theories of compact antisymmetric tensors of arbitrary rank was

derived. We start by summarizing the qualitative points that are relevant for our con-

struction, to later concretize these ideas to the (Dp, D̄p) system. The reader is referred to

[128] for a more detailed discussion.

Quevedo and Trugenberger made explicit in the framework of antisymmetric field the-

ories an old idea in solid-state physics due to Julia and Toulouse [129]. These authors

argued that for a compact tensor field of rank (h − 1) in (p + 1)-dimensions a confined

phase might arise after the condensation of (p − h − 1)-dimensional topological defects9.

The fluctuations of the continuous distribution of topological defects generate a new low-

energy mode in the theory which can be described by a new h-form, Wh, such that away

from the defects Wh = dAh−1, where Ah−1 is the original tensor field. The main idea is to

extend the h-form in the topological invariant term10∫
Sh

ωh (3.9)

to the whole Rp+1 space-time. In this way the (p − h)-form Jp−h = ∗(dωh), which is zero

9The mechanism by which these defects originate is irrelevant for the nature of the confining phase.
10Sh is an h-dimensional sphere surrounding the defect on an (h + 1)-dimensional hyperplane perpen-

dicular to it, and ωh is an h-form which is exact outside Sh.
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outside the defect, picks up delta-like singularities at the locations of the topological de-

fects and can describe the conserved fluctuations of their continuous distributions. Note

that due to Jp−h = ∗(dωh) the new degrees of freedom are associated only with the gauge-

invariant part of ωh.

The effective action describing the confining phase of the antisymmetric tensor field

then depends on a gauge-invariant combination of the antisymmetric tensor field, Ah−1,

and the extended h-form, Wh. This combination is such that when the density of topolog-

ical defects vanishes the original action describing the antisymmetric tensor field theory in

the Coulomb phase is recovered.

As discussed in [128], the finite condensate phase is a natural generalization of the

confinement phase for a vector gauge field. For compact QED in four dimensions the in-

duced static potential between a particle and an antiparticle is linear at large distances,

identifying the monopole condensate phase as a confinement phase. This computation can

be generalized to arbitrary (h− 1)-forms in d dimensions. In this case the leading term in

the induced action is the h-dimensional hypervolume enclosed by the (h− 1)-dimensional

closed hypersurface to which the (h − 1)-form couples. For a more detailed discussion on

the confining properties of these actions see [128, 134].

Given that the worldvolume theory of a (Dp, D̄p) system is a vector field theory, the

results in [128] for h = 2 can be applied to this case, with some obvious modifications

coming from the couplings to the background gauge potentials associated to the closed

strings. In this case the Coulomb phase is the phase with zero tachyon, and it is therefore

described11 by the Lagrangian:

L(A) = e−ϕ
(1
2
F+ +B2

)
∧ ∗
(1
2
F+ +B2

)
+

1

4
e−ϕF− ∧ ∗F− + Cp−1 ∧ F− . (3.10)

Developping now on the ideas in [128] for the (Dp, D̄p) system we have that the topological

defects whose condensation will give rise to the confining phase are (p− 3)-branes, which

originate in this case from the end-points of D(p − 2)-branes stretched between the Dp

and the D̄p. The new mode associated to the fluctuations of the defects is described by a

2-form,W2, which will couple in the action through a gauge invariant combination with the

overall U(1) vector field12. The action should depend as well on the density of topological

defects, such that when this density vanishes the original action in the Coulomb phase,

given by (3.10), is recovered. In the actions constructed in [128] the density of topological

defects entered as a parameter which was interpreted as a new scale in the theory. We

11To second order in α′ and for Cp−3 = Cp−5 = · · · = 0.
12One could in principle expect that W2 coupled to either combination of the U(1) vector fields, but we

will see that consistency with S- and T- dualities implies that it must couple only to the overall vector

field. This will allow ultimately to explain the puzzle of the unbroken overall U(1) through confinement.
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will see however that in the (Dp, D̄p) case duality implies that the density of topological

defects must be a dynamical quantity, because it is related to the modulus of the tachyonic

excitation of the open D(p− 2)-branes in the dual Higgs phase. We will denote this field

by |T̃ | and, moreover, we will use the duality with the Higgs phase to include in the action

its kinetic and potential terms.

The action that we propose for describing the confining phase of the (Dp, D̄p) system

is then given by:

S(W2, A) =

∫
dp+1x

{
e−ϕ
(1
2
F+ +W2 +B2

)
∧ ∗
(1
2
F+ +W2 +B2

)
+

1

4
e−ϕF− ∧ ∗F− +

+
1

4|T̃ |2
dW2 ∧ ∗dW2 + d|T̃ | ∧ ∗d|T̃ | − V (|T̃ |) + Cp−1 ∧ F−

}
. (3.11)

This action has been constructed under four requirements. One requirement is gauge invari-

ance, both under gauge transformations of the BI vector fields and under W2 →W2+dΛ1,

which ensures that only the gauge-invariant part of W2 describes a new physical degree

of freedom. This transformation must be supplemented by A+ → A+ − 2Λ1, a symmetry

that has to be gauge fixed. The second is relativistic invariance. The third requirement is

that the original action describing the Coulomb phase must be recovered when |T̃ | → 0.

Indeed, when |T̃ | → 0 we must have that dW2 = 0, so that W2 = dψ1 for some 1-form ψ1.

This form can then be absorbed by A+, and the original action (3.10) is recovered. These

requirements were the ones imposed in [128]. The (Dp, D̄p) system, being a string theory

object, must also satisfy consistency with the duality symmetries of string theory. The

implications of this requirement will become more clear when we show the duality between

this action and the action describing the Higgs phase for the dual (p− 2)-form gauge field.

It implies in particular that W2 must couple only to the overall U(1) vector field.

Now, in (3.11) F+ can be absorbed by W2, fixing the gauge symmetry

W2 → W2 + dΛ1

A+ → A+ − 2Λ1 , (3.12)

and the action can then be entirely formulated in terms of W2 and the relative vector field:

S(W2, A
−) =

∫
dp+1x

{
e−ϕ
(
W2 +B2

)
∧ ∗
(
W2 +B2

)
+

1

4
e−ϕF− ∧ ∗F− +

+
1

4|T̃ |2
dW2 ∧ ∗dW2 + d|T̃ | ∧ ∗d|T̃ | − V (|T̃ |) + Cp−1 ∧ F−

}
. (3.13)

In this process the original gauge field A+ has been eaten by the new gauge field W2,

and has therefore been removed from the low energy spectrum. This solves the puzzle of

the unbroken overall U(1) at weak string coupling through the Julia-Toulouse mechanism,
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which, as we have seen, is the exact opposite of the Higgs mechanism. Let us now see how

the fundamental string arises from this action.

Consider first the p = 3 case, which can be directly compared to the results in [125].

In this case the action (3.13) is a generalization of the action proposed in [125] to describe

the confining phase of a four dimensional Abelian gauge theory. We recall from the intro-

duction that this action was constructed as the dual of the four dimensional Abelian Higgs

model, and that it allows a quantized electric vortex solution similar to the Nielsen-Olesen

string. We see below that in our case this solution is identified as a fundamental string.

The construction of the vortex solution in [125] considers a non-vanishing 2-form vor-

ticity source13 along the x3 axis:

V 3
e = nδ(x1)δ(x2) , V i

e = 0 for i = 1, 2 , V⃗b = 0 (3.14)

where the subindices e and b refer to the electric and magnetic components, and looks for

a static and axially symmetric solution with the following assumptions:

∂0e
3 = ∂0|T̃ | = 0 , e3 = e3(r) , |T̃ | = |T̃ |(r) , (3.15)

ei = 0 for i = 1, 2 , b⃗ = 0 (3.16)

where e⃗ and b⃗ refer to the electric and magnetic components ofW2, and r =
√

(x1)2 + (x2)2.

The solution that is found represents a static circulation of flow around the x3 axis, and

satisfies the quantization condition ∫
D∞

e3ds = 2πn , (3.17)

where D∞ is a large domain in the (x1, x2) plane including the origin. This solution

corresponds to the Nielsen-Olesen string in the original Higgs model. As expected, the

magnetic flux quantization condition has been mapped under duality onto an electric flux

quantization condition, given by (3.17). The reader is referred to [125] for a more detailed

discussion. For arbitrary p it is easy to find a similar, generalized, electric vortex solution

with the same properties.

Let us now see that the confined electric flux string solution corresponds in the (Dp, D̄p)

case to the fundamental string. In this case we have an additional coupling∫
B2 ∧ ∗W2 (3.18)

13In the construction in [125] the vorticity source is created by the phase component of the Higgs scalar

of the original Abelian Higgs model. In our case it is created by the phase component of the tachyon field

associated to open D-strings connecting the D3 and the D̄3. This will become clear after the analysis in

the next section.
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in the effective action (3.13), which shows that the quantized electric flux generates B2-

charge in the system. Charge conservation then implies that the remaining topological

soliton is the fundamental string.

As mentioned in the previous section, the D(p − 2)-brane arises from the strongly

coupled confining action (3.5) derived in that section in a very similar way. In this case

the vorticity source is a (p − 1)-form which is created by the phase of the tachyon field

in the original action (3.4). Note that in all the duality transformations that we have

discussed in this study we have ignored total derivative terms. Had we kept these terms

in the dualization of the action (3.4) we would have found a coupling
∫
dWp−1 ∧ dχ in the

dual action. This coupling can be rewritten in terms of a vorticity source, Vp−1 = ∗ddχ,
as
∫
Wp−1 ∧ ∗Vp−1, giving then the generalization to arbitrary dimensions of the vorticity

coupling in [125]. Let us suppose that we fix now χ = nθ, where θ is the azimuthal angle

in the (xp−1, xp) plane. For n ̸= 0 θ is not well defined on the worldvolume of a (p − 2)-

brane, and therefore the vorticity source is non-vanishing in this worldvolume. Taking then

V 012...p−2
p−1 = nδ(xp−1, xp) and zero otherwise, we can look for a static and axially symmetric

solution with the assumptions

∂0W
012...p−2
p−1 = ∂0|T | = 0 , W 012...p−2

p−1 =W 012...p−2
p−1 (r) , |T | = |T |(r) , (3.19)

where r =
√
(xp−1)2 + (xp)2 and all other components of Wp−1 are taken to vanish. In this

case the solution that is found represents a static circulation of flow around the (p − 2)-

brane, and satisfies the quantization condition∫
D∞

W 01...p−2
p−1 ds = 2πn . (3.20)

The coupling ∫
Cp−1 ∧ ∗Wp−1 (3.21)

in the dual effective action (3.5) then implies that this confined electric flux brane corre-

sponds to theD(p−2)-brane, since it shows that the quantized electric flux (3.20) generates

Cp−1-charge in the system. Therefore, the D(p−2)-brane arises either as a magnetic vortex

solution after the Higgs mechanism at weak coupling or as confined electric flux brane after

the Julia-Toulouse mechanism at strong coupling.

In the next section we show that the action (3.11) can be made exactly equivalent to

an action describing the Higgs phase for the dual relative (p− 2)-form potential. We also

show that, as expected, the fundamental string arises from this strongly coupled action as

a generalization of the Nielsen-Olesen magnetic vortex solution.
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3.3 Confinement at strong string coupling: The dual

Higgs mechanism

Let us consider the action (3.11) describing the confining phase for the overall U(1) at

weak string coupling. Inspired by Mandelstam-’t Hooft duality we expect that the dual of

this action describes the Higgs phase for the (p−2)-form field dual to the overall BI vector.

The dualization of the BI vector fields in (3.11) takes place in the standard way, given that

they only couple through their derivatives. In turn, the 2-form W2 is massive, but it can

still be dualized in the standard way from the intermediate dual action that is obtained

after dualizing the BI vector fields, in which it only couples through its derivatives. Let us

call the dual of this form, a (p− 3)-form, χp−3. The final dual action reads:

S(χp−3, Ap−2) =

∫
dp+1x

{
eϕ
(1
2
F+
p−1 + Cp−1

)
∧ ∗
(1
2
F+
p−1 + Cp−1

)
+

1

4
eϕF−

p−1 ∧ ∗F−
p−1

+|T̃ |2
(
dχp−3 − A−

p−2

)
∧ ∗
(
dχp−3 − A−

p−2

)
+ d|T̃ | ∧ ∗d|T̃ | − V (|T̃ |)−B2 ∧ F−

p−1

}
(3.22)

and the explicit duality relations are given by

1

2
F− = eϕ ∗

(1
2
F+
p−1 + Cp−1

)
(3.23)

1

2
F+ +W2 +B2 =

1

2
eϕ ∗ F−

p−1 (3.24)

1

2
dW2 = |T̃ |2(−1)p−1 ∗

(
dχp−3 − A−

p−2

)
. (3.25)

Notice that once again the overall and the relative gauge fields are interchanged.

