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Abstract. The aim of multi-label classification is to automatically ob-
tain models able to tag objects with the labels that better describe them.
Despite it could seem like any other classification task, it is widely known
that exploiting the presence of certain correlations between labels helps
to improve the classification performance. In other words, object de-
scriptions are usually not enough to induce good models, also label in-
formation must be taken into account. This paper presents an aggregated
approach that combines two groups of classifiers, one assuming indepen-
dence between labels, and the other considering fully conditional depen-
dence among them. The framework proposed here can be applied not
only for multi-label classification, but also in multi-label ranking tasks.
Experiments carried out over several datasets endorse the superiority of
our approach with regard to other methods in terms of some evaluation
measures, keeping competitiveness in terms of others.

1 Introduction

In multi-label classification the goal is to induce a hypothesis to assign a set
of labels for each instance rather than a single class, as happens in multi-class
classification. This kind of tasks arises in many practical domains; nowadays
almost all media contents (text documents, songs, movies or videos) are tagged
with several labels to briefly inform users about their actual content. Another
well-known example in the research community is the keywords attached to a
paper; useful to indicate the relevant topics of the paper.

At first sight, one could think that multi-label classification can be easily
solved applying or adapting state-of-the-art (binary or multi-class) classification
algorithms. In fact, many of the first approaches proposed were aimed to extend
these methods to handle multi-label data, including decision trees [2], instance-
based algorithms [22], Neural Networks [21], Support Vector Machines [6], Naive
Bayes [12], Conditional Random Fields [9] and boosting [16]. However, in order
to obtain good performance results, it is not enough to adapt a good learning
approach, otherwise it is also necessary to design specific methods that exploit
somehow the particularities of multi-label data, as most of the cited works do.
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Mainly, multi-label learning presents two challenging problems. The first one
bears on the computational complexity of the algorithms. If the number of labels
is high, then a very complex approach is not practical for business use, so the
scalability is a key issue in this field. The second dare is related with the own
nature of this task and the multi-label data. Not only the number of classes
is higher than in multi-class classification, but also each example belongs to
an indeterminate number of labels, and more important, labels present some
relationships between them. In other words, object descriptions are usually not
enough to induce correct models, also the information among labels must be
taken into account. The dimensionality of the label space, together with the
possibility of incomplete labeling data obtained from different sources, make
this goal even more difficult to achieve.

Despite the first issue is important to make algorithms applicable in large
domains, from a learning perspective probably the hottest topic in multi-label
community is to design new methods able to detect and exploit dependences
among labels. In fact, several methods are being proposed in that direction.
Roughly speaking, we can categorize them according to two major properties:
i) the size of the subset of labels whose dependences are searched for; and ii)
depending on the type of correlations they try to find. Looking at the first
property, we have those methods that only consider pairwise relations between
labels [6,7,13,16,21], and, secondly, approaches that take into account correla-
tions among the labels in bigger subsets [14,15,19], including those that consider
the influence of all other labels in the prediction of one particular label [1,10].
On the other hand, concerning the type on dependences they seek to capture [3],
there are some methods designed to detect conditional label dependence (refered
to the dependence of the labels given a specific instance), for example [3,9,15,18];
and unconditional dependence (a global type of dependence independent of any
concrete observation), see [1,10,21].

The main proposal of this paper is grounded on the following idea. Thinking
again about the keywords example, all of us know that, for a particular paper,
there are some clearly relevant and irrelevant keywords. But there are also a
few keywords than can be considered relevant or irrelevant, depending on the
authors’ opinion. Different authors with different criteria could select some differ-
ent keywords for the same paper. Our assumption is that labels that are clearly
relevant or clearly irrelevant can be predicted using only the description of the
object. However, considering the relationships with other labels is also neces-
sary to correctly assign the somehow-relevant labels. This is the reason why this
paper presents a decomposition approach based on aggregating two groups of
classifiers: the first one is learned assuming label independence, and the second
one is built considering a complete label dependence. These dependent classifiers
are designed to capture conditional dependence, taking into account the influ-
ence of all other labels. Another interesting property of the approach presented
here is that it can be easily adapted to cope with different multi-label learning
tasks, not only classification, but also ranking.



The rest of the paper is organized as follows. Next section describes a formal
framework for multi-label classification and reviews previous approaches related
with this work. Section 3 exposes the proposals of this paper, based on the
idea of combining two groups of binary models. Finally, experimental results are
reported in Section 4 and some conclusions are drawn in Section 5.

2 Notation and Related Work

2.1 Formal Framework for Multi-label Classification

Let L = {`1, `2, . . . , `m} be a finite and non-empty set of labels, and let X be an
input space. We consider a multi-label classification task given by a training set
S = {(x1,y1), . . . , (xn,yn)}, whose instances were independently and randomly
obtained from an unknown probability distribution P(X,Y) on X ×Y, in which
the output space Y is the power set of L, in symbols P(L). In order to make the
notation easier to read, we define yi as a binary vector, yi = {y1, y2, . . . , ym},
in which each component yj = 1 indicates the presence of label `j in the set of
relevant labels of xi. Using this convention, the output space can be also defined
as Y = {0, 1}m.

The goal of a multi-label classification is to induce a hypothesis h : X −→ Y
from S, that correctly predicts the subset of labels from L for a new unlabeled
instance x. Without any loss of generality, this hypothesis can be seen as a
combination of a collection of sub-hypotheses, h(x) = (h1(x), h2(x), . . . hm(x)),
one per label, in which each hj takes the form of

hj : X −→ {0, 1}, (1)

and it is able to predict if the label `j must be attached to the instance x or
not. Sometimes, the goal is not to return the relevant labels, but to obtain the
posterior probability of each label given x. In that case, hj : X −→ [0, 1]. Notice
that these probabilistic classifiers can also be useful to rank the labels according
to their posteriors. This paper only discusses some multi-label classifiers of the
form of Equation 1, despite many of them can have a probabilistic/ranking
version, including ours.

