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Abstract

We study the weakest conglomerable model that is
implied by desirability or probability assessments: the
conglomerable natural extension. We show that tak-
ing the natural extension of the assessments while
imposing conglomerability—the procedure adopted in
Walley’s theory—does not yield, in general, the con-
glomerable natural extension (but it does so in the
case of the marginal extension). Iterating this process
produces a sequence of models that approach the con-
glomerable natural extension, although it is not known,
at this point, whether it is attained in the limit. We
give sufficient conditions for this to happen in some spe-
cial cases, and study the differences between working
with coherent sets of desirable gambles and coherent
lower previsions. Our results indicate that it might be
necessary to re-think the foundations of Walley’s the-
ory of coherent conditional lower previsions for infinite
partitions of conditioning events.

Keywords. Conglomerability, natural extension, de-
sirable gambles, coherent lower previsions.

1 Introduction

You are offered a gamble f (that is, a bounded real-
valued function representing an uncertain reward) on a
possibility space Ω. You assess that, whatever event B
you consider in a certain partition B of Ω, you would
desire f conditional on B. Does this imply that you
should unconditionally desire f?

Common axioms of desirability, such as those in
Refs. [11, Section 3.7] or [12], imply that this should
indeed be the case, at least when B is finite. When
B is infinite, some authors have proposed to impose
the above requirement through an axiom of so-called
conglomerability. In fact, conglomerability is a key
founding axiom for Walley’s theory of coherent lower
previsions in the conditional case with infinite parti-
tions of conditioning events.

Conglomerability was introduced by de Finetti [2, 3]
as a property that a finitely—but not countably—
additive probability need not satisfy. In fact, de Finetti
was also the first to reject the idea that conglomerabil-
ity should be required as an axiom of rationality. The
concept was studied later by Dubins [5], who estab-
lished a connection with disintegrability. The property
of conglomerability was also studied by Seidenfeld,
Schervisch and Kadane (e.g., in Refs. [9, 10]). They
show in particular [9] that when a probability is defined
on all events and takes infinitely many values, count-
able additivity is equivalent to full conglomerability,
that is, for conglomerability to hold with respect to all
the possible partitions of Ω. See Ref. [4] for an inter-
esting connection with imprecise probability models.

Requiring conglomerability, even only with respect to
a single partition B, comes at the expense of some
undesirable mathematical properties: for example, a
conglomerable coherent lower prevision may not be
the lower envelope of conglomerable linear previsions.
Perhaps also because of this, conglomerability was
rejected in some extensions of de Finetti’s work, such
Williams’s [12] (see also Ref. [8]). In our view, what
appears to be mostly controversial is in particular the
idea of full conglomerability, as opposed to conglomer-
ability only for the partitions that are actually used
for updating beliefs.1 This is for instance the approach
taken by De Cooman and Hermans in Ref. [1] when
they require modes to be ‘cut conglomerable’.

Here, we do not take any philosophical position about
whether models should be conglomerable. Our aim is
to perform a technical study of the impact of conglom-
erability on the possible extensions of an initial set of
assessments. We focus in particular on what we call
the conglomerable natural extension: loosely speaking,
this is the weakest (least committal) conglomerable
model that is implied by the initial assessments. A re-
lated concept is the natural extension, which is defined

1This is also called partial conglomerability. Here, when we
talk about conglomerability, we mean partial conglomerability.



in a similar way except for not requiring the extension
to be conglomerable.

We start in Section 2 by introducing some basic no-
tions: desirability, coherent lower previsions and the
connections between them. We introduce conglomer-
ability in a few different forms: for desirable gambles,
in the traditional form and in a weaker variant; and
for coherent lower previsions, in the traditional way
and in a strengthened form. We uncover the relation-
ships between these notions, which allows us to convert
problems formulated for one model into the other.

In Section 3, we focus on desirability. We show that,
if it exists, then the conglomerable natural extension
F of a set R of desirable gambles with respect to a
partition B is the intersection of all conglomerable sets
including R. Moreover, we relate F to the natural
extension: we start from R, take its natural extension,
and close it with respect to conglomerability, obtaining
E1; we reiterate this process, yielding the sequence E2,
. . . , En, . . . . We show that En ⊆ F for all n, and that
the sequence stabilises if and only if one if its elements
coincides with F . We provide some sufficient conditions
for this, as well as a few examples to illustrate the
situation. One of them, in particular, shows that the
gambles in R that do not satisfy conglomerability may
be only in the border of the set, and yet the closure
with respect to conglomerability may extend the set
beyond this border.

In Section 4, we study the conglomerable natural ex-
tension F of a coherent lower prevision P with respect
to a partition B. Here, too, we consider a sequence: we
start from P , compute its conditional natural exten-
sion P (·|B), and then the natural extension of the two
of them together, E1; we iterate the process, yielding
the sequence E2, . . . , En, . . . . We show that En ≤ F
for all n, and again that the sequence stabilises if and
only if one of its elements coincides with F . We then
provide what is arguably the most important result of
this paper: we show in Example 5 that E1 may not
equal F . This is interesting because, when it comes to
natural extension (as well as coherence), Walley’s the-
ory is implicitly based on stopping at the first element
of the sequence: E1. We show that this is not enough
to fully capture the implications of conglomerability,
and give sufficient conditions for E1 = F .

In Section 5, we relate the results obtained for desir-
able gambles and coherent lower previsions: we start
from the set R and induce from this a coherent lower
prevision P . We then create the sequences of sets En,
on the one hand, and the sequences of coherent lower
previsions En, on the other. We investigate the re-
lationship between the elements of these sequences.
This allows us, in Example 7, to exploit Example 5

to show that E1 may not coincide with F : this means
that taking the one-step conglomerable closure falls
short of the mark for desirable gambles as well. We
give sufficient conditions for E1 = F , as well as for the
two sequences to be made up of equivalent models.