The action (3.22) describes an Abelian Higgs model for the relative (p− 2)-form field,

with the dual (p − 3)-form χp−3 playing the role of the associated Goldstone boson. The

effective mass term reads

|T̃ |2
(
dχp−3 − A−

p−2

)2
(3.26)

and it is gauge-invariant under χp−3 → χp−3+Λp−3, A
−
p−2 → A−

p−2+dΛp−3. That a coupling

of this sort could drive the dual Higgs mechanism was suggested in [108, 110, 111] (see also

[109]) although it could not be explicitly derived from the action describing the Higgs phase

at weak coupling, i.e. from Sen’s action. In this study we have seen that consistently with

Mandelstam-’t Hooft duality the dual Abelian Higgs model arises from the action describing

the confining phase at weak coupling. In the dual action (3.22) the dual Goldstone boson

χp−3 is associated to the fluctuations of the (p − 3)-dimensional topological defects that

originate from the end-points of the D(p − 2)-branes stretched between the Dp and the

D̄p. This is consistent with the fact that this field is the worldvolume dual of the field W2,
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which was accounting for these fluctuations in the confining action (3.11). Moreover, we

can identify for p = 3 the condensing Higgs scalar as the modulus of the tachyonic mode

associated to open D-strings stretched between the D3 and the D̄3. Indeed when p = 3

the action (3.22) reads14:

L(χ,A) =

∫
dp+1x

{
eϕ(

1

2
F̃+ + C2) ∧ ∗(1

2
F̃+ + C2) +

1

4
eϕF̃− ∧ ∗F̃−

+|T̃ |2(dχ̃− Ã−) ∧ ∗(dχ̃− Ã−) + d|T̃ | ∧ ∗d|T̃ | − V (|T̃ |)−B2 ∧ F̃−
}
, (3.27)

i.e. it is the S-dual of the original action (3.4) describing the perturbative Higgs phase

of the (D3, D̄3) system. This is an important consistency check for the actions that we

have constructed, although strictly speaking S-duality invariance would only be expected

for zero tachyon, i.e. when the system becomes BPS and the worldvolume field content is

not expected to change at strong coupling. Note that in this duality relation the modu-

lus of the perturbative tachyon is mapped into |T̃ |, which can then be interpreted as the

modulus of the tachyonic excitation associated to the open D-strings. Since χ̃ has also an

interpretation as the phase of the dual tachyon we can think of T̃ = |T̃ |eiχ̃ as the complex

tachyonic mode associated to the D-strings stretched between the D3 and the D̄3. For

p ̸= 3 |T̃ | plays formally the role of the modulus of a tachyonic excitation. However, since

the tachyonic condensing charged object is in this case a (p − 3)-brane the phase of the

tachyon is replaced by a (p− 3)-form15. It would be interesting to clarify the precise way

in which these fields arise as open D(p− 2)-brane modes.

Finally, let us discuss the way the fundamental string arises from the action (3.22) when

the Dp and the D̄p annihilate. If the brane and the antibrane annihilate through a gen-

eralized Higgs-Stückelberg mechanism in which A−
p−2 gets a mass by eating the Goldstone

boson χp−3, we have that, if the Goldstone boson acquires a non-trivial winding number:∫
Rp−1

F−
p−1 =

∮
Sp−2

A−
p−2 =

∮
Sp−2

dχp−3 = 2πn , (3.28)

B2-charge is induced in the configuration through the coupling in (3.22)∫
Rp,1

B2 ∧ F−
p−1 . (3.29)

Charge conservation therefore implies that after the annihilation a fundamental string is

left as a topological soliton. Since in this process the relative (p− 2)-form field is removed

14Here we have used tildes to denote the dual fields, as mentioned in section 4.2.
15Reference [108] suggests a more concrete relation between the field χ1 for p = 2 and the phase of

the dual tachyon, by imagining the relevant string field defined over a loop space as ei
∮
χ1 . Imposing

single-valuedness in the loop space would then imply
∮
Σ
dχ1 = n.
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from the low energy spectrum, and this field is dual to the original overall U(1), this solves

the puzzle of the unbroken U(1), through the mechanism suggested in [108] which is in-

trinsically non-perturbative.

3.4 Discussion

As we have seen, a (Dp, D̄p) system admits two types of topological defects: particles and

(p− 3)-branes. The first are perturbative in origin, while the second are non-perturbative.

The combined electric and magnetic Higgs mechanisms introduce mass gaps to both U(1)

vector potentials, being the only remnants D(p− 2)-branes and fundamental strings, real-

ized as solitons on the common (p+1)-dimensional worldvolume. The system is described

perturbatively in terms of Sen’s action, which incorporates the tachyonic degrees of free-

dom associated to the perturbative point-like defects. However, in order to incorporate

the non-perturbative degrees of freedom associated to the (p− 3)-dimensional topological

defects one has to restrict to the strong coupling regime of the theory, where the degrees

of freedom associated to these defects become perturbative. Even in this case, as we have

seen, it is not obvious to account for the right fields describing the tachyonic excitations.

We have seen in this study that it is also possible to incorporate the non-perturbative de-

grees of freedom associated to the extended topological defects in the weak coupling regime,

using Julia and Toulouse’s idea. Essentially one introduces a new form which describes the

fluctuations of these defects and imposes a set of consistency conditions based on gauge

invariance and duality. In section 4.3 we have presented the weakly coupled action that

is formulated in terms of this new form and the U(1) vector fields associated to the open

strings. In fact, one can combine this action with Sen’s action in order to incorporate

the degrees of freedom associated to both the zero dimensional and extended topological

defects, with the explicit combined action being given by:

S(χ,W2, A) =

∫
dp+1x

{
e−ϕ
(1
2
F+ +W2 +B2

)
∧ ∗
(1
2
F+ +W2 +B2

)
+

1

4
e−ϕF− ∧ ∗F− +

+|T |2(dχ− A−) ∧ ∗(dχ− A−) + d|T | ∧ ∗d|T |+ 1

4|T̃ |2
dW2 ∧ ∗dW2 +

+d|T̃ | ∧ ∗d|T̃ | − V (|T |)− V (|T̃ |) + Cp−1 ∧ F−
}
. (3.30)

This action describes both the perturbative and the non-perturbative Higgs mechanisms

simultaneously at weak coupling, and it admits both a magnetic vortex solution, which by

charge conservation is identified with the D(p− 2)-brane, and an electric vortex solution,

identified as the fundamental string.
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Finally, we would like to comment on an alternative mechanism for realizing pertur-

batively the breaking of the overall U(1) that was proposed in [105, 135, 136] (see also

[137, 138]). In this proposal the fundamental string emerges as a classical solution to

Sen’s action, with confinement being realized through the dielectric effect of [139], with

the tachyon potential playing the role of the dielectric constant. This mechanism is distinct

to the one that we have proposed in this study. In particular it does not seem to have a

simple relation with the dual Higgs mechanism of [108, 110]16.

16See however [135], where it is argued that it corresponds to strongly coupled open strings.
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Chapter 4

Particle-like branes and holography

4.1 Particle-like branes in AdS5 spaces

The AdS/CFT correspondence relates the large N limit of the gauge theory not only to

supergravity, but to string theory. If we do not impose λ → ∞, then the decoupling of

the non-chiral operators does not longer occur, and the complicated resulting spectrum

of the gauge theory would be related to type IIB string theory in a certain background1.

Nevertheless, even taking the large ’t Hooft coupling limit, the stringy dual nature of

the correspondence can sometimes be observed. One of the first insights was provided

by Witten [163], who mapped branes wrapped on S5, RP 5 and subspaces thereof, to 4-

dimensional gauge theories. In this section we are going to present certain configurations

in which strings stretch all the way from the AdS space boundary to different branes in

the bulk. These branes wrap certain non-trivial circles of the background, and are seen as

point-like particles from the AdS perspective.

An example is the baryon vertex in AdS5 × S5 [163] (a baryon vertex is a static fi-

nite energy configuration of N external quarks). We are going to first elaborate on this

configuration, which will lay the foundations for the research presented in the next chapter.

4.1.1 The baryon vertex in AdS5 × S5

The first remarkable fact when considering a baryon-like configuration in the N = 4 SYM

theory is that its quarks are non-dynamical, as we mentioned in the last section, and

therefore there will not be any kind of baryonic particle. Nevertheless we are still able

to consider a baryonic vertex, i.e. a gauge-invariant coupling of N external charges whose

color wave functions are contracted with the antisymmetric tensor of SU(N). Its gravity

dual can be realized in the AdS5×S5 compactification of the type IIB theory, as N strings

1See [159] for example.
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Figure 4.1: The strings connect points in the boundary of AdS to a point in the interior,

where the baryon vertex is.

oriented in the same way and connecting points in the boundary of the AdS to some point

in the interior, where a probe 5-brane is. That 5-brane wrapps the S5 of the geometry and

is static in a fixed point in AdS ([163]). Although we will consider the strings as funda-

mental ones, and so we will build the baryon vertex from a D5-brane, it is also possible to

consider (p, q)-strings of the same type ending on a (q, p)-5-brane wrapping the 5-sphere

as well.

The reason for considering a D5-brane comes from the fact that the D5 couples to the

self-dual 5-form of the geometry (see section 1.5.1) through Aµ, the U(1) gauge field living

on its worldvolume. From the CS part of the D5-brane action the BI field strength F

couples to the R-R 4-form of the background

−T5
∫
R×S5

P [C4] ∧ F, (4.1)

and by integrating by parts we get to

T5

∫
R×S5

P [G5] ∧ A. (4.2)

By
∫
S5

G5

2π
= N , N units of U(1) charge are produced in that way. Now, as the total charge

must vanish in a compact space we must naturally take N fundamental strings ending on

the D5-brane, all with the same orientation, in such a way that they will contribute with

N units of opposite charge and cancel the previous contribution. Depending on the orien-

tation of the D5 and the fundamental strings attached to it we will have either a baryon

or an anti-baryon vertex configuration.
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In this kind of cases, strings ending at the AdS boundary at infinity are regarded as

ending on a D3-brane close to that boundary [161, 162]. At time zero that D3-brane can be

considered as an static D3-brane whose world-volume is S3 × R, with S3 a large 3-sphere

near infinity and R a point in S5. On the other hand, the worldvolume of the vertex

D5-brane has the form S5 × Q at time zero, being Q a point at AdS. Based on previous

arguments in [163] it is argued that the ground state of strings stretching between those

D-branes is fermionic and non-degenerate2, making the configuration antisymmetric under

permutation of the N fundamental strings as a baryon vertex has to be.

Stability

In order to study the stability of the system in SUGRA, energetic considerations are

necessary. In [163] it is already discussed that for both electric and magnetic external

charges, the energy of the 5-brane and the N strings attached to it are of the same order

of magnitude in the ’t Hooft limit (gs → 0, N → ∞, gsN fixed). In the former case the

vertex is realized by a D-brane with tension ∼ 1/gs ∼ N , while in the later it is realized

by a NS5-brane, whose tension has an extra 1/gs factor so as the D-strings ending on it. A

careful study was taken in [165] (see also [166]). They considered the combined actions of

the wrapped D5-brane and the Nambu-Goto action of the N fundamental strings attached

(as a function of the location of the baryon vertex in the bulk, that we will call u0) in the

gauge x = σ and t = τ

Stotal = SD5 +NS1F =
1

(2π)5(α′)3eϕ

∫
dx6

√
h+

1

2π

∫
dtdx

√
(u′)2 + u4/L4. (4.3)

Here h is the induced metric on the D5. The strings are taken to end symmetrically at

the vertex (fig. 4.2) ensuring the net force to vanish in directions longitudinal to the AdS

boundary. This additionally makes possible to ignore D-brane deformations due to strings

tension as well as the electric field created by them on the brane worldvolume. Meanwhile,

stability in the u direction will require a zero total net force on the vertex.