In order to measure the performance of multi-label classifiers, several metrics
have been proposed. A unified presentation of existing evaluation measures for
multi-label classification can be found in [18], including their categorization into
example-based, label-based and ranking-based measures. Here we will consider
only example-based evaluation metrics for three reasons: i) this paper focuses
on multi-label classification rather than multi-label ranking, moreover, some of
the state-of-the-art methods employed to compare do not produce a ranking of
labels, ii) we are interested in studying whether the different approaches capture
or not the dependencies among labels at example-level, and iii) some of the
example-based metrics used were originally proposed in [10], that also introduces
a stacking-based method for multi-label learning, which is probably the most
similar approach to ours. The following evaluation measures have been taken
from the Information Retrieval field:



– Jaccard index computes the percentage of relevant labels predicted in the
subset formed by the union of returned and relevant labels1,

Jaccard(y,h(x)) =

∑m
i=1[[yi = 1 and hi(x) = 1]]∑m
i=1[[yi = 1 or hi(x) = 1]]

. (2)

– Precision determines the fraction of relevant labels in the predicted labels,

Precision(y,h(x)) =

∑m
i=1[[yi = 1 and hi(x) = 1]]∑m

i=1[[hi(x) = 1]]
. (3)

– Recall is the proportion of relevant labels of the example correctly predicted,

Recall(y,h(x)) =

∑m
i=1[[yi = 1 and hi(x) = 1]]∑m

i=1[[yi = 1]]
. (4)

– F1 is the evenly weighted harmonic mean of Precision and Recall,

F1(y,h(x)) =
2
∑m

i=1[[yi = 1 and hi(x) = 1]]∑m
i=1([[yi = 1]] + [[hi(x) = 1]])

. (5)

The evaluation metrics presented above are biased towards those methods that
correctly predict the relevant labels. That is one of the reasons to select them,
because they allow us to study if relevant labels are detected or not, specially in
those situations where some kind of correlation occurs. Finally, the performance
in multi-label classification can be reported in terms of other two measures:

– Hamming loss, which is defined as the proportion of labels whose relevance
is incorrectly predicted:

Hamming(y,h(x)) =
1

m

m∑
i=1

[[yi 6= hi(x)]]. (6)

– 0/1 loss, looks if predicted and relevant label subsets are equal or not.

Zero−One(y,h(x)) = [[y 6= h(x)]]. (7)

2.2 Some Approaches for Multi-label Classification

The most employed baseline method for multi-label classification is the Binary
Relevance (BR) algorithm. BR decomposes the learning of h into a set of binary
classification tasks, one per label, where each single model hj is learned inde-
pendently of the rest, using only the information of that particular label and
ignoring all other labels. Despite its simplicity, BR algorithm presents several
advantages: i) any binary learning method can be taken as base learner, ii) it has
linear complexity with respect to the number of labels and iii) it can be easily
parallelized. The main drawback of BR is that it does not take into account

1 The expression [[p]] evaluates to 1 if the predicate p is true, and to 0 otherwise.



any label dependences and may fail to predict some label combinations if such
correlations are present. However, using a state-of-the-art base learner, for in-
stance SVM, with a proper tuning parameters process, BR usually obtains quite
good results in benchmark datasets of the literature. Moreover, for some partic-
ular evaluation metrics, as Hamming loss (Eq. 6), BR offers a very competitive
performance. This behavior can be explained studying BR from a probabilistic
point of view. As in most classification learning process, each binary model hj is
able to estimate P(yj |x). This is the reason why BR is well-suited for every loss
function whose risk minimizer can be expressed in terms of marginal distribu-
tions of labels, for instance Hamming loss. On the other hand, the fact that BR
does not take label dependence into account obviously affects its performance
for evaluation measures like 0/1 loss. Hence, it is necessary to estimate the joint
label probability distributions to obtain predictions that minimize this sort of
metrics. A formal probabilistic analysis of multi-label classification, studying the
connection between risk minimization and loss functions can be found in [3,4].

Godbole and Sharawagi present one approach [10] to overcome the label-
independence problem of BR. They apply the stacked generalization learning
paradigm [20], also known simply as stacking, in the context of multi-label clas-
sification. In the learning phase, their method builds a stack of two groups of
classifiers. The first one is formed by the same binary classifiers yielded by BR
method, in symbols, h1(x) = (h1

1(x), . . . , h1
m(x)). In a second level, also called

meta-level, another group of binary models (one for each label again) is learned,
but these classifiers consider an augmented feature space that includes the binary
outputs of all models of the first level, h2(x,y′) = (h2

1(x,y′), . . . , h2
m(x,y′)),

where y′ = h1(x). The idea is to learn the relationships between labels in the
meta-level step. In the testing phase, the final predictions are the outputs of the
meta-level classifiers, h2(x), using the outputs of h1(x) exclusively to obtain the
values of the augmented feature space.

Some variants of the stacking approach have been proposed, mainly focused
on reducing the augmented feature space removing some label dimensions. The
idea is to ignore the information of those labels that are no related with the
label j of the model h2

j being learned. For instance, in [17] the authors propose
to calculate the chi-coefficient between each pair of labels, (j, k), based on an
initial single pass over the training set. The method prunes the information of
each label k with a correlation below a threshold to induce the meta-model h2

j .
This approach improves the computational efficiency, without any significant
loss in predictive performance, even some gains are obtained for some data sets.

In any case, the meta-level classifiers of the stacking approach estimates
P(yj |x,y′), where y′ is in turn an estimation that depends only on x. This chain
of estimations can explain why perhaps y′ does not contain enough information
to infer the dependence of label yj with respect to other labels.

Read et al. describe [15] a learning algorithm called Classifier Chain (CC),
that can model label correlations while maintaining a computational complexity
of the same order as that of BR. As its name denotes, CC involves m binary
classifiers linked along a chain, where each classifier deals with the binary rele-



vance problem associated with one label. In the training phase, the feature space
of each classifier in the chain is extended with the actual label information of all
previous links. For instance, if the chain follows the order of the set of labels,
then the functional form of each classifier hj will be:

hj : X × {0, 1}j−1 −→ {0, 1}, (8)

in which the actual label data of the previous labels in the chain, y1, . . . , yj−1, are
used to build hj . Notice that all binary models can be learned in parallel. How-
ever, in the testing phase, the classifiers are applied following the chain order,
using the binary outputs of the previous models as additional input information.
In symbols, h(x) = (h1(x), h2(x, h1(x)), h3(x, h1(x), h2(x, h1(x))), . . .). Obvi-
ously, the label order in the chain affects the performance obtained. Although
heuristics can be used to select a promising chain order, the authors solve the
issue by an Ensemble of Classifier Chains (ECC). This approach ensembles dif-
ferent random chain orderings and a different sample of the training data for
learning each CC model.

