
 Procedia Computer Science 10 (2012) 880 – 887

1877-0509 © 2012 Published by Elsevier Ltd.
doi: 10.1016/j.procs.2012.06.116

The International Symposium on Advances in Transaction Processing

A Family of Test Criteria for Web Services Transactions
Rubén Casadoa*, Javier Tuyaa, Muhammad Younasb

aDepartment of Computing, University of Oviedo, Spain
bDepartment of Computing and Communication Technologies, Oxford Brookes University, United Kingdom

Abstract

Web Services (WS) transactions are used to build efficient and reliable web applications which are distributed across
the Internet and are accessed by multiple simultaneous users. Current research has developed various models and
protocols in order to improve the performance and reliability of WS transactions. However, there is little research on
testing WS transaction based applications. This paper presents a family of criteria for testing WS transactions. The
proposed criteria are defined by taking into account three testing dimensions: level, feature and depth. Based on such
dimensions we develop a generalized transaction model for testing web service transactions.

© 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of [name organizer]

Keywords: testing, transactions, web services, control flow, data flow, dependency

1. Introduction

The fundamental principle of Web Services (WS) transactions is to ensure reliable execution of web
services and consistency of underlying data which is generally accessed concurrently. Though various
solutions have been proposed in order to improve the reliability and efficiency of WS transactions [1-3],
the testing of WS transactions has been overlooked [4, 5].

In this paper we investigate the testing of WS transactions which is a challenging research issue due to
several reasons. Firstly, WS transactions are more complex compared to classical transactions as they
involve cooperation between multiple parties, span autonomous and independent partners, define
dependencies among its activities, and may have long duration. Thus WS transactions have a more
intricate sequence of operations and execution environment. Secondly, various kinds of failures may occur
during the processing of WS transactions, including: (i) technical failures such as communication, system
and software failures which may result in loss of messages, processing of services, etc (ii) service level
failures such as service acquisition failures wherein services cannot be acquired due to unavailability of
the desired services, payment problems, or service cancellation.

* Corresponding author. Tel.: +34 985 182 277; fax: +34 985 181 986.
E-mail address: rcasado@uniovi.es.

Available online at www.sciencedirect.com

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

881 Rubén Casado et al. / Procedia Computer Science 10 (2012) 880 – 887

Our approach is to devise a family of criteria for testing WS transactions. The criteria identify three
dimensions: level, feature, and depth. The Level defines the granularity level of testing, i.e., testing WS
transactions at different levels such as activity, nested transaction or at the whole process level. The
Feature defines the basis for deriving test conditions, i.e., the flow of execution. The Depth defines the
different combinations of test coverage items defined by the suitable test criteria.

The rest of the paper is structured as follows. Section 2 describes a generalized transaction model for
the web service environment. Section 3 presents the proposed testing criteria. Conclusions are drawn in
Section 4.

2. Web services transaction model

This section presents a generalized transaction model for the web service environment. It is defined to
capture the behavior of a WT transaction from a testing point of view.

A Web Service transaction, wT, is a logical unit of work performed by a flow of activities whose goal
is to achieve an agreed outcome in a WS based application. It is defined as wT={A,D} where A is a set of
activities and D a set of dependencies among them. Activities represent points in a wT where work is
performed. An activity can be atomic (task) or non-atomic (subtransaction). Each activity is executed by
an executor. An activity is compensatable if a compensation exists within the wT to undo its actions. A
task is an atomic activity within a wT. A task is used when the work in the wT is not broken down to a
finer level of detail. A task is executed by a specific web service. A subtransaction is an activity that is
another WS transaction itself. Thus it gives rise to nested transactions. A compensation is an activity that
undoes from a semantic point of view the actions performed by another activity. An executor is a web
service responsible for executing a specific activity. The states during the transaction processing are
described in Section 2.1 Dependencies are constraints on the processing produced by the concurrent
execution of activities. A dependency defines a relationship between a set of activities. The dependencies
used in this approach are described in Section 2.2

2.1. States of an executor

An executor is a web service in charge of executing an activity. An executor can be in any of the
following commonly used states: Initial, Active, Completed, Compensated, Aborted, Cancelled and
Failed. The state of an executor is changed by the execution of a primitive action. There are six atomic
primitive actions: begin, complete, compensate, A-withdraw, A-cancel and A-fail. Note that the primitive
action compensate is only applicable if the activity is compensatable. The states of the executor and state
transitions are shown in Fig. 1. Solid lines represent external primitive actions while the dashed lines
represent internal primitive actions.