To conclude, we consider in Section 6 the problem
of dealing with more than one partition. We show
that under the assumptions of the Marginal Extension
Theorem (see Refs. [11, Theorem 6.7.2] and [6]), it
does hold that E1 = F .

Due to lack of space, we must assume the reader has
a working knowledge of the basics of the theory of
coherent lower previsions [11]. We refrain from giving
proofs of most technical results for the same reason.

2 Introductory Notions

Consider a possibility space Ω. In this paper Ω will
frequently be N, the set of natural numbers without
zero, but our results will be applicable to more general
spaces. A gamble is a map f : Ω → R. The set of all
gambles defined on Ω is denoted by L(Ω), or simply L
when there is no ambiguity about the possibility space
we are working with. In particular, we use ‘f � 0’ to
mean ‘f ≤ 0 and f 6= 0’ (and we then say that the
gamble f is negative), and we write f  0 if −f � 0.

Given a set of gambles R, we consider the following
axioms of desirability:2

D1. f  0⇒ f ∈ R;

D2. 0 /∈ R;

D3. f ∈ R, λ > 0⇒ λf ∈ R;

D4. f, g ∈ R ⇒ f + g ∈ R.

Let us define

posi(R) :=

{ n∑
k=1

λkfk : fk ∈ R, λk > 0, n ≥ 1

}
.

We call R a convex cone if it is closed under positive
linear combinations, meaning that posi(R) = R. This
is equivalent to R satisfying conditions D3 and D4.

Given a partition B of Ω, R is called B-conglomerable
when it satisfies the following axiom:

D5. if f 6= 0 and (∀B ∈ B′ ⊆ B)Bf ∈ R then∑
B∈B′ Bf ∈ R.

2This axiomatic definition is related to strict and almost-
desirability, see Ref. [11, Section 3.7]. The differences between
these concepts lie mostly in the topological properties of the
set of desirable gambles and in whether the zero gamble is
considered to be desirable.



Axiom D5 is a consequence of D4 when B is finite. It
can be easily checked that D5 is equivalent to:

D5’. if f 6= 0 and (∀B ∈ B)Bf ∈ R ∪ {0} then∑
B∈B Bf ∈ R.

A lower prevision is a real-valued functional defined on
some set of gambles K ⊆ L. When K is a linear space,
P is called coherent when it satisfies the following
conditions:

C1. P (f) ≥ inf f for all f ∈ K;

C2. P (λf) = λP (f) for all f ∈ K and λ > 0;

C3. P (f + g) ≥ P (f) + P (g) for all f, g ∈ K.

When K = L and P satisfies C3 with equality, it is
called a linear prevision. The set of linear previsions
that dominate a coherent lower prevision P on its
domain is denoted by M(P ).

Given a partition B of Ω, a conditional lower prevision
P (·|B) on L is a functional such that for every B ∈ B,
P (·|B) is a lower prevision on L. It is called separately
coherent when P (·|B) is coherent and P (B|B) = 1 for
every B ∈ B. For a lower prevision P and a conditional
lower prevision P (·|B), we use the notation

GP (f) := f − P (f), GP (f |B) := B(f − P (f |B)

GP (f |B) := f − P (f |B) =
∑
B∈B

GP (f |B).

When both P and P (·|B) are defined on L, they are
called coherent if and only if P (GP (f |B)) ≥ 0 and

P (GP (f |B)) = 0 (GBR)

for every gamble f and every B ∈ B. This last condi-
tion is called the Generalised Bayes Rule.

Definition 1. Let P be a coherent lower prevision on
L, and B a partition of Ω. P is called B-conglomerable
when the following condition holds:

WC. P (
∑

n∈N Bnf) ≥ 0 for any f ∈ L and any
countable number of distinct sets Bn in B such
that P (Bn) > 0 and P (Bnf) ≥ 0 for all n ∈ N .

Again, WC holds trivially when N is finite, and in
particular when the partition B is finite, because of
the super-additivity of coherent lower previsions.

Let us shed more light on the relation between the
coherence and conglomerability concepts for lower pre-
visions and sets of desirable gambles. On the one hand,
given a coherent lower prevision P , we define its asso-
ciated set of strictly desirable gambles by

R := {f ∈ L : f  0 or P (f) > 0} , (1)

and its set of almost-desirable gambles by

R := {f ∈ L : P (f) ≥ 0} . (2)

R satisfies the axioms D1–D4 considered above, and R
is a convex cone that includes all non-negative gambles.
Moreover, it follows from the equations above that
R ⊆ R, and that R contains all positive gambles and
is closed under dominance.

Conversely, given a set R of gambles satisfying D1–D4,
we can define the corresponding lower prevision by

P (f) := sup {µ : f − µ ∈ R} . (3)

It follows from Theorem 6 in Ref. [7] that P is a
coherent lower prevision. Moreover, if we consider the
sets R and R given by Eqs. (1) and (2), it follows from
Theorem 3.8.1 in Ref. [11] that

sup {µ : f − µ ∈ R} = P (f) = sup
{
µ : f − µ ∈ R

}
.

As a consequence, any set R such that R ⊆ R ⊆ R in-
duces the same lower prevision P through Equation (3)
[11, Theorem 3.8.1].

The set R is the closure of R (and as a consequence
also of any R ⊆ R ⊆ R) in the topology of uniform
convergence [7, Proposition 4]. In addition,

R := {f ∈ R : f  0 or f − ε ∈ R for some ε > 0} ,

for all R ⊆ R ⊆ R.

We now establish a conglomerability condition for sets
of desirable gambles that is equivalent to WC.

Theorem 1. Let R be a set of desirable gambles that
satisfies D1–D4, and P be the coherent lower prevision
it induces through Equation (3). Then P satisfies WC
if and only if R satisfies the following condition:

WD5. if (∀B ∈ B)Bf ∈ R ∪ {0} then f ∈ R.