The variation of (4.3) (u → u + δu) contains a volume and a surface term, that yield

to the following equations of motion

u4√
(u′)2 + u4

L4

= const.,
u′0√

(u′0)
2 +

u4
0

L4

=
1

4
, (4.4)

the first one for the bulk of the strings and the second one for its boundary, where the

D5-brane contributes. There we have parametrized the fundamental strings worldvolume

2This can be either seen from the point of view of being two “linked” D-branes ([164]) in the R4 × S5

nine-manifold, or from the local point of view of strings stretching between two transverse D-branes.
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Figure 4.2: String endpoints in the boundary are by construction uniformly distributed

around the vertex axis in a circumference of radius ℓ. The D5-brane is located at a u0
position in the u direction of AdS.

by x,t and the position in AdS by u = u(x), being u′0 = u′(u0) and L
4 = 4πgsl

4
sN the AdS

radius. Combining both equations of motion one finds that

u4√
u2x + u4/L4

=

√
15

16
u20L

2, (4.5)

At this point in time we can get an expression for the baryon size ℓ in terms of the position

of the brane. We just have to integrate the previous equation

du

dx
= f(u) ⇒

∫ ∞

ρ0

du

f(u)
=

∫ ℓ

0

dx
(4.5)→ ℓ =

L2

u0

∫ ∞

1

dy

y2
√
(β2y4 − 1)

(4.6)

where y = u/u0 and β =
√

16/15.

The energy of a single string is obtained by subtracting the (divergent) energy of its

configuration with the D5-brane located at u = 0 3

E =
1

2π
u0

(∫ ∞

1

dy
βy2√
β2y4 − 1

− 1

)
− u0

2π
. (4.7)

3The D5-brane energy vanishes there, so just the fundamental strings contribute.
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Figure 4.3: When the baryon vertex is located at u = 0 and u′ → ∞ the strings can move

freely at the boundary.

Note that as gxx = 0 at the u = 0 region (point) any radial string will have the same length

and end at the same point, where the D5-brane is (fig. 4.3). These fermionic strings will

behave as free quarks, as their position in the AdS boundary will be irrelevant.

Finally, by combining (4.6) and (4.7) equations one can express the total energy of the

baryon configuration in terms of hypergeometric functions ([165])4

E = −αBN

√
2g2YMN

ℓ
, where αB = ... ≃ 0.007. (4.8)

From here one can see that the baryon configuration is stable, as the force F = dE/dℓ is

positive. Moreover, the total energy turns out to be proportional to N times that of the

quark anti-quark system, as expected from the field theory large N analysis. In terms of

the ’t Hooft coupling E ∼ −
√
λ/ℓ. Therefore, while the dependence on 1/ℓ is dictated by

conformal invariance, the explicit non-analytical behavior with
√
λ is a non-trivial predic-

tion of string theory for the strong coupling behavior of the gauge theory ([167]). This

result is similar to the one found in [161, 162] for the qq̄ system.

Baryons with k < N quarks

In [165] a mechanism for modifying the number of quarks was proposed, being possible

to construct a more general baryon vertex made of k < N quarks. Although this kind of

configurations are not expected in confining theories and excluded in non-supersymmetric

4In the same reference, similar expressions were obtained for the N = 4 theory at finite temperature

as well as for three and four dimensional non-supersymmetric YM
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Figure 4.4: A k < N baryon vertex with N − k strings ending at u = 0.

ones, such stable k-quarks baryons were surprisingly found in the N = 4 SYM theory.

By letting some of the strings to be stretched from the vertex to u = 0 in place of

going to the boundary we will be reducing the number of quarks, as shown in fig. 4.4.

The calculation of the energy can now be performed in a similar fashion, modifying the

boundary equation that now looks

u′√
(u′)2 + u4/L4

=
5N − 4k

4k
. (4.9)

The LHS has to be smaller than 1, from where an upper bound for the number of

strings stretching from the vertex to u = 0 is obtained

5

8
N < k ≤ N. (4.10)

The lower bound corresponds to u′ → ∞ and so to radial strings, i.e. free quarks.

The energy of the configuration can be calculated as before, subtracting the energy

corresponding to having the D5-brane located at u = 0

Ek =
u0
2π

[
(N − k) +N/4 + k

(∫ ∞

1

dy(
y2√

y4 − (1− ((5N − 4k)/4k)2)
− 1)− 1

)]
.

(4.11)

Note that the energy vanishes for the lowest possible value of k, and the location of the

D5-branes becomes a moduli of the system. An explanation of what is happening in the

non-allowed interval of k was already given in [165]. From the surface relation it can be

seen that in that case not all the N − k strings can go radially directed towards u = 0.

Instead they should come out of the vertex with some finite slope, never reaching u = 0 and
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eventually ending on the boundary. Additionally, in [165] it is also showed that a similar

analysis for a confining field theory reveals that these configurations are not possible for

such theories, in agreement with the field theory results.

In 2008 Sfetsos and Siampos studied the stability of baryon vertices under fluctuations

for a class of curved backgrounds [168]. In this way, in the AdS5 × S5 case, they found

a more restrictive lower limit for k than the one found by Brandhuber and collaborators

[165] and Imamura [166]. Stability restricts the value of k to be larger than a critical value

(0.813N, higher than the lower bound 0.625N imposed by the existence of the classical

solution). Still, non-singlet configurations are allowed to exist in this background.

Adding magnetic flux

In [169] it was shown how the baryon vertex can be generalized by adding a new quantum

number, representing magnetic flux. The key point is to realize that S5 can be seen as an

S1 bundle over CP 2. The S1 fiber is a non-trivial U(1) gauge bundle on the CP 2 base,

and this allows to switch on a magnetic BI field B on the worldvolume of the D5-brane,

proportional to the curvature tensor of the fiber connection. In these S5 fiber coordinates

the AdS5 × S5 background (see section 1.5.1) reads (in the following, we will use the

convention α′ = 1)

ds2 =
u2

L2
ηabdx

adxb +
L2

u2
du2 + L2

(
(dχ−B)2 + ds2CP 2

)
,

Cabcd = L−4u4ϵabcd , Cφ2φ3φ4χ =
1

8
L4 sin4 φ1 sinφ2, (4.12)

where ds2CP 2 stands for the Fubini-Study metric on CP 2 (with coordinates φi) and χ is

taken along the U(1) fiber [170].

The curvature tensor of the fiber connection introduced as F = 2n dB is selfdual and5∫
CP 2

F ∧ F = 8π2n2 . (4.13)

It is therefore natural to take the magnetic components living in the CP 2 as proportional

F . With this choice for the BI field strength there are no other couplings in the Chern-

Simons action besides the one already considered in (4.1). The Born-Infeld action however

is given by

SDBI = −T5
∫
d6ξ

u

L

√
det
(
gαβ + Fαβ

)
= −T5

∫
d6ξ u

√
gS5

(
L4 + 2FαβF

αβ
)
.(4.14)

5One sees that B induces a non-trivial instanton number in CP 2 [170, 171].
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Finally, substituting the expression for F in the action and integrating over the S5 direc-

tions the following expression for the energy of the spherical D5-brane is obtained [169]:

ED5 = 8π3T5 u
(
n2 +

L4

8

)
. (4.15)

Note that this energy consists of two parts: one contribution from the tension of the 5-brane

wrapped around the S5, proportional to L4, and one from the magnetic flux of the BI vector,

proportional to n2. The magnetic components of F induce a non-zero instanton number

n2 on the worldvolume of the D5-brane, since integrating the Chern-Simons coupling over

the CP 2 directions, one obtains

SCS =
1

2
T5

∫
R×S5

P [C2] ∧ F ∧ F = n2T1

∫
R×S1

P [C2] , (4.16)

Even though in AdS5 × S5 C2 is zero, this coupling indicates that the magnetic flux is

inducing n2 D-string charge in the configuration. These strings are wound around the fiber

direction χ and dissolved in the CP 2. Note that the total energy of the configuration (4.15)

is the sum of the energy of the D5 and the D1-branes, which indicates that we are dealing

with a threshold BPS bound state.

It is now possible to perform a similar analysis to the one shown in the previous subsec-

tion [165], but taking into account the effect of the non-zero magnetic flux on the D5-brane.

In this case the equations of motion read

u4√
(u′)2 + u4

L4

= const,
u′0√

(u′0)
2 +

u4
0

L4

=
πL4

4N

(
1 +

8n2

L4

)
, (4.17)

for the bulk and the boundary respectively. The equations (4.17) can again be combined

into a single one,

u4√
(u′)2 + u4

L4

= β u20L
2, with β2 = 1− 1

16

(
1 +

8πn2

N

)2
. (4.18)

In the absence of magnetic BI flux on the worldvolume, β =
√
15/16, as in [165]. However,

in general for non-zero n2, we have to make sure that β is real (as u is real). This implies

that n2 ≤ 3N/8π, surprisingly finding that there is a bound on the number of D-strings

that can be dissolved in the configuration, depending on the number of D3-branes that

source the background; in fact, in terms of the gauge theory parameters n2 ≤ 3λ/32π2gs.

Integrating the equation of motion, the size ℓ and the energy E of the baryon are given

by [169]

ℓ =
L2

u0

∫ ∞

1

dy
β

y2
√
y4 − β2

, E = T1u0

{∫ ∞

1

dy
[ y2√

y4 − β2
− 1
]
− 1

}
, (4.19)
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Figure 4.5: Radius ℓ (in units of L2/u0) and the energy E (in units of u0) of the baryon

vertex as a function of n2/N .

with y = u/u0. These integrals can again be solved in terms of hypergeometric functions

[165]. In the original fig. 4.5 the radius and the energy of the baryon as a function of n2/N

was plotted [169]. These plots reveal that the size of the baryon vertex goes to zero as

we approach the bound on n2, making it impossible to continue beyond the bound. The

expression for the energy has the same form as the expression in [165] and indeed takes

the same value for n = 0. In particular, the dependence on
√
g2N and on u0 is unaltered,

as expected by conformal invariance. Notice that also here the energy of the configuration

is only well defined for n2 inside the allowed interval.

In [169] it was pointed out that finding a bound on the number of dissolved D1-branes

due to the dynamics of the F-strings could probably be related to the stringy exclusion

principle of [204]. Their configuration carries a non-zero winding number in the fiber di-

rection of the S5, which in terms of the dual field theory will manifest itself as a specific

charge of the SU(3) R-symmetry group. As these charges are bounded due to conformal

invariance, one expects to find a bound on the magnetic flux.

4.1.2 Other particle-like brane configurations

Di-baryons in AdS spaces

In [173] Gubser and Klebanov proposed that, in AdS5 × T 1,1 D3-branes wrapping 3-cycles

of the T 1,1 correspond to baryon-like chiral operators built out of products of N chiral

superfields. These baryon-like operators have the form AN and BN , being N fully an-

tisymmetrized SU(N) indices. At large N , the dimensions of such operators calculated

from the wrapped D3-branes mass, 3N/4, turned out to be in complete agreement with the

dimension of the chiral superfields at the fixed point, which is 3/4 [173]. After this initial

work, Berenstein and Klebanov [174] demonstrated that the previous identification was

also true even away from the large N limit, providing a detailed map between a wrapped
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D3-brane in AdS backgrounds and a dibaryon operator in the corresponding CFT. In their

work, they found a matching between a U(1)R charge of this wrapped D3-brane with the

corresponding R-charge of di-baryons expected from field theory side. It was shown that, in

certain Sasaki-Einstein geometries, wrapped D3-branes and M2-branes carry an R-charge

related to the U(1)R gauge field emerging from the KK reduction of the full ten or eleven

dimensional SUGRA action.

4.2 ABJM theory

As we already mentioned, important progress have taken place in understanding the world

volume theory of coincident supermembranes of M-theory in the context of the AdS4/CFT3
correspondence. Bagger and Lambert [178] (and independently [179]) constructed a theory

conjectured to be related to a specific theory of M2-branes. Based on an algebra with a

totally antisymmetric triple product (“3-algebra”), they proposed a field theory model for

multiple M2-branes. They then constructed a supersymmetric theory with the required

properties. The theory had the 16 supersymmetries and the conformal invariance expected,

as well as the SO(8) R-symmetry acting on the eight transverse scalars; however, it only

described correctly two M2-brane systems.