Dembczyński et al. present in [3] a probabilistic framework for multi-label
classification and propose the Probabilistic Classifier Chains (PCC) and its en-
semble version (EPCC). They generalize and outperform their counterpart meth-
ods, CC and ECC, but increasing their testing complexity. One of the interesting
contributions of the paper is that it offers a probabilistic interpretation of CC.
Given an instance x it is possible to compute the conditional probability of each
label combination y ∈ Y, applying the product rule of probability:

P(y|x) = P(y1|x)

m∏
j=2

P(yj |x, y1, . . . , yj−1), (9)

whose probabilities can be obtained from the classifiers of the chain (Eq. 8) when
a probabilistic learner is used. The difference between PCC and CC is that the
former estimates the entire joint distribution of labels, whereas the later takes
sequential decisions and, in that sense, it offers a deterministic approximation of
PCC. PCC produces much better estimates but at the cost of higher complexity,
limiting its applicability to data sets with a small number of labels.

There are other methods, less related with our approach, that try to find
interdependences between labels. RAkEL(RAndom k-labELsets), presented by
Tsoumakas and Vlahavas [19], iteratively constructs an ensemble of Label Power-
set (LP) classifiers. LP algorithm considers each unique subset of labels that
exists in a multi-label training set as one of the classes of a new multi-class clas-
sification task. At each iteration, RAkEL randomly selects a k-labelset Y i from
L without replacement. Then, it learns a LP classifier of the form X → P(Y i).
A simple voting process determines the final classification set. Also, Cheng and
Hüllermeier propose IBLR (Instance-Based Learning by Logistic Regression) [1].
IBLR unifies instance-based learning and logistic regression, comprising both
methods as special cases. Considering only the label dependence problem, the
main idea is to extend the description of each example x by additional features
that express the presence or absent of each label in the neighborhood of x.



3 Aggregating Independent and Dependent Classifiers

The main proposal of this paper is to build a multi-label classifier that combines
the two main options to tackle multi-label learning. On one hand, there are meth-
ods based on the assumption of label independence, that is, they only use object
descriptions in order to predict the labels attached to the object, as BR. On the
other hand, there are plenty of algorithms that induce models considering some
kind of label dependence, that is, they also employ the information about other
labels, like those described in the previous section. Formally, the latter approach
can encapsulate the former, in the sense that a label-dependent model can also
capture the cases that an independent model predicts well. However, when the
interdependences among labels are complex, learning reliable dependent models
becomes more difficult: richest hypothesis spaces must be used, increasing the
risk of overfitting, and more labeled data is needed, which will not be available
in some cases.

In our opinion, the two approaches are not exclusive, but complementary.
Hence, aggregating them may produce a more robust multi-label classifier. This
is the reason to propose Aggregating Independent and Dependent classifiers
(AID), a decomposition method that combines two groups of models. The first
one is learned assuming label independence and it will be formed by the same
classifiers yielded by BR method or by the first-level models of the stacking-
based approach [10], h1(x) = (h1

1(x), . . . , h1
m(x)). The second group of binary

classifiers, h2(x,y) = (h2
1(x, y2, . . . , ym), . . . , h2

m(x, y1, . . . , ym−1)), is built con-
sidering the information of all other labels. Thus, each h2

j is defined as:

h2
j : X × {0, 1}m−1 −→ {0, 1}. (10)

These classifiers try to detect fully conditional label dependence. Notice that all
models can be learned in parallel, because they are induced using only training
data. However, in the testing phase, the classifiers of the first group, h1, are
applied first and their binary outputs form the label features of models h2. The
final prediction is calculated aggregating both groups of responses:

h(x) = ⊕( (h1
1(x), . . . , h1

m(x)), (11)

(h2
1(x, h1

2(x), . . . , h1
m(x)), . . . , h2

m(x, h1
1(x), . . . , h1

m−1(x))) ),

in which ⊕ can be selected by practitioners, depending on the target loss function
and on the specific learning task. A natural choice for multi-label classification
is the or() function, being max() for ranking whenever h1 and h2 provide prob-
abilities. From a probabilistic point of view, AID method merges two different
estimations P(yj |x) and P(yj |x, y1, . . . , yj−1, yj+1, . . . , ym) for label yj . In this
sense AID takes into account the conditional dependence between labels.

Let us highlight that our method is quite general and can be adapted and im-
proved in several directions. We will cite three of them: i) the aggregate function
⊕ can be selected (or even learned) to optimize a specific target loss function, ii)
for a given query, the dependent models h2 can be iteratively applied until not



new labels are assigned, as it is pointed out in [10], and iii) some dimensions of
the label data can be removed in order to make the learning of models h2 easier,
for instance, applying methods like [17]. Due to the lack of space, the study of
all these issues are beyond the scope of this work.

3.1 Comparison with Related Approaches

In order to better understand the properties of our method, it is interesting
to analyze the differences with respect to the most related approaches [3,10,15]
described above. We support the idea that AID solves two drawbacks of the
stacking-based approach [10]. Firstly, the independent models learned in the
first level are only employed to obtain the label-related features for training
and testing the meta-level classifiers. In other words, they are not used as pre-
dictors, when it is well-known that BR classifiers by themselves can obtain a
relatively good performance. The outputs of independent classifiers, once they
are calculated, can be additionally employed to decide the predicted labels. Sec-
ondly, and even more important, maybe some information about the dependence
among labels is missing when learning the meta-level classifiers. Instead of using
the actual labels of each example to augment the feature space, as AID classifier
does, the stacking method employs first-level classifiers predictions. Although it
is absolutely formal from a learning perspective–the data source is the same in
both training and the testing phases for meta-level classifiers–, if we think about
the trueness of the training data, the actual labels are less noisy and contain
the true correlation information among the labels. For this reason the estima-
tion of P(yj |x, y1, . . . , yj−1, yj+1, . . . , ym) is expected to be more accurate than
P(yj |x,y′). Next section experimentally analyzes these two issues.

Comparing our method with Classifier Chain [15], including its probabilistic
variant (PCC) [3], we can found pros and cons for both. One of the best proper-
ties of CC approaches, specially PCC, is that they are supported by probability
theory. PCC is able to estimate the entire joint distribution of the labels and
can select the most appropriate label combination for a particular loss function,
whereas CC and our approach offer only greedy approximations. But, on the
other hand, CC variants assume an in-chain dependence between labels when
sometimes their interdependences are much more complex. Moreover, some prob-
ability estimations of the chain can be poor when the correlated labels of a label
are not placed before in the chain, which most likely happens at the first links of
the chain. This is the reason for ensembling several CC or PCC classifiers. Our
approach considers for every label all others, so the correlated labels are always
taken into account, although detecting their dependences can be more difficult.