An executor is in the Initial state when it has been enrolled in the wT and it is waiting to be executed.
An executor is in the Active state when it has executed the begin primitive action and it has not finished
execution. An executor is in the Completed state after it has successfully finished its activity. From the
completed state, the executor can enter the Compensated state if the activity is compensatable. An
executor is in the Aborted state after it has executed one of the abort primitive actions. An executor is in
the Cancelled state after it was cancelled while executing its activity. An executor is in the Failed state if
it was not able to successfully finish its activity. An executor which has executed a compensatable
activity is in the Compensated state after it has executed the compensate primitive action, that is, its
actions have been undone by executing a compensation.

882 Rubén Casado et al. / Procedia Computer Science 10 (2012) 880 – 887

Fig. 1. States and transitions of an executor

2.2. Dependencies

The proposed model defines three kinds of dependencies in WS transactions: Flow dependencies
define constraints on the workflow in terms of the order of execution of activities. Data dependencies
define relations between the data used by the activities. These specify relations according to read and
write operations on shared data. Control dependencies – these are hybrid dependencies (a mix of flow
and data dependencies). Different types of dependencies can be combined. Let us assume an example of
purchase process; the payment activity must be executed after the items have been selected (flow
dependency) but the amount to be charged depends on the calculation process that takes into account the
price and quantity of the selected items (data dependency). Finally the payment is carried out if the
number of items is at least one (control dependency). Table 1 summarizes the dependencies proposed in
our approach.

A data element is a piece of information accessed by wT. An activity is said to write a data element if
it generates or changes the value of such data element during its execution. An activity is said to read a
data element if it reads such data element during its execution. We represent a data dependency as
write(A, d1, d2) where activity A reads the data element d1 and updates (writes) it to the data
element d2. In other words, A requires d1 to produce d2.

Table 1. Description of WS transaction dependencies

Name Description Example

Serial One activity can start after another
has successfully completed The item is sent to the customer once the payment has been confirmed

Alternative Only one activity can begin In a purchasing process, the customer selects one method (credit card,
bank transfer, Paypal) to pay for the item.

Fork All the activities begin In a journal review process, the editor sends the email to all the
reviewers.

Merge
At least one activity must complete
before another can begin. Extra
conditions can be specified.

At least one means of transport (car, train, plane) has to be available
before continuing the package holiday reservation.

Join All activities must complete before
another can begin

All the bookings (flight, hotel, car rental) have to completed before
paying for the package holiday

Exclusion Only one activity can complete When different hotel providers are consulted, only the cheapest one has
to complete

Write
One activity produces a data element
and it may require another data
element

The tax to be paid depends on the number of items sold in a day

883 Rubén Casado et al. / Procedia Computer Science 10 (2012) 880 – 887

3. Testing WS transactions

This section summarizes the fundamental concepts involved in the test case design process. Fig. 2
depicts the relations between such concepts.

3.1. Background

The aim of testing is to systematically explore the unexpected behaviour of a system or a component.
Ideally, all the possible situations of the Software Under Test (SUT) should be tested. But this is not
feasible since even if the SUT has an extremely simple logical structure, the number of all possible
combinations of situations could be infinite. Furthermore, the test process consumes resources such as
time and money. For these reasons, test techniques are used in order to ensure testing is carried out taking
into account the effectiveness/cost trade-off. Test techniques provide guidance to design test cases using
some information about the SUT, for example, the workflow specification or a model. They allow to
systematically identify the most relevant conditions to test and the most important values for each
condition. Before explaining the criteria applicable to test the WS transactions, we introduce some
definitions. Fig. 2 shows the relation between these concepts.

Test basis are all sources from which the requirements of a component or system can be inferred.
They are broken down into test items that are the minimal functional unit that can be tested in isolation.
For each test item a set of test conditions is derived. A Test condition is an item or event of a component
or system that could be verified by one or more test cases, e.g. a function, transaction, feature, quality
attribute, or structural element. For each test condition several test coverage items can be specified. A
Test coverage item is an entity or property with a concrete value derived from a test condition; e.g. a
logical value in a decision or a concrete state of a statechart. The test coverage items must be covered by
the test cases. A Test case is a set of input values, execution preconditions, expected results and execution
postconditions, developed to cover a set of test coverage items. The set of test cases is called a Test suite.

3.2. Level dimension: Test Items

Executor. The activities that compose a WS transaction are carried out by executors. In fact an
executor is a role entrusted to a web service. When a web service is enrolled in a WS transaction, it must
follow the protocol specified for such process in order to be able to achieve an agreed outcome of the
whole transaction. So a first level of testing should specify the executor as the test item. We assume that
the web service has already been tested, so we focus on the transaction-related behaviour. The test cases
for this level have to exercise the different situations that an executor has to manage during its life-cycle.
In [6] we presented an approach to test the transaction executor level. That work proposes an abstract
model for modeling distinct web service transaction standards and testing their reliability in terms of
failures. The proposed approach exploits model-based testing techniques in order to identify the test
conditions and derive the test coverage items.

