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Abstract. This paper deals with the coupled problem arising from the interaction of a time-
harmonic electromagnetic field with a three-dimensional elastic body. More precisely, we consider
a suitable transmission problem holding between the solid and a sufficiently large annular region
surrounding it, and aim to compute both the magnetic component of the scattered wave and the
stresses that take place in the obstacle. To this end, we assume Voigt’s model, which allows interaction
only through the boundary of the body, and employ a dual-mixed variational formulation in the solid
medium. As a consequence, one of the two transmission conditions becomes essential, whence it is
enforced weakly through the introduction of a Lagrange multiplier. An abstract framework developed
recently, which is based on regular decompositions of the spaces involved, is applied next to show
that our coupled variational formulation is well-posed. In addition, we define the corresponding
Galerkin scheme by using PEERS in the solid and using the edge finite elements of Nédélec in the
electromagnetic region. Then, we prove that the resulting coupled mixed finite element scheme is
uniquely solvable and convergent. Moreover, optimal a priori error estimates are derived in the
usual way. Finally, some numerical results illustrating the analysis and the good performance of the
method are also reported.
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1. Introduction. A successful strategy has been developed in [4] to analyze,
at the continuous and discrete levels, a class of variational formulations defined by
noncoercive bilinear (or sesquilinear) forms. More precisely, though the analysis in [4]
was originally motivated by the study of Maxwell equations, the author succeeded in
setting up the corresponding technique in a quite general framework. In fact, the key
issue is the utilization of a Helmholtz-type decomposition of the main unknown, which
allows us to reveal hidden compactness properties of the formulation, and hence the
classical results connecting Fredholm alternative and projection methods (see, e.g.,
[18], [21]) can be applied straightforwardly.

The method from [4] was applied recently in [12] and [14] to deal with a time-
harmonic fluid-solid interaction problem posed in the plane. The model consists of
an elastic body occupying a region (), which is subject to a given incident acoustic
wave that travels in the fluid surrounding it. In [12] the fluid is supposed to occupy
an annular region (¢, and a Robin boundary condition imitating the behavior of the
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scattered field at infinity is imposed on its exterior boundary I". On the other hand,
instead of using an approximate boundary condition on I', the approach in [14] con-
siders a nonlocal absorbing boundary condition based on integral equations defined
on I'. In this way, a combined double and single layer potential representation of the
scattered wave allows one to incorporate the far field effects into the continuous and
Galerkin formulations. In any case, the usual primal formulation in the fluid region
1y and a dual-mixed variational formulation for plane elasticity in the obstacle €2, are
employed in both works. Actually, in contrast to the usual dual-mixed approach, the
elastodynamic equation is used here to eliminate the displacement, which yields the
stress tensor as the main unknown in the solid ;. As a consequence, the noncom-
pactness of the imbedding H(div; Q) — [L?(Qs)]? motivates, following the original
idea from [4], the introduction of a suitable decomposition of H(div; 2,), whereas the
compactness of the imbedding H'(Q;) < L?*(Qy) simplifies the analysis of the terms
defined on Q¢ (since the Fredholm alternative arises naturally there), and then no fur-
ther decomposition is needed. The corresponding discrete schemes are defined with
PEERS elements in 5 and the traditional Lagrange finite elements in Q;. The sta-
bility and convergence of these Galerkin methods also rely on a stable decomposition
of the finite element subspace used to approximate the stress unknown.

The purpose of the present work is to further apply the approach from [4] and [12]
to the transmission problem arising from the interaction of a three-dimensional (3D)
elastic body with a time-harmonic electromagnetic field. As we will see below, the
corresponding analysis will have to deal with several additional technical difficulties
arising from the 3D setting and the incorporation of the Maxwell equations instead
of the Helmholtz equation. As in [12], we assume here that the electromagnetic field
occupies an annular region €2, on whose exterior boundary I' a condition compatible
with the behavior of the scattered field at infinity is imposed. In addition, according
to Voigt’s model (see, e.g., [10] for details), we discard the eventual penetration of the
electromagnetic field inside the body and assume that the interaction between both
media is governed only by the equilibrium of tangential forces along the interface
0. Hence, our aim is to provide and analyze a corresponding coupled mixed finite
element method that permits us to compute the scattered electromagnetic wave and
the stresses of the solid. However, we will observe that the noncompactness of the
imbeddings H(div; ;) < [L?(Qs)]® and H(curl; Q,,) < [L?(2,,)]? stops us from
employing a Fredholm alternative for the original form of the resulting variational
formulation. In order to overcome this difficulty, we follow again the technique de-
veloped in [4] and introduce now suitable decompositions of both H(div;;) and
H(curl; ). This differs from the analysis in [12], where only the decomposition of
the first space was needed. The corresponding Galerkin scheme is defined with PEERS
in the solid 5 and with the edge finite elements of Nédélec in the electromagnetic
region €2,,, and hence stable decompositions of these finite element subspaces allow
us to prove the associated stability and convergence of the discrete method.

The rest of the paper is organized as follows. In section 2 we collect some known
results on tangential trace operators in a generic space H(curl; Q). In sections 3 and 4
we describe the interaction problem and derive its coupled variational formulation.
The approach from [4] is employed in section 5 to show that the continuous problem
is well-posed. The corresponding Galerkin scheme is introduced and analyzed in
sections 6 and 7. Finally, numerical results illustrating our analysis are reported in
section 8.

We end this section with some notation to be used below. Since in what follows we
deal with complex valued functions, we let C be the set of complex numbers, use the
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symbol ¢ for v/—1, and denote by Z and |z| the conjugate and modulus, respectively,
of each z € C. In addition, given any Hilbert space U, we let [U]® and [U]?*3
denote, respectively, the space of vectors and tensors of order 3 with entries in U.
When no confusion arises, we simply use U? and U3*? instead of [U]? and [U]3*3,
respectively. In particular, I is the identity matrix of C**3, and given 7 := (7;;)
and ¢ := ({;;) € C3*3, we define as usual the transpose tensor 7% := (75;), the trace

tr(7) := Zle T, the tensor product 7: ¢ := Z?.j:l Tij Gij, and the conjugate tensor

T := (T4j). Finally, in what follows we utilize the standard terminology for Sobolev
spaces and norms, employ 0 to denote a generic null vector, and use C, with or without
subscripts, to denote generic constants independent of the discretization parameters,
which may take different values at different places.

2. Preliminaries. We denote by Q C R? a generic bounded polyhedral domain
and let n be the outward normal vector on its boundary 3. We recall that

H(curl; Q) := {W € [L*(Q)]* 1 curl(W) € [L*(Q)]° }

endowed with the norm IW [ fcurto) = W72y +leurl(W)|[7 ) is a Hilbert
space and that [C*°(Q)]? is dense in H(curl; Q). As usual, curl(W) stands for the
vector defined formally by V x W. We also recall that

H(div; Q) := {7 € [L>(Q)]***:  div(r) € [L*(V)]*},
endowed with the norm ||7(|3 giv.0) = [ITl72sxs + [1AiV(T)[[72 () is a Hilbert

space and that [C>(Q2)]>*3 is dense in H(div;2). Here, div stands for the usual
divergence operator div acting on each row of the tensor 7. It is well known that the

mapping
Yot €@ — [L2(D)),
T — Yp(T):=Txn
can be extended to define a normal trace operator
o) ot H@diviQ) — [H D),
T — Yal7)

which is bounded, is surjective, and possesses a right inverse.

Tangential traces of functions in H(curl; Q) are also well understood even in the
case of polyhedral domains, thanks to the recent results of [5], [6]. We give here a
brief summary of these fundamental tools. To this end, we begin by defining the space

LA(S) = {p e [L2®F: p-n=0}
and the tangential trace mapping
Yer [CF@Q)F = LY(D),
v 7, (v) == vls X m,
together with the tangential projection operator
m: [CF(Q) = Li (%),

v (V) :i=n X (v|g X n).
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Because of the orthogonality condition defining LZ(X), this subspace of [L%(X)]? is
considered in what follows as a space of two-dimensional (2D) tangent fields.
Let us now introduce the spaces

HY2(S) = 7 (H'(QF)  and  H(®) = m (H' Q).

which are endowed with the natural Hilbert space structure that makes both =, :
[H1(Q)]? — Hi/Z(E) and ¢ : [HY(Q)]? — Hi/Q(Z) bounded and surjective. Simi-
larly, for any 6 € (0,1), we define

H{(2) := m([HT/2(Q)])

and provide it with an inner product that renders my : [HOt1/2(Q)]3 — H‘ﬁ(E)
continuous. We refer to [5] for an explicit definition of these spaces in the case of
Lipschitz boundaries with piecewise smooth components. In the following, we will
also write v, () (or mw(p)) for ¢ € [HY/2(%)]3, which should be understood as
v (7 1)) (or we(y 1)), where v~ : [HY/2()]? — [H'(Q)]? is a given bounded
right-inverse of the usual trace operator v : [H'(Q)]* — [H'/2(%)]3.