Aharony, Bergman, Jafferis and Maldacena (from now on ABJM) constructed and

studied a three dimensional superconformal Chern-Simmons-matter theory with U(N)k ×
U(N)−k gauge group6 and an explicit N = 6 superconformal symmetry [175]. Using brane

constructions they argued that the theory described the low energy limit of N M2-branes

probing a C4/Zk singularity. The large N limit of the theory would be then dual to M-

theory on an AdS4×S7/Zk background. Taking the ’t Hooft limit by holding N/k fixed as

N → ∞ it is also possible to arrive to a theory dual to type IIA string theory on AdS4×P3.

Although their construction realized explicitly only six of the eight supersymmetries the

theory was conjectured to describe N M2-branes in flat space for k = 1. Indeed, in the

N = 2 case the theory has that missing extra symmetries and reproduced the previous

results of [178]. A picture showing schematically all these relations can be shown in fig. 4.6.

6The k here is the discrete CS level of the gauge group, which in the ABJM theory is related to the

superpotential coupling due to the high degree of SUSY. The requirement that a non-Abelian theory is

invariant under large gauge transformations makes this CS level to just take integer values.
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Figure 4.6: ABJM theory is proposed to be equivalent a low energy theory on N M2-branes

at a C4/Zk singularity. For k >> N ABJM is weakly coupled (the superpotential is pro-

portional to the inverse of k) and it has two dual weakly curved gravitational descriptions

in M-theory for k << N1/5, and in type IIA string theory, for N1/5 << k << N .

4.2.1 BLG model

Bagger and Lambert [178] and independently, Gustavsson [179], constructed a theory (BLG

model) using the 3-algebra previously mentioned. This algebra is defined by means of the

following triple product7 [
T a, T b, T c

]
= fabc

d T d (4.20)

for a given set of generators Ta and being fabcd a completely antisymmetric tensor. Given

this definition, the maximally supersymmetric Chern-Simons lagrangian looks

LCS =
1

2
ϵµνλ

(
fabcdAµab∂νAλcd +

2

3
f cda

gf
efgbAµabAνcdAλef

)
,

Lmatter = −1

2
DµxaIDµx

I
a +

i

2
ψ̄aΓµDµψa +

i

4
ψ̄bΓIJx

I
cx

J
dψaf

abcd

− 1

12
Tr
(
[xI , xJ , xK ][xI , xJ , xK ]

)
, I, J = 1, . . . , 8, (4.21)

being Aµ
ab a gauge field, and ψa and x

I = xIaT
a matter fields, for gauge indices running from

1 to 4. Indices denoted with capital letters are SO(8) vector indices. For fabcd propor-

tional to the ϵabcd tensor we obtain an SO(4) gauge symmetry and the theory has manifest

7See [180] for a review on M2-branes and AdS/CFT duality.
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unitarity and N = 8 SUSY.

This theory has been demonstrated [181, 182] to be equivalent to an SU(2) × SU(2)

CS gauge theory with opposite CS levels.

LCS =
k

4π
ϵµνλ Tr

(
Aµ∂νAλ +

2i

3
AµAνAλ − Âµ∂νÂλ −

2i

3
ÂµÂνÂλ

)
,

Lmatter = −(DµXI)†DµX
I + iΨ̄†ΓµDµΨ− 4iπ

k
Ψ̄†ΓIJ

(
XIXJ†Ψ+XJΨ†XI +

+ΨXI†XJ
)
− 32π2

3k2
Tr
(
X [IX†JXK]X†[KXJX†I]) , (4.22)

where the covariant derivative is given by DµX
I = ∂µX

I + iAµX
I − iXIÂµ, and the

XI bifundamental matter fields satisfies XI = 1/2(xI4I2×2 + ixIiσ
i) as well as the reality

condition [182]

X â
a = −ϵab Xb

b̂
ϵâb̂, ϵab = iσab

2 . (4.23)

A N = 2 formalism can be used by combining the matter fields into bi-fundamental chiral

superfields ZA [175, 183]. In that case the superpotential can be expressed as

W =
π

3k
ϵABCD(ZAZ‡BZCZ‡D) , (4.24)

where

Z‡A = X†A + iX†A+4,

Z̄A = XA − iXA+4. (4.25)

It is possible to check that, although the superpotential (4.24) only has a manifest U(1)R×
SU(4) invariance, thisN = 2 formalism still has the desired SO(8)R global symmetry [183].

Nevertheless a problem exists when trying to generalize this construction to higher rank

gauge groups; the reality condition (4.23) and the “double dagger” operation (4.25) are

special to SU(2)× SU(2).

4.2.2 The ABJM proposal

Aharony, Bergman, Jafferis and Maldacena proposed, in [175], to abandon the manifest

global SU(4) invariance by combining the bi-fundamental fields into

Z1 = X1 + iX5, W 1 = X3† + iX7† ,

Z2 = X2 + iX6, W 2 = X4† + iX8† . (4.26)
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Promoting the fields ZA and WA to the chiral superfields ZA and WA, the superpotential

can be rewritten as [175, 183]:

W =
2π

k
ϵACϵ

BD Tr
(
ZAWBZCWD

)
. (4.27)

This superpotential has the same form as that for N D3-branes in the conifold8, and can

be easily generalized to higher rank SU(N) × SU(N) gauge groups. Nevertheless, in the

conifold theory the superpotential has a certain U(1) symmetry that becomes global in the

IR, meanwhile due to the different dynamics of the case at hand we have to treat this U(1)

as a gauge symmetry.

Following this and by using type IIB brane constructions, ABJM proposed U(N)×U(N)

and not SU(N)× SU(N) as gauge group on N M2-branes [175]. The type IIB brane con-

structions of ABJM generalized ones of [185, 186] to theories with a U(N)× U(N) gauge

group, CS terms at levels k and −k and matter in the bi-fundamental representation. They

showed how these theories flow in the IR to the N = 6 superconformal CS introduced be-

fore. Finally they lifted the configurations to M-theory by T-duality transformations and

relate the low energy of those theories to M2-branes probing a C4/Zk singularity, support-

ing the previous argument9.

We should note that the classical ABJM action possesses a manifest SU(4)R ∼ SO(6)R
symmetry [183], which strongly suggests that, for general N and k, the theory will have

at least N = 6 SUSY. An explicit demonstration of this N = 6 superconformal invariance

was presented in [189].

It is remarkable that one can make use of the AdS/CFT duality in order to predict how

the correlation functions of protected gauge-invariant operators scale, as their spectrum

should be in one-to-one correspondence with the KK harmonics on S7/Zk. The result [190]

predicts that the number of dof scales as N3/2 (not as N2 as occurs in the D3-brane case)
10

⟨O1O2 . . .Om⟩ ∝ (R/lp)
9 ∝ N3/2 , (4.28)

what was later obtained in [205].

4.2.3 The gravitational description

Let us make a lightning review of the AdS4 × P3 background while collecting some useful

formulae that will be useful in the next chapter. The background created by a stack of

8A review on this subject can be found in [184]
9Additional geometrical arguments are presented in [187, 188]

10For a deeper insight, we recommend looking at the review [191]
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N coincident M2-branes is given by (see section 1.5.1). Taking the near horizon limit, the

S7/Zk orbifold and reducing to type IIA, the AdS4 × P3 metric reads

ds2 =
4 ρ2

L2
dx21,2 + L2 dρ

2

4 ρ2
+ L2ds2P3

= L2
(1
4
ds2AdS4

+ ds2P3

)
, (4.29)

with L the radius of curvature in string units,

L =
(32π2N

k

)1/4
(4.30)

This is a good description of the gravity dual to the U(N)k × U(N)−k CS-matter theory

[175] when N1/5 << k << N .

It is well-known that for P3 one has Hq(P3) = Z for even q. Indeed, parameterizing the

P3 as (e.g. [206])

ds2P3 = dµ2 + sin2 µ
[
dα2 +

1

4
sin2 α

(
cos2 α (dψ − cos θ dϕ)2 + dθ2 + sin2 θ dϕ2

)
+
1

4
cos2 µ

(
dχ+ sin2 α (dψ − cos θ dϕ)

)2]
(4.31)

where

0 ≥ µ, α ≥ π

2
, 0 ≥ θ ≥ π , 0 ≥ ϕ ≥ 2π , 0 ≥ ψ, χ ≥ 4π , (4.32)

there is a P2 at fixed θ, ϕ, and a P1 at µ = α = π/2 and fixed χ, ψ.

The Kähler form

J =
1

2
dA , (4.33)

where A is the connection in ds2S7 = (dτ +A)2 + ds2P3 , which in our coordinates reads:

A =
1

2
sin2 µ

(
dχ+ sin2 α

(
dψ − cos θ dϕ)

)
, (4.34)

satisfies ∫
P1

J = π ,

∫
P2

J ∧ J = π2 ,

∫
P3

J ∧ J ∧ J = π3 . (4.35)

Therefore,
1

6
J ∧ J ∧ J = dVol(P3) with Vol(P3) =

π3

6
. (4.36)

The non-vanishing fluxes of this background can then be written as

F2 =
2L

gs
J , F4 =

6

gs L
dVol(AdS4) , F6 =

6L5

gs
dVol(P3) (4.37)
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where

gs =
L

k
, L4k = 32π2N . (4.38)

The flux integrals read ∫
P3

F6 = 32 π5N ,

∫
P1

F2 = 2π k . (4.39)

4.3 Particle-like branes in ABJM

In the M-theory description of the ABJM background, S7/Zk has certain non-trivial cycles

which branes can wrap, as in the AdS5 case. More concretely, from the 10-dimensional

point of view, in the type IIA description the geometry is AdS4 × P3, so D0, D2, D4, and

D6 branes can wrap topologically non-trivial subspaces of the three dimensional complex

projective space [175, 192]11. The D2 and D6 branes develop worldvolume tadpoles as

they capture the RR flux of the geometry, meanwhile the D0 and D4 branes do not, so

that they should correspond to gauge-invariant operators on the field theory side of the

correspondence. A subtle issue affecting these configurations was raised in [193]. Since

the D4-branes wrap a non-spin manifold, they carry a half-integer worldvolume magnetic

flux due to the Freed-Witten anomaly [194]. On the other hand, matching with the nat-

ural interpretation in field theory of such objects as di-baryon-like operators requires to

switch a flat half-integer background B-field12. More generally, these wrapped branes act

as sources to vector fields in AdS4 arising from the reduction of RR potentials on topologi-

cally non-trivial cycles. In turn, vector fields in AdS4 admit quantization with either of the

two possible fall-offs at the boundary [195], which amount to either a dynamical boundary

gauge field or to a global current (discussions in this context have appeared recently in

[196, 197, 198, 199]). Since a definite quantization must be chosen, it follows that either

magnetic or electric sources are forbidden for the corresponding bulk field [195]. This

might shed some light on the role of the B-field. Indeed, coming back to the D4-branes,

the quantization allowing for the D4-branes to exist should correspond to that where the

U(1)’s are non-dynamical. Under that assumption, a determinant-like di-baryon dual op-

erator would be gauge invariant by itself and it would have the right dimension to agree

with the gravity result. On the other hand, the quantization dual to dynamical U(1)’s

would forbid the D4-branes, which might suggest that no B-field is needed. However, a

11The P3 space has Hq(P3) = z for even q ≤ 6.
12The original argument supporting this B-field in [193] concerns a detailed analysis of the supergravity

charges, while the analysis of the D4 worldvolume dynamics arises as a consistency check. For more details

we refer to the original paper.



108 Particle-like branes and holography

full understanding of this very important point is, at present, still lacking.

Similar comments should hold for the remaining wrapped branes. It has been argued

that the D0-brane corresponds to a di-monopole operator in the CFT side. The D6-brane,

very much like the baryon vertex in AdS5, requires N fundamental strings ending on it. Its

dual operator should then naturally involve the ϵ tensor of the gauge theory. On the other

hand, the D2-brane wrapped on the P1 ⊂ P3 develops a tadpole that has to be cancelled

with k fundamental strings. The dual operator is a monopole ’t Hooft operator, realized

as a Symk product of Wilson lines [175]. As mentioned above, as of today, there is no fully

satisfactory understanding of the role of these branes and their dual operators.



