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1 Introduction

Five dimensional gauge theories are non-renormalizable and therefore generically do not

exist as microscopic theories. In some cases, like the maximally supersymmetric Yang-

Mills theory, it is believed that the UV theory is six-dimensional. However there are

a number of examples of strongly-coupled supersymmetric five-dimensional fixed point

theories, corresponding to specific gauge groups and matter content [1–3].

A key ingredient is that the minimal supersymmetry in five dimensions has eight

supercharges, and therefore imposes strong restrictions. As in 4d N = 2 gauge theories, a
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supersymmetric 5d gauge theory is defined by a prepotential F . In 5d F can be at most

cubic, because the 5d Chern-Simons coupling, defined by the third derivative of F , must

be quantized to preserve gauge-invariance. Furthermore, quantum effects are restricted to

one-loop shifts of the cubic term [4]. The exact prepotential on the Coulomb branch for

any gauge group and any matter hypermultiplet content is given by [3]

F =
1

2g2
0

hijφ
iφj +

c0

6
dijkφ

iφjφk +
1

12

∑
R

|R · φ|3 −
∑
f

∑
w∈Wf

|w · φ+mf |3
 , (1.1)

where hij = Tr(TiTj), dijk = 1
2Tr(Ti(TjTk + TkTj)), R are the roots of the gauge group

G and Wf are the weights of G in the matter representation f . Generically the theory

does not make sense beyond φ ∼ 1/g2
0, where the effective gauge coupling, defined by the

second derivative of F , diverges. This reflects the non-renormalizability of the field theory.

However, by suitably choosing the matter content for a given gauge group such singularities

can be avoided, suggesting that a strongly-coupled fixed point with g0 →∞ exists. A few

of these theories can be engineered using 5-brane webs in Type IIB string theory [5, 6].

This construction makes apparent the structure of the moduli space and the spectrum of

BPS particles on the Coulomb branch.

In view of the AdS/CFT correspondence one cannot help but wonder about the AdS

supergravity backgrounds dual to these fixed points. Unlike in other dimensions, the super-

conformal algebra in five dimensions is unique, it’s bosonic part being SO(5, 2)× SU(2)R.

It has half the amount of supersymmetry of the maximally supersymmetric theories in

d = 3, 4 and 6. Correspondingly, supersymmetric AdS6 backgrounds cannot be obtained

by dimensional reduction on simple spaces like S4 or CP 2. Following a proposal in [7], the

supergravity dual of a class of five-dimensional fixed points with gauge group USp(2N) was

found in [8] by considering D4-branes in Type I’ string theory. The dual backgrounds are

warped products of AdS6 and half of an S4 in massive Type IIA supergravity [9]. These

solutions can also be described in terms of F (4) gauged supergravity [10], which in turn

can be obtained by dimensionally reducing massive Type IIA supergravity on the warped

S4 [11]. In fact this is the only known class of supersymmetric AdS6 solutions.

A natural way to generalize the supergravity duals corresponding to branes in flat space

is to look at branes in orbifolds. This gives rise to quiver gauge theories, namely to product

gauge groups and bi-fundamental matter fields. We will consider D4-branes in C2/Zn
orbifolds of Type I’ string theory. The corresponding supersymmetric quiver gauge theories

involve products of USp and SU groups, and matter hypermultiplets transforming in bi-

fundamental and antisymmetric tensor representations. This is T-dual to the construction

of 6d quiver theories using D5-branes in Type I orbifolds [12–14]. At large N , the dual

supergravity backgrounds will have a warped AdS6 × S4/Zn geometry. A similar orbifold

construction using D3-branes and orientifold 7-planes was used to derive supergravity duals

of 4d quiver theories of the same type [15, 16].

At this point one might be discouraged by the following argument that appears to

rule out 5d supersymmetric fixed points of quiver type [3]. If two gauge group factors

are connected by a matter field, one can see in (1.1) that a non-zero VEV for an adjoint
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scalar in one of the gauge groups contributes with a minus sign to the effective coupling

of the other gauge group, necessarily leading to a singularity somewhere in the moduli

space. However, at least in some cases, this singularity coincides with the appearance of

new massless states, as seen in the Type IIB 5-brane web construction, which may allow a

continuation past infinite coupling. In these cases the existence of the fixed point can be

argued using S-duality [5]. Our AdS6 backgrounds lend further support to the existence of

these and other fixed point theories.

The plan for the rest of the paper is as follows. In section 2 we will review the

USp(2N) theory, its realizations in string theory and its supergravity dual. In section 3 we

will describe the supersymmetric quiver gauge theories that are obtained from Zn orbifolds

of the USp(2N) theory, and in section 4 we will discuss their supergravity duals. In

particular, we will analyze the spectrum of gauge fields and charges in the dual backgrounds,

and compare them with the global symmetries and mesonic and baryonic operators in the

quiver gauge theories. We will also discuss supergravity objects corresponding to instanton

operators, cosmic strings, domain walls and baryon vertices in the gauge theories. We

conclude in section 5, where we also raise some open questions and suggest a number

of generalizations.

2 The USp(2N) theory

2.1 Field theory

The simplest example of a 5d fixed point is an N = 1 SU(2) gauge theory with Nf matter

hypermultiplets in the fundamental representation [1]. The Coulomb branch of the moduli

space is R+, parametrized by the scalar field φ in the vector multiplet of U(1) ⊂ SU(2).

The effective gauge coupling in this case is

1

g2
eff

=
1

g2
0

+ 16|φ| −
Nf∑
i=1

|φ−mi| −
Nf∑
i=1

|φ+mi| , (2.1)

where mi are the masses of the matter fields. A necessary condition for a fixed point to

exist is that this is positive everywhere on the moduli space. This is satisfied only for

Nf ≤ 7. There is no bare CS coupling in this theory, since the third order Casimir dijk
vanishes. The one-loop contribution on the Coulomb branch (for mi = 0) gives

c = 2(8−Nf ) . (2.2)

Other than the SU(2)R associated to the two pseudoreal supercharges of the minimal

5d supersymmetry, the 5d gauge theory also has an SO(2Nf ) × U(1)I global symmetry,

where SO(2Nf ) is the flavor symmetry associated to the fundamental hypermultiplets, and

U(1)I is the topological symmetry associated to the conserved instanton number current

j = ∗Tr(F ∧ F ) . (2.3)

Note that the 5d CS term couples this current to the gauge field. The instanton there-

fore acquires a U(1) gauge charge on the Coulomb branch. It was also argued that the
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Figure 1. Type IIB brane configuration for the 5d USp(2N) theory with flavors. The crossed

circles represent O7-planes and the squares are D7-branes.

global symmetry is enhanced to the exceptional group ENf+1 at the fixed point, due to

the instanton becoming massless at the origin of the Coulomb branch of the fixed point

theory [1].

The simplest generalization of this theory is a USp(2N) gauge theory with a matter

hypermultiplet A in the antisymmetric representation. For SU(2) = USp(2) this is a singlet.

More generally the antisymmetric representation of USp(2N) reduces to a traceless part

with AabJab = 0, where J is the invariant antisymmetric tensor, and the singlet trace.

The results (2.1) and (2.2) are essentially unchanged, except that the Coulomb branch

contains N copies of the SU(2) Coulomb branch φ1, . . . , φN . There is an additional Higgs

branch corresponding to A, at a generic point of which the gauge symmetry is broken to

SU(2)N . Since the number of broken generators is N(2N + 1) − 3N = 2N(N − 1), the

dimension of the Higgs branch is N(2N − 1) − 1 − 2N(N − 1) = N − 1. There is also an

additional “mesonic” SU(2)M global symmetry, under which A transforms as a doublet.

The corresponding meson operator is just the trace M = Tr[A] = AabJab. There also seems

to be a baryonic Pfaffian operator Pf(A) = εa1···a2NAa1a2 · · ·Aa2N−1a2N , but this is actually

related to the meson as Pf(A) ∝MN .

2.2 Type IIB brane construction

The USp(2N) theory can be realized by a brane configuration in Type IIB string theory on

R1,4×R4×S1, with 2N D5-branes along R1,4×S1, two orientifold 7-planes along R1,4×R3

located at opposite points on the S1, and Nf D7-branes parallel to the O7-planes together

with their images, as follows (see also figure 1):

0 1 2 3 4 5© 6 7 8 9

D7 /O7− × × × × × × × ×
D5 × × × × × ×

(2.4)

The D5-branes come in pairs, as required by the consistency conditions of [17]. The

orientifold maps the half of a D5-brane on one side of the circle to the half of its part-

ner on the other side. The flavors correspond to D5-D7 strings, and the antisymmetric

hypermultiplet comes from D5-D5 strings across an O7-plane. The Coulomb branch cor-

responds to the positions of the D5-branes transverse to the O7-planes. The part of the
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(a) (b)

Figure 2. Pure SU(2) web: (a) cutoff theory, (b) fixed point theory.