Transaction. A WS transaction may be seen as a flow of related activities and such relations are
specified by dependencies between them. The constraints defined by the dependencies must be tested so
they should be the test item at this transaction level. Test cases at this level must exercise different
possible situations during the flow of execution in order to detect faults in the compliance of the specified
dependencies. In [7] we proposed a first approach to deal with this issue. A set of possible dependencies is
defined using logical expressions and using such expressions as test conditions, a family of test criteria
based on control-flow testing is proposed.

884 Rubén Casado et al. / Procedia Computer Science 10 (2012) 880 – 887

Fig. 2. Test case design concepts

Recursive levels. As was defined in Section 2, a WS transaction is composed by activities where each
activity can be an atomic task or another WS transaction itself (subtransaction). Even a business process
can include several different WS transactions. So the executor and transaction levels can be applied
recursively. In order to depict the recursive relations, Fig. 3 shows a business process P composed by two
WS transactions wT1 and wT2. wT1 is composed by the tasks A and B while wT2 is composed by task C
and subtransaction DwT, also composed by the tasks E and F. As an example, in wT2 the executor level
can be applied over C and also over DwT if we assume it to be a logical unit of work. The transaction
level in wT2 will take into account the relationships between C and DwT. Since DwT is a transaction
itself, recursively we can use the executor level to test E and F and the transaction level to check their
relationships.

3.3. Feature dimension: Test conditions

Flow

An executor crosses through different states during the execution of an activity. The dependencies in a
WS transaction define the order of execution of the activities. So, for both executor and transaction
levels, a control flow graph can be derived. In the executor level the graph is the states/transitions model
depicted in Fig. 1. In the transaction level, the graph is composed by the different paths in the execution
of the transaction according to the dependencies.

Using the flow as basis for the test case design is widely accepted and is included in the so-called
transition-based testing [8]. Its goal is to specify the test conditions in terms of the coverage of a particular
set of elements in the structure of the element under test. The test conditions are, therefore, the elements of
the control flow graph. In testing WS transaction, it would be applied for example as shown in Table 2.

Fig. 3. Recursive test levels

885 Rubén Casado et al. / Procedia Computer Science 10 (2012) 880 – 887

Table 2. Testing flow dimension examples

Level Test criterion Test coverage item

Executor All transitions in the executor model
must be visited

Begin – Complete – Compensated
Begin – A-cancel
Begin – A-fail
A-withdraw

Transaction All different paths must be visited
Activities A, B and C complete their actions, D fails
Activities A, B and complete their actions,
Activity A is compensated, B is aborted

Data

An executor may use some data elements during its execution. Depending on the executor´s behaviour,
such data can be modified by one way (e.g. after it has completed) or another (e.g. after it is
compensated). Also different activities from a WS transaction can use the same data elements. So the data
elements are a key issue regarding the transaction outcome and should be taken into account during the
test process.

The test techniques that use the data elements as a basis for designing the test cases are classified in the
approach known as data flow testing [8]. These approaches look at the life-cycle of a particular data
element in the element under test. By looking for patterns of data usage, risky situations are identified and
more test conditions can be defined. For example an activity A requires the value of a particular data
element d1, produced by the activity B, to produce another data element d2. A risky situation could be that
d1 is modified because B is compensated while A is still under execution. Consequently the test conditions
for this feature are the data usage during the process, i.e. creation, read and write actions over the data
elements.

Control

The decision of an executor moving from one state to another may depend on the value of a data
element. This is called a control decision. In the same way, there are control decisions during the flow of
execution specified by the dependencies. For example in an exclusion dependency, the control
decision decides which is the selected activity to start.

The goal of testing the control feature is to exercise different values of the data elements that are
involved in the control decisions. The test techniques that use the control decision to define the test
conditions are called control-flow testing [8]. They can be complemented with other techniques such as
boundary analysis [8]. An example of the use of control as a feature in testing WS transaction is shown in
Table 3.

Table 3. Testing control dimension examples

Level Test conditions Test coverage item

Executor If time > 5 move to Compensated state
time >5
time < =5

Transaction The cheapest alternative will begin
A_price= 10 ; B_price= 20
A_price= 40 ; B_price= 30
A_price= 5 ; B_price= 5

886 Rubén Casado et al. / Procedia Computer Science 10 (2012) 880 – 887

3.4. Depth dimension: A combination of test coverage items

Test criteria are used to define the test conditions and identify the test coverage items. Then the set of
test cases must cover all the test coverage items, but this can be achieved in different ways, depending on
the required test effort. So different adequacy criteria are applicable to exercise the test coverage items. In
this way, stronger test criteria should be applied in the areas with greater risk exposure in order to achieve
an effective testing. The minimum effort would be simply to cover all the test coverage items. On the
other hand, the maximum effort would be to generate all possible combinations between the test coverage
items and define a test case to cover each combination. Thus the test criteria propose different test efforts
from the minimum to the maximum effort. Applicable test criteria for WS transactions is presented below
[8].