Since R ⊆ R ⊆ R, D5 implies WD5. On the other
hand, when we consider a coherent set of almost-
desirable gambles R (see Ref. [11, Section 3.7.3] for
the definition), condition D5 is equivalent to:

D5”. if (∀B ∈ B)Bf ∈ R then f ∈ R.

By definition, condition D5” is a consequence of D5.
To see that they are equivalent when we work with
a coherent set of almost-desirable gambles, note that
the zero gamble belongs to R, and as a consequence if
Bf ∈ R for all B ∈ B′ ⊆ B, then also B1

∑
B∈B′ Bf

belongs to R for all B1 ∈ B; using D5” we then deduce
that

∑
B∈B′ Bf belongs to R.

We next show that D5 can also be related to a notion
of conglomerability for coherent lower previsions:



Definition 2. Let P be a coherent lower prevision
on L, and B a partition of Ω. P is called strongly
B-conglomerable when the following condition holds:

SC. if f ∈ L and (∀B ∈ B′ ⊆ B)P (Bf) ≥ 0, then
P (
∑

B∈B′ Bf) ≥ 0.

Theorem 2. Let P be a coherent lower prevision, and
let R be its associated set of almost-desirable gambles.
Then P is strongly B-conglomerable if and only if R
satisfies D5. Conversely, a coherent set of almost-
desirable gambles satisfies D5 if and only if the coher-
ent lower prevision P it induces satisfies SC.

We deduce from Theorems 1 and 2 that if a coherent
lower prevision is strongly B-conglomerable, then it is
also B-conglomerable.

3 Conglomerability for Sets of
Desirable Gambles

Let us consider a set of gambles R, and look for the
smallest superset F (if it exists) that satisfies D1–D5
with respect to a fixed partition B. This set is called
the B-conglomerable natural extension of R. A first
characterisation of this set is given in the following:

Proposition 1. If there is some set of gambles in-
cluding R and satisfying D1–D4 and D5 (resp. WD5),
then F is the intersection of all such sets.

From now on, we assume that R satisfies condi-
tions D1–D4; D2 is necessary for the existence of a
B-conglomerable natural extension, and D1, D3 and D4
can be satisfied by replacing R with the convex cone
posi(R∪ {f : f  0}).

The existence of a superset of R that satisfies D1–
D5 does not guarantee that there is a half-space that
includes R and satisfies these axioms. The example
that establishes this is a reformulation of [11, Ex-
ample 6.6.9]:

Example 1. Let Ω be the set of integers without zero,
and consider the partition B := {Bn : n ∈ N} given by
Bn := {−n, n}.

Let P1 be a linear prevision on L satisfying P1({n}) = 1
2n+1

and P1({−n}) = 0 for all n ∈ N, and P1(N) = 1
2
. Also

consider a linear prevision P2 satisfying P2({−n}) = 1
3n

,
P2({n}) = 0 for all n ∈ N, and P2(N) = 1

2
. Let P :=

min{P1, P2}.

Consider R := {f : f  0 or P (f) > 0}, the set of strictly
desirable gambles associated with P . Then R satisfies D1–
D4. To see that it also satisfies D5, note that if for a gamble
0 6= f , Bnf ∈ R∪{0} for all n ∈ N, then either P (Bnf) > 0
or Bnf ≥ 0, and in the latter case P (Bnf) ≥ 0. But
since P (Bnf) > 0 implies that both P1(Bnf) > 0 and
P2(Bnf) > 0, and since this in turn means that both

f(−n) and f(n) are non-negative, we also deduce that
P (Bnf) > 0 implies that Bnf  0. As a consequence, if
Bnf ∈ R∪{0} for all Bn ∈ B, then f ≥ 0, and since f 6= 0
we deduce that f ∈ R.

Let us now show that there is no half-space includingR and
satisfying WD5 (and as a consequence neither D5). Assume
ex absurdo that D is such a space. Let P be the associ-
ated linear prevision, given by P (f) := sup {µ : f − µ ∈ D}.
Since R ⊆ D, we deduce that P dominates P . But Walley
has shown in Ref. [11, Example 6.6.9] that no dominating
linear prevision satisfies WC, and using Theorem 1, we
deduce that D does not satisfy WD5, and as a consequence
it does not satisfy D5 either. �

Our next goal is to derive a more practical expression
for F . In order to do this, let us define the following
sequence of sets of desirable gambles, starting with:

R∗ := {f 6= 0: (∀B ∈ B)Bf ∈ R ∪ {0}}
E1 := posi(R∪R∗)

and for all n ≥ 2:

E∗n−1 := {f 6= 0: (∀B ∈ B)Bf ∈ En−1 ∪ {0}}
En := posi(En−1 ∪ E∗n−1). (4)

We will also use E0 := R and E∗0 := R∗.
Lemma 1. Let F ′ ⊇ R and suppose that F ′ satis-
fies D1–D5. Then F ′ ⊇ En for all n ∈ N.

It follows that the B-conglomerable natural extension
ofR, if it exists, must include

⋃
n En. As a consequence,

in that case we can also express the sets E as

E1 = {f + g : f ∈ R ∪ {0}, g ∈ R∗ ∪ {0}} \ {0},
En =

{
f + g : f ∈ En−1 ∪ {0}, g ∈ E∗n−1 ∪ {0}

}
\ {0}.

We next investigate which desirability axioms are sat-
isfied by the sets En and E∗n.

Proposition 2. Assume that there is some superset
F of R satisfying D1–D5. Then:

1. En satisfies D1–D4 for all n ∈ N.

2. E∗n satisfies D1–D5 for all n ∈ N.

We can now characterise under which conditions En
coincides with the B-conglomerable natural extension,
in terms of the desirability axioms:

Proposition 3. The following conditions are equival-
ent for any natural number n ≥ 0:

1. E∗n ⊆ En.

2. En satisfies D5.

3. F = En.



This simple result has interesting consequences: on the
one hand, if En is not the B-conglomerable natural
extension of R, then there must be some gamble f in
E∗n \ En, and as a consequence En is a proper subset of
En+1. In other words, the sequence En does not stabilise
unless we get to the B-conglomerable natural extension.
On the other hand, if E∗n = E∗n+1 for some n then E∗n+1

is included in En+1, and Proposition 3 implies that
En+1 is the B-conglomerable natural extension of R.
Hence, we can use both sequences to determine at
which step we get to F : En = F if E∗n−1 = E∗n, and
also if and only if En = En+1.