Higgs branch associated to the antisymmetric hypermultiplet corresponds to the D5-brane

positions along the O7-planes (together with the holonomy of the gauge field in the Car-

tan subalgebra along the S1), and the part associated to the fundamentals corresponds to

breaking the D5-branes along the D7-branes.

This configuration provides a realization of the classical 5d theory. In the quantum

theory each O7-plane gets resolved into a pair of mutually non-local 7-branes, which in

one representation are a (1, 1)7-brane and a (1,−1)7-brane [18, 19]. The D5-branes then

become a (p, q)5-brane web suspended between the four 7-branes in the (x5, x9) plane.

For example for SU(2) the web consists of two external (1, 1)5-branes and two external

(1,−1)5-branes ending on the corresponding 7-branes, and an internal rectangular face

made of two parallel D5-branes and two parallel NS5-branes as shown in figure (2a) [5].1

The length of the D5-brane segments corresponds to the inverse square effective coupling,

and the D5-brane separation to the Coulomb modulus φ. The bare coupling corresponds

to the length of the D5-branes at zero separation. The fixed point theory is described by

a web with a square face, such that at the origin of the Coulomb branch only the external

5-branes remain, as shown in figure (2b).

The spectrum of BPS states on the Coulomb branch is described by string webs sup-

ported by the 5-brane web [6]. In particular, a fundamental string suspended between

the D5-branes corresponds to a W boson with a mass proportional to φ, and a D1-brane

suspended between the NS5-branes corresponds to an instanton particle with a mass pro-

portional to 1/g2
eff . Clearly all of these states are massless at the origin of the moduli space

of the fixed point theory.

The 5-brane web for the USp(2N) theory with an antisymmetric hypermultiplet is a

simple generalization of the SU(2) web, consisting of N copies of the latter (see figure (3)).

1Naively two parallel D5-branes give a U(2) gauge group, however the diagonal U(1) is frozen by the 5d

dynamics. The scalar in the U(1) gauge multiplet corresponds to a global web deformation that moves the

7-branes.
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Figure 3. The USp(2N) web.

As usual, the moduli space corresponds to local web deformations. In particular the

Coulomb branch corresponds to the N internal faces, in agreement with the field theory.

Note that in counting these we must apply the generalized s-rule, since all copies of a given

external 5-brane end on the same 7-brane (see for example [20]). The Higgs branch is

described by the N − 1 relative positions of the N SU(2) sub-webs along the 7-branes in

(x6, x7, x8), also in agreement with the field theory.

2.3 Type I’ brane construction

While the Type IIB brane construction gives a nice geometrical description of the moduli

space and BPS particle spectrum on the Coulomb branch, it does not provide a good

starting point for obtaining the supergravity duals. For this purpose the Type I’ brane

construction is more useful. T-duality relates the classical Type IIB configuration to a

system of D4-branes in a background with an O8-plane and Nf D8-branes, which is the

system originally used in [1]:2

0 1 2 3 4 5 6 7 8 9

O8−/D8 × × × × × × × × ×
D4 × × × × ×

Assume that the O8-plane is located at x9 = 0, and that the D8-branes are located at

x9 = x9
i , with 0 ≤ x9

1 ≤ x9
2 ≤ · · · ≤ x9

Nf
. From here on we will take α′ = 1. The background

is given by

ds2 = H
−1/2
8 (x9) dx2

1,8 +H
1/2
8 (x9) (dx9)2 (2.5)

eΦ = H
−5/4
8 (x9) , (2.6)

with

H8(x9) = a+ 16x9 −
Nf∑
|x9 − x9

i | −
Nf∑
|x9 + x9

i | , (2.7)

2This is really part of a Type I’ string theory background with two orientifold planes defining an interval

and 16 D8-branes located at points along the interval. We are only concerned with the behavior of the

D4-brane near one of the boundaries and so can ignore the other one.
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where a is a constant. There is also a piecewise constant RR 0-form field strength (“Ro-

mans mass”),

F0 =
1

4π

{
16 0 < x9 < x9

1

16− 2i x9
i < x9 < x9

i+1 .
(2.8)

Therefore this is a background of massive Type IIA supergravity [9].

The worldvolume gauge theory on the N D4-branes plus their images is the 5d N = 1

USp(2N) theory with an antisymmetric hypermultiplet, and the D4-D8 strings give Nf

fundamental hypermultiplets. The positions of the D4-branes in x9 correspond to the

Coulomb branch of the theory, and their positions in (x5, x6, x7, x8) to the part of the

Higgs branch parameterized by the antisymmetric field. The positions of the D8-branes

in x9 correspond to the flavor masses mi. Expanding the DBI action for a D4-brane in

the background (2.5), (2.6) reproduces the effective gauge coupling (2.1). The bare gauge

coupling is identified with the constant a, and therefore the fixed point theory corresponds

to setting a = 0. In this case the dilaton blows up at x9 = 0, and therefore the effective

gauge coupling blows up at the origin of the Coulomb branch. The CS coupling (2.2) is

derived from the RR worldvolume coupling F0A ∧ F ∧ F when all x9
i = 0

We can understand the global symmetries of the gauge theory in this construction

as follows. The SU(2)R × SU(2)M part is realized as the SO(4) rotation symmetry in

(x5, x6, x7, x8). The flavor symmetry SO(2Nf ) corresponds to the 9d worldvolume gauge

symmetry of the D8-branes (when all x9
i = 0), and the instantonic U(1)I symmetry corre-

sponds to the 10d RR 1-form potential. Furthermore the stringy construction shows that, at

the fixed point, the SO(2Nf )×U(1)I part of the symmetry is enhanced non-perturbatively

to an exceptional group ENf+1, due to additional massless vectors described by D0-branes

localized at x9 = 0 [21–23]. Note that D0-branes in the bulk of the 10d massive Type

IIA background must have semi-infinite strings attached to them [24], and are therefore

infinitely massive. The states responsible for the gauge symmetry enhancement are special

D0-brane states that are localized at the 9d boundary. These either have no attached

strings or only short strings [23].

2.4 Supergravity dual

The Type I’ construction can be used to obtain the large N supergravity dual of the

USp(2N) fixed point CFT [8]. Consider the Type I’ background with Nf D8-branes on

top of the O8-plane. First, define a coordinate

z =

(
2x9

3

√
8−Nf

2π

)3/2

, (2.9)

in terms of which the O8-D8 background is conformally flat

ds2 = Ω2(z)
(
dx2

1,8 + dz2
)
, eΦ = Ω5(z) , F0 =

8−Nf

2π
√
α′
, (2.10)
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where

Ω(z) =

(
3

4π
(8−Nf ) z

)−1/6

. (2.11)

Note that the coordinate z covers only the physical region on one side of the O8-plane.

The backreaction of the D4-branes introduces an additional warp factor and a 6-form flux:

ds2 = Ω2(z)
[
H
−1/2
4 (r) dx2

1,4 +H
1/2
4 (r)

(
dx2

R4 + dz2
)]

(2.12)

eΦ = Ω5(z)H
−1/4
4 (r) (2.13)

F6 = d5x ∧ dH−1
4 (r) , (2.14)

where r2 = r̃2 + z2 and r̃2 = x2
5 + x2

6 + x2
7 + x2

8. In the near-horizon limit

H4(r) =
Q4

r10/3
, (2.15)

where

Q4 =

(
211π4

34(8−Nf )

)1/3

N . (2.16)

The precise relation between Q4 and the number of D4-branes N is obtained from the

Gauss law 1
2κ2

10

∫
S4 ∗F6 = N µ4, where µp = 1/(2π)p and κ10 = 8π7/2.

Define an angular coordinate α by r̃ = r cosα, z = r sinα. Expressed in terms of α

and u = r2/3, the background is seen to be a warped product of AdS6 and S4,

ds2 = Ω̂2(α)

[
Q
−1/2
4 u2 dx2

1, 4 +
9

4
Q

1/2
4

du2

u2
+Q

1/2
4 dΩ2

4

]
, (2.17)

where

Ω̂(α) =

(
3

4π
(8−Nf ) sinα

)−1/6

, (2.18)

and

dΩ2
4 = dα2 +

1

4
cos2 α

[
(dψ − cos θdφ)2 + dθ2 + sin2 θdφ2

]
. (2.19)

The coordinate ranges are given by 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ ψ ≤ 4π and 0 ≤ α ≤ π/2.

The internal space is therefore actually an S4 hemisphere with an S3 boundary at α = 0,

corresponding to the position of the O8-plane. We can regard this as a full S4 with

−π/2 ≤ α ≤ π/2, modded out by the map α → −α. Strictly speaking this does not

follow from the flat space orientifold projection which takes x9 → −x9, as that would make

z, and therefore α, imaginary. However it seems to be a consistent interpretation of the

orientifold action in the near-horizon limit. We will continue to denote the internal space

as S4, keeping in mind the orientifold action on α.