Next, we introduce the dual Hll/z(E) of Hi/Q(Z) and the dual H_l/Z(E) of

Hﬁ/ ?(%) with respect to the pivot space LZ(X). Then, it is easy to deduce from the

Green formula
(2.2) /Q {u -curl(v) — v - curl(u) } = /E'yt(u) -7 (V) Yu,v € [C*(Q)°

and the fact that [C*°(Q)]? is dense in H(curl;2) that v, and m¢ can be extended
to define bounded tangential mappings from H(curl; Q) onto H[l/ *(%) and from
H(curl; Q) onto Hll/ 2(Z), respectively. A more precise result is given by the follow-
ing theorem (see [7]) (we refer to [5], [7] for the definition of the differential operators
divy, and curly, on piecewise smooth Lipschitz boundaries).

THEOREM 2.1. Let

H2(divsy; %) = {u cH'(8): dive(p) € H—1/2(E)}
and
H™ Y2 (curly; X)) := {u ceH'2(®): cwrlg(p) € H—1/2(E)} .
Then
v; : H(curl; Q) = H~Y2(divs; ¥)  and 7 : H(curl; Q) — H™Y2(curly; %)

are bounded, are surjective, and possess continuous right-inverses. Moreover, the
[L2(X)]3-inner product can be extended to define a duality product ( -,- )¢5 between
the spaces H='/?(divy; X)) and H~/?(curly; ¥).

As a consequence of this theorem, Green’s formula (2.2) can be extended to func-
tions u, v in H(curl; Q) if the boundary integral of the right-hand side is interpreted
as (v¢(u), e (v))e,x, that is,

(2.3) /Q {u -curl(v) — v - curl(u) } = (vy¢(u), (V) )e.» Vu,v € H(curl; Q).

In addition, exchanging the roles of w and v in (2.3), we find that

(2.4) (ve(w), T (V) o5 = = (Y (v), T (u) )e.» Vu,v € H(curl; Q).
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3. The model problem. We consider a bounded, connected, and simply con-
nected polyhedron Q, C R3 representing a homogeneous elastic body immersed in
an electromagnetic medium filling the whole space. We assume that the system con-
sisting of the electromagnetic field and the elastic body interacts only through the
interface X := 9.

Let €, u, and o be the electric permittivity, the magnetic permeability, and the
conductivity of the medium, respectively. These coefficients are piecewise regular real
valued scalar functions satisfying, in R3 \ €,

(3.1) o < p(x) < i, €0 < e(x) <, and 0<o(x)<a,

where the constants ey and o denote the electric permittivity and magnetic perme-
ability of free space, respectively, and [i, €, and & are given upper bounds. Moreover,
we assume that we have vacuum conditions sufficiently far from the obstacle; i.e.,
there exists R > 0 such that

(3.2) w(x) = po, e(x) =€, and o(x)=0 Va,|z| > R.

The incident electric and magnetic fields £ and H* are supposed to exhibit a time-
harmonic behavior with frequency w and complex amplitudes E* and H?, respectively.
Hence, the total electric and magnetic fields also have a time-harmonic behavior with
frequency w, namely,

E(x,t)=Re { exp (—1wt) 661/2 E(w)},
H(xz,t)=Re { exp (—r1wt) uo_l/z H(:B)},
where the complex amplitudes E and H satisfy

curl (E) —1kbH =0 in R3\Qj,

(3.3) .
curl(H) +1ka E=0 in R3\Qj,

k := w \/€q o is the wave number, and

(3.4) a(x) := c(=) + zw and b(x) = pz) Va c R3.
€0 €o W Ho

It is clear from (3.2) that
(3.5) a(z) =b(x)=1 Va,|x| > R.

On the other hand, the solid is supposed to be isotropic and linearly elastic with
mass density ps and Lamé constants us and Ag, which means, in particular, that the
corresponding constitutive equation is given by

(3.6) o=Ce(u) in €,

where e(u) := 3 (Vu + (Vu)*) is the strain tensor of small deformations, V is the
gradient tensor, and C is the elasticity operator given by Hooke’s law,

(3.7) CCi=Atr(Q)T+2pC V¢ € [LP(Q)P%.
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Since the elastic displacement is also a time-harmonic field with the same frequency
w, the unknowns o and wu satisfy the elastodynamic equation:

(3.8) div(o) + k2u =0 in Q,

where k4 := ,/ps w is the wave number in the obstacle.

We now let n denote the unit normal on X oriented towards the exterior of €.
Then, according to Voigt’s model (see [10], [20]), the transmission conditions coupling
(3.3), (3.6), and (3.8) on ¥ are given by

Exn=uxn onX,

3.9
(3:9) inn:—a'n on X.

k
In addition, the scattered electromagnetic field exhibits the Silver—Muller asymptotic
behavior
(3.10) (E—E')x — +(H-H') =0 (i>
|| ||
as |x| — +oo, uniformly for all directions %I We notice that this asymptotic behavior
implies that the outgoing waves are absorbed by the far field. Motivated by this fact,
and aiming to obtain a suitable simplification of our model problem, we now introduce
a sufficiently large sphere I' centered at the origin, define (2, as the annular region
bounded by ¥ and I', and consider the boundary condition:

(3.11) (E-EYxn+(H-H)=0 onT,

where m denotes also the unit outward normal on I'. Actually, in order to avoid
later introducing a nonconforming Galerkin scheme, we may simply think of I" as the
polyhedral surface resulting from a sufficiently accurate approximation of the given
sphere.

In this way, (3.3), (3.6), (3.8), (3.9), (3.11), the expression E = —(1ka)?
curl (H) of the electric field in terms of H, and the fact that a = 1 on T" (cf. (3.5)) lead
us to the following formulation of the problem: Find H : Q,, — C3, o : Q, — C3*3,
and u : Qy — C3 such that

curl (a~!curl (H)) —k*bH=0 in Q,
oc=Ce(u) in Q,
div(o) + x2u=0 in Q,
(3.12) (@)
ateurl(H)xn+1kuxn=0 on X,
Bon-+1kH xn=0 on X,
curl(H) xn—1kH=g on T,
where g := —1k(E" x n+ H"). Note here that the transmission conditions on ¥ and

the boundary condition on I' can be expressed in terms of the tangential and normal
trace mappings v, and ,,, as follows:

(3.13) ~ela  eurl (H)) = —1 kv, (u) on X,
(3.14) 1k (H) = —k*~,,(6) on X,
and

(3.15) vi(curl (H)) =1k H + g onT.
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4. The continuous variational formulation. In this section we derive the
full continuous variational formulation of (3.12). We begin by noticing, as we will see
below, that the natural space for the magnetic field is given by

Hr(curl; Q,) = {W € H(curl; Q,,,) :  m(W) e L{(I)},
which, equipped with the graph norm

(41) ||W|‘%-Ip(curl; Q) = HWH%-I(curl;Qm) + ||7Tt(W)H[2L2(F)]37

is a Hilbert space.
Now, we test the first equation of (3.12) with a function W € Hr(curl; Q,,),
and use Green’s formula (2.3) and the fact that a =1 on I" (cf. (3.5)) to obtain

(4.2) /Qm {aflcurl(H) ccurl(W) —k*b H - W}
+ (v (e eurl(H)), me(W) )iz — (vg(curl(H)), me(W) )e.r = 0.

Then, incorporating the transmission condition (3.13) and the boundary condition
(3.15) and using the identity (2.4), we find that (4.2) becomes

(4.3) an (FL, W) + 1k (v, (W), mo (1) Yoy = /F g m (W) YW € Hr(curl; ),

where a,,, : Hr(curl; Q,,) x Hr(curl; Q,,) — C is the bounded bilinear form defined
by

an (H, W) = / {(fl curl(H) - curl(W) — k2b H - W}
(4.4) $m
—Zk/Trt(H)-Trt(W) VH,W € Hr(curl; Q,,).
T

On the other hand, in the obstacle 5 we proceed as in [12] and introduce the
antisymmetric part r := Vu — e(u) of the tensor Vu and the trace ¥ = y(u)
on ¥ as additional unknowns. Then, we multiply the constitutive law (cf. (3.6))
C~lo = e(u) = Vu — r by a test function 7 € H(div; €2,) and integrate by parts to
obtain

/ Cilo':T:—/ u-div(7’)—|—<'yn(7'),1/;>g—/ roT V1 € H(div; Q),
Qg Qs

Qs

where, hereafter, (-,-)s stands for the duality pairing between the spaces [H~/2(%)]?
and [H'/?(X)]® with respect to the [L?(X)]3-inner product. Next, the displacement
field w is eliminated from the last identity by using the expression

1
(4.5) u=—— div(o) in Q,

which follows from (3.8). In this way, we arrive at the following variational formulation
in Q:

(4.6) as(o, 1) — k? / riT+E(7,(T),%)s =0 V1 € H(div; Qy),
Q

s
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where a, : H(div; ;) x H(div; ,) — C is the bounded bilinear form defined by
1
(4.7) as(o,7) = k? {— / Clo: 1+ s / div(o) - div(T)}
Qs s Qg

for all o, 7 € H(div; ;). Finally, the symmetry of the stress tensor o and the second
transmission condition on ¥ (cf. (3.14)) are imposed weakly through the equations

2 o s— s 2(0,)]3x3
(48) # [ oiaz0 veelt@,
and
(19) K {(7a(@)@)n 1k (v (H)m(@) o =0 Ve e [HAD),

respectively, where

L2 Q)53 = {s € [L2(Q)]%: s=—s").

asym

We now introduce the spaces

X := Hr(curl; Q,,) x H(div; Q,) and M := [HY3(Z)]® x [L2(Q,))223

asym

endowed with the corresponding Hilbertian product norms. Then, (4.3), (4.6), (4.8),
and (4.9) yield the following global variational formulation of problem (3.12): Find
(H,o) € X and (v, 7) € M such that

(410) A((H,0),(W, 7)) +B(W,7),(¢,r)) =L(W, 7)) vV(W,T)eX,
B((H,0),(¢,5)) =0 V(p,s) € M,
where A : X x X — C and B : X x M — C are the bounded bilinear forms defined by
(4.11) A(H,o),(W,T)) :=a,(H,W)+a(o,7)
for all (H, o), (W, T) € X, and
(4.12)
B(W,7), (p.5)) i= —k? / sk (7 (1)@ s+ 1k (7 (W), me(9) e

for all (W, 7),(¢,s)) € X x M, and where L : X — C is the bounded linear form
given by

L(W. 7)) = [ g m(W).