Next we provide a sufficient condition for E1 to coincide
with F :

Proposition 4. Let R be a set of desirable gambles
satisfying D1–D4, and assume that its B-conglomerable
natural extension F exists.

1. (∀f ∈ R)(∀B ∈ B)Bf ∈ R ∪ {0} ⇔ R∗ = F ⇔
R ⊆ R∗.

2. If there is some superset Q of R satisfying D1–D5
and such that Q∗ = R∗, then E1 = F .

As a consequence, when R is included in R∗ the se-
quence En stabilises in the first step: E1 = F .

Let us give an example showing that the inclusion
R ⊆ R∗ does not imply that R = R∗, or, equivalently,
that we may have R ( E1 = F :

Example 2. Consider Ω = N, Bn := {2n − 1, 2n} and
B := {Bn : n ∈ N}. Let R be the set of gambles f for
which there is some nf ∈ N such that

f(nf →)  0 and

f(2n) + f(2n− 1) ≥ 0 and f(2n) ≥ 0 for all n ∈ N,

where (nf →) := {nf , nf+1, . . . }. Then R satisfies D1–D4:

D1. Any f  0 belongs to R by definition: take nf = 1.

D2. 0 /∈ R by definition.

D3. Let f ∈ R and λ > 0. Then there is some nf ∈ N such
that f(nf →)  0, f(2n) + f(2n− 1) ≥ 0 and f(2n) ≥ 0
for all n ∈ N, whence (λf)(nf →) = λ(f(nf →))  0,
(λf)(2n) + (λf)(2n− 1) = λ(f(2n) + f(2n− 1)) ≥ 0 and
λ(f(2n)) ≥ 0 for all n ∈ N. Since moreover λf 6= 0 because
f 6= 0 and λ > 0, we conclude that λf ∈ R.

D4. Let f, g ∈ R. Then there are nf , ng ∈ N such
that f(nf →) ≥ 0 and g(ng →) ≥ 0, whence given
n∗ := max{nf , ng}, we infer that (f + g)(n∗ →)  0.
On the other hand, (f + g)(2n) + (f + g)(2n − 1) =
f(2n)+g(2n)+f(2n−1)+g(2n−1) ≥ 0 and (f+g)(2n) ≥ 0
for all n ∈ N, whence also f + g ∈ R.

To see that R ⊆ R∗, observe that given a gamble f ∈ R
and Bn ∈ B, Bn(f(2m)+f(2m−1)) ≥ 0 and Bn(f(2m)) ≥
0 for all m ∈ N. Moreover, if Bnf = 0 then automatically

Bnf ∈ R ∪ {0}; and if Bnf 6= 0 then either f(2n) > 0, in
which case Bnf ∈ R by letting nBnf = 2n, or f(2n) = 0,
in which case f(2n − 1) > 0 and Bnf ∈ R by letting
nBnf = 2n− 1.

However, R does not satisfy D5, and as a consequence it
does not coincide with R∗: the gamble g given by g(2n) =
1, g(2n− 1) = −1 for all n does not belong to R because
there is no natural number ng for which g(ng →)  0. On
the other hand, for every natural number n, Bng does
belong to R: consider nBng = 2n. Therefore g ∈ R∗. �

This example also allows us to show that conditions D5
and WD5 are not equivalent:

Example 3. Consider the set R from Example 2. We have
already shown there that R does not satisfy D5. To see
that it satisfies WD5, observe that given a gamble f and
Bn ∈ B, Bnf belongs to R ∪ {0} if and only if Bnf ≥ 0,
because there is no δ > 0 such that Bnf − δ ∈ R. As
a consequence, (∀Bn ∈ B)Bnf ∈ R ∪ {0} implies that
0 ≤ f ∈ R. �

The same example shows us something else: even if the
gambles that violate D5 are only on the border of R,
taking the closure of R with respect to D5 will require
us in general to enlarge the set beyond its border.

Example 4. Consider set R and gamble g from Example 2.
Taking into account the observations in Example 3, there is
no δ > 0 such that Bng−δ ∈ R, because this gamble is not
positive, and on the other hand, we know that Bng ∈ R.
This means that Bng ∈ R\R ⊆ R\R for all Bn ∈ B. Now
consider any δ ∈ (−1, 0), and observe that g − δ /∈ R: in
fact, g(2n− 1)− δ < 0 for all n ≥ 1, so there is no ng ∈ N
such that (g− δ)(ng →) ≥ 0. On the other hand, g+ 1  0
and hence belongs to R. This means that

sup
{
µ : g − µ ∈ R

}
= sup {µ : g − µ ∈ R} = −1,

and therefore g /∈ R. �

It is an open problem whether the sequence En always
stabilises in a finite number of steps, and, if it does not,
whether the sequence limit

⋃
n∈N En always coincides

with the B-conglomerable natural extension F of R.

4 Conglomerability for Coherent
Lower Previsions

We now turn to the relationship between the natural
extension studied in Ref. [11, Chapter 8] and the con-
glomerable natural extension, which we define next.
Throughout this section, B is a partition of Ω.

Definition 3. Let P be a coherent lower prevision on K.
Its B-conglomerable natural extension is the smallest
coherent lower prevision F on L that dominates P
and is B-conglomerable.

