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Abstract

In this paper we present a function to predict the carcass weight for beef cattle.

The function uses a few zoometric measurements of the animals taken days

before the slaughter. For this purpose we have used Artificial Intelligence tools

based on Support Vector Machines for Regression (SVR). We report a case

study done with a set of 390 measurements of 144 animals taken from 2 to 222

days in advance of the slaughter. We used animals of the breed Asturiana de los

Valles, a specialized beef breed from the North of Spain. The results obtained

show that it is possible to predict carcass weights 150 days before the slaughter

day with an average absolute error of 4.27% of the true value. The prediction

function is a polynomial of degree 3 that uses 5 lengths and the estimation of

the round profile of the animals.

Keywords: Support Vector Machines (SVM), Support Vector Regression

(SVR), carcass weight, beef cattle.

1. Introduction

In bovine beef cattle, carcass weight is the most important data to compute

the price of the carcass. In this paper we present a method to estimate that
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weight in advance of the slaughter of the animal. The study was done with

animals of the breed Asturiana de los Valles, a beef breed of the North of

Spain. This is a specialized breed with many double-muscled individuals; their

carcass have dressing percentages over 60%, with muscle content over 75%, and

with a low (8%) percentage of fat (Piedrafita et al., 2003). The market target

of these carcasses is made up of those consumers that prefer lean meat without

any marbling (del Coz et al., 2005; Dı́ez et al., 2005).

In the breed Asturiana de los Valles, the price of the carcass is computed

from three factors: sex, conformation, and carcass weight. Since sex and confor-

mation are known, the core data is carcass weight. Thus, the prediction function

presented in this paper is an important tool to manage the profitability of live-

stock farms.

Now, the procedure typically used to estimate the carcass weight consists in

computing a percentage of live weight. Thus, in (Mart́ınez et al., 1999) suggest

for males 66% for double-muscled, and 61% for single-muscled; in the case of

females the percentages are 3 percentage points less in each case.

However, this method has several drawbacks. On the first hand, it requires

that animals must be weighted just before the slaughter in order to achieve

accurate results; in practice this is not feasible. On the other hand, the main

disadvantage of the percentages is that they do not consider any individual

morphological feature; in fact not all double (or single) muscled animals are

equal.

The approach presented here is based on Machine Learning procedures that

aim to learn a function to map carcass weights from a collection of morphological

measures of the animals and the number of days until the slaughter. In this way,

individual peculiarities of the animals are involved in weight estimation.

To learn the function able to predict the carcass weight we used Support

Vector Machines (SVM) (Vapnik, 1998) for regression (SVR) (Smola, 1996).

We discuss the use of different options to configure this algorithm using kernels

functions. We used this technology since SVM (SVR) are acknowledged as the

most powerful learning algorithms in many application fields.
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Figure 1: Zoometric measurements used in this paper: L1 (withers height), L2 (loin length),

L3 (rump length), L4 (chest girth), L5 (thighs width), and RP (round profile) assessment

From a mathematical point of view, given a classification (or regression)

learning task, a SVM (SVR) solves a convex optimization problem. The solution

gives rise to a hypothesis able to predict unseen cases drawn with the same

distribution of the initial learning task. The advantage of the convexity in

this context is that it guarantees that there exists only one optimal solution.

Therefore the optimizer of SVM (or SVR) will not return a local minimum

instead of the best one as happens, for instance with Artificial Neural Networks.

The estimation of the weight of bovines has been studied since a long time

ago; see, for instance (Enevoldsen and Kristensen, 1997). The use of Artificial

Intelligence tools to predict beef cattle scores is not new. In (González-Velasco

et al., 2011) and (Alonso et al., 2007) assessment functions for beef cattle are

presented. Moreover, to estimate live weights of bovines in (Stajnko et al., 2008;

Tasdemir et al., 2011a,b) the authors used digital image processing procedures.
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Table 1: Summary of the features of the dataset used in the paper

size 390

animals 144

ages (months) [7, 14]

days before slaughter

range [2, 222]

average 74

carcass weight (kilos)

range [116, 459]

average 221.6

2. Material and methods

2.1. Data

In the research reported in this paper we used a dataset of 390 numerical

descriptions of animals of the breed Asturiana de los Valles corresponding to

144 bovines of both sexes; some of them were measured several times in order

to grasp the evolution of the estimations depending of the time.