5. Analysis of the continuous variational formulation. In this section we
proceed analogously to [7] (see also [12]) and employ suitable decompositions of
Hr(curl; Q,,) and H(div; ) to prove that (4.10) becomes a compact perturba-
tion of a well-posed problem. In particular, the splitting of H(div; ) is defined in
terms of an elasticity problem in g with Neumann boundary conditions, whereas a
well-known result on divergence-free potential vectors is the basis of the splitting of
Hp(curl; Q,,). More precisely, let us first introduce the space

H(div0; Q) == {W € H(div; Q) : div(W) =0 in Q, and (~,, (W), 1)y = o}.

Then, we recall from [15] the following classical result.
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LEMMA 5.1. There exists a bounded linear operator
L : H(div0; Q) — [HY(Qm)]?

such that div(L(W)) =0 and curl(L(W)) = W for all W € H(div0; Q,,).
Proof. For the proof, see Theorem 3.4 in Chapter I of [15] or Lemma 3.5in [2]. O

5.1. A regular splitting of Hr(curl; ,,). We first observe that, given W €
Hr(curl; Q,,), curl(W) belongs to H(div0; 2,,,). In fact, it is clear that curl(W) is a
divergence-free element of H(div; £2,,,). Next, in order to show that (vy,, (curl(W)), 1)s
= 0 we recall that ~,,(curl(W)) = divs (v, (W)) and that the adjoint of divy is —Vyx
(see [5], [7]). It follows that

(Yn(curl(W)), 1)s = (divs(v¢(W)), Dz = =(7:(W), Va(1))ex = 0.

Then, it is clear that the mapping curl : Hr(curl; Q,,) — H(div0; Q,,) is bounded.
In addition, it is easy to see, using the trace theorem, that the injection i : [H1(,,)]?
— Hr(curl; ©,,) is also bounded. Hence, we can introduce the bounded linear
operator P, :=1io L o curl; that is,

P : Hr(curl; ©,,) — Hr(curl; Q,,),
(5.1)
W = Pp(W):=L(curl(W)).

Now, from Lemma 5.1 we have that curl(P,,(W)) = curl(W) in Q,,, which im-
plies that P2 = P,,, and therefore P,, provides a stable and direct Helmholtz-type
decomposition

(5.2) Hr(curl; Q,,) = P (Hr(curl; Q,,)) ® (Z — Pm)(Hr(curl; Q,,)).

Hereafter, Z stands for a generic identity operator. Equation (5.2) means that any
element H € Hr(curl; ©,,) admits the unique regular splitting (cf. [4], [16])

and the norm

1/2
W = [[[W]llar (curl; 0,,) = {Hpm(W)H%IF(curl; Qm)+H(I_Pm)(W)||f{F(cur1;Qm)}

is equivalent to W — ||[W||g, (curt;0,,) o0 Hr(curl; Q,,). More precisely, since
|Pmll = [IZ — Pum|| (see Lemma 5 of [23]), we have

1
V2Pl

for all W € Hr(curl; ,,).

Finally, thanks to the compact imbedding [H'(Qm)]? C [L?(Qm)]?, we have the
following result.

LEMMA 5.2. The mapping Pp, : Hr(curl; Q,,,) — [L2(Qm)]? is compact.

(54) |||W|||Hr(curl; Q) < HW”Hr(curl;Qm) < \/5 |||W|||Hr(curl;9m)
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5.2. A regular splitting of H(div; Q). Here we extend the analysis of sec-
tion 4.1 in [12] to the 3D case. In fact, let RM(€2,) be the space of rigid body motions
in €g; that is,

(5:5) RM(Q):={v:9,5C: v@) =a+Bxz VzeQ, a,BeC |,

and let M : [L?(£2,)]3 — RM(Qy) be the [L?(Q4)]*-orthogonal projection. Then, given
T € H(div; Q), we let @ € [H(Q)]® be the unique (up to an element in RM(2;))
solution of the boundary value problem

(5.6) & =Ce(a), div(s)=(T—M)(div(r)) inQ, ~,(6)=0 onX.

Owing to the regularity result for the Neumann-elasticity problem on Lipschitz poly-
hedral domains (see [11]), we know that there exists e € (0,1] such that the solution
4 of (5.6) belongs to [H17¢(Q)]® and satisfies

(5.7) ||ﬂ||[H1+€(QS)]3 <C ”diV(T)H[LQ(QS)]?’-

On the other hand, following the usual procedure, we deduce that the dual-mixed
variational formulation of (5.6) reads: Find (&, (@, 7)) € H x Q such that

/ c—1&:%+/ {ﬁ-div(%)+i’:%}:0,
Qs Q

(5.8) .
/QS {i;-div(&)+§:&}:/Qsﬁ-(I—M)(div(T))

for all (7,(9,8)) € H x Q, where # is the auxiliary unknown (named rotation) given
by

#om 5 (Vi (Vi)
(5.9) H = {7‘ € H(div; %) : 7v,(r)=0 on¥ }
and
(5.10) Q= (T — M)([L*(2:)]%) x [L* ()25

Then, adapting the theory from [3], [19], one can easily show that (5.8) is well-posed.
Moreover, using (5.7), we deduce that

(5.11)  lollme@.exe + @l e,y + 17l @)pxe < Clldiv(T)llz2@,)-
Then, we introduce the linear operator
P, : H(div; Q5) — H(div; Qs),
(5.12) ~
T = Ps(r):=0.

The continuous dependence result for (5.8) insures that P, is bounded. In addition,
from the second equation of (5.8) we find that Ps(7) is a symmetric tensor and that
div(Ps(1)) = (Z — M)(div(7)) in Q. The latter implies that P2 = P, and hence
the following stable splitting holds:

(5.13) H(div; Q) = P,(H(div; Q) ® (Z — Ps)(H(div; Q).
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This means that each tensor 7 € H(div; Q) admits the unique regular decomposition
(cf. [12])

(5.14) T =Ps(T)+ (T —Ps)(71).
Moreover, the identity ||Ps|| = ||Z — Ps|| (see Lemma 5 of [23]) yields
(5.15)

T (aiv; 0.) < ITlE@iv; 0.) < V2 [7Ilaiv; 0. V7 € H(div; Q),

1
V2P

where

1/2
T = |[ITlll\@iv: .) = { [1Ps(T) Fx(aiv: 0.y + 1(Z = Po)(T)F(dtiv: 0. } :

LEMMA 5.3. The mappings Ps : H(div; Q) — [L*(Q)]>*? and div(Z — Ps) :
H(div; Q) — [L*(Qs)]* are compact.

Proof. The first assertion of the lemma is a consequence of the regularity result
Ps(H(div; Q) C [HE(Q5)]>*3 and the compact embedding H¢(Qs) < L*(Qs). The
second follows from the fact that div(Z — Ps) is a finite rank operator since div(Z —
Ps)(T) =M(div(T)) € RM(Q,) for all 7 € H(div; Q). O

5.3. Well-posedness of the continuous formulation. In this section we ap-
ply the stable decompositions (5.2) and (5.13) to reformulate (4.10) as a compact
perturbation of a well-posed problem. To this end, we first introduce the bounded
bilinear forms

at (H,W) = / {(fl curl(H) - curl(W) + k2b H - W}
(5.16) em
—1k | m(H) - we(W) VH,W € Hp(curl; Q,,)
T
and
(5.17)

al(o,7):=k* {/ Clo:7+ % / div(o) - div(7) } Vo, € H(div; Qy),
Qs ks Ja,

which arise, respectively, from the forms a,, and a, (cf. (4.4) and (4.7)) after per-
forming a suitable change of sign in each. More precisely, note that

(5.18) al (H,W) :am(H,W)+2k2/ bH-W
U
and
(5.19) al(o,7)=a,(o,7) +2k* / Clo:T.
Q.