The AdS length scale is given by

L =
3

2
Q

1/4
4 =

32/3 π1/3N1/4

21/12 (8−Nf )1/12
. (2.20)
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The warp factor, and therefore the curvature, diverges at α = 0. The dilaton is given by

eΦ = Q
−1/4
4 Ω̂5(α) (2.21)

and it also diverges at the boundary α = 0. For large Q4 there is a region corresponding

to sinα � Q
−3/10
4 , where both the dilaton and the curvature are small and the classical

supergravity picture is valid.

The supergravity background has an SO(2, 5) symmetry corresponding to the isometry

group of AdS6, in agreement with the conformal symmetry of the 5d fixed point theory.

The gauge symmetry in the bulk includes the SO(4) ∼ SU(2)×SU(2) subgroup of the SO(5)

isometry group of S4 preserved by the warping, in agreement with the SU(2)R × SU(2)M
part of the global symmetry of the field theory. In particular, the U(1) part of the mesonic

symmetry corresponds to shifts of the ψ coordinate. The (bosonic part of the) meson

M = Tr(A) is dual to a (2,2) state. In particular this carries 1/2 unit of KK momentum

in ψ, which is possible due to the 4π periodicity of ψ.

The flavor ENf+1 symmetry is not visible in supergravity. This is not surprising, since

the flavor physics is localized at the boundary α = 0, where the supergravity description

breaks down. Indeed, even the perturbative SO(2Nf ) flavor symmetry is not accessible

due to the curvature singularity. We should however be able to identify the instantonic

symmetry U(1)I in the region where the supergravity description is valid. This symmetry

is dual to the bulk RR 1-form potential C1. Correspondingly instanton operators are dual

to D0-branes. As we mentioned previously, D0-branes in the bulk are accompanied by

semi-infinite strings, and therefore cannot correspond to local gauge-invariant operators.

Indeed, instantons are not gauge-invariant in this theory due to the CS coupling (2.2), and

must be accompanied by a semi-infinite Wilson line, in agreement with the bulk picture.

There are no additional particle-like wrapped D-brane states in this background, in

agreement with the absence of baryonic operators. This will change in the new models we

consider below.

3 5d orbifold theories

We would like to generalize the above construction by replacing the R4 along x5,··· ,8 by an

ALE space asymptotic to C2/Zn. The Zn acts as (z1, z2) ∼ (e2πi/nz1, e
−2πi/nz2), where

z1 ≡ x5 + ix6 and z2 ≡ x7 + ix8.

3.1 Closed strings

The background can be regarded as Type IIA string theory on the ALE space, then pro-

jected by ΩI9, where Ω is worldsheet parity and I9 is the reflection in x9. The metric on

this ALE space is the Eguchi-Hanson metric

ds2
EH = Ud~x 2 + U−1(dϕ+ ~A · d~x)2 , (3.1)

where

U(~x) =

n∑
i=1

1

|~x− ~xi|
, ~∇× ~A = −~∇U . (3.2)

– 9 –
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This ALE space has 2-cycles in H2(C2/Zn,Z) = Zn−1, with a basis Σi corresponding to

the segments between ~xi and ~xi+1. The ALE space admits three Kähler forms ~ω, whose

periods are given by ∫
Σi

~ω = ~xi+1 − ~xi ≡ ~ζi , (3.3)

and correspond to the n−1 blow-up parameters. In the limit ~xi → 0 the space degenerates

to the orbifold C2/Zn, and the 2-cycles shrink to zero size.

Type IIA string theory on R1,5 × C2/Zn preserves SO(1, 5) × SU(2)R × U(1) and

N = (1, 1) supersymmetry in six dimensions. The untwisted sector includes a 6d (1, 1)

gravity multiplet and a (1, 1) vector multiplet (table 1). There are also n−1 twisted sectors

associated to the 2-cycles Σi of the ALE space, each of which includes an additional (1, 1)

vector multiplet (see table 2). In particular, the vector field originates from the reduction

of the RR 3-form C3 on Σi, and the four scalars from the reduction of the NSNS 2-form

B2 on Σi and from the blow-up modes ~ζi.

The orientifold projection reduces the spacetime symmetry to SO(1, 4)×SU(2)R×U(1)

and the supersymmetry to 5d N = 1. The action of the orientifold combines worldsheet

parity Ω, which acts on the 10d massless fields as

Ω : GMN → GMN , Φ→ Φ, B2 → −B2, C1 → C1, C3 → −C3 , (3.4)

with the reflection I9 that takes x9 → −x9. The latter has the effect of exchanging the two

SU(2) factors in the 6d little group. In the untwisted sector this leaves an N = 1 gravity

multiplet, one vector multiplet and one hypermultiplet (see table 1). In the twisted sectors

Ω exchanges the jth twisted sector (the sector twisted by e2πij/n) with the (n−j)th twisted

sector. In the blown up ALE space this corresponds to exchanging the cycles Σj ↔ Σn−j .

For odd n = 2k + 1, all the twisted sectors are paired, leaving k vector multiplets and k

hypermultiplets. For even n = 2k, 2k−2 of the twisted sectors are paired, giving k−1 vector

multiplets and hypermultiplets. The kth twisted sector in the even orbifold is mapped to

itself and must be treated separately. As shown by Polchinski in the Z2 case [25], there are

two choices for the orientifold projection in this sector. We can either project onto even or

odd states (like discrete torsion in orbifolds).

In the first case we project out the RR (3; 1) state and the NSNS (1; 1) state, since both

C3 and B2 are odd under Ω, leaving only the hypermultiplet. This is called the “orbifold

without vector structure”. This is the “ordinary” orbifold in the sense that the blow-up

modes associated to the middle cycle Σk remain, and the singularity can be fully resolved.

We can therefore continue to interpret the fields in the kth twisted sector as reductions of

10d fields on Σk. An important subtlety in the orbifold without vector structure is that

there is a discrete remnant B-flux bk = 1
2π

∫
Σk
B2 = 1/2.3

In the second case we project out the RR (1; 1) state and the NSNS (1; 3) state, leaving

only the vector multiplet. This is the “orbifold with vector structure”. The middle cycle

3Both bk = 0 and 1/2 are consistent with the orientifold projection due to the periodicity bk ∼ bk + 1,

but consistency conditions require bk = 1/2 [26]. This is related to a non-trivial generalized second Stiefel-

Whitney class [27].
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Type IIA C2/Zn Type I’ C2/Zn
Gµν (3, 3; 1) = (5; 1)+ + (3; 1)− + (1; 1)+ (5; 1) + (1; 1)

B2 (3, 1; 1) + (1, 3; 1) = (3; 1)+ + (3, 1)− (3; 1)

Φ (1, 1; 1) = (1; 1)+ (1; 1)

C1 (2, 2; 1) = (3; 1)+ + (1; 1)− (3; 1)

C3|~ω (2, 2; 3) = (3; 3)+ + (1; 3)+ (1; 3)

C3 (2, 2; 1) = (3; 1)+ + (1; 1)− (3, 1)

B2|~ω (1, 1; 3) = (1; 3)+ −
volume (1, 1; 1) = (1; 1)+ (1; 1)

Table 1. Untwisted sector: showing 6d [SU(2)× SU(2)]little× SU(2)R charges and 5d SU(2)little×
Z2 × SU(2)R charges, where Z2 is parity in the 6th coordinate.

Type IIA C2/Zn Type I’ C2/Zn

∫
Σi
C3 (n− 1) ((3; 1)+ + (1; 1)−)

k(3; 1) + k(1; 1) n = 2k + 1

(k − 1)(3; 1) + k(1; 1) n = 2k, no VS

k(3; 1) + (k − 1)(1; 1) n = 2k, VS

∫
Σi
B2 (n− 1)(1; 1)+

k(1; 1) n = 2k + 1

(k − 1)(1; 1) n = 2k, no VS

k(1; 1) n = 2k, VS

blow-ups (n− 1)(1; 3)+

k(1; 3) n = 2k + 1

k(1; 3) n = 2k, no VS

(k − 1)(1; 3) n = 2k, VS

Table 2. Twisted sectors: showing on the 5d SU(2)little × Z2 × SU(2)R charges.

is frozen at zero size in this case, but the modulus corresponding to the B-flux remains.

The perturbative orbifold point corresponds as usual to bi = 1
2 on all the cycles.