Analyzing the training computational complexity, all the approaches incur in
the same linear complexity with respect to the number of labels, but they differ
in the number of models, CC/PCC (m), stacking method and AID (2m), and
ECC/EPCC (Nm, where N is the number of ensembles). The testing complexity
of AID, the stacking method and CC/ECC is linear again, differing in the number
of evaluations requiered. PCC/EPCC evaluate an exponential order times the
models limiting their applicability to domains with few labels.



Table 1. Properties of the data sets used in the experiments

Data set Attributes Examples Labels Cardinality

bibtex 1836 7395 159 2.40
emotions 72 593 6 1.87
enron 1001 1702 53 3.38
genbase 1185 662 27 1.25
image 135 2000 5 1.24
mediamill 120 5000 101 4.27
medical 1449 978 45 1.25
reuters 243 7119 7 1.24
scene 294 2407 6 1.07
slashdot 1079 3782 22 1.18
yeast 103 2417 14 4.24

4 Experiments

This section reports the results of the experiments performed to evaluate the pro-
posed multi-label classification method. The aim of the experiments was twofold.
Firstly, a deep comparative study between aggregating-based and stacking-based
methods was performed. The idea was to experimentally analyze the different
properties of both kind of strategies. Secondly, our aggregating approach was
compared with some other state-of-the-art methods for multi-label classification,
most of them aimed to detect correlations among labels. The experiments were
performed over several multi-label data sets whose main properties are shown in
Table 1. As it can be seen, they are quite different among them in the number
of attributes, examples, labels and cardinality (number of labels per example).

We tested two groups of multi-label classification algorithms. In the first
place, AID classifier (using or() as the aggregate function) and stacking-based
approach, denoted as STA, were compared. We also included a couple of vari-
ants of both to study some of their properties. Then, our aggregating approach
was compared with BR, MLkNN [22], RAkEL [19], IBLR [1] and ECC [15],
in the version described in [3], named as ECC∗. Among chain-based methods,
we selected ECC∗ because it offers the best trade-off between performance and
complexity [3]. CC performs worse and PCC/EPCC have a higher computational
complexity.

The binary base learner employed to obtain single classifiers for each label was
the logistic regression of [11]. The regularization parameter C was established
for each binary model performing a grid search over the values C ∈ {10p | p ∈
[−3, . . . , 3]} optimizing the accuracy estimated by means of a balanced 2-fold
cross validation repeated 5 times. Such parameter settings have only sense for
BR, ECC∗ and AID, and kept equal for all of these methods. That is, their
models are exactly the same when their respective input spaces are equal. The
parameters taken for the rest of the state-of-the-art methods were the default
ones suggested by their authors.



The evaluation measures applied were those discussed in Section 2.1. As they
are defined on a per instance basis, the value for a test set is the average over all
instances. The scores reported, displayed as percentages for all measures, were
estimated by means of a 10-fold cross-validation. The ranks of each data sets
are indicated in brackets. In case of ties, average ranks are shown. The average
ranks over all data sets are computed and shown at the last row of each table.
Following the recommendations of [5] and [8], a two-step comparison for each
of the considered measures was performed. The first step is a Friedman test
that rejects the null hypothesis that states that not all learners perform equally.
The second step is a post-hoc pairwise comparison. We performed a Bergmann-
Hommel’s test using the software provided in [8]. This comparison is preferred
to that of Nemenyi [5], because it is a less conservative procedure able to detect
certain obvious differences that Nemenyi’s test may not obtain. In any case, the
significant differences found with both tests are almost equal.

4.1 AID Classifier vs. Stacking Approach

The goal of this experiment was to compare AID classifier and STA method
and also to gain some insights about their principles. This was the motivation
to include two variants of both. Table 2 and Table 3 show the scores of all
them; BR was added as the baseline reference. Our main intention was to obtain
answers to the following questions: i) Which method performs better, AID or
STA? ii) Which information is more appropriate to detect the correlations among
labels, the actual label data or the predictions of independent models? iii) In
the testing phase, which data is preferable to augment the feature space of
dependent models, binary or probabilistic outputs? And, finally, iv) is preferable
to aggregate or to stack the predictions of independent and dependent models?

The first question is the easiest to answer because it only involves two of the
algorithms. AID classifier performs better than STA in all the measures except
in Hamming loss. The differences are significant in the cases of Recall, F1 and
Jaccard index (see Table 6). In fact, our proposed method ranks first in five out
the six performance measures, while STA is not in the top-three for any of them.
Comparing both with the baseline method (BR), AID obtains better scores in
all metrics (significant differences in Recall, F1 and Jaccard index) except in
Hamming loss, in which BR performs significantly better. In the comparison
between STA and BR, STA wins in four out of the six (except Hamming loss and
Precision), but the differences are quite small and none of them are significant.

In order to answer the second question we included two new methods. The
idea was to feed AID classifier and STA with the training information that uses

the other one to learn the dependent models, h2. Following this idea, AIDy′

classifier uses the predicted labels given by independent models h1, and STAy

employs the true label data. Comparing now each algorithm with its counterpart

(AID vs. AIDy′
, STA vs. STAy), we find that in both cases the algorithm that

uses the actual label information (AID or STAy) improves the performance of its
counterpart in all measures, but Hamming loss. The differences are significant



Table 2. Aggregated vs. stacking-based approaches: Precision, Recall, F1 and Jaccard
index