Then, employing (5.3) for each H,W < Hr(curl; Q,,) and (5.14) for each o, 7 €
H(div; ), we deduce from (4.11), (5.18), and (5.19) that the bilinear form A can
be decomposed as

(5'20) A((H7 0')7 (W, T)) = AO((H7 0')7 (W7 T)) + KO((Hﬂ 0)7 (W, T)),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/16/12 to 156.35.192.4. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

ELECTROMAGNETIC-ELASTIC INTERACTION PROBLEM 1349

where

Ao((H,0),(W,T)) = a,, (P (H), Pm(W)) — a,,(Z = Pr)(H), (Z = Pm)(W))

o) =2k [ m(E =P ml(T =) (W)

T at (Py(e), Po(r)) — af (T - Pu)(o), (T = P,)())
and
(5.22)

Ko((H,0),(W,T)) =2a;,(Z - Pn)(H),(Z - Pn)(W))
+a, (Po(H), (I = Pm)(W)) + 2zk/F7rt((I = Pm)(H)) - (T — Pm)(W))

a2, (Z — Po)(H), Pon(W)) —2k2/ bH W
Qo

+2af((Z - Ps)(o), (T —Ps)(1))+al(Ps(o),(T—Ps)(T))
+at (T - P.)(0), Pu(r)) —2k2/ Clo:r
Qg

Similarly, it is clear from (4.12) that the bilinear form B can be decomposed as

(5'23) B((W, T), (907 3)) = BO((W7 T)v (CP, 3)) + Kl((Wﬂ T)? (<P7 S))a
where
(5.24) Bo(W, 7). (p8)) i= —* [ 7584k (7a(r).0)s
Qs
and
(5.25) Ki(W,7),(p,8)) == 1k (7(W), me() )¢,

Next, we let Ag,Kg : X — X and By,K; : X — M be the linear and bounded
operators induced by the corresponding bilinear forms, and let B, K} : M — X be the
associated adjoint operators. Then, the continuous variational formulation (4.10) can
be rewritten as the following matrix operator equation: Find ((H, o), (¢, 7)) € XxM
such that

Ay Bj (H,o0) Ko K3 (H,o) L
5.26 0 ’ + ! ’ = ,
(5.26) (Bo 0 )( (3.7) Ki 0 )\ (.r) 0
where L € X is the Riesz representant of L.
In what follows we prove that the matrix operators on the left-hand side of (5.26)
are invertible and compact, respectively. For the invertibility we apply the Babuska—
Brezzi theory and begin the corresponding analysis by establishing the inf-sup condi-

tion for the bilinear form By.
LEMMA 5.4. There exists 8 > 0 such that

|B0((” ,T),(QO,S))|
. v .
(5.27) (W’TS)E%{O} W)l > B (e, 8)llm (p,8) €M
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Proof. 1t is easy to see that
| BO((Wa T)v (SO, S)) |

sup
(5.28) (w,r)ex\{0} (W, 7)lx
' | = k2 [y T s+ k2 (7). 0)s |
= sup .
TEH(div; 2,)\{0} 7|l 1 (div; 2.)

Thus, the rest of the proof reduces to deriving the corresponding lower bound for the
latter supremum, which, as shown in what follows, proceeds analogously to the 2D
case (cf. [12, Lemma 4.3]).

We first let S : [H~/2(%)]* — H(div; Q) be the bounded linear operator defined
by

S():=Vz V&= (6,6.86) € [HVAD)P,

where z € [H'(Qs)]? is the unique weak solution, up to a constant vector in C3, of
the boundary value problem with Neumann boundary conditions:

Az = ﬁ (<§131>Ea<€271>27<§371>2)t in QS’ VH(VZ) :S on .

It follows that ,,(S(€)) = € on ¥, and hence
[ = # Jo, 78 K (u(7). )z |

sup
TEH(div; 2.)\{0} 7l (aiv: 2.)
— k2 S(&): s+ k?(~,(S(8)),
(5.29) > s | =+ Jo, S(&) (Yn(5(8)), )5 |
ge[H-1/2()]3\{0} 1S (&)l excaiv; 2.)

k2
> sl el zrirz sy — K I8l pzca, -
We now let T : [L?(2,)]25% — H(div; Q) be the bounded linear operator de-
fined by
T(s) :=¢e(w)— {s(z) + s} Vs e [LQ(QS)]ESX},?H,

where z € [H}(Q5)]® and w € [H'(£2,)]® are the unique solutions of the boundary
value problems

—dive(z) =divs in Q, z=0 onX
and
—dive(w)+w =0 in Qq, Yn(e(W)) =v,(e(z) +8) on X.
It follows that +,,(T'(s)) =0 on X, § (T(s) — T'(s)*) = —s in €2, and hence
wp TP st B (yn(m). @) |
TeH(div; Q:)\{0} ”THH(div;Qs)
| =K Jo, T(s) : 5+ (1 (T(s)). ¢ ) |
”T(S)HH(div; Q)

B lslfia@prs o K2
_ 2 3x3.
IT(s)lexcaivi e,y ~ 1T

(5.30)
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Finally, it is not difficult to see that the estimates (5.28), (5.29), and (5.30) imply
(5.27). O

We now aim to show that Ag is bijective on the kernel of By. To this end, we
first observe from (5.16), recalling the definition of the coefficient a (cf. (3.4)), that
for each W € Hr(curl; Q,,) there holds

(5:31)  Re{a},(W, W)} = /

{ 0 eurl(W)? + K2b W } ,
(92

€+ (o/w)?)

which, according to the definition of b (cf. (3.4)) and the assumptions (3.1), yields
(5.32) Re{a;(W,W)} > o1 [Wlkeara,) YW € Hr(curl; ),

where

2
. €0 2
= —— k% 5.
c1 mln{ 5 (/) }

Also, we notice here for later use that

(533 Im{af(W. W)} = —/Qm % leurl (W) 2 = k e (W)

LEMMA 5.5. Let'V be the kernel of By; that is,
Vi={(W,7)eX: Bo((W,7),(p,8) =0V (p,s) eM}.
Then, there exists o > 0 such that

| AO((H7 0')7 (W, T)) |
(5.34) (w,rs)lell\:)/\{o} W >a|(H,o)|x V(H,o)eV.

In addition, there holds

(5.35) (Hsu%oGV |Ao((H,0o),(W,T))| >0 V(W,T) e V\{0}.

Proof. From the definition of By (cf. (5.24)) we deduce that V = Hp(curl; §,,) x
V', where

(5.36) V= {T eH(div; Q5): 7=7"inQsand v,(1r)=0o0on ¥ }

Now, given a parameter n > 0 to be chosen later, we let = : X — X be the linear
operator defined by

(5.37)
EW,r)=E1(W, 1)+ Z(W,r) V(W,T) € X:=Hr(curl; Q,,) x H(div; Qj),
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It follows from the boundedness of P,,, and P; (cf. (5.1) and (5.12)) that Z is bounded.
In addition, since Py(7) is symmetric and 4,,(Ps(7)) = 0 on X (see details in sec-
tion 5.2), we deduce that (2Ps —Z)(1) € V for each 7 € V, and hence E(W, 1) € V
for each (W, 1) € V. Thus, we have in particular that

|AO((H70)7(W77))| |A0((H70)7E(H75))|
. T [ P

for all (H, o) € V\{0}, where
(540)  Ao((H, o), Z(H, 7)) = Ao((H, o), %1 (F, ) + Ao((H, o), 55 (H, 7).
Since P2, = P,,, and P2 = P;, we observe that
PP —T) =Py (L —P) 2P —I) = —(T — Prm),
and analogously for P,, whence we obtain from (5.21) that
Ao((H o), 21 (F, ) = (P (), () + (T — Py (H), (Z — o) ()
(541)  +20k|me((Z — Po)(H))llfp2rys +al (Ps(o), Ps(@))
+al((Z—Ps)(0),(Z—Ps)@)).

Applying (5.32) to the first two terms on the right-hand side of (5.41), we deduce
that

o) Re{a;(Pm(H), Pon(H)) + at (T — Po)(H), (T — Pm)(ﬁ))}
| > e { 1P (B s curt ) + 1T = Po) (D o urtsn)

for all H € Hr(curl; Q,,). Next, employing the same arguments as in the 2D case
(see section 4.2 of [12], particularly Lemmas 4.6 and 4.7), one can show that there
exists ¢ > 0 such that

(5.43)

Re{al (Py(e), P.(@)) +a (T = P)(0). (L~ P)@) } = e2 o lxamin,y Yo € V.
In this way, thanks to (5.41), (5.42), and the above inequality, we deduce that

Re{ Ao((H,0), 21 (H, )} = { e1 11Pon (H) [geun 0,
(5.44)
+ et 1T = Pon) (D geurts ) + €2 N0 aqaiviay |V (H,0) € V.

On the other hand, it is clear also from (5.21) that
Ay((H,0),=5(H,7))
(5:45) = { &l (P (H), Pou(H)) = af,(Z = Pon) (H), (T~ P) () }

+2kn ||[we(Z = Po) (H)) 12 rype-
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Then, using that Re(z2) = —Im(z) and (5.33), we obtain that

Re{Ao((H,a),Eg(ﬁ,E))}:n/ﬂ 62?22//2))2) |curl(P,, (H))|?
kP (ED ey 0 [ 5T (@ - P ()P

+hn |7 ((Z = Po) (H))Ifr2 0

which, thanks to the assumptions (3.1), and defining Cs := 7/(eow), yields

Re{ Ao((H,0), Zo(H, 7)) b = { o |1me(Pon (D) oy
(5.46)
k|17 (Z = Pon) (D) qryge = Con T = Pon) (D ety

for all (H,o) € V. Consequently, having in mind (5.40), adding (5.44) with (5.46),
choosing 1 € (0,¢1/C5), and then applying the equivalence estimate (5.4), we find
@ > 0, depending on ¢y, co, k, 1, and Cs, such that

(5.47)  Re{Ao(H,0),Z(H.?)} > a|(H o)} V(H.o)eV,

which, using the boundedness of =, yields the existence of a > 0, depending on & and
IIZ|l, such that

| AO((Hv 0')7 E(ﬁv E)) |

(548) ECI

zall(H,o)|x  V(H,o) € V\{0}.