3.2 Quiver theories

The worldvolume theories on D4-branes in the Type I’ orbifold backgrounds are 5d quiver

gauge theories. They are essentially 5d versions of the 6d quiver theories on D5-branes

in Type I orbifolds [12]. The results are summarized in table 3. Their structure is most

easily understood using the T-dual Type IIB brane configurations, which in addition to the

O7-planes and D5-branes contain n NS5-branes along (x0, x1, x2, x3, x4, x9) and located,

in a reflection symmetric way, at different positions on the circle. For simplicity, we will

omit from our discussion the fundamental matter fields corresponding to the D8-branes in

the Type I’ description and to D7-branes in the Type IIB description. These will be easy

enough to incorporate in the supergravity duals. Let us examine each case separately.
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Model Gauge group Matter

Z2k VS USp(2N)× SU(2N)k−1 ×USp(2N)
∑k

i=1( i, i+1)

Z2k no VS SU(2N)k
∑k−1

i=1 ( i, i+1) +
1

+
k

Z2k+1 USp(2N)× SU(2N)k
∑k

i=1( i, i+1) +
k+1

Table 3. 5d orbifold quiver gauge theories.

Figure 4. Type IIB configuration and quiver for even orbifolds with vector structure.

3.2.1 Even orbifolds with vector structure

In this case there are 2k NS5-branes located symmetrically at arbitrary points on the two

sides of the circle as in figure (4). This divides the D5-branes into 2k segments, 2k − 2

of which are paired by the orientifold projection, resulting in the product of gauge groups

USp(2N)×SU(2N)k−1×USp(2N). Classically, the gauge group on the paired segments is

U(2N), but the 5d dynamics freezes out the overall U(1). The k independent positions of

the NS5-branes on the circle correspond to the k relative gauge couplings. (The sum of the

gauge couplings corresponds to the size of the circle.) In the Type I’ orbifold background

these correspond to the k twisted NSNS (1; 1) modes. The NS5-branes can also move

pairwise in the (x6, x7, x8) directions, their relative positions corresponding to the k − 1

blow-up modes of the orbifold. In the classical theory these correspond to the k − 1 FI

parameters associated to the U(2N) factors. There are also k matter hypermultiplets xi in

bi-fundamental representations of neighboring group factors, that come from open strings

between neighboring segments.

As in the parent USp(2N) theory, the quantum dynamics of the quiver theory in

the orbifold with vector structure is captured by the resolution of the O7-planes into 7-

branes. This gives a 5-brane web with additional external NS5-branes. For example, the

5-brane web for the theory with k = 1 and N = 1, namely G = SU(2)× SU(2) with a bi-

fundamental, is shown in figure 5a.4 The brane web exhibits clearly the singularity on the

Coulomb branch: as φ1 is increased, at some point geff,2 blows up (figure 5b). The authors

of [5] proposed that at this point one should view the configuration in an S-dual frame,

namely rotated by 90 degrees, with NS5-branes and D5-branes exchanged (figure 5c). This

4This again shows that the dynamics freeze out the U(1) factors in the classical U(2) × U(2) gauge

symmetry.

– 12 –



J
H
E
P
0
7
(
2
0
1
2
)
1
7
1

(a) (b) (c)

Figure 5. Web for SU(2)×SU(2): (a) A generic point in the Coulomb branch, (b) the singularity in

the Coulomb branch, (c) the S-dual web with SU(3) and Nf = 2. Since the latter can be collapsed,

we expect the corresponding field theory to be a CFT.

Figure 6. Web corresponding to the USp(2) × SU(2) × USp(2) theory. The S-dual theory has

G = SU(4) and 4 fundamental hypermultiplets.

describes a 5d gauge theory with G = SU(3) and two fundamental hypermultiplets, which

has a well-defined strong coupling fixed point. We can understand the singularity in the

original quiver theory as due to an instanton particle corresponding to a D1-brane in the

second face becoming massless. In the S-dual picture this is simply a massless W-boson,

which gives an enhanced gauge symmetry. This argument can be generalized to the theories

with vector structure for any k and N . The S-dual web is expected to give a gauge theory

with G = SU(2Nk − k + 2) and 2k fundamentals [28]. (See, for example, the web for

k = 2 and N = 1 in figure 6). All of these are expected to have well-defined fixed points

according to [3].

In preparation for a comparison with the proposed supergravity dual, let us consider

the global symmetries and the spectrum of gauge invariant operators charged under them.

First, there are k + 1 instantonic U(1)I symmetries, one for each gauge group factor, and

correspondingly there are k+1 types of instantons. As before, the instantons acquire gauge

charges on the Coulomb branch due to CS interactions, and must therefore be accompanied

by semi-infinite Wilson lines.
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Operator QM QB,j ∆

xi 1/2 δij 3/2

M k 0 3k

Bi N 2Nδi,j 3N

Table 4. Mesons and baryons for Z2k with vector structure.

Second, there is a U(1) symmetry for each bi-fundamental xi, acting as xi → eiαxi.

Actually for k = 1 it is enhanced to SU(2), since the one bi-fundamental of USp(2N) ×
USp(2N) is pseudoreal. (We will see this in the supergravity dual as well.) A basis of gauge

invariant operators charged under these symmetries can be obtained as follows. First, we

can form a meson using all the bi-fundamental fields:

M = Tr

[
k∏
i=1

xi

]2

=
[
(x1)aα1

(x2)α1
α2
· · · (xk)

αk−1

b

][
(x1)cβ1

(x2)β1

β2
· · · (xk)

βk−1

d

]
JacJ

bd , (3.5)

where latin and greek indices are USp and SU indices, respectively. We can also form k

di-baryons Bi = det(xi), or more explicitly

Bi = εα1···α2N ε
β1···β2N (xi)

α1
β1
· · · (xi)α2N

β2N
i = 2, . . . , k − 1

B1 = εa1···a2N ε
β1···β2N (x1)a1

β1
· · · (x1)a2N

β2N
(3.6)

Bk = εα1···α2N ε
b1···b2N (xk)

α1
b1
· · · (xk)α2N

b2N
.

Since the baryons and meson satisfy
∏k
i=1Bi ∝ MN , we can choose a basis

{M,B1, . . . Bk−1}. Correspondingly, we will define the mesonic and baryonic charges as

QM =
1

2

k∑
i=1

Qi (3.7)

QB,i = Qi −Qk . (3.8)

The normalization of the mesonic charge is fixed by the k = 1 case, where the mesonic

symmetry is enhanced to SU(2)M . The charges and scaling dimensions of the matter

operators are shown in table 4.

3.2.2 Even orbifolds without vector structure

The quiver theory for the orbifold without vector structure is constructed by placing 2k−2

NS5-branes symmetrically at arbitrary points on the circle, and placing the remaining two

at the location of each of the O7-planes as in figure 7. These two are “stuck” in the circle

direction. Now all the segments are paired so there are k SU(2N) factors. Correspondingly,

there are k− 1 relative gauge couplings described by the k− 1 positions of the “free” NS5-

branes on the circle, and k (classical) FI parameters described by the k − 1 independent
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Figure 7. Type IIB configuration and quiver for even orbifolds without vector structure.

positions of the “free” NS5-branes along (x6, x7, x8) plus those of the two stuck NS5-branes

(that can move independently), minus the center of mass position. There are also k − 1

bi-fundamental hypermultiplets xi coming from open strings that straddle the “free” NS5-

branes, and two antisymmetric hypermultiplets A,A′ of the first and last SU(2N) factors,

respectively, coming from open strings that straddle the “stuck” NS5-branes.

Unfortunately, we are not able to resolve the classical brane configuration into a 5-brane

web as in the previous model, since we do not know how to resolve an O7-plane with a stuck

NS5-brane. Therefore we cannot use the S-duality argument. However we will continue to

assume that the dynamics freeze out the U(1) parts of the U(2N) gauge groups.

The global symmetries include k instantonic U(1)I ’s and k+1 matter U(1)’s associated

to the bi-fundamentals xi and the antisymmetrics A,A′, except for the case k = 1, where

the matter symmetry associated to A,A′ is enhanced to U(2). The basis of charged gauge-

invariant operators can be chosen as {M,BA, B1, . . . , Bk−1}, where the meson is given by

M = Tr

[
A

k−1∏
i=1

x2
iA
′

]
, (3.9)

Bi are the di-baryons

Bi = det(xi) i = 1, . . . , k − 1 , (3.10)

and BA is a Pfaffian baryon operator associated to the antisymmetric field A.

BA = Pf(A) = εα1···α2NAα1α2 · · ·Aα2N−1α2N . (3.11)

Unlike in the USp(2N) theory, the Pfaffian state is non-trivial here, since it is made

of SU(2N) antisymmetrics. The additional baryon BA′ = Pf(A′) is related to these by

BABA′
∏k−1
i=1 Bi ∝MN . We define the mesonic and baryonic charges in this case as

QM =
1

2
(QA +QA′) +

1

2

k−1∑
i=1

Qi (3.12)

QB,i = Qi −QA −QA′ (3.13)

QB,A = QA −QA′ . (3.14)

As before, the normalization of the mesonic charge is fixed by the k = 1 case, where the

symmetry is SU(2)M . The charges and scaling dimensions of the different operators are

shown in table 5.
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Operator QM QB,j QB,A ∆

xi 1/2 δij 0 3/2

A 1/2 −1 1 3/2

A′ 1/2 −1 −1 3/2

M k 0 0 3k

BA N/2 −N N 3N/2

Bi N 2Nδij 0 3N

Table 5. Mesons and baryons for Z2k without vector structure.