There may be no dominating B-conglomerable coher-
ent lower prevision, and then the B-conglomerable



natural extension will not exist. On the other hand,
if there is some dominating B-conglomerable coher-
ent lower prevision, then there is a B-conglomerable
natural extension, because B-conglomerability is pre-
served by taking lower envelopes.

We may assume without loss of generality that the
domain K of P is the set L of all gambles: otherwise,
it suffices to consider the natural extension E of P to
L. To see that the B-conglomerable natural extensions
of P and E coincide, denote these by F 1 and F 2,
respectively. Trivially F 2 ≥ F 1. Conversely, F 1 is by
definition a B-conglomerable coherent lower prevision
that dominates P on K, and therefore also dominates
its natural extension E. Hence F 1 ≥ F 2 as well.

Given a coherent lower prevision P , Walley defines its
conditional natural extension as

P (f |B) :=

{
sup {µ : P (B(f − µ)) ≥ 0} if P (B) > 0

infω∈B f(ω) otherwise

(5)
for every f ∈ L and B ∈ B. In fact, when P (B) > 0
then P (f |B) is to the unique value of µ such that
P (B(f − µ)) = 0, i.e., for which (GBR) is satisfied.

From Theorem 6.8.2 in Ref. [11], P is B-conglomerable
if and only if it is coherent with the conditional lower
prevision P (·|B) derived from P by natural extension.
In Ref. [11, Section 6.6], Walley gives a number of
examples of coherent lower previsions that are not
B-conglomerable. We give a sufficient condition for
conglomerability:

Proposition 5. If the conditional natural extension
P (·|B) of P is given by P (f |B) = infω∈B f(ω) for all
B ∈ B and f ∈ L, then P is B-conglomerable, and so
is any Q ≤ P .

When P is not B-conglomerable, we can consider the
natural extensions E, E(·|B) of P , P (·|B), determined
by Theorem 8.1.5 in Ref. [11]:

E(f) := sup
g,h∈L

sup
{
µ : f − µ ≥ GP (g) +GP (h|B)

}
,

and it can be checked that E(·|B) coincides with the
conditional natural extension of E: it can be obtained
using Eq. (5).

Proposition 6. The natural extension E of P and
P (·|B) is dominated by the B-conglomerable natural
extension F of P . They coincide if and only if E
and E(·|B) are coherent. Moreover, if we let Q :=
P (P (·|B)), we have

M(E) =
{
P ∈M(P ) : (∀f ∈ L)P (GP (f |B)) ≥ 0

}
=M(P ) ∩M(Q).

As a consequence, if Q ≥ P , then Q coincides with E
and it is the B-conglomerable natural extension of P .

Next we show that E does not necessarily coincide
with the conglomerable natural extension:

Example 5. Consider Ω := N∪−N, Bn := {−n, n} and let
B be the partition of Ω given by B := {Bn : n ∈ N}. Let
P be a finitely additive probability on P(N) that satisfies
P ({n}) = 0 for every n (it follows from Ref. [9] that P is
not conglomerable), and consider the linear previsions P1,
. . . , P4, where P1 is the expectation functional associated
with the σ-additive probability measure with

P1({n}) = P1({−n}) =
1

2n+1
for all n ∈ N

and P2, P3 and P4 are given, by

P2(h) =
1

2

∞∑
n=1

h(n)
1

2n
+

1

2
P (h2)

P3(h) =
3

4
P (h1) +

1

4
P (h2)

P4(h) =
1

2
P1(h) +

1

2
P3(h),

where for every h ∈ L the gambles h1, h2 are defined on N
by h1(n) := h(n) and h2(n) := h(−n) for every n ∈ N.

First, we consider the coherent lower prevision P :=
min{P1, P2, P4}. Since

P (Bn) = min

{
1

2n
,

1

2n+1
,

1

2n+1

}
> 0

for all n ∈ N, we see that for every gamble f :

P (f |Bn) = min

{
f(n),

f(n) + f(−n)

2

}
. (6)

To see that P is not B-conglomerable, consider the gamble
f given by

f(n) := 1− 1

n
and f(−n) := −f(n) for all n ∈ N.

It follows from Eq. (6) that P (f |Bn) = 0 for every n,
whence GP (f |B) = f . On the other hand,

P (GP (f |B)) ≤ P2(f) =

∞∑
n=1

1

2n+1
(1− 1

n
)− 1

2
< 0,

taking into account that P2(−Nf) := 1
2
P (f2) = − 1

2
.

Next we show that P4(GP (h|B)) ≥ 0 for every gamble h.
Note first of all that

GP (h|B)(n) =

0 if h(n) ≤ h(−n)
h(n)− h(−n)

2
otherwise

GP (h|B)(−n) =

h(−n)− h(n) if h(n) ≤ h(−n)
h(−n)− h(n)

2
otherwise.

As a consequence, GP (h|Bn) ≥ 0 when h(n) ≤ h(−n),
and this means that P4(GP (h|B)) ≥ P4(GP (h|B)C),
where C :=

⋃
{Bn : h(n) ≥ h(−n)}. On the other hand,

GP (h|B)(n) = −GP (h|B)(−n) ≥ 0 for every n ∈ C, so

P4(GP (h|B)C) = 0 +
1

2
P3(GP (h|B)C)



and

P3(GP (h|B)C) =
3

4
P (h′)− 1

4
P (h′) ≥ 0,

where h′ is the non-negative gamble on L(N) given by
h′(n) := GP (h|B)(n)C(n), and where the second term on
the right-hand side follows from the definition of P3.