Precision BR AID STAy AIDy′
STA AIDp STAp

Bibtex 48.19(3) 48.70(2) 47.17(7) 48.01(4.5) 48.01(4.5) 49.08(1) 47.39 (6)
Emotions 56.36(6) 62.30(1) 62.09(2) 57.99(4) 56.58(5) 59.03(3) 54.31 (7)
Enron 69.99(1) 66.10(3) 65.51(4) 65.05(6) 65.18(5) 66.37(2) 61.69 (7)
Genbase 99.52(4) 99.52(4) 99.60(1.5) 99.40(6.5) 99.40(6.5) 99.52(4) 99.60 (1.5)
Image 44.23(7) 53.97(1) 53.88(2) 44.49(6) 44.54(5) 48.18(3) 46.17 (4)
Mediamill 78.81(1) 70.91(3) 70.11(5) 44.06(6) 43.49(7) 70.16(4) 71.67 (2)
Medical 78.94(6) 82.50(1) 81.33(2) 79.47(4.5) 79.47(4.5) 80.88(3) 78.31 (7)
Reuters 85.79(7) 87.53(1) 87.50(2) 85.88(6) 85.89(5) 87.48(3) 86.39 (4)
Scene 61.46(7) 67.81(3) 66.14(6) 66.88(5) 67.13(4) 71.89(1) 69.05 (2)
Slashdot 46.06(6) 53.32(1) 53.20(2) 47.91(3.5) 47.91(3.5) 46.98(5) 23.92 (7)
Yeast 71.13(1) 66.50(7) 66.80(6) 70.82(2) 70.81(3) 67.83(5) 68.51 (4)
Avg. rank (4.45) (2.45) (3.59) (4.91) (4.82) (3.09) (4.68)

Recall BR AID STAy AIDy′
STA AIDp STAp

Bibtex 33.80(7) 36.86(1) 34.82(5) 35.50(3) 35.49(4) 36.47(2) 34.06 (6)
Emotions 48.16(6) 68.03(1) 65.84(2) 51.02(4) 49.81(5) 53.44(3) 47.00 (7)
Enron 50.50(6) 59.89(1) 57.48(2) 56.78(3) 56.68(4) 54.86(5) 41.78 (7)
Genbase 99.07(4) 99.07(4) 99.07(4) 99.07(4) 99.07(4) 99.07(4) 99.07 (4)
Image 43.32(6) 55.96(1) 53.68(2) 43.69(4) 43.54(5) 47.74(3) 43.07 (7)
Mediamill 52.33(7) 59.25(3) 54.34(5) 62.03(1) 60.02(2) 58.02(4) 52.41 (6)
Medical 78.34(6) 83.86(1) 81.02(4) 83.09(2.5) 83.09(2.5) 80.57(5) 75.09 (7)
Reuters 84.90(7) 91.90(1) 90.29(2) 85.01(5) 84.93(6) 87.90(3) 85.10 (4)
Scene 62.87(7) 87.55(1) 82.38(2) 68.50(5) 68.17(6) 77.10(3) 70.81 (4)
Slashdot 44.21(6) 71.42(1) 70.37(2) 45.96(3.5) 45.96(3.5) 45.05(5) 21.68 (7)
Yeast 58.86(6) 66.42(1) 60.93(3) 59.43(4) 59.38(5) 62.50(2) 55.83 (7)
Avg. rank (6.18) (1.45) (3.00) (3.55) (4.27) (3.55) (6.00)

F1 BR AID STAy AIDy′
STA AIDp STAp

Bibtex 37.02(7) 39.22(1) 37.54(5) 37.93(3) 37.92(4) 39.03(2) 37.04 (6)
Emotions 49.20(6) 62.05(1) 60.87(2) 51.54(4) 50.33(5) 53.31(3) 48.03 (7)
Enron 55.66(6) 59.97(1) 58.20(2) 57.78(3.5) 57.78(3.5) 56.73(5) 47.32 (7)
Genbase 99.18(4) 99.18(4) 99.21(1.5) 99.10(6.5) 99.10(6.5) 99.18(4) 99.21 (1.5)
Image 42.12(7) 52.69(1) 51.68(2) 42.42(5) 42.38(6) 46.18(3) 43.10 (4)
Mediamill 59.17(3) 60.39(1) 57.23(4) 48.00(6) 47.06(7) 59.67(2) 56.67 (5)
Medical 77.33(6) 81.66(1) 79.82(2) 79.45(3.5) 79.45(3.5) 79.35(5) 75.54 (7)
Reuters 84.13(7) 87.74(1) 87.05(2) 84.23(5) 84.21(6) 86.43(3) 84.65 (4)
Scene 61.25(7) 71.38(2) 68.46(4) 66.68(6) 66.75(5) 72.85(1) 68.78 (3)
Slashdot 44.33(6) 55.97(1) 55.47(2) 46.05(3.5) 46.05(3.5) 45.18(5) 22.36 (7)
Yeast 61.68(5) 63.28(1) 60.98(6) 61.89(3) 61.86(4) 62.42(2) 58.44 (7)
Avg. rank (5.82) (1.36) (2.95) (4.45) (4.91) (3.18) (5.32)

Jaccard BR AID STAy AIDy′
STA AIDp STAp

Bibtex 31.50(7) 33.59(1) 32.32(3) 32.16(4) 32.15(5) 33.28(2) 31.70 (6)
Emotions 42.27(6) 52.89(1) 51.76(2) 44.52(4) 43.46(5) 46.12(3) 41.68 (7)
Enron 44.69(5) 48.50(1) 47.09(2) 45.95(3.5) 45.95(3.5) 44.23(6) 35.81 (7)
Genbase 98.94(4) 98.94(4) 98.97(1.5) 98.82(6.5) 98.82(6.5) 98.94(4) 98.97 (1.5)
Image 38.60(7) 47.88(1) 47.32(2) 38.85(6) 38.87(5) 42.43(3) 39.95 (4)
Mediamill 46.70(2) 48.13(1) 45.42(4) 34.70(6) 34.09(7) 46.00(3) 42.47 (5)
Medical 74.51(6) 78.40(1) 76.95(2) 75.43(4.5) 75.43(4.5) 76.37(3) 73.13 (7)
Reuters 81.67(7) 84.37(1) 84.00(2) 81.77(5) 81.76(6) 83.80(3) 82.36 (4)
Scene 59.41(7) 65.90(3) 64.00(6) 64.64(5) 64.88(4) 69.74(1) 66.67 (2)
Slashdot 42.71(6) 49.98(1) 49.70(2) 44.29(3.5) 44.29(3.5) 43.50(5) 21.55 (7)
Yeast 50.71(5) 52.40(1) 49.68(6) 50.97(3) 50.93(4) 51.22(2) 46.77 (7)
Avg. rank (5.64) (1.45) (2.95) (4.64) (4.91) (3.18) (5.23)