Moreover, test conditions derived from different features can be combined. Therefore the test effort is
suitable in order to achieve effective testing and avoid an unmanageable number of test coverage item
combinations to cover.

Test criteria

In the flow feature, the test basis is typically a flow graph. The test coverage items are defined in terms
of transitions between the nodes of such graph. Two test criteria are commonly used to specify the effort
to cover the transitions.Transition coverage (TrC) requires that each transition in the flow graph is taken
at least once while Transition-pair coverage (TPC), for each state S, form test conditions such that for
each incoming transition and each outgoing transition, both transitions must be taken sequentially. So
TPC is stronger than TrC since TPC subsumes TrC.

In the data feature, the test conditions are derived from the definition and use (write and read) of the
data elements. Some applicable test criteria are the following. All definitions paths (ADP) requires that
all nodes where a data element is written shall be taken at least once while All uses paths (AUP) requires
the nodes where a data element is written. All definitions – uses paths (ADUP) requires that all different
flows where a data element is written and then read shall be taken at least once. ADUP is stronger than
ADP and AUP since it subsumes them.

In the control feature, the test conditions are derived from the decisions that manage the flows. The
decisions are composed by logical conditions where the value of the data elements influences the flow of
execution. Some applicable test criteria are the following. Decision criterion (DC) requires that each
decision shall take true and false outcome at least once while Decision/Condition criterion (DCC) also
requires that all conditions in each decision shall take true and false outcome at least once. The strongest
criterion is Multiple Combination (MC) that requires covering all possible combinations of the truth in
every condition. Modified condition/decision coverage (MCDC) requires that each decision shall take
true and false outcome at least once, all conditions in each decision shall take true and false outcome at
least once and each condition shall be shown to independently affect the decision´s outcome.

4. Conclusions

Although transactions are a key issue in web service compositions, there are few works about testing
them. This work aims to approach the test case design concepts to the WS transaction field. In this paper
we have defined three dimensions of testing WS transactions (level, feature, depth) according to some
basic test concepts (test unit, test conditions, test coverage items). Furthermore, we have presented some
ideas of how a family of well-known test criteria such TPC, ADUP or MC, could be used to create a
specific framework to test WS transactions. More research is needed to evaluate such proposals.

887 Rubén Casado et al. / Procedia Computer Science 10 (2012) 880 – 887

Fig. 4. WS transaction testing dimensions

Acknowledgements

This work has been performed under the research project TIN2010-20057-C03-01, funded by the
Spanish Ministry of Science and Technology. This work also has been funded by the research grant BES-
2008-004355. It has also been carried out in collaboration with the Oxford Brookes University, UK.

References

[1] Bhiri S, Gaaloul W, Godart C, Perrin O, Zaremba M, and Derguech W. Ensuring customised transactional
reliability of composite services. Journal of Database Management 2011; 22 (2): 29.

[2] Ben Lakhal N, Kobayashi T, and Yokota H. FENECIA: failure endurable nested-transaction based execution of
composite Web services with incorporated state analysis. The VLDB Journal 2008; 18 (1): 1-56.

[3] Choi S, Kim H, Jang H, Kim J, Kim SM, Song J, and Lee Y-J. A framework for ensuring consistency of Web
Services Transactions. Information and Software Technology 2008; 50 (7-8): 684-696.

[4] Canfora G, and Penta M, "Service-Oriented Architectures Testing: A Survey", Software Engineering:
International Summer Schools, ISSSE 2006-2008, Salerno, Italy, Revised Tutorial Lectures, pp. 78-105: Springer-
Verlag, 2009.

[5] Bozkurt M, Harman M, and Hassoun Y. Testing & Verification In Service-Oriented Architecture: A Survey.
Software Testing, Verification and Reliability. To appear.

[6] Casado R, Tuya J, and Younas M. Testing the Reliability of Web Services Transactions in Cooperative
Applications. Proc. of the 27th ACM Symposium on Applied Computing (SAC), 2012. ACM: Riva del Garda,
Trento, Italy,

[7] Casado R, Tuya J, and Godart C. Dependency-based criteria for testing web services transactional workflows.
Proc. of the 7th International Conference on Next Generation Web Services Practices (NWeSP), 2011.
Salamanca, Spain, 74-79.

[8] Zhu H, Hall PAV, and May JHR. Software unit test coverage and adequacy. ACM Comput. Surv. 1997; 29 (4):
366-427.