The above estimate and (5.39) prove the inf-sup condition (5.34). Finally, the sym-
metry of Ay and (5.34) provide the inf-sup condition (5.35). O

We remark here that the purpose of introducing the parameter 7 in the definition
of Zp (cf. (5.38)) is twofold. On the one hand, a positive value of 1 makes the
boundary term |7 ((Z — Pm)(H))”[Qm(r)]-% appear (see (5.46)), which is needed to
define [|(Z — ’Pm)(H)H%IF( (cf. (4.1)). Tt is important to note that ||mw¢((Z —
Pm)(H ))H[zL2 (ry is not a compact term, and hence it cannot be simply added and
subtracted. On the other hand, the addition of (5.44) and (5.46) yields the expression
(c1—Con) ||(Z—Pm)(H) H%I(wrl; a,,)> and then a sufficiently small 7 allows us to derive
the bound

(e1 = Com) [I(Z = Pr) (H)fx(curt; ) = €I = P (H) [ frcurt; 0,0)»

which provides the domain term defining ||(Z — ,Pm)(H)”%Ir(curl;Qm) (cf. (4.1)). Fi-
nally, we notice that using the present definition of = (cf. (5.37)) is equivalent to
employing

curl; Q,,)

EW,T)=(1-11)(2Pn —-I)(W),2P; —I)(1)).

As a consequence of Lemmas 5.4 and 5.5 and the well-known Babuska—Brezzi

theory, we deduce that the matrix operator ( %2 Eg; ) : Xx M — X x M becomes an

isomorphism.
LEMMA 5.6. The operators Ky : X = X and Ky : X = M are compact.
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Proof. We first observe from (5.22) that the bilinear form Ky can be decom-
posed as

Ko((H,o), W,T)) =k (H,W) + ks(o,T),

where

km(Hv W) = 2a:;z((z - Pm)(H)v (I - Pm)(W)) + a:;z(Pm(H)v (I - Pm)(W))
+ 2zk/ 7o((Z — Pon) (H)) - (T — Pon) (W)
r
AL (T = P (H). Po(W) =207 [ bH-W
Qi

and
k(o,7) =2al((Z = Ps)(0), (T = Ps)(7)) +al (Ps(0), (T — Ps)(7))
+al (T —P,)(o),Ps(T)) — 2k / Clo:T.
Qg
Then, according to the definition of a}, (cf. (5.16)), and using that

curl((Z — Pn)(W)) =0 VW € Hr(curl; Qp,),

we find that

ko (HL, W) :2k2/ b (T — Py)(H) - (T — P)(W)
(92
+k2/Q me(H)-(I—Pm)(W)—zk/Fﬂ't(Pm(H))~7rt((I—73m)(W))
+k2/Q b(I—Pm)(H)'Pm(W)—Zk/Fﬂ't((I—Pm)(H))'ﬂ't(Pm(W))

—2k2/ bH W,
Q

m

which, after simplifying the terms involving integration on £,,, yields

k. (H,W) = —k2/

b{z Pon(H) - Pr(W) + Py (H) - (T — Pra) (W)
Qm

(L~ P (H) - Pr(W)} - zk/rm(Pm(H)) (T = Po)(W))

_ / 7 (T — P) (H)) - 704 (P (W)).
T

The compactness of Py, : Hr(curl; Q,,) — [L?(Q,,)]® guarantees that the operator
associated with the integrals on (2, is compact, whereas the compact imbedding
o ([HY(Q0)]?) := Hi/Q(F) < [L2(D)]? (cf. [17, Lemma 3.2]) implies that 7y o Py, :
Hr(curl; ©,,) — [L?(I")]3, and hence the operator associated with the integrals on T,
are both compact.
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On the other hand, since div(Z — P,)(7) = M(div(T)), Ps(7) is symmetric,

Yn(Ps(T)) = 0 on ¥ V7 € H(div; ), and Vv € [L*(Q,)]355 Vv € RM(Q;) (see
section 5.2 for details), we deduce that

/ div (Z — P;)(o) - div(P / M(div(e)) - div(Ps(T))
Qg
= —/ VM(div(o)) : Ps(T) + (1n(Ps(7)), M(div(e)) ) = 0
for all o, 7 € H(div; Q). It follows, recalling the definition of al (cf. (5.17)), that

k (o, T) = —2k2/ C ' Py(o): P sz C 1 Py(a): (T —Ps)(T)

2 k2
K3

—k2/ C T —Ps)(o) : Po(T) + / div (Z — Ps)(o) - div (T — Ps)(1),
Qs
which, thanks to Lemma 5.3, shows that the operator induced by kg is compact.
Finally, the definition of K; (cf. (5.25)) and the compact imbedding Hl/Q(E) —

I
[L2(X)]? (cf. [17, Lemma 3.2]) yield the compactness of Kj. O
We are now ready to establish the main result of this section.
THEOREM 5.1. Assume that the homogeneous problem associated with (4.10) has
only the trivial solution. Then, given H',E' H(curl; Q,,), there exists a unique
solution (H, o), (¢, 7)) € X x M to (4.10). In addition, there exists C > 0 such that

(5.49) I(H, o), (¢, 7)) llxxm < C[|(L, 0)|xsna-

Proof. Tt suffices to observe, in virtue of Lemmas 5.4, 5.5, and 5.6, that the
left-hand side of (5.26) constitutes a Fredholm operator of index zero, and hence the
well-posedness of (4.10) follows from uniqueness. O

We end this section with a uniqueness result for (4.10). Indeed, let us first notice
that there may exist singular frequencies w for which the homogeneous problem

o=Ce(u) in Qs, divo +w?psu =0 in €,

(5.50)
uxn=0 on, on=0 on?}3,

which arises from (3.12) assuming that H = H' = E' = 0, admits a nontrivial
solution.

At this point we recall that, thanks to our assumptions on Q4 and I', Q,, is a
connected and simply connected Lipschitz polyhedra with boundary 952, consisting of
two disjoint connected components ¥ and I'. Furthermore, in what follows we assume
that 2,,, can be decomposed into .J connected polyhedra ©J, such that Q,,, = U/_,
and Q¢ NQJ =0 if i # j. Then we have the following result.

THEOREM 5.2. Assume that (5.50) admits only the trivial solution. In addition,
suppose that the magnetic permeability ju is constant on each subdomain ¥, and that
the restrictions of € and o to QJ, belong to H*>(Q.) for all j € {1,...,J}. Then there
is at most one solution to (4.10).

Proof. Let ((H, o), (1, 7)) be a solution of the homogeneous system correspond-
ing to (4.10), that is, when H® = E* = 0. Then, taking W = H in (4.2) gives

/ { a~Yeurl(H)|? — k2b|H[? } + (~,(a"Leurl(H)), 7¢(H) de.x
Qm

— (¢ (curl(H)), e (H) )er =0,
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which, employing the boundary condition v, (curl (H)) =1k H on I' (cf. (3.15)) in
the last term, leads to

(5 51) /Q {a*1|curl(H)|2 _k2b|H|2} + <’7t(a71curl(H)),ﬂ-t(ﬁ) >t7z)

— vk |[mwe(H)|[fp2(ry = O
Now, from the transmission conditions (3.13) and (3.14) we have, respectively, that
mi(a P eurl(H)) = —1kmy(u) and ~(H) = —1k~,,(F) on X,

and hence, using also (2.4) and the fact that v,,(o) is tangential on 3, we deduce
that

(ve(a™ curl(H)), me(H) )o.x = — (7, (H), me(a” curl(H)) )¢ »

= i (. mw)s = 1 (omuls =2 { [ ce@:etw) o2 fulfnp |
Qs

where the last identity arises after multiplying the equilibrium equation div(e) +
k21w = 0 in Qs by w and integrating by parts. This shows that the expression

(v¢(a tcurl(H)), m¢(H) )¢ 5 is real, and, consequently, the imaginary part of (5.51)
reduces to

/Q Im(a™") [curl(H)|* — k ||7Tt(H)H[2L2(F)]3 =0,

which, noting that Im(a‘l) < 0, implies that w(H) = 0 on I'. Thus, applying the
unique continuation principle (see, e.g., [21, Theorem 4.12]), which makes use of our
hypotheses on u, €, and o, we deduce that H = 0 in §2,,. Finally, the fact that w is
not a singular frequency for problem (5.50) completes the proof. O

6. The discrete problem. In order to introduce a Galerkin approximation
of (4.10) we first let {75 }r>0 be a regular family of triangulations of Q, U Q,, by
tetrahedrons K of diameter hg, and assume that, given [ € {s,m}, Tp(4) =
{K € Th: K CQ}isatriangulation of ;. Asusual, the parameter h denotes in each
case the mesh size of the corresponding triangulation. Then, we denote by 7, (2) and
Tr(T) the triangulations induced by 75, () on ¥ and I, respectively. Also, for rea-
sons that will become clear below, we introduce an independent triangulation 77 () of
the interface ¥ by triangles 7' of diameter hr and define h := max{hr : T € T;(%)}.

In what follows, given an integer £ > 0 and a subset D of R3, Py(D) denotes
the space of complex valued polynomials defined in D of total degree < £. Also, we
introduce the finite element spaces

Sp(Q2s) ={veC’(Q): vk €P1(K) VK € Th(%)},
SP(Qs) ={v e L*Qy): v|x € Po(K) VK € Tr(Q2s)},
Sp(2) :={peC’(®): ¢lr eP(T)VT e Th(%)},
Sh®) = {peC(®): wlp e PUT) VT e (D)},
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and
SHE)={( € L*(X): Er ePy(T) VT € Th(D)}.