Chapter 5

Charged Particle-like Branes in

ABJM

In this chapter we are going to present the research work in which we study the effect

of adding lower dimensional brane charges to the particle-like brane configurations of

AdS4 × P3 described before. These gravitational configurations admit a natural gener-

alization by allowing non-trivial worldvolume gauge fluxes. It is the aim of the work

carried out in [23] to generalize the spectroscopy of wrapped branes by adding such non-

trivial worldvolume gauge fields. To that matter, we will assume that suitable boundary

conditions are chosen in each case such that the discussed branes are possible. These

generalized configurations are of potential interest for some AdS/CMT applications (see

for instance [200, 201]), for example as candidates for holographic anyons in ABJM, as

discussed recently in [202, 203].

Allowing for a non-trivial worldvolume gauge field has the effect of adding lower di-

mensional brane charges. This modifies how the branes capture the background fluxes in a

way that depends on the induced charges, such that, in some cases, additional fundamental

strings will be required to cancel the worldvolume tadpoles. From that point of view, the

generalized configurations are similar to holographic Wilson loops. We will see that the

D2 and D6-branes do not differ much from the zero charge case, although they are stable

only if the induced charges lie below some upper bound.

This situation is familiar from the baryon vertex with magnetic flux in AdS5 × S5

discussed in chapter 4. In these cases the energy of the bound state increases with the

charge that is being induced. However adding charges allows to construct more general

baryon vertex configurations. We will see that for the D6-brane the number of quarks that

forms the bound state can be increased in this manner. From this point of view adding

flux provides an alternative mechanism to that proposed in [165] for modifying the num-

ber of quarks. In turn, the D4-brane with flux behaves quite differently from the fluxless

case, since it will require fundamental strings ending on it as opposed to the vanishing
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worldvolume flux case. As we will see, the study of its dynamics reveals that the whole

configuration is stable if the magnetic flux lies within a given interval, being maximally

stable for an intermediate value, and reducing to free quarks at the boundaries.

5.1 Particle-like branes in AdS4×P3 with magnetic flux

In this section we generalize the particle-like brane configurations in [175] to include a non-

vanishing magnetic flux. We analyze the various brane charges that are dissolved as well as

the charges of the different tadpoles induced. Following [193], an important observation is

that the dual gravity background might actually involve a non-vanishing but flat B2 field.

It is possible to argue for such a shift by noting that the D4-brane with minimal flux (it

will turn out essential for the argument that this minimal flux has to be half-integer due

to the Freed-Witten anomaly [194]) should be dual to a di-baryon. In order to review this

argument, we will consider first the D4-brane case before turning to the D2 and D6 cases.

5.1.1 The di-baryon

Consider a D4-brane wrapping the P2 in P3. This brane lives at fixed θ and ϕ, and since it

does not capture any background fluxes it does not require any fundamental strings ending

on it.

Since the D4-brane wraps a P2, which is not a spin manifold, it should carry a half-

integer worldvolume gauge field flux through the P1 ⊂ P2, due to the Freed-Witten anomaly

[194]. Given that the gauge-invariant quantity in the worldvolume is F = B2 + 2πF , this

half-integer worldvolume flux can be cancelled through a shift of B2. This motivated [193]

to include a flat B2-field in the dual IIA background:

B2 = −2π J (5.1)

which should be considered in addition to the fluxes discussed in the previous section.

We can now consider a more general configuration where we add extra worldvolume

flux F = N J on top of the FFW = J required to cancel the Freed-Witten anomaly, such

that the total worldvolume flux is FT = (N + 1) J with even-integer quantization (that

is, N ∈ 2Z being N = 0 the minimal case). As noted above, the quantity appearing in

the brane worldvolume action is the combination F = B2 + 2π FT (remember that we are

taking α′ = 1). Putting together the various definitions, we have F = 2π F , that is, the B2

shift and the extra half unit of worldvolume flux cancel each other and we can effectively
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work as if we had no background B2-field and F = N J .

The DBI action is then given by:

SDBI = −T4
gs

∫
d5ξ
√

−det(g + 2πF ) = −T4
gs

∫
d5ξ
√
|gtt|

√
gP2

(
L4 + 2(2π)2FαβF

αβ
)

= −π
2 T4
2 gs

(
L4 + (2πN )2

) ∫
dt

2 ρ

L
. (5.2)

Therefore, for non-vanishing magnetic flux the mass of the D4-brane satisfies

mD4L = N + kN 2/8 (5.3)

From here we can see explicitly that in the minimal flux case, N = 0, the background B2

cancels the half-integer worldvolume flux induced by the Freed-Witten anomaly, such that

mD4 L = N ; thus naturally admitting an interpretation as a di-baryon.

The D4-brane with magnetic flux captures the F2 background flux through the coupling

SCS =
1

2
(2π)2 T4

∫
R×P2

P [F2] ∧ F ∧ A = 2 (2π)2T4 kN
∫
R×P2

J ∧ J ∧ A

= k
N
2
TF1

∫
dtAt (5.4)

Therefore kN /2 fundamental strings are required to end on it in order to cancel the

tadpole. Note that, due to the quantization condition for N , this quantity is an integer

number. Moreover, the magnetic flux also dissolves D2 charge through the coupling:

SCS = 2π T4

∫
R×P2

C3 ∧ F =
N
2
T2

∫
C3 (5.5)

Thus, the number of fundamental strings is k times the number of dissolved D2 branes.

In fact, as we will see in the next subsection, a single D2-brane requires k fundamental

strings ending on it. Thus, from this perspective, the fundamental strings ending on the

D4 are cancelling the tadpole due to the dissolved D2-branes.

We will see in the next section that the D4-brane with the kN /2 attached F-strings is

stable if the magnetic flux lies in an interval, reducing to kN /2 radial fundamental strings

stretching from the D4-brane to infinity, i.e. to free quarks, at both ends of the interval.

Given that F is proportional to the Kähler form on the P2 it satisfies that
∫
P2 F ∧

F = N 2π2. Therefore, it also induces D0-brane charge in the configuration, through the

coupling:

SCS =
1

2
(2π)2 T4

∫
R×P2

C1 ∧ F ∧ F =
N 2

8
T0

∫
R
C1 . (5.6)
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However, as noted in [193], there are relevant higher curvature corrections [74]

∆S ∼
∫
C ∧ eF ∧

√
Â(T )

Â(N)
, (5.7)

where Â is the A-roof genus

Â = 1− p̂1
24

+
7 p̂21 − 4 p̂2

5760
+ · · · (5.8)

and the Pontryagin classes are written in terms of the curvature of the corresponding

bundle as

p̂1 = − 1

8π2
TrR2 p̂2 =

1

256π4

(
(TrR2)2 − 2TrR4

)
(5.9)

The relevant term in (5.7) is then

∆S = (2π)4 T4

∫
C1 ∧

1

48
(p̂1(N)− p̂1(T )) = − 1

24
T0

∫
C1 (5.10)

Thus, the total D0 charge is (N 2

8
− 1

24

)
T0

∫
C1 (5.11)

This equation shows that the D4-brane contains dissolved D0-brane charge even for

the minimal flux allowed. Note that the term kN 2/8 in (5.3) can be identified with (L

times) the mass of the extra N 2/8 D0-branes dissolved in the worldvolume due to the

non-vanishing magnetic flux. Therefore, (5.3) can be interpreted as the energy of a thresh-

old BPS intersection of N 2/8 D0-branes and a D4-brane. We should note however that

if we want to study the dynamics of the D4-brane with fundamental strings attached in

the probe brane approximation, we need to take the strings distributed uniformly on the

D4. Therefore, the Killing spinors preserved by each one of the F1 strings will be different

and all supersymmetries will be broken. Nevertheless, since both the wrapped cycle and

the worldvolume flux are topologically non-trivial, we expect the system to be at least

perturbatively stable.

By making all the F1 strings end in the same point, such that they preserve the same

Killing spinor, we expect that a SUSY generalization in terms of a spike can be found.

The problem of finding D4-brane spiky solutions in AdS4×P3 has been addressed recently

in [203], although in the ansatz taken there the deformation of the D4-brane due to the

electric field is not taken into account. It would be interesting to check if spiky solutions

exist for both non-vanishing electric and magnetic fields.
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On boundary conditions and dual operators

Given the topology of P3 it is possible to consider the KK reduction of the 5-form and

7-form respectively on P2 and P3 giving rise to vectors in AdS4. As discussed in [195] and

further elaborated in a similar context in [196, 197, 198, 199], the two fall-offs are possible

in AdS4.
1 Choosing one or the other amounts to the dual U(1) symmetry being gauged

or not. In turn, from the bulk perspective, this is seen as electric-magnetic duality (the so-

called T -operation). It is possible to define a S-operation such that their combined action

forms an SL(2,Z) algebra, which then connects different boundary CFTs. The action of

such algebra is far from being understood. However, one particular implication would be

that depending on the boundary conditions that are chosen the allowed sources are either

the magnetic or the electric ones. From this point of view, one might argue that the quan-

tization dual to dynamical boundary gauge fields forbids D4, D6 (which are electrically

charged under the 5-form and the 7-form respectively), which from the field theory point

of view would stand for the non-gauge invariance of the operators detA and ϵ. On the

other hand, the boundary conditions allowing for the D6, D4 would be dual to a certain

SU(N) version of the theory, in which the B field would presumably play an important

role. Nonetheless, at this point this is no more than a speculation. In particular, the role of

the higher curvature couplings, naively coupling the D4 to the 1-form potential (5.11) and

thus endowing it with magnetic charge at the same time, remains to be clarified. It should

be pointed out that recently a detailed analysis of the field theory has been performed in

[207]. Careful analysis of the quantization condition of the U(1) gauge fields suggests that

the moduli space of the U(N)× U(N) gauge theory is a Zk cover of the a priori expected

SymN C4/Zk, thus allowing for determinant-like operators to be gauge-invariant [207] (see

also [208]). These operators are naturally dual to the wrapped D4, which suggests that

the B field is turned on. It would be very interesting to clarify the role of the B field in

this context, and figure out whether a connection to the possibility raised above, namely

the subtle role of the quantization of abelian fields in AdS, is possible. Further studies of

these issues are well beyond the scope of this study, and are postponed for further work.

In this study we will simply assume that suitable boundary conditions are chosen al-

lowing for the corresponding wrapped objects, and, as we have done for the D4-brane,

we will include the effect of the (flat) B-field2. The D4-brane with zero flux would be

identified with the di-baryon operator detA = ϵi1...iN ϵ
j1...jNAi1

j1
. . . AiN

jN
in the CFT side,

being A one of the bifundamentals in the field theory. It is also natural to ask what could

be the dual of the D4-brane with non-minimal flux. Since once the worldvolume flux is

1It must be noted that, from an 11d perspective, the U(1) fields discussed here are not related to a

topological symmetry as in [198, 199], which makes them more subtle.
2The results for a vanishing B-field are simply obtained by tuning the extra worldvolume flux.
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turned on extra F1 strings are required, we should expect such dual operator to involve

nf = kN
2

Wilson lines in the fundamental representation of U(N) × U(N). Indeed, the

configuration is reminiscent of the D5 Wilson loop in AdS5×S5 [209], which suggests that

these fundamental indices should be antisymmetrized. We will see in the next section that

dynamically a bound nmax
f ∼

√
N k ∼ λ−

1
2 N , where λ = N/k is the ’t Hooft coupling,

in the number of such fundamental indices appears, which is consistent with the antisym-

metrization assumption. It would be interesting to elaborate further on this proposal, and

in particular to understand the dependence on the ’t Hooft coupling. We postpone such

analysis for further work.

5.1.2 The ’t Hooft monopole

Let us now consider the D2-brane wrapping the P1 in P3, identified in [175] with a (’t

Hooft) monopole operator [210, 211, 212].

Since this brane captures the F2 flux it requires fundamental strings in order to cancel

the worldvolume tadpole. Substituting (4.39) in the CS coupling

SCS = 2π T2

∫
R×P1

P [F2] ∧ A = k TF1

∫
dtAt (5.12)

we find that the number of fundamental strings must be q = k. Note in particular that

this is the anticipated result from the di-baryon case, where the tadpole of a single D2 was

expected to be k.