To determine the natural extension E of P and P (·|B), we
apply Proposition 6. First of all, for every linear prevision
Q ∈ M(P ), there are α1, α2 and α4 ∈ [0, 1] such that
α1 + α2 + α4 = 1 and Q = α1P1 + α2P2 + α4P4. We
are going to check which of these combinations satisfies
Q(GP (f |B)) ≥ 0 for every gamble f . On the one hand,
if α2 = 0 then Q belongs to M(E), since we have just
proven that P4 dominates E and P1 is conglomerable.
Assume now that α2 > 0, and consider an arbitrary gamble
f . As before, since GP (f |B) ≥ GP (f |B)C, where C :=⋃
{Bn : f(n) ≥ f(−n)}, we can concentrate on gambles f

such that f(n) ≥ f(−n) for every n ∈ N. In that case, if we
denote h := GP (f |B), it holds that h1 ≥ 0 and h2 = −h1.
As a consequence,

Q(h) = α1P1(h) + α2P2(h) + α4P4(h)

= α2P1(hN) + P (h1)(
1

4
α4 −

1

2
α2).

When α4 ≥ 2α2 > 0, we deduce from the non-negativity
of hN (and as a consequence of h1) that Q(h) ≥ 0 and
therefore Q ∈ M(E). When α4 < 2α2, there is some
natural number n∗ such that

1

2n∗
<

1
2
α2 − 1

4
α4

α2
.

We consider the gamble f given by f(n) := 0 for n ≤
n∗, f(n) := 1 for n > n∗ and f(−n) := −f(n) for all
n ∈ N. Then h = GP (f |B) = f , and using the equation
above we obtain P1(hN) = 1

2(n
∗+1) and P (h1) = 1. As a

consequence, Q(h) = α2P1(hN) + P (h1)( 1
4
α4 − 1

2
α2) < 0,

since by construction P1(hN) <
1
2
α2− 1

4
α4

α2
.

We deduce from all this that E is the lower envelope of the
set {P1, P4,

1
3
P2 + 2

3
P4}, and as a consequence it induces

the conditional lower prevision E(·|B) determined by

E(f |Bn) = min

{
f(n) + f(−n)

2
,

2f(n) + f(−n)

3

}
. (7)

To see that E is not B-conglomerable, consider any gamble
g such that g(n) ≤ g(−n) for all n ∈ N, then Eq. (7) yields

E(g|Bn) =
2g(n) + g(−n)

3
,

and consequently

GE(g|Bn)(n) =
g(n)− g(−n)

3
,

GE(g|Bn)(−n) =
2g(−n)− 2g(n)

3
.

Thus, given h := GE(g|B) we obtain h2 = −2h1 ≥ 0,

whence

P4(h) =
1

2
P1(h) +

3

8
P (h1) +

1

8
P (h2)

=
1

2
(P1(hN) + P1(h−N)) +

1

8
P (h1)

= −1

2
P1(hN) +

1

8
P (h1).

Now, if we make for instance P (h1) < 4P1(hN), as is the
case for g(n) := g(−n) := 0 for n = 1, 2 and g(n) := −1
and g(−n) := 1 for n > 2, then we get P4(GE(g|B)) < 0,
whence E(GE(g|B)) < 0. Hence, E is not B-conglomerable,
and therefore it does not coincide with the conglomerable
natural extension F , which exists because P1 ≥ P is B-
conglomerable. �

On the other hand, we can give a number of sufficient
conditions for E to be B-conglomerable.

Proposition 7. If the conditional natural extension
derived from P is linear and the B-conglomerable nat-
ural extension F exists, then it coincides with the
natural extension E of P and P (·|B). More generally,
if there is a coherent lower prevision Q ≥ P that is
coherent with the conditional lower prevision P (·|B)
derived from P using natural extension, then the nat-
ural extension E of P and P (·|B) coincides with the
B-conglomerable natural extension F .

Hence, if P is not B-conglomerable, we can consider
the natural extension E of P and P (·|B). If then E
is not B-conglomerable, we can consider the natural
extension E1 of E and E(·|B), and so on. Our next
result shows that the resulting sequence En of coherent
lower previsions does not stabilise unless we get to a
B-conglomerable coherent lower prevision.

Proposition 8. If P is not B-conglomerable, then it
does not coincide with the natural extension E of P
and P (·|B). On the other hand, if E(·|B) = P (·|B)
then E is B-conglomerable.

The sequence En is increasing and therefore converges
to a coherent lower prevision E∞, which by construc-
tion is dominated by the B-conglomerable natural ex-
tension F of P : it suffices to use induction on n and to
take into account that at each step n, En+1 is a lower
bound of any coherent extension of En and En(·|B),
and is therefore bounded by the B-conglomerable nat-
ural extension F . It is an open problem whether the
two coherent lower previsions E∞ and F coincide, and
also to find an example where En does not coincide
with F∞ for any n, i.e., where we cannot get to the
B-conglomerable natural extension in a finite number
of steps.

5 Connecting the Two Approaches

The correspondence between sets of desirable gambles
and coherent lower previsions we have summarised



in Section 2 does not extend towards the notion of
B-conglomerable natural extension we have discussed
in Sections 3 and 4. The reason is that in our defin-
ition of the B-conglomerable natural extension of a
set of gambles we are using condition D5, while the
B-conglomerable natural extension for coherent lower
previsions is based on condition WC, which is equival-
ent to WD5, and therefore weaker than D5 in general.
We now exhibit all this in more detail.

Let R be a set of desirable gambles satisfying D1–D4,
and let P be its associated coherent lower prevision,
given by Eq. (3). If R does not satisfy D5, then we can
consider the increasing sequence of sets of desirable
gambles En, defined by means of Eq. (4). From each
of these sets of desirable gambles we can induce a
coherent lower prevision Pn, again by means of Eq. (3).
At the same time, we can consider the sequence En of
coherent lower previsions derived from P in the manner
discussed in Section 4: E1 is the natural extension of
P and P (·|B), where P (·|B) is the conditional natural
extension of P ; E2 is the natural extension of E1 and
E1(·|B); and so on.

Proposition 9. En(f) ≤ Pn(f) for all f ∈ L.