Figure 8. Type IIB configuration and quiver for odd orbifolds.

3.2.3 Odd orbifolds

The construction of the odd orbifold quivers is similar to the previous case in that it

requires placing one NS5-brane on one of the O7-planes. The 2k remaining NS5-branes

are distributed symmetrically on the circle as in figure (8). There is one unpaired segment

that gives USp(2N) and 2k paired segments that give SU(2N)k. The k relative gauge

couplings are seen as the k positions of the free NS5-branes on the circle, and the k FI

parameters correspond to the relative (x6, x7, x8) positions of the k pairs of free NS5-branes

and the stuck NS5-brane. The matter content in this theory includes k bi-fundamentals

xi of neighboring group factors and an antisymmetric A of the last SU(2N). As in the

previous model, we do not know how quantum effects resolve this configuration.

The global symmetries include k+1 instantonic U(1)I ’s and k+1 matter U(1)’s: U(1)A
and U(1)i with i = 1, . . . , k. We can choose the basis of gauge invariant charged operators

as {M,B1, . . . , Bk}, where now

M = Tr

[
k∏
i=1

x2
iA

]
=
[
(x1)aα1

(x2)α1
α2
· · · (xk)

αk−1
αk

][
(x1)bβ1

(x2)β1

β2
· · · (xk)

βk−1

βk

]
AαkβkJab , (3.15)

and Bi (i = 1, . . . , k), as usual, are the di-baryons. The Pfaffian baryon BA = Pf(A) is

related to these by BA
∏k
i=1Bi ∝ MN . We therefore define the mesonic and baryonic
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Operator QM QB,j ∆

xi 1/2 δij 3/2

A 1/2 −2 3/2

M k + 1/2 0 3k + 3/2

Bi N 2Nδij 3N

Table 6. Mesons and baryons for Z2k+1.

charges as

QM =
1

2
QA +

1

2

k∑
i=1

Qi (3.16)

QB,i = Qi − 2QA . (3.17)

Although there is no enhancement of the mesonic symmetry in the odd orbifolds, we include

the 1/2 in the normalization to be consistent with the k = 1 cases of the even orbifolds.

The charge assignments and scaling dimensions are shown in table 6.

3.2.4 Additional comments

• We have only discussed quiver theories with equal rank gauge group factors. In

principle we could consider unequal ranks, as well as odd-rank SU group factors.

For example, the most general theory on the Z2k+1 orbifold has G = USp(2N0) ×∏k
i=1 SU(Ni). This corresponds to having fractional D4-branes of various types in

the orbifold. In the Type IIB construction different ranks correspond to different

numbers of D5-branes in the different segments, and an odd rank SU(N) group is

possible since the associated D5-branes do not cross the O7-plane. By contrast, in

6d the chiral anomaly imposes strong constraints on the relative ranks of the gauge

group factors [29, 30] (see also [31–33]), which can also be seen in the analogous Type

IIA brane construction as a tadpole-cancellation condition on the NS5-branes [33].

In 5d there are no continuous anomalies, and correspondingly no tadpoles in the

brane configuration. On the other hand, with a different number of D5-branes on

each side, the NS5-brane becomes a (1, q)5-brane (where q is the difference in the

number of D5-branes) and is bent by the appropriate angle. This presumably leads

to a constraint on the relative ranks.

• Another possible generalization is to add bare CS terms. This is possible only for

the SU(2N) factors (for N > 1). Related to this possibility, and the previous one, is

the existence of domain walls separating theories with different ranks and different

CS levels, which we will comment on in the next section.

• The Type IIB brane constructions (of the classical theories) can also be used to

demonstrate transitions between the different quiver theories. For example, starting
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with a configuration corresponding to a Z2k orbifold with vector structure, bringing

together a pair of NS5-branes on top of one of the O7-planes and then moving one

of them far away along (x6, x7, x8), we end up with a configuration corresponding to

a Z2k−1 orbifold. Repeating this process at the other O7-plane then leads to a Z2k−2

orbifold without vector structure. These types of transitions where discussed in the

6d context using the analogous Type IIA brane configurations in [33].

4 Supergravity duals

4.1 Geometry

In the near-horizon background the orbifold acts only on the internal space, so the geome-

try is a warped product of AdS6 and S4/Zn. The orbiold acts freely on the S3 fiber giving

the lens space S3/Zn. The metric then has the same form as the one dual to the parent

USp(2N) theory (2.17), (2.19), with the periodicity of ψ now ψ ∼ ψ + 4π/n. Correspond-

ingly, there is an additional factor of n in the relation between L and N (incorporating

also the Nf D8-branes):

L =
3

2
Q

1/4
4 =

32/3 π1/3 (nN)1/4

21/12 (8−Nf )1/12
. (4.1)

The space S4/Zn (again, we really mean an S4 hemisphere) has a fixed point singularity

at α = π/2, around which it is locally C2/Zn. We must therefore include the twisted sectors

in the near horizon background as well. Using the geometric description, there are n − 1

vanishing 2-cycles Σi at α = π/2, which we can parameterize with (θ, φ), and the twisted

sector fields correspond to reductions of the 10d fields on these cycles. In addition, since the

internal space is compact, there are also n− 1 dual 2-cycles Σ̃i, which we can parameterize

with (α,ψ) (see figure 9 for a cartoon sketch). The orientifold acts on the cycles as

ΩI : Σi → Σn−i , Σ̃i → −Σ̃n−i . (4.2)

However for even orbifolds, as we saw, there are two possibilities for the projection in

the k-twisted sector. This choice of “discrete torsion” can be expressed in terms of the

orientifold action on the middle cycles as

ΩI : Σk →

{
Σk no VS

−Σk VS
, Σ̃k →

{
−Σ̃k no VS

Σ̃k VS
. (4.3)

4.2 Charged mesons

The global symmetries of the quiver theories should correspond to massless gauge fields

in the supergravity background. First, there are gauge fields associated to the isometry

group of the internal space SU(2) × U(1). The SU(2) comes from the S2 base of the lens

space S3/Zn, and is dual to the R-symmetry, and the U(1) comes from the S1 fiber ψ, and

is dual to the mesonic symmetry U(1)M . These symmetries are common to all the models
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Figure 9. Cartoon of the internal space.

with n > 2. For n = 2 the isometry is enhanced to SU(2) × SU(2), in agreement with

the enhanced mesonic symmetry. The charged mesons correspond to KK states carrying

momentum in ψ. Since ψ ∼ ψ + 4π/n these states must carry an integer multiple of n/2

units of momentum, i.e., k for the even orbifolds and k + 1/2 for the odd orbifolds, in

agreement with the mesonic charges found in the quiver theories.

4.3 Baryons

As in many other examples of AdS/CFT, the baryonic symmetries correspond to gauge

fields that are obtained by reducing higher-rank RR forms on finite cycles of the internal

space, and the baryons themselves correspond to D-branes wrapped on these cycles. In

our case the baryons are described by D2-branes wrapped on the 2-cycles Σ̃i, and the

corresponding gauge field by the reduction of the 3-form C3 on Σ̃i.

The action of the orientifold on a non-middle cycle, combined with the action on C3,

leaves invariant only the combination

C̃1,i =

∫
Σ̃i

C3 +

∫
Σ̃n−i

C3 , (4.4)

and correspondingly only the state with a D2-brane on Σ̃i plus a D2-brane on Σ̃n−i. This

state is dual to a di-baryon operator Bi in the quiver field theory. In particular there are

k − 1 of them in the even orbifolds and k in the odd orbifold. The AdS6 mass of such a

state is given by

mB = 2µ2e
−Φ

∫
Ω̂(α)

√
gααgψψ dα dψ

=

(
34(8−Nf )

(4π)4

)1/3
Q

3/4
4

n
. (4.5)

For large mB L the dimension of the corresponding operator should be ∆ = mB L. Inserting

the appropriate values of Q4 and L, we find ∆ = 3N , in agreement with the dimension of

the di-baryon operators.

In the even orbifold without vector structure there is an additional gauge field from the

middle cycle C̃1,k =
∫

Σ̃k
C3, and an additional charged state corresponding to a D2-brane
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on Σ̃k, which is dual to the Pfaffian operator BA. Since the D2-brane wraps only one

cycle in this case its mass is half of (4.5), and therefore ∆ = 3N/2, in agreement with the

dimension of BA.

4.4 Other branes

Let us briefly consider additional brane wrappings and their interpretation in the dual field

theories.

4.4.1 Instantons

The quiver theories possess an instantonic U(1)I symmetry for each gauge group factor.