The ages of the animals when they were measured range from 7 to 14 months,

the ages where the commercial activities are concentrated in this breed. The

measurements sessions took place with 2 to 222 days in advance of the slaughter,

the average value is 74 days. The carcass weights of the animals average 221.6

kilos ranging from 116 to 459 kilos.

Table 1 summarizes the description of the dataset used in the paper.

2.2. Numerical description of animals

In (Alonso et al., 2006) and (Alonso et al., 2007) we identified and described

a set of morphological features relevant to characterize the animals of the breed

Asturiana de los Valles as meat producers. Thus, to describe life animals we
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Figure 2: Examples of round profile (RP) in beef cattle of Asturiana de los Valles. The left-

most cow is a paradigm of the animals which have rank 2, while the following are representative

examples of ranks 3, 4 and 5 respectively; rank 1 is extremely unfrequent

chose 5 lengths in centimeters (see Figure 1) in addition to the assessment of the

round profile (RP) in a scale from 1 to 5 points (Alonso et al., 2008). To this 6

variables we added the sum of L2 and L3 that provides a good representation

of the length of the animals and it is useful for predictions independently of its

components.

The zoometric measurements were taken by the first author of this paper

using a Lydtin stick and measuring tape in different farms in Asturias. The

data about carcass weight was provided by Xata Roxa, the company that sells

the carcasses.

The assessment of the round profile is very important in animals of Asturiana

de los Valles since it indicates the muscular developments of the animals that

is correlated with the economic value of the carcasses. The assessment 5 (the

best) to 1 (the worst) are given by experts by visual appreciation; see Figure 2.

Since the aim is to predict the carcass weight in a given date, we have to

include in the set of predictive variables the difference in days from the date

of the measurements and the slaughter. This variable is DB (for days before).

Finally we include the sex of the animals (codified by 1 male and 2 female) to

form a set of 9 predictive variables: 6 lengths, RP, DB, and sex.
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Figure 3: Geometrical interpretation of the ε-tube and the ε-insensitive loss function in linear

SVR

2.3. Support Vector Regression (SVR)

The foundations of Support Vector Machines (SVM) have been developed

by Vapnik (1998) and are widely used due to many attractive features and

promising empirical performance. SVMs were developed to solve classification

tasks, and then they have been extended to handle regression tasks (Smola,

1996; Vapnik, 1998), in this case these algorithms are called Support Vector

Regression (SVR).

The formal presentation of SVR starts with a dataset

S = {(x1, y1), . . . , (xn, yn)}

consisting of instances described by pairs (xi, yi), where xi ∈ Rd and yi ∈ R.

Each yi is the desired target or output value for the input vector xi. A regression

model is learned from these patterns and used to predict the target values of

unseen input vectors.

Among the various types of SVR, the most commonly used is ε-SVR (Smola,

1996; Vapnik, 1998). The goal is to find a function f(x) that has at most ε

deviation from the actually obtained targets yi for all the training data, and at

the same time is as flat as possible. In other words, we do not care about errors

as long as they are inside the ε-insensitive band (ε-tube). See Figure 3.
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Moreover, to make the learning method more robust, the image of the input

data does not need to lie strictly on or inside the ε-tube. Instead, the images

which lie outside the ε-tube are penalized and slack variables are introduced to

take into account for these situations (analogously to the soft margin in SVM

for classification). The objective function and constraints are typically given as

follows.

minimize
1

2
〈w,w〉+ C

n∑
i=1

(ξi + ξ∗i ), (1)

subject to (〈w, φ(xi)〉+ b)− yi 6 ε+ ξi,

yi − (〈w, φ(xi)〉+ b) 6 ε+ ξ∗i ,

ξi, ξ
∗
i > 0, i = 1, . . . , n,

In these equations, C is a parameter which gives a tradeoff between model

complexity and training error, ξi and ξ∗i are slack variables for exceeding the

target value by more than ε and for being below the target value by more than

ε, respectively. As was mentioned before, this corresponds to dealing with a

so-called ε-insensitive loss function |ξ|ε described by

|ξ|ε =

0 if |ξ| 6 ε

|ξ| − ε otherwise.

(2)

Note that

φ : Rd −→ F

can be a nonlinear function from the input space Rd to a feature space F . The

regression hyperplane to be derived is

f(x) = 〈w, φ(x)〉+ b, (3)

where w is the weight vector of inputs, and b is the offset.