We are now interested in adding worldvolume flux to this configuration. According to

the observation in the previous section, there is a background B2 field given by (5.1) [193].

It is then convenient to split the worldvolume flux as in the previous section FT = F + J ,

with

F = NJ . (5.13)

We should stress that the D2-brane, wrapping a spin manifold, does not capture the Freed

Witten anomaly, and as such, the quantization condition for FT [213] is

1

2π

∫
FT =

1

2
(N + 1) ∈ Z (5.14)

Therefore, the case with minimal magnetic flux corresponds to N = −1.

The D2-brane DBI action then reads

SDBI = −π T2
gs

√
L4 + (2πN )2

∫
dt

2ρ

L
. (5.15)
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Besides, there is D0-brane charge induced in the configuration, since

SCS = 2π T2

∫
R×P1

C1 ∧ F =
N
2
T0

∫
R
C1 . (5.16)

Note that even in the case of minimal magnetic flux, N = −1, there is a non-zero D0-brane

charge induced by the shifted B2.

In this case the charge of the worldvolume tadpole is not modified by the presence of

the magnetic flux.

In the next section we will study the dynamics of the configuration formed by the

D2-brane plus the k fundamental strings, and show that adding magnetic flux allows to

construct more general ’t Hooft monopole configurations with charge. This charge will

have to lie however below some upper bound for the configuration to be stable in the AdS

direction.

In view of (5.16) we see that our system is actually formed by a D2−D0 bound state,

which hints to a non-supersymmetric configuration.3 Thus, one might worry about the

stability of the configuration with flux. Nevertheless, since both the cycle wrapped by the

brane and the worldvolume gauge field are topologically non-trivial, we expect the con-

figuration to be stable, at least under small perturbations. As discussed in the previous

subsection, it is implicit in our probe brane approximation that the strings are uniformly

distributed over the D2 worldvolume. Grouping them together in a point would require to

consider their backreaction on the D2, which would deform it into a spike, which could in

turn be unstable due to the lack of SUSY. Nevertheless, as long as we restrict to the probe

approximation, we expect the system to be perturbatively stable.

5.1.3 The baryon vertex

Let us finally consider the D6-brane wrapping the whole P3. This brane is the analogue of

the baryon vertex in AdS5 × S5 [163]. In the absence of worldvolume magnetic flux this

brane captures the F6 background flux, and it requires the addition of q = N fundamental

strings:

SCS = 2π T6

∫
R×P3

P [F6] ∧ A = N TF1

∫
dtAt . (5.17)

Note however that once the shift in (5.1) has been taken into account, the above expression

is incomplete, since there are extra contributions to the F1 charge coming from the coupling∫
F2∧B2∧B2. Nevertheless, once the higher curvature corrections are taken into account,

3For this reason conjecturing a dual operator seems much harder.



116 Charged Particle-like Branes in ABJM

they cancel out so that the correct expression is actually (5.17). In the case at hand the

relevant term in (5.7) is

∆S =
3

2
(2π)5 T6

∫
C1 ∧ F ∧ 1

48
(p̂1(N)− p̂1(T )) (5.18)

As shown in [193] this term contributes to the D6-brane action inducing extra F1 charge

as

∆S = −1

8
(2π)6 k T6

∫
dtAt , (5.19)

and this precisely cancels the B2 contribution to (5.17).

Let us now switch on a gauge flux, FT = NJ . Note that this represents a slight change

in the conventions compared to the previous sections, where we split FT into two pieces

one cancelling B. In this case, due to the relevance of the curvature coupling in giving the

tadpole of N units in the unfluxed case, it turns out to be more convenient not to do the

spliting so that the argument as in [193] goes through. Since P3 is spin, the appropriate

quantization condition is
1

2π

∫
FT =

N
2

∈ Z (5.20)

The DBI action of the D6-brane becomes:

SD6 = −π
3 T6
6 gs

(
L4 + (2π (N − 1))2

)3/2 ∫
dt

2 ρ

L
. (5.21)

In this case the magnetic flux modifies the number of fundamental strings that must end

on the D6, since it contributes to the worldvolume tadpole through the couplings

SCS =
1

6
(2π)2 T6

∫
R×P3

P [F2] ∧ FT ∧
(
2πFT + 3P [B2]

)
∧ A = k

N (N − 2)

8
TF1

∫
dtAt .

(5.22)

Therefore q = N + kN (N − 2)/8. Note that this is always an integer for the quantization

condition (5.20). As for the D4-brane, this is the number of fundamental strings required

to cancel the tadpole of each of the D2-branes that are dissolved on the D6-brane by the

magnetic flux and the B2 field, through the coupling:

SCS =
1

2
T6

∫
R×P3

C3 ∧ F ∧ F (5.23)

In this coupling the term proportional to
∫
C3 ∧ B2 ∧ B2 is precisely cancelled with the

contribution of the A-roof
∫
C3 ∧ 1

48
(p̂1(N)− p̂1(T )). The other two terms give

SCS =
1

2
(2π)2 T6

∫
C3 ∧ FT ∧ FT + (2π)T6

∫
C3 ∧ FT ∧B2 =

N (N − 2)

8
T2

∫
C3 (5.24)
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Note that the magnetic flux and the B2 field also induce D0-brane charge in the configu-

ration.

We will study the dynamics of the D6-brane with magnetic flux in the next section. We

will see that, similarly to the D2-brane case, adding magnetic flux allows to construct more

general baryon vertex configurations in which the charge of the brane can be increased up

to some maximum value. In this case, since the number of fundamental strings attached

to the D6-brane depends on the magnetic flux, the bound on the magnetic flux imposes as

well a bound on the number of F-strings that can end on the brane.

As in the D2 brane case, induced D0 brane charge in a D6 suggests that the system

will not be supersymmetric. However, again due to its non-trivial topology, we expect the

system to be perturbatively stable.

5.2 Study of the dynamics: Charge bounds

In this section we study the stability in the AdS direction of the brane configurations that

we have previously discussed. We follow the calculations in [165] and [161] (see also [169]

for similar results for the baryon vertex with magnetic flux in AdS5 × S5). We show that

the energy of the various configurations is inversely proportional to the distance between

the quarks, as predicted by conformal invariance, and that the proportionality constant is

negative, so that the configurations are stable against perturbations in ρ. As expected, we

find the same non-analytical behavior with the square root of the ’t Hooft coupling that

was found for the baryon vertex in AdS5 × S5 [165] and the qq̄ system [161, 162]. This

represents a non-trivial prediction of AdS/CFT for the strongly coupled CS-matter theory.

In order to analyze the stability in the ρ-direction we have to consider both the Dp-

brane wrapped on the Pp/2 and the q fundamental strings stretching between the brane

and the boundary of AdS. The action is given by

S = SDp + SqF1 , (5.25)

where SDp is of the form4

SDp = −Qp

∫
dt

2ρ

L
, with Qp =

πp/2 Tp
(p
2
)! gs

(L4 + (2πN )2)p/4 , (5.26)

and the action of the strings is given by

SqF1 = −q TF1

∫
dtdx

√
16ρ4

L4
+ ρ′2 , (5.27)

4Note that for the D6-brane N → N − 1 in Qp in order to account for the B2 field, consistently with

the quantization condition (5.20). We will take due care of this shift in section 3.3 below.
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where we have parameterized the worldvolume coordinates by (t, x) and the position in

AdS by ρ = ρ(x). Following the analysis in [165] the equations of motion come in two sets:

the bulk equation of motion for the strings, and the boundary equation of motion (as we

are dealing with open strings), which contains as well a term coming from the Dp-brane.

One can show easily that these equations of motion are, respectively:

ρ4√
16ρ4

L4 + ρ′2
= c (5.28)

with c some constant, and
ρ′0√

16ρ40
L4 + ρ′20

=
2Qp

L q TF1

, (5.29)

where ρ0 is the position of the brane in the holographic direction and ρ′0 = ρ′(ρ0). As in

[165, 169] it is convenient to define√
1− β2 =

2Qp

L q TF1

, (5.30)

where β ∈ [0, 1]. The two equations of motion can then be combined into just

ρ4√
16ρ4

L4 + ρ′2
=

1

4
β ρ20 L

2 . (5.31)

Integrating the equation of motion we find that the size of the configuration is given by

ℓ =
L2

4ρ0

∫ ∞

1

dz
β

z2
√
z4 − β2

, (5.32)

where z = ρ/ρ0. This expression has the same form as the size of the baryon vertex in

AdS5×S5 [165]5 and the qq̄ system [161, 162], and can also be solved in terms of hyperge-

ometric functions. Note that the dependence on the location of the configuration, ρ0, and

on L2 is also the same, which is again a prediction of the AdS/CFT correspondence for

the strong coupling behavior of the gauge theory.

The total on-shell energy is given by

E = EDp + EqF1 = q TF1 ρ0

( 2Qp

L q TF1

+

∫ ∞

1

dz
z2√
z4 − β2

)
= qTF1ρ0

(√
1− β2 +

∫ ∞

1

dz
z2√
z4 − β2

)
. (5.33)

5And also that of the baryon vertex with magnetic flux constructed in [169].
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The binding energy of the configuration can be obtained by subtracting the (divergent)

energy of its constituents. When the Dp-brane is located at ρ0 = 0 the strings stretched

between 0 and ∞ become radial, and therefore correspond to free quarks. At this location

the energy of the Dp vanishes. Therefore, the binding energy is given by:

Ebin = q TF1 ρ0

(√
1− β2 +

∫ ∞

1

dz
[ z2√

z4 − β2
− 1
]
− 1
)
. (5.34)

This expression has again the same form than the corresponding expressions in [165, 169,

161, 162].6

Notice that for our configurations β is a function of the magnetic flux that is dissolved

on the Dp-brane, since from (5.30)

β =

√
1−

( 2Qp

L q TF1

)2
. (5.35)

In particular, in order to find a stable configuration we must have

2Qp

L q TF1

≤ 1 . (5.36)

This imposes a bound on the possible values of the magnetic flux, and therefore on the

possible charges that can be dissolved in the Dp-brane. This situation is very similar to the

one found in [169] for the baryon vertex in AdS5×S5 with magnetic flux. Moreover, for the

di-baryon and baryon vertex configurations, for which the number of fundamental strings

required to cancel the tadpole depends on the magnetic flux, there is as well a bound on

the number of quarks that can form the bound state.

For the values allowed by (5.36) the binding energy per string is negative and decreases

monotonically with β 7. Therefore, the configuration is stable, becoming less and less stable

as β decreases, with the binding energy reaching its maximum value at the bound, β = 0,

where it vanishes. The configuration reduces then to q free radial strings stretching from

ρ0 to ∞, plus a Dp-brane located at ρ0. Note that this configuration only exists when the

magnetic flux is non-vanishing, since only then we can reach β = 0. When the Dp-brane is

charged the configuration corresponding to free quarks is therefore degenerate. It can be

realized either as free radial strings stretching from 0 to ∞ plus a charged Dp-brane, with

the charge satisfying (5.36), located at ρ = 0, or as free radial strings stretching from ρ0 to

∞ plus a Dp-brane located at ρ0, with a charge that has to satisfy the equality in (5.36).

6In this case we have added the on-shell energy of the Dp-brane.
7Its behavior as a function of the magnetic flux depends on the specific function β(N ) given by (5.35)

We will analyze this behavior in the next subsections for the different branes.
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In this case the F1’s are less energetic due to the fact that they now stretch from ρ0 to ∞
but this is compensated by the energy of the brane at ρ0, charged such that β = 0. Note

that the location of the Dp-brane has become a moduli of the system. In both cases since

the strings are radial the size of the configuration vanishes.

Note that from (5.34) and (5.32) we have that for all values of the magnetic charge

Ebin = −f(β)(gsN)2/5

ℓ
(5.37)

with f(β) ≥ 0. Therefore dE/dℓ ≥ 0 and the configuration is stable. The behavior of

Ebin as a function of the ’t Hooft coupling and the size of the configuration is the same

as in AdS5 × S5 [161, 162, 165]. As in that case the fact that it goes as 1/ℓ is dictated

by conformal invariance, while the behavior with
√
λ is a non-trivial prediction for the

non-perturbative regime of the gauge theory. Note that the same non-analytic behavior

with λ is predicted for N = 4 SYM in 3+1 dimensions and for ABJM [214, 215, 216].