Table 3. Aggregated vs. stacking-based approaches: Hamming loss and 0/1 loss

Hamming BR AID STAy AIDy′
STA AIDp STAp

Bibtex 1.21(1.5) 1.22(4) 1.21(1.5) 1.26(6.5) 1.26(6.5) 1.22(4) 1.22 (4)
Emotions 22.03(4) 23.04(6) 23.15(7) 21.75(2) 21.83(3) 21.47(1) 22.14 (5)
Enron 4.46(1) 4.82(3) 4.88(6) 4.84(5) 4.83(4) 4.69(2) 4.95 (7)
Genbase 0.08(4) 0.08(4) 0.07(1.5) 0.09(6.5) 0.09(6.5) 0.08(4) 0.07 (1.5)
Image 20.25(3.5) 21.90(7) 21.61(6) 20.33(5) 20.23(2) 20.25(3.5) 20.04 (1)
Mediamill 2.76(1) 3.03(3) 3.10(5) 5.48(6) 5.50(7) 2.99(2) 3.09 (4)
Medical 0.99(4) 0.95(1) 0.98(3) 1.12(6.5) 1.12(6.5) 0.97(2) 1.02 (5)
Reuters 4.58(3) 5.81(7) 5.77(6) 4.59(4) 4.60(5) 4.44(1) 4.51 (2)
Scene 9.83(1) 18.66(7) 18.31(6) 9.99(3) 9.85(2) 10.28(5) 10.07 (4)
Slashdot 3.73(1) 8.81(7) 8.80(6) 3.86(3.5) 3.86(3.5) 3.75(2) 4.49 (5)
Yeast 19.81(1) 21.29(5) 21.56(7) 19.85(2.5) 19.85(2.5) 20.66(4) 21.41 (6)
Avg. rank (2.27) (4.91) (5.00) (4.59) (4.41) (2.77) (4.05)

0/1 loss BR AID STAy AIDy′
STA AIDp STAp

Bibtex 82.83(5) 81.49(1) 81.54(2) 82.99(6.5) 82.99(6.5) 81.96(3) 82.30 (4)
Emotions 79.42(7) 74.19(1) 74.70(2) 77.40(4) 77.91(6) 76.05(3) 77.73 (5)
Enron 86.90(3) 85.37(2) 85.25(1) 88.13(5) 88.07(4) 92.54(6) 95.95 (7)
Genbase 1.81(3) 1.81(3) 1.81(3) 2.11(6.5) 2.11(6.5) 1.81(3) 1.81 (3)
Image 71.50(7) 65.75(2) 65.20(1) 71.40(6) 71.25(5) 68.35(3) 69.20 (4)
Mediamill 90.36(3) 88.10(1) 88.14(2) 97.96(7) 97.90(6) 94.48(4) 96.54 (5)
Medical 33.94(4) 31.18(1) 31.49(2) 36.61(6.5) 36.61(6.5) 32.62(3) 34.05 (5)
Reuters 25.69(7) 25.16(4) 24.60(3) 25.59(6) 25.54(5) 24.10(1) 24.50 (2)
Scene 46.03(6) 46.07(7) 44.99(5) 41.38(4) 40.63(3) 39.26(1) 39.38 (2)
Slashdot 61.95(4) 63.20(6) 62.85(5) 60.82(1.5) 60.82(1.5) 61.34(3) 80.83 (7)
Yeast 84.53(5) 83.08(1) 84.07(4) 83.95(2.5) 83.95(2.5) 85.85(6) 90.03 (7)
Avg. rank (4.91) (2.64) (2.73) (5.05) (4.77) (3.27) (4.64)

in the case of F1 and Jaccard index for AID vs. AIDy′
. Interestingly, now AIDy′

is only better than BR in Recall, but STAy is significantly better than BR in
Recall, F1 and Jaccard index, and worse in Hamming loss. The results concern-
ing Hamming loss are quite intriguing, because both approaches seem able to
improve when true labels are used, but the results in terms of Hamming loss
are worse. Despite this fact, we do think that these results confirm the idea that
using the actual label data is better to capture the correlations among labels.

Given that the base learner employed is a logistic regressor that provides pos-
terior probabilities, we included two other methods (AIDp, STAp) that consist
of taking the probabilities yielded by the independent models rather than their
binary outputs in the testing phase, remaining unchanged the original training
phase for each approach. Comparing their results with the original versions, we
have that AID performs better than AIDp in all measures, except in Hamming
loss in which the performance of AIDp ranks second behind BR. AIDp is signifi-
cantly better than BR in Recall, F1 and Jaccard index, and it is very competitive
in Hamming loss. In the case of STAp we do not observe any improvement, oth-
erwise the results are pretty the same of STA. It seems that using the posteriors
helps to reduce the Hamming loss, but it is worse for the other measures.

Finally, we want to compare the aggregating and stacking strategies. Despite
the stacking method improves when true labels are used (STAy), the results
are still worse than those of AID classifier. This different performance must
come from the aggregating idea, given that the only difference between both



Table 4. AID vs. state-of-the-art methods: Precision, Recall, F1 and Jaccard index

Precision BR MLkNN IBLR RAkEL ECC∗ AID AIDp

Bibtex 48.19(3) 26.60(7) 28.92(6) 47.08(5) 47.69(4) 48.70(2) 49.08 (1)
Emotions 56.36(4) 52.42(7) 67.54(1) 52.79(6) 56.26(5) 62.30(2) 59.03 (3)
Enron 69.99(1) 54.90(6) 52.75(7) 56.05(5) 65.19(4) 66.10(3) 66.37 (2)
Genbase 99.52(3.5) 97.70(7) 98.90(6) 99.57(1) 99.52(3.5) 99.52(3.5) 99.52 (3.5)
Image 44.23(7) 44.33(6) 48.52(2) 46.66(4) 45.99(5) 53.97(1) 48.18 (3)
Mediamill 78.81(2) 76.93(4) 73.52(5) 80.40(1) 77.87(3) 70.91(6) 70.16 (7)
Medical 78.94(5) 62.43(7) 63.40(6) 80.79(4) 81.04(2) 82.50(1) 80.88 (3)
Reuters 85.79(5) 82.23(6) 70.71(7) 89.62(1) 86.41(4) 87.53(2) 87.48 (3)
Scene 61.46(7) 69.71(3) 71.40(2) 69.69(4) 67.45(6) 67.81(5) 71.89 (1)
Slashdot 46.06(4) 6.15(7) 8.09(6) 50.91(2) 42.79(5) 53.32(1) 46.98 (3)
Yeast 71.13(3) 72.92(1) 71.75(2) 68.62(5) 70.58(4) 66.50(7) 67.83 (6)
Avg. rank (4.05) (5.55) (4.55) (3.45) (4.14) (3.05) (3.23)