In many problems the relation between outputs and input components is

nonlinear and then kernel functions are needed. The idea of the kernel function

is to enable operations to be performed in the input space rather than in the
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potentially high dimensional feature space. An inner product in the feature

space has an equivalent kernel in the input space,

K(x, x̂) = 〈φ(x), φ(x̂)〉 .

One of the most widely adopted kernel function is the radial basis function

(RBF) which is defined as

KR(x, x̂) = e(−γ‖x−x̂‖
2), γ > 0, (4)

where γ is the width parameter of the kernel.

We also use the linear kernel because the solutions provided by the system in

this case are easier to explain to the end user. The weights of the attributes of

the examples are a good indication of the relevance of the morphological feature

behind each attribute. This kernel corresponds to the identity transformation

from input to feature spaces, and then it is given by the inner product in the

Euclidean space Rd.

KL(x, x̂) = 〈x, x̂〉 =

d∑
i=1

xix̂i. (5)

2.4. Learning carcass weights

To learn carcass weights using SVR we tested linear and RBF kernels. In

the following, we call the regressors so obtained SVRL y SVRR, respectively. In

both cases, we used the implementation libsvm (Chang and Lin, 2011).

To assess the performance of the predictions, we used absolute differences.

So, if

S′ = {(x′1, y′1), . . . , (x′m, y
′
m)}

is a testing dataset, the performance of a regressor f will be measured by MAE

(mean absolute error) and MAPE (mean absolute percentage error) defined as

follows.

MAE(S′, f) =
1

m

m∑
i=1

|f(x′i)− y′i| (6)

MAPE(S′, f) =
100

m

m∑
i=1

∣∣∣∣f(x′i)− y′i
y′i

∣∣∣∣ .
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Figure 4: Carcass weight predictions using SVR with linear kernel (SVRL) and 21 attributes

including the number of days of difference from measurements and slaughter. The horizontal

axis represents the sample number; samples were ordered according to their predictions. In

solid diamonds are the predictions and in empty circles are true values. Additionally, in dash

lines are represented the confidence intervals at 90%

Moreover, assuming a normal distribution of errors, if µ is the mean and σ

is its standard deviation, we have that for an error e,

Pr(µ− 1, 64 ∗ σ 6 e 6 µ+ 1.64 ∗ σ) ≈ 90%.

Thus, 95% of the errors are below the upper bound of this confidence interval

(95th percentile):

Pr(e 6 µ+ 1.64 ∗ σ) ≈ 95%.

Each animal is described by 9 numerical attributes explained in the last

section. However, in previous papers like (Alonso et al., 2006), we found that

these description of the animals can be considerably improved if we add the

powers of lengths untill degree 3. For this reason, with the linear kernel we used

these powers in addition to the original lengths (L1, L2, L3, L2+L3, L4 and
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Table 2: Cross validation estimation of prediction errors achieved with different kernels and

number of attributes. We report the average, standard deviation, and 95th percentile

MAE (kg) MAPE (%)

System #Attributes mean ± sd P95th mean ± sd P95th

SVRR 9 9.31 ± 8.00 22.43 4.12 ± 3.13 9.26

SVRL 9 10.98 ± 11.74 30.23 4.91 ± 4.68 12.59

SVRL 21 9.61 ± 7.90 22.56 4.31 ± 3.21 9.58

L5). Therefore, we have 18 attributes plus the RP, sex and DB. That is we may

use 21 attributes for each animal.

The algorithm SVR need to adjust some parameters to achieve optimal per-

formance. We did the adjust without using in any way the data reserved to test

the performance with MAE or MAPE (Eq. 6). We used a procedure called inter-

nal grid search for the best parameters with a 2-fold cross validation repeated 5

times. When using the liner kernel, the only value to adjust is the regularization

parameter C (Eq. 1). We searched C ∈ {10i : i = −3,−2,−1, 0, 1, 2, 3}.

On the other hand, an RBF kernel has two parameters to adjust: C and

γ (Eq. 4). In this case, we tested C ∈ {10i : i = −3,−2,−1, 0, 1, 2, 3} and

γ ∈ {10j : j = −3,−2− 1, 0, 1, 2}.

To estimate the prediction errors we performed a 10-fold cross validation.

The errors reported in tables are average values throughout the folds.