The dual supergravity gauge fields include the RR 1-form C1 and the reductions of the RR

3-form C3 on the vanishing 2-cycles Σi. In particular, the 1-form is dual to the diagonal

instanton symmetry. The corresponding instantons are dual to the D0-brane and to D2-

branes wrapping Σi, namely to fractional D0-branes. The orientifold action on the non-

middle cycles leaves only the combinations

C1,i =

∫
Σi

C3 −
∫

Σn−i

C3 , (4.6)

and therefore the states with a D2-brane on Σi and an anti-D2-brane on Σn−i. For the

even orbifold with vector structure there is an additional gauge field C1,k =
∫

Σk
C3, and

an additional fractional D0-brane described by a D2-brane on Σk. In the orbifold without

vector structure it is projected out.

In all, there are k+1 gauge fields associated to fractional D0-branes in the odd orbifold

and in the even orbifold with vector structure, and k of them in the even orbifold without

vector structure, in agreement with the instantonic symmetries of the quiver theories. As

in the parent theory, the fractional D0-branes must have strings attached to them due to

the coupling to F0, in agreement with the attachment of the Wilson lines to the instantons.

4.4.2 Cosmic strings

A D4-brane wrapping a 2-cycle in the internal space corresponds to a membrane in AdS6.

If it is localized in the radial direction it describes a membrane, namely a co-dimension 2

object, or cosmic string, in the dual 5d field theory. There are two types depending on

whether the D4-brane wraps a vanishing cycle Σi (together with its image Σn−i) or a dual

cycle Σ̃i (together with its image). The corresponding cosmic string sources a monodromy

for the bulk gauge field C̃1,i and C1,i, respectively. We can therefore refer to them as bary-

onic and instantonic cosmic strings, respectively. In going around a baryonic (instantonic)

cosmic string, the phase of a baryon (instanton) described by a D2-brane wrapped on Σ̃i

(Σi) goes through a full 2π rotation. There is one more cosmic string corresponding to a

D6-brane wrapped on the whole internal space. This sources a monodromy for C1, and is

therefore associated to the diagonal instanton dual to the D0-brane.

All of the cosmic strings are tensionless since gravity pulls them down to the origin of

AdS6. This is as expected in the dual field theories, since the global symmetries are unbro-

ken. The broken phases are described by blowing up the original orbifold (see [34, 35] for
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a general discussion, and [36, 37] for the relevance of the cosmic strings in the holographic

realization of spontaneous symmetry breaking). The dual backgrounds are asymptotically

AdS6, but they terminate at a radial position related to the blow-up parameter. The ten-

sion of the baryonic cosmic strings is propotional to this parameter through the volume

of the particular blown-up cycle which they wrap, which in turn corresponds in a precise

sense to the particular baryonic U(1) which is spontaneously broken. Note that the blow up

corresponds to VEVs for the bi-fundamental fields, each of which breaks both a baryonic

U(1) symmetry and an instantonic U(1)I symmetry. Thus, we expect also the instantonic

strings to acquire a non-zero tension.

4.4.3 Domain walls

A D6-brane wrapping a 2-cycle corresponds to a domain wall in AdS6. As for the cosmic

strings, there are two types of domain walls. A D6-brane wrapping one of the vanishing

cycles Σi (and its image) corresponds to a “fractional D4-brane” which changes one relative

rank of the gauge groups. This is a “baryonic domain wall” in the sense that when the

baryonic D2-brane wrapping Σ̃i crosses it a string is created between them. This corre-

sponds in the field theory to a Wilson line in the fundamental representation that must

be added to the baryon to saturate the additional color index. The number of different

baryonic domain walls should equal the number of gauge groups in the quiver theory mi-

nus one. There are k − 1 (k) domain walls corresponding to the non-middle cycles in the

even (odd) orbifolds, and one more from the middle cycle in the even orbifolds with vector

structure (since Σk is odd in this case). Indeed the quiver theories for the odd orbifolds

and even orbifolds with vector structure have k + 1 gauge groups, and the quiver theories

for the even orbifolds without vector structure have k gauge groups.

The other type of domain wall corresponds to a D6-brane wrapping one of the dual

cycles Σ̃i. This is an “instantonic domain wall” that changes the bare CS level of one of

the (SU) gauge groups by one. Now it is the D2-brane wrapping Σi that picks up a string

when it crosses the D6-brane wall. This corresponds to the additional Wilson line added

to the dual instanton upon changing the CS level. The number of different instantonic

domain walls should equal the number of SU groups in the quiver theory. The counting is

similar to the baryonic domain walls, except that the middle cycle only contributes for the

even orbifold without vector structure in this case. Thus there are k instantonic domain

walls in the odd orbifolds and even orbifolds without vector structure, and k − 1 in the

even orbifolds with vector structure, in precise agreement with the number of SU factors

in the corresponding quiver theories.

Adding a D6-brane domain wall to the supergravity background sources an F2 flux on

the complementary 2-cycle. In the models we considered F2 = 0, and hence the ranks of

gauge groups are equal and the bare CS terms vanish.

Another logical possibility for a domain wall would be to wrap a D8-brane on the

entire S4/Zn, however this is unstable due to the orientifold projection. This is consistent

with the fact that the USp factors do not admit a bare CS interaction.
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4.4.4 (No) Baryon vertices

A D4-brane wrapping the whole internal space, together with the required 2N strings,

would correspond to a baryon vertex composed of 2N external fermions in the fundamental

representation of one of the gauge groups: B = εa1···a2Nψ
a1 · · ·ψa2N . Like the D8-brane, this

is unstable due to the orientifold projection. However it is worthwhile understanding how

this instability manifests itself in the dual field theories. The baryon vertex will generically

decay into states corresponding to external mesons and possibly local baryonic states. Let

us consider the different cases.

In the parent USp(2N) theory the external fermions ψa transform in the fundamental

representation of USp(2N) and are therefore pseudoreal. The baryon vertex in this case

can decay to N external mesons of the formM = Jabψ
aψb, since B ∝MN (a similar thing

happens in the 4d N = 4 USp(2N) theory [38]).

In the orbifolds theories that contain USp(2N) factors (the odd orbifolds and the even

orbifolds with vector structure) we get basically the same result for a baryon vertex made

of USp external fermions. In these theories one can also construct baryon vertices using ex-

ternal fermions in the (complex) fundamental representation of one of the SU(2N) factors.

These cannot decay purely into external mesons since one cannot form mesons purely out

of SU fundamentals. The mesons must also include matter hypermultiplets, which means

that the decay products include also di-baryons. Consider for example the Z3 orbifold. The

dual field theory has G = USp(2N)× SU(2N), a bi-fundamental hypermultiplet x and an

SU(2N) antisymmetric A. The external meson in this case is given byM = Jacx
a
b̄
xc
d̄
ψbψd.

The analogous relation in this case is BB ∝ MN , where B = det(x) is the di-baryon

operator. Therefore, at least as far as charges are concerned, the baryon vertex can decay

to N external mesons plus an anti-di-baryon.5 This matches nicely with the supergravity

description. The USp baryon vertex corresponds to a D4-brane wrapping S4/Z3, and the

SU baryon vertex corresponds to a D4-brane wrapped on S4/Z3 with worldvolume flux

on the vanishing cycle Σ1 (and its image Σ2), corresponding to an additional D2-brane

wrapped on Σ̃1 (and its image Σ̃2).

In the even orbifolds without vector structure there are only SU baryon vertices.

As in the previous case, these can decay to N external mesons plus some baryons. For

example in the Z2 case, namely SU(2N) with two antisymmetrics A,A′, we have the

relation BB̄A ∝ MN , where now M = Tr(ψ2Ā). Thus the baryon vertex B can decay

into N external mesons plus a Pfaffian baryon. Note that unlike in the orbifolds with

vector structure, one cannot get rid of the baryon. There is no baryon vertex that decays

solely into external mesons. This fits nicely with the supergravity picture. In the orbifold

without vector structure there is trapped B2 flux b = 1/2 on the vanishing (middle) cycle

Σ1, which implies that there is always a D2-brane wrapped on Σ̃1 inside the wrapped

D4-brane. Turning on an integer woldvolume flux cannot remove it.

5Alternatively, we could describe the external meson as M = Tr(ψ2Ā) = ψaψbĀāb̄. This would lead us

to conclude that the baryon vertex can decay into N external mesons plus a Pfaffian baryon, which is just

a change of basis for the baryons.
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More generally the decay of a baryon vertex associated to any SU(2N) factor in the

SU(2N)k quiver will involve all the bi-fundamental fields connecting it to one of the ends

of the quiver, as well as the antisymmetric field at that end. The decay products will

therefore include all the corresponding di-baryons Bi as well as a Pfaffian baryon.