Recall BR MLkNN IBLR RAkEL ECC∗ AID AIDp

Bibtex 33.80(4) 14.06(7) 21.50(6) 41.97(1) 33.78(5) 36.86(2) 36.47 (3)
Emotions 48.16(6) 37.73(7) 64.54(2) 57.19(3) 48.92(5) 68.03(1) 53.44 (4)
Enron 50.50(4) 37.04(7) 38.04(6) 54.07(3) 45.79(5) 59.89(1) 54.86 (2)
Genbase 99.07(4.5) 94.96(7) 99.14(2) 99.57(1) 99.07(4.5) 99.07(4.5) 99.07 (4.5)
Image 43.32(6) 39.11(7) 43.68(5) 49.73(2) 44.10(4) 55.96(1) 47.74 (3)
Mediamill 52.33(5) 53.78(4) 56.69(3) 49.57(7) 51.25(6) 59.25(1) 58.02 (2)
Medical 78.34(5) 59.01(7) 65.05(6) 81.00(2) 79.01(4) 83.86(1) 80.57 (3)
Reuters 84.90(5) 81.09(6) 69.45(7) 89.63(2) 85.19(4) 91.90(1) 87.90 (3)
Scene 62.87(7) 68.73(5) 69.75(3) 69.52(4) 66.43(6) 87.55(1) 77.10 (2)
Slashdot 44.21(4) 5.69(7) 7.67(6) 53.18(2) 39.93(5) 71.42(1) 45.05 (3)
Yeast 58.86(6) 56.89(7) 60.41(4) 61.84(3) 59.40(5) 66.42(1) 62.50 (2)
Avg. rank (5.14) (6.45) (4.55) (2.73) (4.86) (1.41) (2.86)

F1 BR MLkNN IBLR RAkEL ECC∗ AID AIDp

Bibtex 37.02(4) 16.98(7) 22.38(6) 41.28(1) 36.86(5) 39.22(2) 39.03 (3)
Emotions 49.20(6) 41.60(7) 62.97(1) 51.95(4) 49.81(5) 62.05(2) 53.31 (3)
Enron 55.66(3) 41.82(6) 41.52(7) 52.43(4) 51.14(5) 59.97(1) 56.73 (2)
Genbase 99.18(3.5) 95.81(7) 98.78(6) 99.50(1) 99.18(3.5) 99.18(3.5) 99.18 (3.5)
Image 42.12(6) 40.63(7) 44.91(4) 46.32(2) 43.46(5) 52.69(1) 46.18 (3)
Mediamill 59.17(5) 59.55(4) 60.17(2) 57.72(7) 58.15(6) 60.39(1) 59.67 (3)
Medical 77.33(5) 59.41(7) 62.19(6) 79.65(2) 78.83(4) 81.66(1) 79.35 (3)
Reuters 84.13(5) 80.50(6) 69.10(7) 88.58(1) 84.69(4) 87.74(2) 86.43 (3)
Scene 61.25(7) 68.49(5) 69.97(3) 68.84(4) 66.31(6) 71.38(2) 72.85 (1)
Slashdot 44.33(4) 5.84(7) 7.73(6) 50.49(2) 40.66(5) 55.97(1) 45.18 (3)
Yeast 61.68(6) 60.97(7) 62.85(2) 62.48(3) 61.80(5) 63.28(1) 62.42 (4)
Avg. rank (4.95) (6.36) (4.55) (2.82) (4.86) (1.59) (2.86)

Jaccard BR MLkNN IBLR RAkEL ECC∗ AID AIDp

Bibtex 31.50(4) 13.61(7) 18.09(6) 34.28(1) 31.46(5) 33.59(2) 33.28 (3)
Emotions 42.27(6) 34.09(7) 55.08(1) 42.98(5) 43.24(4) 52.89(2) 46.12 (3)
Enron 44.69(2) 31.83(7) 31.99(6) 41.30(4) 39.68(5) 48.50(1) 44.23 (3)
Genbase 98.94(3.5) 94.86(7) 98.25(6) 99.29(1) 98.94(3.5) 98.94(3.5) 98.94 (3.5)
Image 38.60(6) 38.45(7) 42.46(2) 42.15(4) 40.15(5) 47.88(1) 42.43 (3)
Mediamill 46.70(4) 48.11(3) 48.82(1) 45.10(6) 44.69(7) 48.13(2) 46.00 (5)
Medical 74.51(5) 56.76(7) 58.19(6) 76.88(2) 76.33(4) 78.40(1) 76.37 (3)
Reuters 81.67(5) 78.11(6) 67.10(7) 86.38(1) 82.41(4) 84.37(2) 83.80 (3)
Scene 59.41(7) 67.03(4) 68.77(2) 67.28(3) 65.05(6) 65.90(5) 69.74 (1)
Slashdot 42.71(4) 5.68(7) 7.42(6) 47.18(2) 39.32(5) 49.98(1) 43.50 (3)
Yeast 50.71(6) 50.50(7) 52.65(1) 51.75(3) 50.96(5) 52.40(2) 51.22 (4)
Avg. rank (4.77) (6.27) (4.00) (2.91) (4.86) (2.05) (3.14)



Table 5. AID vs. state-of-the-art methods: Hamming loss and 0/1 loss

Hamming BR MLkNN IBLR RAkEL ECC∗ AID AIDp

Bibtex 1.21(1.5) 1.36(5) 1.60(7) 1.49(6) 1.21(1.5) 1.22(3.5) 1.22 (3.5)
Emotions 22.03(4) 26.21(6) 18.72(1) 28.01(7) 21.72(3) 23.04(5) 21.47 (2)
Enron 4.46(1) 5.22(5) 5.60(6) 5.85(7) 4.72(3) 4.82(4) 4.69 (2)
Genbase 0.08(3.5) 0.45(7) 0.19(6) 0.06(1) 0.08(3.5) 0.08(3.5) 0.08 (3.5)
Image 20.25(4.5) 19.28(2) 18.75(1) 24.40(7) 19.80(3) 21.90(6) 20.25 (4.5)
Mediamill 2.76(2) 2.70(1) 2.82(4) 2.81(3) 2.86(5) 3.03(7) 2.99 (6)
Medical 0.99(5) 1.56(6) 1.90(7) 0.95(2) 0.95(2) 0.95(2) 0.97 (4)
Reuters 4.58(4) 6.03(6) 8.32(7) 3.85(1) 4.42(2) 5.81(5) 4.44 (3)
Scene 9.83(4) 8.66(2) 8.38(1) 9.90(5) 9.06(3) 18.66(7) 10.28 (6)
Slashdot 3.73(1) 5.18(6) 5.17(5) 4.65(4) 3.78(3) 8.81(7) 3.75 (2)
Yeast 19.81(3) 19.43(2) 19.18(1) 20.30(5) 19.98(4) 21.29(7) 20.66 (6)
Avg. rank (3.05) (4.36) (4.18) (4.36) (3.00) (5.18) (3.86)