In addition, for any K € T5(2s) we let RTo(K) := [Po(K)]® & Po(K) x be the local
Raviart—Thomas space of lowest order (cf. [9]), that is,

RTo(K) :={v:K = C? v(@)=a+bxVx e K, acC’beC},

and denote by bx the usual bubble function on K € T,(€s), that is, bx = Hle K

where {A\K}1 | are the barycentric coordinates of K. Then, the finite element suib—’
space corresponding to the unknown o is given by
(6.1) h=RTh(S2s) ® By,
where

RT1(Q) = {r € H(div; Q,) : (1:)%|x € RTo(K) Vi € {1,2,3}, VK € Tp(Qs)}
and

B = {T C Q= C3 (1)K € curl(bK []P)O(K)]B) VK € Th(s) }7

T; being the ith row of 7.
On the other hand, for any K € T5,(Q,) we let

NDi (K) := [Po(K)]* @ [Po(K)]* x «
be the local edge space of Nédélec; that is,
NDy(K):={v: K —>C* v(x)=a+bxazVxcK, a, be C*}.
Then, the finite element subspace for the unknown H is defined by
(6.2) X7 :={W e H(curl; Q) : W|g € NDi(K) VK € T,(2mn)}.
For the remaining unknowns r and 1 we introduce, respectively, the subspaces
0 S1  So
Mp:=< |=s1 0 s3]: s €8(Q)Vie{l,2,3}, and M; :=[Si(D)°.
—s9 —s3 0

We recall here that X35 x [Sp(€2,)]® x M, constitutes the well-known PEERS method
introduced in [3] for a mixed finite element approximation of the linear elasticity
problem in the plane, which was generalized to the 3D case in [19].

Finally, we let

(6.3) Xp = le X X}SI, Mfz,h = M;l X Mh,

and define the mixed finite element scheme associated with our coupled problem (4.10)
as follows: Find ((Hn,on), (¥, 71)) € Xp x My, ), such that

o 4)A<<Hh,ah), (W, 7))+ B((W,7), (,74)) =L(W, 7)) Y(W,7) X,
' B((Hp, o), (¢, 5) =0 V(. 5) € M, .
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7. Analysis of the discrete problem. In this section we analyze the discrete
problem (6.4). We first provide several technical results in section 7.1. Then, in
section 7.2 we apply a classical theorem on projection methods for Fredholm operators
of index zero to show that (6.4) is well-posed.

7.1. Preliminaries. We let II5 : [H!(€2,)]3*3 — RT1(Qs) be the usual Ra-
viart—Thomas equilibrium interpolation operator (see [9]). We recall that II§ is char-
acterized by the identities

/HZ(T)n:/ ™n V edges E of Tn(Qs),
E E

which yield the commuting diagram property
(7.1) div(Ilj (7)) = Q;(div(r)) V1€ [H"(Q,)]**?,

where OF : [L2(2,)]? — [S})(Q25)]? is the [L?(Qs)]*-orthogonal projection. Actually, it
turns out (see, e.g., [16, Theorem 3.16]) that II; can be defined as a bounded linear
operator from the larger space [H(2)]**3 NH(div; ) into RT 1(Qs) for all € > 0,
and that the following interpolation error estimate holds true:

(7.2) |7 = I () |2 pxs < C R { 17l e s + div(T) 20 }
Next, for any § > 0 we introduce the Sobolev space
H’(curl; Q,,,) := { W € [H*(Q,)]? 1 curl(W) € [H°(Q,)]°}
and endow it with its Hilbertian norm
||W||%-I5(curl;§2m) = ||W||[2H5(Qm)]3 + chrl(W)||[2H5(Qm)]3'

Then for any edge E of 7Tp,(€,) we denote by tg a unit tangential vector along FE.
It follows from [2, Lemma 4.7] that if W € H°(curl;,,) with § > 1/2, then the
moments [ g W - tg are meaningful. This guarantees that the interpolation oper-
ator 11" : H°(curl;2,,) — X7 associated with the edge finite element, which is
characterized by

/H}L”(W)-tE:/W-tE V edges E of Tr (),
E E

is well defined and uniformly bounded. In addition, the following interpolation error
estimate holds (see [1, Proposition 5.6]):

(73) HW - HZL(W)HH(CUI‘I;QM) < C h6 ||WHH5(curl;Qm)

for all W € H(curl;Q,,) and for all § € (1/2,1]. Another useful property of 1T/ is
given by the following result.
LEMMA 7.1. For each ¢ € (1/2,1] define the space

(7.4) HY (curl; Q,,) := {W e [H Q) curl(W) € curl(X}") }.

Then, the operator 11" is also well defined in Hi(curl; Q) and there exists a constant
C > 0, independent of h, such that

(7.5) W =TI (W) |2, < CRO W ms,ye YW € Hy(curl; Q).
Proof. For the proof, see [16, Lemma 4.6]. a
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Next, we need to introduce curlp-conforming surface finite elements on the man-
ifold I'. Actually, divp-conforming finite elements on manifolds are more frequently
used in the literature since they arise naturally in the BEM-theory for Maxwell equa-
tions (see, e.g., [8] and the references therein). We still can benefit here from the
result announced in the last reference for the Raviart—Thomas finite elements, since
they may be translated to the bidimensional Nédélec finite elements by a simple 7/2-
rotation in the space variable on each one of the faces compounding I'. To be more
specific, the lowest order bidimensional Nédélec finite element (also known as the
rotated Raviart—Thomas finite element) approximation of the space

H(curlp;T) == { @ € L{(I') :  cwrlp(p) € L*(T) },
relative to the mesh 7, (I"), is given by (see (6.2))
ND(D) = e (X]).

The corresponding interpolation operator IT} : Hﬂ(F) NH(curlp; T) - NDy(T) (6 €
(0, 1]) satisfies the following error estimate.

LEMMA 7.2. For each ¢ € (0,1] there exists a constant C > 0, independent of h,
such that

o = @)z < Ch° {Ilns ) + leurle (@)l ey}

for all ¢ € Hﬂ(F) N H(curlp;T).
Proof. For the proof, see [8, Lemma 15]. O
For tangential vector fields with a discrete curly, there holds the following variant.
LEMMA 7.3. For each ¢ € (0,1] there exists a constant C > 0, independent of h,
such that

o~ T (@)llzeye < C1 Illugey Vo € HYT) such that curle(p) € SY(T).

Proof. For the proof, see [8, Lemma 16]. O

In this way, recalling the definition of the norm || - [ (curl; 0,,) (see (4.1)) and
using the commuting diagram property ¢ II7* = II} ¢ together with (7.3) and
Lemma 7.2, we deduce that for each 0 € (1/2,1] there exists a constant C' > 0,
independent of h, such that for all W € H°(curl; (2,,,) satisfying (W) € Hﬁ(f‘) N
H(curlp; I") we have

HW - HZn(W)HHF(curI;Qm)
m 2 m 2 1/2
(76) = {IW =IOV reurt ) + e (W = T (W) sy |
< O {IW s eurria,) + 76 (W) g oy + lewrte (e (W) 2oy
which constitutes an approximation property of the space X}*. The corresponding
properties of the remaining finite element subspaces are established as follows (see,
for instance, [21]):

(AP“r) For each € € (0,1] and for each T € [H¢(Q5)]3*3, with div(7) € [H¢(Qs)]3,

I = 105 (M) llixaivi ) < C B LTl ayes + 1iv(m) oy }-
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(AP¥) For each € € (1/2,3/2] and for each ¢ € [H(Z)]?,

(Psfelfv[} e — @nlliiremys < CRTY2 |l e (sye-

(AP7) For each € € [0,1] and for each » € [H(Q4)]>*3 N [L?(Qs)]3233

asym’

Thiéllf/[h ||’l" — ThH[L2(QS)]3><3 < C h¢ H?"H[He(gs)]sxs.

(AP¥) For each € € [0,1] and for each v € [H®(£2,)]3,
lv = Qi (v)lliz2 (. < C A [0l e (0.2

Note that (APY) is actually a straightforward consequence of (7.1), (7.2), and
(AP}).

We end this section with the following inverse inequality.

LEMMA 7.4. Assume that the family of triangulations Ty (X) is quasi-uniform.
Then, for each 6 € [0,1) there exists a constant C' > 0, independent of h, such that

el grrvees sy < Ch™? el arrzis) Vo e SiE).

Proof. This result follows easily by combining known results (cf. Lemma 5.57
and Remark 5.58 in [21]) with classical interpolation results. We omit further details
here. a

7.2. Well-posedness of the discrete problem. In this section we prove the
well-posedness of the discrete problem (6.4). For this purpose, according to a classical
result on projection methods for compact perturbations of invertible operators (see,
e.g., Theorem 13.7 in [18]), it suffices to show that the Galerkin scheme associated
with the isomorphism (%g Bg; ) is well-posed. Hence, in what follows we prove that Ay
and By satisfy the corresponding inf-sup conditions on the finite element subspace

Xp x Mj, ,, thus providing the discrete analogues of Lemmas 5.4 and 5.5.