However, En and Pn do not coincide in general:

Example 6. Consider the set of desirable gambles R from
Example 2, and let P be its associated coherent lower pre-
vision. We have shown in Example 3 that R satisfies WD5,
so Theorem 1 implies that P is B-conglomerable, and in
particular E1(f) = P (f) for every f . On the other hand,
we have seen in Example 2 that R does not satisfy D5,
and in particular that the gamble g = even− odd belongs
to R∗ \ R. Moreover, we have seen in Example 4 that
sup {µ : g − µ ∈ R} = −1. From all this, we infer that

P 1(g) ≥ 0 > −1 = sup {µ : g − µ ∈ R} = P (f) = E1(f).

This shows that the inequality in Proposition 9 may be
strict. �

The reason for this lies in the next result:

Proposition 10. Pn is the natural extension of Pn−1
and P ′n−1(·|B), where P ′n−1(·|B) is derived from the
set En−1 by

P ′n−1(f |B) := sup {µ : B(f − µ) ∈ En−1} (8)

for all f ∈ L and B ∈ B.

P ′n−1(·|B) satisfies (GBR) with respect to Pn−1: given
a gamble f and a set B ∈ B, then for all ε > 0,

Pn−1(GP ′n−1
(f |B) + ε)

≥ Pn−1(B(f − P ′n−1(f |B) + ε)) ≥ 0,

whence Pn−1(GP ′n−1
(f |B)) ≥ −ε for every ε > 0 and

therefore Pn−1(GP ′n−1
(f |B)) ≥ 0. Conversely, if there

is some ε > 0 such that Pn−1(GP ′n−1
(f |B)) ≥ ε, then

the gamble GP ′n−1
(f |B)) − ε

2 must belong to En−1,

and therefore also the gamble B(f − P ′n−1(f |B)− ε
2 ),

which is greater. But this means that we can increase
the value P ′n−1(f |B) by ε

2 > 0, a contradiction with
Eq. (8). As a consequence, P ′n−1(·|B) can strictly dom-
inate the conditional natural extension Pn−1(·|B) of
Pn−1 only when some of the conditioning events have
lower probability zero.

From Proposition 9, we can infer the following:

Proposition 11. Let R be a coherent set of strictly
desirable gambles, and let P be its associated coherent
lower prevision. Then P 1 = E1. As a consequence, if
E1 is the B-conglomerable natural extension of R, then
E1 is the B-conglomerable natural extension of P .

Note however that the number of steps necessary to
compute the B-conglomerable natural extension can
be different in the two cases, as Example 6 shows.

As a consequence of Proposition 11, if E1 is not B-
conglomerable, then E1 does not satisfy D5, provided
we start from a set of strictly desirable gambles. Using
this, we give an example where the sequence of sets
En does not stabilise at the first step:
Example 7. Consider the coherent lower prevision P from
Example 5 and let R be its associated set of strictly desir-
able gambles. We have shown in Example 5 that the natural
extension E of P and P (·|B) is not B-conglomerable, and
therefore it does not coincide with the B-conglomerable
natural extension of P . Applying Proposition 11, we deduce
that E1 cannot be the B-conglomerable natural extension
of R, and therefore the sequence En does not stabilise at
the first step. �

Next we give another sufficient condition for the two
sequences of coherent lower previsions to coincide:

Proposition 12. If P (B) > 0 for all B ∈ B, then
Pn(f) = En(f) for all f ∈ L.

The intuition behind this result is that when the con-
ditioning events have all positive lower probability,
then the corresponding conditional lower prevision is
uniquely determined by (GBR), and then it necessarily
coincides with the natural extension of the uncondi-
tional. It implies the following:

Corollary 1. If P (B) > 0 for all B ∈ B and En is
the B-conglomerable natural extension of R, then En

is the B-conglomerable natural extension of P .

The condition P (B) > 0 for every B ∈ B does not
imply that the sequence stabilises at the first step, as
Example 5 shows. On the other hand, the sequences
En and En need not stabilise at the same time: there
are examples where R satisfies WD5, so the associated
coherent lower prevision P is B-conglomerable, but it
does not satisfy D5, so R is strictly included in E1.



6 The Case of More Partitions

Next we consider a finite number of sets R1, . . . , Rm,
where Ri satisfies D1–D5 with respect to a partition
Bi, and we look for the smallest superset F , if it exists,
that satisfies D1–D5 with respect to all partitions in
B := {B1, . . . ,Bm}.

We first show that conglomerability with respect to the
partitions B1, . . . , Bm is equivalent to conglomerability
with respect to all partitions that can be derived from
them. Let us define B′ as the (finite) set of partitions
B such that

(∀B ∈ B)(∃j ∈ {1, . . . ,m})B ∈ Bj .

Proposition 13. Let R be a set of gambles satisfy-
ing D1–D4. If it satisfies D5 (resp. WD5) with re-
spect to all partitions in B, then it also satisfies D5
(resp. WD5) with respect to all partitions in B′.

Taking into account Proposition 1, we can show:

Proposition 14. If there is a set of gambles
that includes

⋃m
i=1Ri and satisfies D1–D4 and D5

(resp., WD5) with respect to all partitions in B, then
the smallest such set is given by the intersection of all
sets that do so.

On the other hand, if we consider the notion of con-
glomerability for coherent lower previsions, this time
with respect to a finite number of partitions, we can
make a link with the property of weak coherence stud-
ied in Ref. [11, Section 7.1]:

Proposition 15. Let P be a coherent lower prevision
on L. The following statements are equivalent:

1. P is B-conglomerable for all B ∈ B.

2. P is B-conglomerable for all B ∈ B′.

3. There are conditional lower previsions P 1(·|B1),
. . . , Pm(·|Bm) that are weakly coherent with P .

6.1 The Marginal Extension Theorem

We next prove that when the partitions are nested,
the sequence stabilises after one step. This is a version
in terms of sets of desirable gambles of the Marginal
Extension Theorem 6.7.2 established in Ref. [11] and
generalised to any finite number of partitions in Ref. [6].
In a different context, using different notations, this
result was also proved (in a different manner) by De
Cooman and Hermans [1, Theorem 3]. To proceed, we
need to introduce a number of definitions:

Definition 4. Let B be a partition of Ω. A gamble f
on Ω is called B-measurable when it is constant on the
elements of B. The set of all B-measurable gambles is
denoted by G(B).