In fact, perturbative calculations like those in [160, 217, 218] can explain this behavior

when extrapolated to strong coupling, as inferred in [219]. Further, the exact interpolating

function between the weak and strong coupling regimes for 1/6 and 1/2 BPS Wilson loops

was obtained in [220], using topological strings and the localization techniques applied in

[221] to ABJM theories. 8

We have plotted in fig. 5.1 the behavior of f(β)/qTF1 as a function of β. We can see

that when the number of strings does not depend on β, i.e. for the ’t Hooft monopole

case, the configuration becomes more stable as β increases. For the di-baryon and baryon

vertex configurations the number of strings changes with the magnetic flux, and therefore

the stability of the configuration will vary with β in a way which depends on the specific

function (5.35). We will analyze this behavior in the next subsections.

We now discuss in some more detail the dynamics of the different configurations dis-

cussed in the previous section.

5.2.1 The ’t Hooft monopole

In this case

Q2 =
π T2
gs

√
L4 + (2πN )2 (5.38)

and q = k, so that

β =

√
1− 1

4π2

(
1 +

4π2N 2

L4

)
. (5.39)

8See also [222].
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Figure 5.1: Stability of the configuration, for fixed number of strings, as a function of β.

The behavior of the binding energy as a function of N is shown in fig. 5.2. The minimum

binding energy occurs for zero N , for which β =
√
1− 1

4π2 , and β = 0 is reached for

Nmax

L2
=

√
1− 1

4π2
, (5.40)

for which the monopole is no longer stable and reduces to k radial F1’s, stretching from ρ0

to ∞, plus a spherical D2-brane with D0-charge L2

2

√
1− 1

4π2 , located at ρ0. As a function

of the ’t Hooft coupling (5.40) becomes

Nmax =
√

8λ (4π2 − 1) (5.41)

which is exactly the same behavior that was encountered in [169] for the maximum value of

the magnetic flux that could be dissolved in the baryon vertex in AdS5 × S5. We will find

this same behavior for the di-baryon and baryon vertex with flux in the next subsections.

Although dynamically the origin of the bound is quite clear, pointing at an instability

when the magnetic flux makes the energy of the brane too large, its interpretation from

the CFT side is not clear to us. We refer to the conclusions for a brief discussion.

5.2.2 Di-baryon

In this case

Q4 =
π2 T4
2gs

(
L4 + (2πN )2

)
(5.42)

and q = kN /2, so that

β =

√
1− L4

64π4N 2

(
1 +

4π2N 2

L4

)2
. (5.43)



122 Charged Particle-like Branes in ABJM

0.2 0.4 0.6 0.8 1.0

N

L2

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

Ebin � qTF1Ρ0

Figure 5.2: Binding energy per string of the ’t Hooft monopole (in units of TF1 ρ0) as a

function of N /L2.

This function has a maximum at N
L2 = 1

2π
, where it reaches βmax =

√
1− 1

4π2 . For this value

of the magnetic flux the binding energy per string is minimum. Note however that since

the number of strings depends also on N this is not the value for which the configuration

is maximally stable (if we define the stability in terms of the function f(β) in (5.37)). The

allowed values for the magnetic flux are those for which β ∈ [0, βmax]:

1−
√
1− 1

4π2
≤ N
L2

≤ 1 +

√
1− 1

4π2
. (5.44)

At both ends N±
L2 = 1 ±

√
1− 1

4π2 , β = 0, and the configuration turns into a collection of

q = kN±/2 free quarks plus a wrapped D4-brane. The behavior of the binding energy per

string as a function of N /L2 is shown in fig. 5.3 (left). Since the total binding energy of the

configuration depends on the number of strings, which is a function of the magnetic flux,

the behavior of the binding energy is modified as shown in fig. 5.3 (right). The minimum

energy occurs now for N = 1.00L2. In Figure 4 we have plotted as well f(β)/TF1 (see

(5.37)) as a function of the magnetic flux.

As we have seen, the D4-brane with flux exhibits a very different behavior with the

magnetic flux than the D2-brane9. The main difference is coming from the fact that now

the magnetic flux induces a worldvolume tadpole in the D4-brane that was not present for

N = 0, and this tadpole has to be cancelled by adding a number of F1’s proportional to N .

Accordingly, the whole configuration of point-like D4-brane plus fundamental strings only

exists for N ̸= 0, with the allowed interval for the magnetic flux, given by (5.44), implying

an allowed interval for the number of fundamental strings ending on the D4-brane:

2π
√
2kN

(
1−

√
1− 1

4π2

)
≤ q ≤ 2π

√
2kN

(
1 +

√
1− 1

4π2

)
. (5.45)

9And the D6-brane, as we will see next.
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Figure 5.3: Binding energy per string (left) and total binding energy (right) of the di-baryon

(in units of TF1 ρ0 and 2π TF1 ρ0
√
2kN respectively) as a function of N /L2.
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Figure 5.4: f(β) for the di-baryon, in units of 2π TF1

√
2kN , as a function of the magnetic

flux.

At the bounds the strings become radial and the configuration ceases to be stable.

5.2.3 Baryon vertex

In this case

Q6 =
π3 T6
6gs

(
L4 + (2π(N − 1))2

)3/2
(5.46)

and q = N + kN (N − 2)/8, so that

β =

√√√√1− 1

36π2
(
1 + 4π2N (N−2)

L4

)2(1 + 4π2(N − 1)2

L4

)3
. (5.47)
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Figure 5.5: Binding energy per string (left) and total binding energy (right) of the baryon

vertex (in units of TF1 ρ0 and TF1 ρ0N respectively) as a function of N /L2.

This function decreases monotonically with N , reaching its minimum value β = 0 when
N
L2 ∼

√
36π2−1
2π

. Therefore the allowed values of the magnetic flux are

N
L2

.
√
36π2 − 1

2π
(5.48)

We have plotted in fig. 5.5 (left) the binding energy per string as a function of N /L2. We

can see that the qualitative behavior is very similar to the D2-brane case, and also to the

charged baryon vertex in AdS5 × S5 [169]. In all these examples the binding energy per

string increases with the magnetic flux till it becomes zero when the strings are radial and

the baryon size vanishes. Note however that in this case the tadpole induced in the world-

volume of the D6-brane depends on the magnetic flux, and therefore the number of quarks

that can form the bound state depends on N , as q = N + kN (N − 2)/8. This modifies

the behavior of the total binding energy as shown in fig. 5.5 (right). Here we can see that

the minimum energy configuration occurs for N /L2 ∼ 2.01, and that the configuration

loses stability till it reduces to free radial fundamental strings at Nmax/L
2 ∼

√
36π2−1
2π

, for

which q ∼ 36π2N . The stability of the configuration as a function of the magnetic flux can

be seen in fig. 5.6. The analysis in this section shows that the addition of magnetic flux

to the D6-brane allows the construction of more general baryon vertex configurations in

which the number of quarks can be increased up to ∼ 36π2N . A way to construct baryons

with q < N number of quarks in AdS5 × S5 was considered in [165]. In this background

q = N strings are needed in order to cancel the tadpole in the worldvolume of the spherical

D5-brane, N being the rank of the gauge group. It is however possible to find more general

baryon vertex configurations with q < N quarks if N − q strings stretch between ρ0 and

0. The study of the dynamics of these configurations reveals that they are stable if the

number of quarks satisfies 5N/8 ≤ q ≤ N . For the minimum value, qmin = 5N/8, the

strings are radial and the binding energy vanishes, exactly the same behavior that we have

found at the limiting values.
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Figure 5.6: f(β) for the baryon vertex, in units of TF1N , as a function of the magnetic

flux.

A similar analysis to the one commented in (4.1.1) shows that letting N − q strings

stretch between ρ0 and 0 modifies the boundary equation (5.29) as

ρ′0√
16ρ40
L4 + ρ′20

=
N

6πq

(
1 +

4π2(N − 1)2

L4

)3/2
+

1

q

(
N +

kN (N − 2)

8
− q
)
, (5.49)

from which we can conclude that the number of quarks has to satisfy:

1

2
(N +

kN (N − 2)

8
)(1 +

√
1− β2) ≤ q ≤ N +

kN (N − 2)

8
, (5.50)

with β given by (5.47).

Therefore we have found that by combining the addition of magnetic flux and the con-

struction in [165] it is possible to find more general baryon vertex configurations in which

the number of quarks differs from N in a way that depends on the magnetic flux dissolved

in the D6-brane and the number of strings that end on 0 instead of ∞. Like for all the

bounds found in this study, the quarks are free for the minimum and maximum numbers

allowed, where the configuration ceases to be stable.

5.3 Adding Romans mass

In this section we briefly discuss how the results of the previous sections for the ’t Hooft

monopole, di-baryon and baryon vertex configurations are modified by the presence of a

non-zero Romans mass F0.
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It was shown in [192] that the CS-matter theory dual to a perturbation of the previous

AdS4 × P3 background by a mass term should be a perturbation of ABJM with levels

k1+k2 = F0. The simplest way to see this is to realize that a D0-brane in this background

develops a tadpole through its CS coupling to the mass [29]:

SCS = T0

∫
dt F0At , (5.51)

and therefore F0 fundamental strings should end on it. One can account for these extra

indices in the fundamental by modifying the level of one of the gauge groups, such that

the di-monopole operator dual to the D0-brane becomes

OD0 = (Symk)i1...ik+F0
(Symk)

j1...jkAi1
j1
. . . Aik

jk
. (5.52)

It was shown in [192] that indeed ABJM can be deformed in different ways such that the

levels do not sum to zero. In all cases the deformed theory flows to a CFT, with dif-

ferent amounts of supersymmetries and global symmetries. The theory that is obtained

from ABJM by simply changing the CS levels such that k1 + k2 is small (in the precise

way shown in [192]) breaks all the supersymmetries, but flows to a CFT that respects the

SO(6) R-symmetry. This is the theory that can be most simply identified as a deformation

of the N = 6 solution by a Romans mass, and the one that we will consider in this section.

The gravity dual of the N = 0 CFT with SO(6) global symmetry discussed in [192] can

be constructed as a perturbation of the N = 6 solution, with the usual Fubini-Study metric

on P3, by a small mass F0 << k,N . In that case the F2 and F6 fluxes are not modified, and

the F4 flux that has to be introduced along with the mass (see [192]) can be compensated

with the coupling of F2 with a closed B2 field.This B2 field will be conveniently absorbed

in our definition of F . Note however that it contributes to higher order in the mass to

expression (5.53). Therefore we will ignore it in our analysis below. Moreover, as in [192],

we will ignore the effect of the Freed-Witten anomaly. The CS coupling to the mass in

the D4-brane case, given by equation (5.55) below, suggests that a fractional number of

F-strings should be added to the D4-brane in order to cancel the tadpole induced by the

mass and the Freed-Witten worldvolume flux. Therefore including this effect requires a

more careful study, that we hope to address in a future publication.

In this massive background the D0-brane acquires a tadpole. This is however not the

case for the other particle-like branes10, since the only modification in the action in the

massive AdS4 × P3 background is the coupling to the mass [29]

SCS = Tp

∫
F0

∑
r=0

1

(r + 1)!
(2π)r A ∧ F r (5.53)

10If we ignore the effect of the Freed-Witten worldvolume flux, as in [192].
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in the CS part.

Let us now add a magnetic flux as we did in the previous sections, F = NJ . A D2-

brane wrapped on S2 will now develop a tadpole proportional to the mass, given that in

the Chern-Simons action:

SCS = 2π T2

∫
F0A ∧ dA =

F0 N
2

∫
dtAt . (5.54)

Therefore, for non-zero mass we have to add a number of F1’s that is proportional to the

product of the mass with the magnetic flux: q = F0N /2.