LEMMA 7.5. There exist Cy € ]0,1[ and 3 > 0, independent of h and h, such that
for all h < Cyh and for each (¢, 7) € M, ;, we have

|Bo(W,7),(¢p,7)) |
7.7 |
i R T T\ esT PR B, )l

Proof. The proof results from a slight adjustment of that given in [12] for the 2D
case. Indeed, applying [19, Theorem 4.5], as done in [12, Lemma 5.1], we deduce the
existence of C; > 0, independent of h and h, such that for each (¢,7) € Mfuh we
have

| BO((W7 T)v (’l/’, T)) |
7.8
(%) Wty TV, 7)x

> Cl HTH[L2(QS)]3><3'

Now, according to the uniform extension provided in [22, Theorem 4.1.9], there exist
a linear operator &, : [SP(X)]> — X and a constant Cy > 0, independent of h, such
that

Yn(En(€r) =&, onX and [|Ex(€s)llr(aivia.) < Co l€nllim-1/2(5e
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for all &, € [S?(X)]3. Hence, recalling the definition of By (cf. (5.24)), it follows that
[Bo((W, 1), (¢,m)) | _ | Bo((0,&n(&n)), (4,7)) |

sup =
(w,m)EXx\{0} (W, 7)lx 1€n (&) ll1n(aivi )
(7.9) ,
k En ¥
LA S I32 R {7l 2 uasxs V&, € [Sp(2)]7\{0}.

=~ Co |&pllim-1/2(m)ps

Now, given ¢ € M;\{0} := [S}L(E)P\{O}, we let z € [H'(Q4)]® be the unique
solution of the problem

—Az+2z=0 in Q;, z=1 onX.

Notice that the corresponding continuous dependence result gives

(7.10) 12l @ < clldbllipzs)e,
and, by virtue of the trace theorem and Green’s formula, we also have that
(7.11) Cs ||1/’||[H1/2 ) = 21T 0oz = (Tn (V2), 9 )5

Moreover, since v is a piecewise-polynomial continuous function on ¥ and € is a
Lipschitz polyhedral domain, the solution z belongs to the Sobolev space [H'+9(£,)]?
for a suitable § € (1/2,1) (see [11]), and the following estimate holds true:

(7.12) 120l (ra+s .12 < Cal[Yll (17245 (s

We now let &, = =, (II;(Vz)). Then, applying the boundedness of the normal
trace operator (2.1), the approximation property (AP?), the fact that div(Vz) =
Az = z in g, the regularity estimate (7.12), and the inverse inequality provided by
Lemma 7.4, we deduce that

Yn(V2) = &l (m-1/2(5)2

< C||Vz ~ IG(V2) @i, < Cs b {1920 s oo + 12l s oy |

5
< Co b ||zl ires .y < CaCo h |19l asess sy < Cr <%> ¥l (1722,
which, together with the inequality
1€u 112y < YR (V2) = ERllim-17205ys + 1V (V2) l[-1/2(5)
<NV (V2) = & ll-1/2(m)s + eI V2] H@iv; 2.)5
the fact that ||Vz||maiv;0.) = |2[ljr1(0.)2, and the estimate (7.10), implies

1€l tmr-1/2(sye < Cs Il sz Vh <
It follows, using (7.11) and the above estimates, that

(&) = (Yn(V2),¥)s — (1n(Vz) — &, ¥ )

N
> {03 - Cy (E) } ||'¢||[2H1/2(2)]3

CB C7 J _
> {58 - 58 ( ) ||¢||[H1/2 ®)]3 ”EhH H-1/2(x)]3 Y h < h.

>
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In this way, substituting in particular &} into (7.9) and taking h < Cp h, with Cp :=
min{1, (52 )1/5} we deduce that

|B0((” 7T)a(1/157'))| k203
sup > P — K |r y
(w.m)EXn\ {0} (W, 7)x 20, 05 1Pl = Ko lrllize e

Finally, a judicious combination of the above inequality with (7.8) implies the required
discrete inf-sup condition (7.7), thus completing the proof. O

At this point we remark that the technical requirement arising from the above
proof, namely the condition i < Cj h, is the only reason for choosing different meshes
in the domain and on ¥. Further remarks on this matter are provided in section 8.

In what follows, and in order to establish later on the discrete inf-sup condition
for Ay, we define discrete versions of the operators P and P,,. To this end, we first
introduce finite element subspaces of H and Q (cf. (5.9), (5.10)), respectively,

Hy = {T € X} : Tn=0onX}
and
Qn = {[SH(Q2)]> NRM(Q,)* } x My,

where RM(;) is the space of rigid body motions (cf. (5.5)). Then, given 7 €
H(div; ), we consider the following Galerkin approximation of (5.8): Find the
triple (&h, (ﬁh, 'f‘h)) € H;, x Qp, such that

/QS{~ .div(&h)+§:&h}:/ﬂsf,.@_M)(div(T})

for all (7,(0,8)) € Hy x Q. Hence, proceeding analogously to the 2D case (see
section 4.3 in [13]), and noting that the corresponding Neumann boundary condi-
tion involved in (5.8) and (7.13) is homogeneous, we can show that there exists a
unique (&, (n, 74)) € Hy, x Qp, solution of (7.13). Moreover, there exist C,C > 0,
independent of h, such that

(7.14) lonlladiv; 0.) + @nllizz.)s + [17rll2@.ypxs < C|div(T) |22 (0.2
and

6 = anllaiv;a.) + 12— nllir2.ys + 17 = Fallizz.exs

(7.15) <C {|(Z —113)(0) la(aiv; 0.) + I(Z — Qp)(@) |22, )
spEM,

+ _inf H?N" - §h||[L2(QS)]3X3},

where (7, (@,7)) € H x Q is the unique solution of (5.8) and II§ : [H(Q4)]**® —
RT1(Qs) and Q5 : [L3(Q5)]2 — [S2(Q5)]? are the operators defined at the beginning
of section 7.1.
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By virtue of the previous analysis, we are now in a position to introduce a discrete
version of the operator Ps (cf. (5.12)). In fact, having in mind that (&4, (@p, 7)) €

Hj, x Qp, is the unique solution of (7.13), we define
Psn: H(div; Q) — Hy C X7,
(7.16) A H ) he
T — Psp(T) = 6.

It follows from (7.13) and (7.14) that P p is a bounded linear operator. In addition,
it is clear from the definition of Hj and (7.13) that

(7.17) Psn(t)m=0 onX and / Psn(T):83=0 V&e M,
Qs

Next, as a straightforward consequence of the error estimate (7.15) and the approxi-
mation properties provided in section 7.1, we are able to establish the following result.

LEMMA 7.6. Let € > 0 be the parameter defining the regularity of the solution of
(5.6). Then, there exists C' > 0, independent of h, such that

(7.18) H'PS(T}L) - ,Ps)h(Th)HH(div;Qs) S Ch6 HdiV(Th)H[Lz(QS)]s V'Th S Xi

Proof. The proof follows similarly to the proof of Lemma 5.4 in [12]. We omit
further details here. O

On the other hand, we now let TI}* be the lowest order Raviart-Thomas inter-
polation operator associated with the triangulation 75 (92,,). It follows, using the
well-known commuting diagram property

curl I[I}* = II7" curl,
that for each W € X}* we have
curl(P,,(W)) = I {curl(P,(W)) } = " {curl(W)}
= curl{II}"(W)} € curl(X}"),

which, recalling that P,,,(W) € [H'(£2,,)]3, shows that P,,(W) belongs to the space
H; (curl; Q,,) (cf. (7.4) with § = 1). In this way, Lemma 7.1 implies that II}* can be
applied to P, (W), and hence we define the discrete version of the operator P, as
follows:

Py X — X7,
(7.19)
W = Ppp(W) =17 (Pn(W)).
LEMMA 7.7. There exists a constant C > 0, independent of h, such that
”Pm(W) - Pm,h(W)HHF(curl;Qm) < Oh1/2 HWHHr(curl;Qm) VW e XZI
Proof. Tt is easy to see that curl(P,,(W)) = curl(P,, ,(W)), which yields
[P (W) = Pt (W)l H(curt; 2) = IPmn(W) = Pon (W)l 122,015

and hence, applying Lemma 7.1 (cf. (7.5)) and the boundedness of P, : Hrp(curl; Q,,)
— [HY(Q,,)]3, we deduce that for each W € X there holds

(7.20)
1P (W) = Pt (W)l (curt; 2) < C I P (W)l a1 (02,02 < Ch W |l e1p (curl; 0,0 -

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/16/12 to 156.35.192.4. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

1364 GABRIEL GATICA, GEORGE HSIAO, AND SALIM MEDDAHI

On the other hand, using the commuting diagram property ¢ II7* = II} 7y, we have
that

7t (Pin,w (W) = (I (P (W) =TI, (76 (P (W)).