4.5 Quark-antiquark potential

As a simple application of the duality, let us compute the quark-anti-quark potential in the

5d quiver fixed point theories. Using the standard prescription, we consider a string with

worldsheet coordinates (t, x), and take u = u(x) with 0 ≤ x ≤ `. The standard minimal

area computation yields

S = −2TF1 I2 I−2

`

9

4

√
Q4 Ω̂2(α) , (4.7)

where

Ip ≡
∫ ∞

1
dy

yp√
y4 − 1

. (4.8)

As usual I2 diverges, and must be renormalized by subtracting the contribution of the free

quark-antiquark pair. This amounts to replacing

I2 → −1 +

∫ ∞
1

dy

(
y2√
y4 − 1

− 1

)
. (4.9)

Since Ω̂(α) ∝ sin−1/6 α, the action is minimized at α = π/2. The resulting potential is

given by

V (`) = −S = −
6
√

2π2 Γ
(

3
4

)
Γ
(

1
4

)3

√
N

8−Nf

1

`
∼ −2.15

√
N

8−Nf

1

`
. (4.10)

5 Conclusions

In this paper we have initiated a study of supergravity duals of 5d supersymmetric fixed

points associated to quiver gauge theories. We identified three classes of theories corre-

sponding to D4-branes in orbifolds of Type I’ string theory, and related them to warped

products of AdS6 and S4/Zn in massive Type IIA supergravity. We also analyzed the gauge

symmetries, charges and branes in the supergravity backgrounds, and found a complete

agreement with the quiver gauge theories.

These new examples of AdS/CFT dual pairs suggest several directions for further

exploration. First, a detailed analysis of the Kaluza-Klein spectrum should be performed

and compared with the spectrum of chiral primary operators in the gauge theories.

There are also a number of natural generalizations that one can study. As we alluded

to in the discussion of domain walls, turning on a RR 2-form flux on a 2-cycle of the

internal space should correspond, depending on the 2-cycle, either to changing the relative

ranks of the gauge groups or to adding a bare CS coupling to SU factors. However the

backreaction of such fluxes needs to be analyzed. It would also be interesting to construct
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the supergravity duals of RG flows triggered by VEVs of baryonic operators along the

lines of [35].

One of the outstanding questions concerns the singularity at α = 0. On the one hand,

this singularity is responsible for the enhancement of the global symmetry at the origin of

the Coulomb branch to ENf+1, a feature common to all the orbifold theories which follows

from the D4-D8-O8 description. As this symmetry should be manifest along the Higgs

branch, it would be very interesting to consider in more detail the Higgs branches of the

theories. On the other hand one may wonder whether the singularity can be resolved, in

view of the conjecture of [39] that massive Type IIA supergravity cannot be strongly cou-

pled. Nevertheless, the backgrounds discussed here are more complicated since in addition

to strong coupling, the curvature is large.

Another central issue that needs to be understood better is the fate of the singularities

on the moduli space of the quiver theories [3]. The AdS6 × S4/Zn backgrounds provide a

strong indication that fixed points exist in the corresponding quiver theories, but it would

be interesting to have a deeper understanding of the underlying field theory mechanism

for these fixed points. A key observation is that instanton particles become massless at

the singular points of the Coulomb branch. Taking these states into account may remove

the singularities and lead to well defined quiver fixed point theories. The 5-brane web

constructions, when available, suggest a continuation past infinite coupling by S-duality,

whereby the massless instantons are exchanged for ordinary massless W-bosons. It would

certainly be interesting to study this more systematically for any orbifold and any rank. In

particular, the 5-brane webs for odd orbifolds and even orbifolds without vector structure

are not known, since the resolution of the O7-plane with a stuck NS5-brane is not under-

stood. It is thus of great interest to clarify whether such a quantum resolution exists and,

if so, what it is.

Finally, we wish to point out that even among the examples of 5d fixed points classified

in [1–3], most of them still lack an AdS/CFT description. In particular, those corresponding

to SU gauge groups should admit a tunable CS coefficient. It is natural to wonder what

the gravity duals for these might be.
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[11] M. Cvetič, H. Lü and C. Pope, Gauged six-dimensional supergravity from massive type IIA,

Phys. Rev. Lett. 83 (1999) 5226 [hep-th/9906221] [INSPIRE].

[12] M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167

[INSPIRE].

[13] A. Dabholkar and J. Park, An orientifold of type IIB theory on K3, Nucl. Phys. B 472

(1996) 207 [hep-th/9602030] [INSPIRE].

[14] E.G. Gimon and C.V. Johnson, K3 orientifolds, Nucl. Phys. B 477 (1996) 715

[hep-th/9604129] [INSPIRE].

[15] S. Gukov and A. Kapustin, New N = 2 superconformal field theories from M/F-theory

orbifolds, Nucl. Phys. B 545 (1999) 283 [hep-th/9808175] [INSPIRE].

[16] I.P. Ennes, C. Lozano, S.G. Naculich and H.J. Schnitzer, Elliptic models, type IIB

orientifolds and the AdS/CFT correspondence, Nucl. Phys. B 591 (2000) 195

[hep-th/0006140] [INSPIRE].

[17] E.G. Gimon and J. Polchinski, Consistency conditions for orientifolds and d manifolds, Phys.

Rev. D 54 (1996) 1667 [hep-th/9601038] [INSPIRE].

[18] A. Sen, F theory and orientifolds, Nucl. Phys. B 475 (1996) 562 [hep-th/9605150]

[INSPIRE].

[19] O. DeWolfe, A. Hanany, A. Iqbal and E. Katz, Five-branes, seven-branes and

five-dimensional E(n) field theories, JHEP 03 (1999) 006 [hep-th/9902179] [INSPIRE].

– 25 –

http://dx.doi.org/10.1016/S0370-2693(96)01215-4
http://arxiv.org/abs/hep-th/9608111
http://inspirehep.net/search?p=find+EPRINT+hep-th/9608111
http://dx.doi.org/10.1016/S0550-3213(96)00592-5
http://arxiv.org/abs/hep-th/9609070
http://inspirehep.net/search?p=find+EPRINT+hep-th/9609070
http://dx.doi.org/10.1016/S0550-3213(97)00279-4
http://arxiv.org/abs/hep-th/9702198
http://inspirehep.net/search?p=find+EPRINT+hep-th/9702198
http://dx.doi.org/10.1016/0550-3213(96)00212-X
http://arxiv.org/abs/hep-th/9603150
http://inspirehep.net/search?p=find+EPRINT+hep-th/9603150
http://dx.doi.org/10.1016/S0550-3213(97)00472-0
http://dx.doi.org/10.1016/S0550-3213(97)00472-0
http://arxiv.org/abs/hep-th/9704170
http://inspirehep.net/search?p=find+EPRINT+hep-th/9704170
http://dx.doi.org/10.1088/1126-6708/1998/01/002
http://arxiv.org/abs/hep-th/9710116
http://inspirehep.net/search?p=find+EPRINT+hep-th/9710116
http://dx.doi.org/10.1016/S0370-2693(98)00560-7
http://arxiv.org/abs/hep-th/9804006
http://inspirehep.net/search?p=find+EPRINT+hep-th/9804006
http://dx.doi.org/10.1016/S0370-2693(99)00763-7
http://dx.doi.org/10.1016/S0370-2693(99)00763-7
http://arxiv.org/abs/hep-th/9905148
http://inspirehep.net/search?p=find+EPRINT+hep-th/9905148
http://dx.doi.org/10.1016/0370-2693(86)90375-8
http://inspirehep.net/search?p=find+J+Phys.Lett.,B169,374
http://dx.doi.org/10.1016/0550-3213(86)90517-1
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B269,691
http://dx.doi.org/10.1103/PhysRevLett.83.5226
http://arxiv.org/abs/hep-th/9906221
http://inspirehep.net/search?p=find+EPRINT+hep-th/9906221
http://arxiv.org/abs/hep-th/9603167
http://inspirehep.net/search?p=find+EPRINT+hep-th/9603167
http://dx.doi.org/10.1016/0550-3213(96)00199-X
http://dx.doi.org/10.1016/0550-3213(96)00199-X
http://arxiv.org/abs/hep-th/9602030
http://inspirehep.net/search?p=find+EPRINT+hep-th/9602030
http://dx.doi.org/10.1016/0550-3213(96)00356-2
http://arxiv.org/abs/hep-th/9604129
http://inspirehep.net/search?p=find+EPRINT+hep-th/9604129
http://dx.doi.org/10.1016/S0550-3213(99)00008-5
http://arxiv.org/abs/hep-th/9808175
http://inspirehep.net/search?p=find+EPRINT+hep-th/9808175
http://dx.doi.org/10.1016/S0550-3213(00)00580-0
http://arxiv.org/abs/hep-th/0006140
http://inspirehep.net/search?p=find+EPRINT+hep-th/0006140
http://dx.doi.org/10.1103/PhysRevD.54.1667
http://dx.doi.org/10.1103/PhysRevD.54.1667
http://arxiv.org/abs/hep-th/9601038
http://inspirehep.net/search?p=find+EPRINT+hep-th/9601038
http://dx.doi.org/10.1016/0550-3213(96)00347-1
http://arxiv.org/abs/hep-th/9605150
http://inspirehep.net/search?p=find+EPRINT+hep-th/9605150
http://dx.doi.org/10.1088/1126-6708/1999/03/006
http://arxiv.org/abs/hep-th/9902179
http://inspirehep.net/search?p=find+EPRINT+hep-th/9902179


J
H
E
P
0
7
(
2
0
1
2
)
1
7
1

[20] F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and N = 2 superconformal

field theories, JHEP 09 (2009) 052 [arXiv:0906.0359] [INSPIRE].