Definition 5. Let Q be a linear subspace of gambles
containing all constant gambles, and let R ⊆ Q. We
say thatR is coherent relative to Q if it satisfies D2–D4
and

D1*. if f ∈ Q and f  0 then f ∈ R.

When Q = L, this reduces to the usual coherence
notion characterised by axioms D1–D4.

We begin by establishing our result for the case of one
partition only.

Proposition 16. Let R0 be a set of desirable gambles
coherent relative to G(B). For each B ∈ B, let R|B
be a coherent set of desirable gambles on L(B). The
B-conglomerable natural extension of R0 and R|B,
B ∈ B, is the set F given by{
f +

∑
B∈B

BgB : f ∈ R0 ∪{0}, gB ∈ R|B ∪{0}
}
\ {0}.

Proof. Let us show that F satisfies D1–D5:

D1. Consider h  0. Write it as h =
∑
B∈B : Bh6=0Bh =∑

B∈B : Bh6=0BgB , where gamble gB ∈ L(B) is defined by
gB(ω) := h(ω) for all ω ∈ B. Since gB  0, it belongs to
the coherent set R|B. Hence h belongs to F .

D2. We know that 0 /∈ F by definition.

D3. Consider h ∈ F and λ > 0. We know that λh =
λf +

∑
B∈B BλgB . Since G(B) is a linear space containing

all constant gambles, and R0 is coherent relative to it, it
follows that λf ∈ R0 ∪ {0}; moreover, λgB ∈ R|B ∪ {0},
because R|B is a coherent set. It follows that λh ∈ F .

D4. Consider h, h′ ∈ F . Then h+h′ = f+f ′+
∑
B∈B B(gB+

g′B), where f, f ′ ∈ R0 ∪ {0} and gB , g
′
B ∈ R|B ∪ {0}. For

analogous reasons as in the previous step, it holds that
f + f ′ ∈ R0 ∪{0} and gB + g′B ∈ R|B∪{0}. From this, we
obtain that h+h′ ∈ F , provided that h+h′ 6= 0. To see that
this is indeed the case, assume that h+ h′ = 0; then either
0 = f + f ′ or f + f ′ 6= 0. In the first case, the coherence of
R0 implies that f = f ′ = 0, and similarly since gB+g′B = 0
for every B we should have that gB = g′B = 0 for all B.
But then h = h′ = 0, a contradiction. In the second case,
0 6= f+f ′ = −

∑
B∈B B(gB+g′B). Taking into account that

f+f ′ is B-measurable, there must be some B ∈ B such that
B(f + f ′)  0: otherwise f + f ′ ≤ 0 and R0 would incur
partial loss. But on such a B we obtain that gB + g′B � 0,
so R|B would incur partial loss, a contradiction.

D5. Consider 0 6= h ∈ L such that Bh ∈ F ∪ {0} for all
B ∈ B. We focus on the case Bh 6= 0, where it holds
that Bh = f +

∑
B∈B BgB . If f = 0, then Bh = BgB . If

f 6= 0, then consider B′ ∈ B such that B′ 6= B. Bh is
zero on B′, and hence B′f + B′gB′ = 0. Now, recalling
that f is B-measurable, it is only possible that f < 0
on B′: otherwise, R|B′ would incur partial loss. Since we
can repeat this reasoning for all B′ 6= B, we deduce that
f > 0 on B, as otherwise R0 would incur partial loss. In



other words, f is a positive constant, say kB , on B. Then
gB + kB ∈ R|B, so that if we re-define gB := gB + kB ,
we obtain that Bh = BgB . Thus, h =

∑
B∈B : Bh6=0Bh =∑

B∈B : Bh6=0BgB ∈ F .

Since F is included in any superset of R0 ∪ R|B satisfy-
ing D1–D5, this completes the proof.

The result also holds for a finite number of partitions.

Proposition 17. Let B1, . . . ,Bn be partitions of Ω
such that Bi+1 is finer than Bi for i = 1, . . . , n−1. Let
R0 be a set of desirable gambles coherent relative to
G(B1). For each i = 1, . . . , n− 1 and each Bi ∈ Bi, let
Bi+1|Bi := {Bi+1 ∈ Bi+1 : Bi+1 ⊆ Bi} and Ri|Bi be
a coherent set of desirable gambles on L(Bi) relative
to G(Bi+1|Bi). Finally, for each Bn ∈ Bn, let Rn|Bn

be a coherent set of desirable gambles on L(Bn). The
conglomerable natural extension Fn of R0 and Ri|Bi,
Bi ∈ Bi, is given by{

f0 +

n∑
i=1

∑
Bi∈Bi

BigBi :

f0 ∈ R0 ∪ {0}, gBi ∈ Ri|Bi ∪ {0}
}
\ {0}.

7 Conclusions

We have studied the extension of desirability and prob-
abilistic assessments under the requirement of conglom-
erability. Our main finding is that taking the natural
extension while imposing conglomerability (which is
the procedure adopted in Walley’s theory), does not
yield the conglomerable natural extension in general
(but it does so in the case of the Marginal Extension
Theorem); and that although iterating that process
yields models ever closer to it, it is an open problem
whether or not the conglomerable natural extension is
achieved in the limit, or whether the limit is achieved
in a finite number of steps. Future work could con-
sist in (i) addressing these problems, and extending
everything to the case of multiple partitions; (ii) de-
fining a new coherence notion that follows from the
conglomerable natural extension; (iii) investigating
the relationship between such an extension and envel-
ope theorems; and (iv) more generally, investigating
whether the conglomerable natural extension always
allows the most informative conclusions to be drawn.
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