3. Results and discussion

In this section we report the results of a set of experiments designed to

evaluate the approach proposed in this paper. The main objective is to check

the accuracy of the predictions of carcass weights using a SVR algorithm.

Table 2 reports the errors estimated with 10-fold cross validation using dif-

ferent options for the regressor. The results are quite similar for kernels RBF

and linear, in this case when 21 attributes describe animals. We tested that
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Figure 5: MAPE errors, obtained by SVRL with 21 attributes, depending on the number of

days from measurements to slaughter. We separated months until 150 days. The rectangles

include 95% of predictions

there are no significant differences in these cases using a Wilcoxon signed-rank

test with p < 0.01. In both cases the relative error in percentage (MAPE) is

near 4%; thus predictions are quite accurate. See Figure 4. Notice that the 95th

percentile is just above 22 kilos of error; that is near 9% of the carcass weight.

The results are worse when the linear kernel uses only the 9 original at-

tributes. The average absolute error is almost 11 kilos (MAE) and the relative

error is near 5% (MAPE).

The scores shown in Table 2 confirm that the carcass weight is a nonlinear

function of the input measurements and variables included in the original set

detailed is Section 2.2; see Figure 1. Recall that a linear function over the

powers up to degree 3 is, in fact, a polynomial function.

Given that we estimate carcass weight with measures taken a long time prior

to the slaughter, we think that the errors achieved could be related with this

value. In order to check this, we gathered the predictions obtained in cross
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Table 3: MAPE errors obtained by SVRL with 21 attributes including days from measure-

ments to slaughter. We report averages, standard deviation and 95th percentiles

MAPE (%)

Days before slaughter mean ± sd P95th

30 3.33 ± 2.54 7.50

60 3.53 ± 2.69 7.95

90 3.91 ± 2.90 8,67

120 4.17 ± 3.13 9.31

150 4.27 ± 3.21 9.53

+150 4.31 ± 3.21 9.58

validation for the whole dataset using SVRL and 21 attributes. We represented

the errors and the number of days prior to slaughter from the measurements

in Figure 5. We split the data by months until 150 days, and then the rest of

data. The rectangles in the figure represent the 95th percentiles. Thus, we left

out the rectangles the 5% of the predictions with highest absolute errors.

To detail the information reported in Figure 5, we show the Table 3.

We observe in Figure 5 that if the slaughter is no later than 60 days from

the measurements, the errors in predictions are below 10% not only in 95% of

the cases, but in all cases. Only a few cases give rise an error above 10%, and

always are predictions taken with more than 2 months in advance.

The preceding scores are estimations about the performance on unseen cases

of a prediction function computed using all the data. Notice that cross validation

is a procedure to estimate these scores that uses different splits of the whole

dataset in training and testing sets. The prediction function obtained in this case

by SVRL with 21 attributes is a linear function of 21 variables. The coefficients

of each variable and an intercept term are reported in Table 4.
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Table 4: Prediction function obtained by SVRL with 21 attributes and days from measure-

ments to slaughter, sex and round profile. It is a linear function with 21 variables and the

intercept term reported in the last row

Var. Coef. Var. Coef. Var. Coef.

L1 −1.003E + 00 (L1)2 8.649E − 04 (L1)3 4.185E − 05

L2 6.687E − 02 (L2)2 −1.074E − 03 (L2)3 9.802E − 06

L3 −9.574E − 01 (L3)2 3.270E − 03 (L3)3 4.473E − 04

L2+L3 −8.299E − 02 (L2+L3)2 8.177E − 05 (L2+L3)3 1.127E − 05

L4 −4.360E − 01 (L4)2 1.711E − 03 (L4)3 2.379E − 05

L5 −1.068E + 00 (L5)2 5.970E − 03 (L5)3 4.787E − 04

SEX −1.843E + 01 DB 7.339E − 01 RP 9.359E + 00

intercept 1.528E + 02

4. Conclusions

We have presented a method to estimate the weight of carcass from zoometric

measurements taken months before the slaughter date. For this purpose we

used an Artificial Intelligence tool, the Support Vector Machines for Regression

(SVR). We discussed the use of different options for configuring these learning

algorithms.

The paper includes a case study carried with animals of a specialized beef

breed, Asturiana de los Valles. The results show that using a nonlinear function

it is possible to achieve accurate predictions a long time prior the slaughter.

However, the errors are smaller if the measures of the animals are taken near

the slaughter.
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