[21] J. Polchinski and E. Witten, Evidence for heterotic-type-I string duality, Nucl. Phys. B 460

(1996) 525 [hep-th/9510169] [INSPIRE].

[22] D. Matalliotakis, H.-P. Nilles and S. Theisen, Matching the BPS spectra of heterotic type I

and type I-prime strings, Phys. Lett. B 421 (1998) 169 [hep-th/9710247] [INSPIRE].

[23] O. Bergman, M.R. Gaberdiel and G. Lifschytz, String creation and heterotic type-I’ duality,

Nucl. Phys. B 524 (1998) 524 [hep-th/9711098] [INSPIRE].

[24] J. Polchinski and A. Strominger, New vacua for type-II string theory, Phys. Lett. B 388

(1996) 736 [hep-th/9510227] [INSPIRE].

[25] J. Polchinski, Tensors from K3 orientifolds, Phys. Rev. D 55 (1997) 6423 [hep-th/9606165]

[INSPIRE].

[26] A. Sen and S. Sethi, The mirror transform of type I vacua in six-dimensions, Nucl. Phys. B

499 (1997) 45 [hep-th/9703157] [INSPIRE].

[27] M. Berkooz et al., Anomalies, dualities and topology of D = 6 N = 1 superstring vacua,

Nucl. Phys. B 475 (1996) 115 [hep-th/9605184] [INSPIRE].

[28] O. Bergman and D. Rodriguez-Gomez, work in progress.

[29] N. Seiberg, Nontrivial fixed points of the renormalization group in six-dimensions, Phys. Lett.

B 390 (1997) 169 [hep-th/9609161] [INSPIRE].

[30] U.H. Danielsson, G. Ferretti, J. Kalkkinen and P. Stjernberg, Notes on supersymmetric

gauge theories in five-dimensions and six-dimensions, Phys. Lett. B 405 (1997) 265

[hep-th/9703098] [INSPIRE].

[31] K.A. Intriligator, RG fixed points in six-dimensions via branes at orbifold singularities, Nucl.

Phys. B 496 (1997) 177 [hep-th/9702038] [INSPIRE].

[32] J.D. Blum and K.A. Intriligator, Consistency conditions for branes at orbifold singularities,

Nucl. Phys. B 506 (1997) 223 [hep-th/9705030] [INSPIRE].

[33] A. Hanany and A. Zaffaroni, Branes and six-dimensional supersymmetric theories, Nucl.

Phys. B 529 (1998) 180 [hep-th/9712145] [INSPIRE].

[34] I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys.

B 556 (1999) 89 [hep-th/9905104] [INSPIRE].

[35] I.R. Klebanov and A. Murugan, Gauge/gravity duality and warped resolved conifold, JHEP

03 (2007) 042 [hep-th/0701064] [INSPIRE].

[36] I. Klebanov, A. Murugan, D. Rodriguez-Gomez and J. Ward, Goldstone bosons and global

strings in a warped resolved conifold, JHEP 05 (2008) 090 [arXiv:0712.2224] [INSPIRE].

[37] N. Benishti, D. Rodriguez-Gomez and J. Sparks, Baryonic symmetries and M5 branes in the

AdS4/CFT3 correspondence, JHEP 07 (2010) 024 [arXiv:1004.2045] [INSPIRE].

[38] E. Witten, Baryons and branes in Anti-de Sitter space, JHEP 07 (1998) 006

[hep-th/9805112] [INSPIRE].

[39] O. Aharony, D. Jafferis, A. Tomasiello and A. Zaffaroni, Massive type IIA string theory

cannot be strongly coupled, JHEP 11 (2010) 047 [arXiv:1007.2451] [INSPIRE].

– 26 –

http://dx.doi.org/10.1088/1126-6708/2009/09/052
http://arxiv.org/abs/0906.0359
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.0359
http://dx.doi.org/10.1016/0550-3213(95)00614-1
http://dx.doi.org/10.1016/0550-3213(95)00614-1
http://arxiv.org/abs/hep-th/9510169
http://inspirehep.net/search?p=find+EPRINT+hep-th/9510169
http://dx.doi.org/10.1016/S0370-2693(97)01576-1
http://arxiv.org/abs/hep-th/9710247
http://inspirehep.net/search?p=find+EPRINT+hep-th/9710247
http://dx.doi.org/10.1016/S0550-3213(98)00316-2
http://arxiv.org/abs/hep-th/9711098
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711098
http://dx.doi.org/10.1016/S0370-2693(96)01219-1
http://dx.doi.org/10.1016/S0370-2693(96)01219-1
http://arxiv.org/abs/hep-th/9510227
http://inspirehep.net/search?p=find+EPRINT+hep-th/9510227
http://dx.doi.org/10.1103/PhysRevD.55.6423
http://arxiv.org/abs/hep-th/9606165
http://inspirehep.net/search?p=find+EPRINT+hep-th/9606165
http://dx.doi.org/10.1016/S0550-3213(97)81186-8
http://dx.doi.org/10.1016/S0550-3213(97)81186-8
http://arxiv.org/abs/hep-th/9703157
http://inspirehep.net/search?p=find+EPRINT+hep-th/9703157
http://dx.doi.org/10.1016/0550-3213(96)00339-2
http://arxiv.org/abs/hep-th/9605184
http://inspirehep.net/search?p=find+EPRINT+hep-th/9605184
http://dx.doi.org/10.1016/S0370-2693(96)01424-4
http://dx.doi.org/10.1016/S0370-2693(96)01424-4
http://arxiv.org/abs/hep-th/9609161
http://inspirehep.net/search?p=find+EPRINT+hep-th/9609161
http://dx.doi.org/10.1016/S0370-2693(97)00645-X
http://arxiv.org/abs/hep-th/9703098
http://inspirehep.net/search?p=find+EPRINT+hep-th/9703098
http://dx.doi.org/10.1016/S0550-3213(97)00236-8
http://dx.doi.org/10.1016/S0550-3213(97)00236-8
http://arxiv.org/abs/hep-th/9702038
http://inspirehep.net/search?p=find+EPRINT+hep-th/9702038
http://dx.doi.org/10.1016/S0550-3213(97)00450-1
http://arxiv.org/abs/hep-th/9705030
http://inspirehep.net/search?p=find+EPRINT+hep-th/9705030
http://dx.doi.org/10.1016/S0550-3213(98)00355-1
http://dx.doi.org/10.1016/S0550-3213(98)00355-1
http://arxiv.org/abs/hep-th/9712145
http://inspirehep.net/search?p=find+EPRINT+hep-th/9712145
http://dx.doi.org/10.1016/S0550-3213(99)00387-9
http://dx.doi.org/10.1016/S0550-3213(99)00387-9
http://arxiv.org/abs/hep-th/9905104
http://inspirehep.net/search?p=find+EPRINT+hep-th/9905104
http://dx.doi.org/10.1088/1126-6708/2007/03/042
http://dx.doi.org/10.1088/1126-6708/2007/03/042
http://arxiv.org/abs/hep-th/0701064
http://inspirehep.net/search?p=find+EPRINT+hep-th/0701064
http://dx.doi.org/10.1088/1126-6708/2008/05/090
http://arxiv.org/abs/0712.2224
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.2224
http://dx.doi.org/10.1007/JHEP07(2010)024
http://arxiv.org/abs/1004.2045
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.2045
http://dx.doi.org/10.1088/1126-6708/1998/07/006
http://arxiv.org/abs/hep-th/9805112
http://inspirehep.net/search?p=find+EPRINT+hep-th/9805112
http://dx.doi.org/10.1007/JHEP11(2010)047
http://arxiv.org/abs/1007.2451
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.2451

	Introduction
	The USp(2N) theory
	Field theory
	Type IIB brane construction
	Type I' brane construction
	Supergravity dual

	5d orbifold theories
	Closed strings
	Quiver theories
	Even orbifolds with vector structure
	Even orbifolds without vector structure
	Odd orbifolds
	Additional comments


	Supergravity duals
	Geometry
	Charged mesons
	Baryons
	Other branes
	Instantons
	Cosmic strings
	Domain walls
	(No) Baryon vertices

	Quark-antiquark potential

	Conclusions