For a D4 wrapped on the P2 the relevant coupling is

SCS =
1

3!
(2π)2 T4

∫
F0A ∧ dA ∧ dA , (5.55)

therefore for a non-vanishing magnetic flux we need q = F0 N 2/8 F1’s. Note that this is the

number of fundamental strings required to cancel the tadpole of the D0-branes dissolved in

the D4-brane in the massive case. Finally, for a D6-brane wrapped on the P3 the relevant

coupling is

SCS =
1

4!
(2π)3 T6

∫
F0A ∧ dA ∧ dA ∧ dA (5.56)

and the number of F1’s that must be added for non-zero mass is q = F0 N 3/48, which is

again F0 times the number of D0-branes dissolved in the D6-brane.

We have summarized in Table 1 the number of fundamental strings that are required

in order to cancel the tadpoles originating from all the background fluxes for each type of

wrapped brane.

Dp-brane Number of F1’s

D0 F0

D2 k + F0N
2

D4 kN
2

+ F0N 2

8

D6 N + kN 2

8
+ F0N 3

48

Table 5.1: Number of F1’s that must end on each Dp-brane in the presence of mass (and

magnetic flux).

Note that although F0 << k,N , N can be sufficiently large so as to make F0N ≈ k.

This is certainly the case for the values found in (5.40), (5.44), (5.48). In the next section

we study the dynamics of the particle-like brane configurations with these F1’s attached.
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Figure 5.7: Binding energy per string of the di-monopole, in units of TF1 ρ0, as a function

of F0L2

2k
.

5.3.1 Dynamics

The dynamics of the various brane configurations discussed in section 3 is modified in the

presence of a non-zero mass due to the fact that the number of F1’s attached to the brane

depends on the mass as shown in Table 1.

Let us consider first the di-monopole, or D0-brane. Following the analysis in section 3

we have that Q0 = T0/gs and q = F0. Therefore,

β =

√
1−

( 2k

F0L2

)2
(5.57)

and the bound (5.36) leads to

F0 ≥
2k

L2
(5.58)

Therefore, the configuration is stable if the mass is sufficiently large. Note that this bound

is perfectly compatible, in the regime of validity of the supergravity description, with the

fact that F0 << k,N . We have plotted in fig. 5.7 the behavior of the binding energy per

string as a function of the mass. Here we see that the configuration is maximally stable

when F0 → ∞, for which βmax = 1, and reduces to F0 free quarks plus a D0 at the bound,

when β = 0.

The D2-brane with flux turns out to be more stable in the presence of mass. In this

case

β =

√
1− 1

4π2(1 + F0N
2k

)2

(
1 +

4π2N 2

L4

)
(5.59)

This function has a maximum at N = F0L4

8π2k
. Since the binding energy per string decreases

monotonically with β this is the value of the magnetic flux for which the binding energy
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Figure 5.8: Binding energy per string of the ’t Hooft monopole, in units of TF1 ρ0, as a

function of the magnetic flux and the mass.

(per string) is minimum.

The values of the magnetic flux for which the configuration can form a bound state

depend on the mass. When F0 satisfies the bound (5.58), required by the stability of the

D0-brane, the configuration is stable for all values of the magnetic flux. On the other

hand, when F0 <
2k
L2 there is a maximum value for the magnetic flux beyond which the

configuration is no longer stable, and reduces to k+ F0N
2

free quarks. As in previous sections

this is the value for which β = 0, which in this case is:

Nmax =
kL2

π(4k2 − F 2
0L

4)

(
2πF0L

2 +
√
F 2
0L

4 + 4k2(4π2 − 1)
)

(5.60)

This behavior of the binding energy per string as a function of N and F0 can be shown in

fig. 5.8.

The D4-brane with flux in the massive background has

β =

√
1− L4

4π4(4N + F0

k
N 2)2

(
1 +

4π2N 2

L4

)2
(5.61)

This function has a maximum at N = F0L4

16π2k
(1+

√
1 + 64π2k2

F 2
0L

4 ). For this value the configura-

tion is maximally stable. On the other hand β = 0 is reached when N = L2

8π2 for F0 =
2k
L2 ,

and N = 2kL2

2k−F0L2 (1±
√

1− 2k−F0L2

8π2k
) for F0 ̸= 2k

L2 . For these values the configuration is no
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Figure 5.9: Binding energy per string for the di-baryon, in units of TF1 ρ0, as a func-

tion of the magnetic flux and the mass (right: F0L2

4k
= {0, 0.2, 0.4, 0.6, 0.8} for (1)-(5)

respectively).

longer stable and reduces to kN
2
+ F0N 2

8
free quarks. In summary the values of the magnetic

flux for which the configuration can form a bound state must satisfy:

N ≥ L2

8π2
for F0 =

2k

L2
, (5.62)

N ≥ 2kL2

F0L2 − 2k

(√
1 +

F0L2 − 2k

8π2k
− 1
)

for F0 >
2k

L2
, (5.63)

and

2kL2

2k − F0L2

(
1−

√
1− 2k − F0L2

8π2k

)
≤ N ≤ 2kL2

2k − F0L2

(
1 +

√
1− 2k − F0L2

8π2k

)
(5.64)

for F0 < 2k/L2. Note that in all cases there is a minimum value required for the magnetic

flux, consistently with the fact that also in the massive case a configuration with a D4-

brane and fundamental strings attached does not exist for vanishing magnetic flux.

The behavior of the binding energy per string as a function of N and F0 is shown in

fig. 5.9 (left). Fig. 5.9 (right) exhibits the value of the magnetic flux for which the config-

uration is maximally stable for different values of the mass.

Finally, the D6-brane with flux has

β =

√√√√1− 1

36π2
(
1 + 4π2N 2

L4 (1 + F0N
6k

)
)2(1 + 4π2N 2

L4

)3
(5.65)
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Figure 5.10: Binding energy per string for the baryon vertex, in units of TF1 ρ0, as a

function of the magnetic flux and the mass (right: F0L2

6k
= {0, 0.2, 0.4, 0.6, 0.8} for (1)-

(5) respectively).

This function reaches its maximum value when N = 0 for arbitrary mass. On the other

hand, β = 0 is reached for finite N when F0 <
2k
L2 . Beyond this value of N the configura-

tion is no longer stable and reduces to N+ kN 2

8
+ F0N 3

48
free quarks plus a wrapped D6-brane.

The behavior of the binding energy per string as a function of N and F0 is shown in

fig. 5.10 (left). Fig. 5.10 (right) exhibits more clearly the behavior of the binding energy

with the magnetic flux for various values of F0.

5.4 Conclusions

In this study we have analyzed various configurations of particle-like branes in ABJM,

focusing on the study of their dynamics. This study has revealed that new and more

general monopole, di-baryon and baryon vertex configurations can be constructed if the

particle-like branes carry lower dimensional brane charges.

We have seen that a new di-baryon configuration with external quarks can be con-

structed out of the D4-brane wrapped on the P2 ⊂ P3. In the presence of a non-trivial

magnetic flux F = NJ , with J the Kähler form of the P3, this brane develops a tad-

pole that has to be cancelled with kN /2 fundamental strings. The study of the dynam-

ics of the D4-brane plus the kN /2 F-strings reveals that the configuration is stable for

1 −
√

1− 1
4π2 ≤ N

L2 ≤ 1 +
√

1− 1
4π2 . Dynamically, the upper bound arises because if the

energy of the D4-brane with flux is too large the F-strings cannot form a bound state
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with it. For this value the strings become radial, and the configuration reduces to free

kNmax/2 quarks plus the charged D4-brane. We have found as well a minimum value for

the magnetic flux, that has to do with the fact that if the magnetic flux is too small the

number of F-strings ending on the D4-brane is not enough to form a bound state. The

existence of this lower bound was expected in this case given that the whole configuration

of D4-brane with fundamental strings attached can only exist in the presence of flux. When

this value is reached the configuration reduces to free kNmin/2 quarks plus a D4-brane.

It is perhaps significant that the value of the magnetic flux for which the configuration is

maximally stable is that for which the (off-shell) energy of the N 2/8 D0-branes dissolved

in the D4-brane equals the (off-shell) energy of the D4-brane. This seems to point at some

kind of degeneracy for the ground state. It would be interesting to find an explanation for

this phenomenon.

The D2 and D6-brane (monopole and baryon vertex) configurations exist already for

vanishing magnetic flux. Consistently, no minimum value is found in the study of their

dynamics. In these cases the effect of the magnetic flux is to allow the construction of more

general monopole and baryon vertex configurations. The simplest case is the D2-brane,

for which the charge of the tadpole is not modified by the magnetic flux and the number

of attached F-strings is still k. We have seen that the configuration formed by the bound

state D2-D0 plus the k F-strings is stable for N /L2 ≤
√

1− 1
4π2 , reducing to k free quarks

plus a D2-brane with L2

2

√
1− 1

4π2 D0-brane charge when the upper bound is reached. The

D6-brane in turn is the analogue of the baryon vertex in AdS5 × S5 [163]. The general-

ization of the later to include a non-vanishing magnetic flux was studied in [169]. In that

reference it was found that the magnetic flux had to be bounded from above in order to

find a stable configuration, like for the D2 and D6 branes considered in this study. For the

D6-brane the number of F-strings depends as well on the magnetic flux, but this fact does

not modify substantially its dynamics.

As we have mentioned, all the configurations that we have considered reduce to free

quarks when the magnetic flux reaches the highest possible value (also the lowest for the

D4-brane). For this value the brane can be located at an arbitrary position in AdS, with

the free radial strings stretching from there to ∞. This is different from the free quark

configuration of [165], where the D5-brane is located at ρ0 = 0, where it has zero-energy,

and the radial strings stretch from 0 to ∞. For the maximum (and minimum, if applicable)

value of the magnetic flux the D-brane is located at an arbitrary ρ0, where it has some

energy which is compensated by the lower energy of the strings stretching between ρ0 and

∞. In the presence of magnetic flux the location of the Dp-brane has therefore become a

moduli of the system.

We have already stressed that in the probe brane approximation used in this study all
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supersymmetries are broken. However, in analogy with the baryon vertex construction in

AdS5 × S5 we expect that, at least when the charged branes are supersymmetric, some

supersymmetries will be preserved when the strings join the brane at the same point. In

this case we would have to consider the full DBI problem and look for spiky solutions

[223, 224]. The description of the baryonic brane in AdS5 × S5 in terms of a single D5-

brane developing a spike was done in [225]. This configuration is BPS, and this is reflected

in the fact that its binding energy is zero. An attempt to find similar spiky solutions

in AdS4 × P3 has been made recently in [203], with rather negative results even for the

D6-brane with zero magnetic flux, which should be analogous to [225]. We hope that some

spiky configurations can still be found in this background by relaxing some of the ansatze

taken in [203]. We will report on these issues in a future publication.

It is significant that for all the configurations that we have discussed the binding en-

ergy is non-analytic in the ’t Hooft coupling, with this non-analyticity being of the precise

form of a square-root branch cut, like in AdS5 × S5. This hints at some kind of universal

behavior based on the conformal symmetry of the gauge theory.

An important question that remains open is what are the field theory realizations of

the Dp-branes with charge that we have considered. Since we do not expect that the D2

and D6 brane configurations are supersymmetric it is hard to have an intuition about the

interpretation of the new charges in the field theory side. It is interesting to note that the

number of extra fundamental strings required to cancel the worldvolume tadpole is that

required to cancel the tadpole on the dissolved D2 branes. This might suggest that the

dual operators are doped versions of the original ones with an operator representing the

D2 branes. It is hard to be more precise, in particular due to the expected lack of SUSY.

However, for the D4-brane with D0-charge one can expect that a supersymmetric spiky

solution exists, in which case it makes sense to try to interpret the bounds on the magnetic

flux in the gauge theory dual. In field theory language the bound (5.36) would read:

N +
N 2

8
k ≤ 2π nf

√
2λ , (5.66)

where nf is the number of external quarks, which is a function of the magnetic flux:

nf = kN /2, and λ is the ’t Hooft coupling. Therefore, at strong ’t Hooft coupling we

expect a bound on the baryon charge of (generalized) di-baryon configurations with nf

external quarks. This should be related in some way to the stringy exclusion principle of

[204], although we have not been able to find a direct interpretation. Note that for all

branes the bound on the magnetic flux exhibits the same non-analytic behavior with λ as

the binding energy, which seems to indicate that the bounds should have its origin in the

conformal symmetry of the gauge theory.
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Finally, the role of the B field, and its potential relation to the Abelian part of the

gauge symmetry, remains to be understood. We postpone these investigations for further

work.
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