0/1 loss BR MLkNN IBLR RAkEL ECC∗ AID AIDp

Bibtex 82.83(4) 94.06(7) 91.64(6) 83.56(5) 82.61(3) 81.49(1) 81.96 (2)
Emotions 79.42(5) 87.00(7) 68.97(1) 83.45(6) 77.05(4) 74.19(2) 76.05 (3)
Enron 86.90(2) 94.89(7) 92.30(4) 88.49(3) 93.07(6) 85.37(1) 92.54 (5)
Genbase 1.81(3.5) 8.16(7) 4.08(6) 1.51(1) 1.81(3.5) 1.81(3.5) 1.81 (3.5)
Image 71.50(7) 67.95(3) 64.70(1) 69.70(6) 69.40(5) 65.75(2) 68.35 (4)
Mediamill 90.36(4) 86.24(2) 85.86(1) 91.14(5) 93.80(6) 88.10(3) 94.48 (7)
Medical 33.94(5) 51.12(6) 52.98(7) 31.39(3) 31.19(2) 31.18(1) 32.62 (4)
Reuters 25.69(5) 29.04(6) 38.88(7) 20.24(1) 24.43(3) 25.16(4) 24.10 (2)
Scene 46.03(6) 37.35(2.5) 34.82(1) 37.35(2.5) 38.72(4) 46.07(7) 39.26 (5)
Slashdot 61.95(2) 94.76(7) 93.47(6) 62.11(3) 64.57(5) 63.20(4) 61.34 (1)
Yeast 84.53(6) 82.29(2) 79.19(1) 83.08(3.5) 83.58(5) 83.08(3.5) 85.85 (7)
Avg. rank (4.50) (5.14) (3.73) (3.55) (4.23) (2.91) (3.95)

algorithms is the way they decide the final predictions. The fact that AID prevails
in all measures, although the differences are sometimes small (Hamming and 0/1
loss), suggests that the aggregation idea helps to increase the performance. We
observe even bigger differences when comparing the scores of BR and AID. These
facts corroborate our original assumption of the existence of two kind of labels:
some labels are explained by the mere description of the examples, whereas
others have been assigned as a consequence of other labels. The differences in
the performance may provide an estimation about the proportion of existing
labels of each kind and the degree of overlapping.

4.2 AID Classifier vs. State-of-the-art Methods

The second group of experiments was designed to compare our approach AID
with other well-known multi-label classifiers: BR, MLkNN, RAkEL, IBLR and
ECC∗. We also included AIDp because of its good performance in all measures,
specially in terms of Hamming loss. Table 4 and Table 5 show all the scores.

As it can be seen, the three top positions in the ranking are occupied by AID
RAkEL and AIDp for all measures, except for Hamming loss, for which ECC∗,
BR and also AIDp win the others. It is remarkable than MLkNN is always
placed in the last position for all measures. The Bergmann-Hommel’s test (see
Table 6) shows that AID is significantly better than BR, MLkNN, IBLR and
ECC∗ in Recall, F1 and Jaccard index, and there are not significant differences



Table 6. Pairs of methods with significant differences according to Bergmann-
Hommel’s test. The number 90% or 95% indicates the significant level

Recall F1 Jaccard Hamming Recall F1 Jaccard

AID � BR 95% 95% 95% -90% AID � BR 95% 95% 95%
AID � STA 95% 95% 95% AID � MLkNN 95% 95% 95%
AID � STAp 95% 95% 95% AID � IBLR 95% 95%

AID � AIDy′
95% 95% AID � ECC∗ 95% 95% 95%

AIDp � BR 95% 95% 90% AIDp � MLkNN 95% 95% 95%
AIDp � STAp 90% AIDp � BR 90%

AIDy′
� BR 95% RAkEL � MLkNN 95% 95% 95%

AIDy′
� STAp 90% RAkEL � BR 90%

STAy � BR 95% 95% 90% -90%
STAy � STAp 95%

in Precision, Hamming and 0/1 losses. Also, AIDp presents significant differences
in those measures but only with regard to BR and MLkNN. RAkEL is also quite
competitive, since it is significantly better than BR in Recall and than MLkNN
in Recall, F1 and Jaccard index.

From the results obtained, one can extract that AIDp keeps a steady behavior
over all performance measures, whereas AID improves in Precision, Recall, F1,
Jaccard index and 0/1 loss and ECC∗ does it in Hamming loss. Both seem to be
opposing methods with regard to the behavior of the measures, whereas RAkEL
seems to be placed in between. Hence, if there is not a clear target measure to
optimize, then AIDp may be a good choice, followed by RAkEL. Conversely, if
the goal is to maximize Hamming loss, then ECC∗, or even BR must be chosen.
Finally, for maximizing the rest of measures AID is more promising.

5 Conclusions

This paper proposes a multi-label learning approach, called AID, whose main
property is to aggregate independent and dependent models. Under the assump-
tion that, for a given instance, certain labels can be predicted using only the
description of the object, but others require to consider their dependences with
respect to other labels, the idea is to combine classifiers aimed to learn each of
these kind of relationships. In this work, we study the properties of our approach
in the context of multi-label classification, but our framework is flexible enough
to be adapted to other learning tasks, specially to multi-label ranking, and it
can also be extended in some directions.

Several experiments over a benchmark multi-label data sets were carried
out using different learning approaches. None of the methods outperforms the
others for all measures considered, but AID classifier exhibits a very competitive
performance, specially in terms of Recall, F1 and Jaccard index, with regard to
other state-of-the-art algorithms previously proposed in the literature. Besides,
the computational complexity of AID is linear with respect to the number of
labels.
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for performance metrics in multi-label classification: the case of hamming and
subset zero-one loss. In ECML’2010, Part I, pages 280–295. Springer, 2010.
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