In addition, since curlp 7wy = divp 7, and divp (v, (W)) = ~,,(curl(W)) € H-Y/%(T")
for each W € H(curl; ,,) (see [7]), we deduce that for each W € X} there holds

curly (¢ (P (W) = dive (v (P (W) = ¥y, (curl(P (W)
=7, (curl(W)) € SY(I").
Consequently, applying now the boundedness of the operators P,, : Hp(curl; Q,,) —

[HY(Q,,)]? and 7 : [HY(2,,)]2 — Hiﬂ (T") and the estimate provided by Lemma 7.3,
we find that

|70 (Pon (W) = P s (W) ||[L2(F)]3 = |[7e(Pm(W)) — 1T, (0 (P (W) ||[L2(F)]3

<Ch? |y (Pr(W)) ) S CRY2[Por(W) a2 (0,10

HHﬁ/z(r

< CRY? W sy curts 0,
which, together with (7.20), yields the required estimate. The proof is now comp-
lete. d

We are now ready to prove the discrete weak coercivity of Ay. To this end, we
let V; , be the discrete kernel of By, that is,

V= {W.m) €% By(W.r).(0.) =0V (pu8) € M, |

. m -
which becomes Vh’h = X" x Vh7h7 where

V;I_h::{‘reXfL: / T:s—l—/Tn-cp:OV(cp,s)eMﬁ_h}.
: o . :

Note that V; , is not necessarily included in V' (cf. (5.36)). Then, using the 3D version
of the equivalence estimate provided by Lemma 5.5 in [12], one can easily show the
discrete analogue of (5.43), which means that there exist positive constants ¢, ho,
independent of h and B, such that for each h < hg we have

(7.21) Re{al (Pu(0), Po(@)) +al (T~ P)(0), (T~ P)@)} = cllorascn,
Vo e sz,h'

Hence, following verbatim the remaining steps detailed in the proof of Lemma 5.5,
we arrive at the discrete version of (5.47); that is, there exists a positive constant C1,
independent of h and h, such that for each h < hy we have

(22)  Re{Ao(H.0).2H.9)} > C1[(H,0)|}  V(H.0) eV,

The discrete inf-sup condition for Ay is then established as follows.
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LEMMA 7.8. Let ho > 0 be the constant mentioned above. Then, there exist
constants C,hy > 0, independent of h and h, such that for each h < hy and for each
h < hy we have

(7.23) qp [ AH0), (W,T))|

>C|(H,o)llx V(H,o)€Vj,.
(w,7)eV; ,\{0} (W, 7)]|x ol

Proof. Following the definition of the operator = : X — X (see (5.37) and (5.38)),
we now introduce its discrete version as follows:

Eh: Xh —)Xh,

(W, 7) = (2Pmn—T)(W),(2Psn —I)(7)) +17(W,0),

where 1 > 0 is the parameter suitably chosen at the end of the proof of Lemma 5.5. Tt
follows straightforwardly from Lemmas 7.6 and 7.7, redefining € := min{e, 1/2}, that

[EW,7) =En(W,7)[lx < Coh[[(W,T)[x  V(W,T) € X

Hence, using the above estimate, the boundedness of Ay, and (7.22), we find that for
each (W,7) €V, ; we have

Re { Ao(W.7),Z0((W, ) |
(7.21) > Re { Ao(W, ), 2(W, 7)) } ~ Co | Aol k(W )%
> 1 [(W. )3~ Coll Aol [ (W, )% > - low, )

for all h < ho and for all h < hy 1= (m)l/e.
On the other hand, the boundedness of Py and P,,, together with Lemmas 7.6

and 7.7, implies the existence of C' > 0, independent of h and fz, such that
[Er(W. T)llx <C[(W,T)[lx  V(W,T) € X

In addition, it is easy to see, using in particular (7.17), that Z,(W,7) € V, ; for
each (W, r) € V, ;. Hence, (7.23) follows immediately from (7.24) and the uniform
boundedness of Z,. a

The well-posedness and convergence of the discrete scheme (4.10) can finally be
established.

THEOREM 7.1. Assume that the homogeneous problem associated with (4.10) has
only the trivial solution. Let Cy € 10,1[ and hg,h1 > 0 be the constants mentioned
above. Then, there exist hy € 10, ho] and hy € 10, h1] such that for each h < hg
and for each h < min{hy,Coh} the Galerkin scheme (4.10) has a unique solution
(Hn,on), (¥j,71h) € Xp x My, .. In addition, there exist C1,C2 > 0, independent

of h and h, such that

(7.25) I ((H ny2by), (7, 70) lxxm < C1 [[(Ly 0) [|ser e
and
(7.26)
I((H, ), (%, 7)) = (Hn,on), (¥5,78)) I
< Cq inf [((H,0), (%, 7)) = (Wh.7Th), (¢}, 51)) | xxm-

(Wh,Th),(#7,81)) EXp XMy, ),
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Furthermore, if there exist § € (1/2,1] and € € (0,1] such that H € H’(curl,Q,,),
mo(H) € HO(curly, T'), and u € [HYF¢(Qy)]3, then there holds

(7.27)
|((H,0),(®,7)) = (Hn,on), (¢ﬁ7rh))||H><Q < C3 B |||l (paee sy

+C3 K™ Ll ey + [1H s eurts,ny + 1706 (B |les (curteir) § »

with a constant C's > 0, independent of h and h.
Proof. Thanks to Lemmas 7.5 and 7.8, the first part of the proof is a direct
application of Theorem 13.7 in [18], whereas the rate of convergence (7.27) follows

from the Cea estimate (7.26) and the approximation properties of the finite element
subspaces provided in section 7.1 (cf. (7.6), (APY), (AP¥), and (AP})). a

8. Numerical results. In this section we present an example illustrating the
performance of the finite element scheme (6.4) on a set of uniform meshes of the
domain. We begin by introducing some notation. The variable N stands for the global
number of degrees of freedom involved in our Galerkin method, and the individual
errors are denoted by

e(H) = ||H — Hpllu(curs;0,.),  €(0) := [|o — onl[adiv; 0.);

e(u) = ||u - ’u,hH[Lz(QS)]?,, 6(7‘) = ||'P - 'r‘hH[Lz(QS)]?,XS,

where, as suggested by (4.5), wj, is computed as

1
up, = —— div(o in Q.
h o (on) s
Also, we let r(H), (o), r(u), and r(r) be the corresponding experimental rates of
convergence. In particular,

' log(e(H)/¢(F)
e I Y

where h and h’ denote two consecutive mesh sizes with corresponding errors e and €/,
and similar definitions hold for the rest of the variables.

We now describe the data of the example. We consider the domains Q; :=
(0.25,0.75)% and Q,, := (0,1)3 \ [0.25,0.75]3, and take the solid parameters p; =
As = s = 1 and the electromagnetic parameters € = ¢g = p = pg = 1. We take the
frequency w = 3 and ¢ = 0, whence ks = k = 3 and a = b = 1. The solution of the
elastodynamic equation is given by

sin(mxy) sin(mwag) sin(was)
u(x) = exp(z1) exp(x2) 3 (I1+2) Vx = (11,22, 23)" € Qs,
exp(r2)

whereas the function

H (x) := curl (76}{130 kRn)

7 ,0,0) Vx = (x1,72,73)" € O,

with Ry, = /(z1 — 0.5)%2 + (22 — 0.5)2 + (23 — 0.5)2, solves the first equation of
(3.12) in Q,,. It follows that (u, H) is solution of (3.12) with nonhomogeneous right-
hand side of the elastodynamic equation, nonhomogeneous transmission conditions
on Y, and suitable essential boundary conditions on T'.
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According to the requirements established in our main result, Theorem 7.1, for
the mesh sizes h and h, and since the constant Cy mentioned there is not explicitly
known, we simply put a vertex of the independent partition 7; (X) every two vertices
of T, on X. As we will see below, this choice works out well in the present example
since no spurious solutions appear. In addition, there is no need to take sufficiently
small values of h and h (as technically suggested by the inequalities h < ho and
h < hy in Theorem 7.1) since the resulting discrete schemes become all well-posed for
the degrees of freedom employed.

In Table 1 we summarize the convergence history for a sequence of uniform meshes
of the domain Q4 U €,,. We observe that e(H) constitutes the dominant part of
the total error, and that the order of convergence provided by Theorem 7.1 when
d = e = 1, that is, O(h), is fully attained by all the unknowns. Moreover, we find
that the convergence of u and r is a bit faster than O(h), which could mean either a
superconvergence phenomenon or a special feature of this particular example.

TABLE 1
Mesh sizes, degrees of freedom, individual errors, and rates of convergence (w =k = ks = 3).

h N e(H) r(H) e(o) r(o)
1/4 1043 1.166E+01 — 2.743E-00 —
1/8 6913 6.794E+00 | 0.779 1.565E-00 | 0.810

1/12 21843 4.743E+00 | 0.887 9.913E-01 1.126
1/16 50057 3.627E4+00 | 0.932 7.307E-01 1.061
1/20 95779 2.931E400 | 0.955 5.773E-01 1.056
1/24 | 163233 2.457TE400 | 0.968 4.772E-01 1.045
1/28 | 256643 2.113E4-00 | 0.976 4.068E-01 1.036

h N e(u) r(u) e(r) r(r)
1/4 1043 8.625E-01 — 3.350E-01 —
1/8 6913 7.717E-01 | 0.161 2.486E-01 | 0.430

1/12 21843 3.934E-01 | 1.662 1.270E-01 | 1.656
1/16 50057 2.597E-01 | 1.443 8.446E-02 | 1.418
1/20 95779 1.852E-01 | 1.516 5.919E-02 | 1.594
1/24 | 163233 1.405E-01 | 1.515 4.369E-02 | 1.665
1/28 | 256643 1.113E-01 | 1.509 3.367E-02 | 1.690

Acknowledgment. The authors are thankful to Antonio Mérquez for perform-
ing the computational code and running the numerical example.
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